params: add multi-level verbosity
[model-checker.git] / README
1 ****************************************
2  CDSChecker Readme
3 ****************************************
4
5 Copyright (c) 2013 Regents of the University of California. All rights reserved.
6
7 CDSChecker is distributed under the GPL v2. See the LICENSE file for details.
8
9 This README is divided into sections as follows:
10
11  I.    Overview
12  II.   Basic build and run
13  III.  Running your own code
14  IV.   Reading an execution trace
15 Appendix
16  A.    References
17
18 ----------------------------------------
19  I. Overview
20 ----------------------------------------
21
22 CDSChecker is a model checker for C11/C++11 exhaustively explores the behaviors
23 of code under the C11/C++11 memory model. It uses partial order reduction to
24 eliminate redundant executions to significantly shrink the state space.
25 The model checking algorithm is described in more detail in this paper
26 (currently under review):
27
28   http://demsky.eecs.uci.edu/publications/c11modelcheck.pdf
29
30 It is designed to support unit tests on concurrent data structure written using
31 C11/C++11 atomics.
32
33 CDSChecker is constructed as a dynamically-linked shared library which
34 implements the C and C++ atomic types and portions of the other thread-support
35 libraries of C/C++ (e.g., std::atomic, std::mutex, etc.). Notably, we only
36 support the C version of threads (i.e., thrd_t and similar, from <threads.h>),
37 because C++ threads require features which are only available to a C++11
38 compiler (and we want to support others, at least for now).
39
40 CDSChecker should compile on Linux and Mac OSX with no dependencies and has been
41 tested with LLVM (clang/clang++) and GCC. It likely can be ported to other *NIX
42 flavors. We have not attempted to port to Windows.
43
44 Other references can be found at the main project page:
45
46   http://demsky.eecs.uci.edu/c11modelchecker.php
47
48 ----------------------------------------
49  II. Basic build and run
50 ----------------------------------------
51
52 Sample run instructions:
53
54 $ make
55 $ export LD_LIBRARY_PATH=.
56 $ ./test/userprog.o                   # Runs simple test program
57 $ ./test/userprog.o -h                # Prints help information
58 Copyright (c) 2013 Regents of the University of California. All rights reserved.
59 Distributed under the GPLv2
60 Written by Brian Norris and Brian Demsky
61
62 Usage: ./test/userprog.o [MODEL-CHECKER OPTIONS] -- [PROGRAM ARGS]
63
64 MODEL-CHECKER OPTIONS can be any of the model-checker options listed below. Arguments
65 provided after the `--' (the PROGRAM ARGS) are passed to the user program.
66
67 Model-checker options:
68 -h, --help                  Display this help message and exit
69 -m, --liveness=NUM          Maximum times a thread can read from the same write
70                               while other writes exist.
71                               Default: 0
72 -M, --maxfv=NUM             Maximum number of future values that can be sent to
73                               the same read.
74                               Default: 0
75 -s, --maxfvdelay=NUM        Maximum actions that the model checker will wait for
76                               a write from the future past the expected number
77                               of actions.
78                               Default: 6
79 -S, --fvslop=NUM            Future value expiration sloppiness.
80                               Default: 4
81 -y, --yield                 Enable CHESS-like yield-based fairness support.
82                               Default: disabled
83 -Y, --yieldblock            Prohibit an execution from running a yield.
84                               Default: disabled
85 -f, --fairness=WINDOW       Specify a fairness window in which actions that are
86                               enabled sufficiently many times should receive
87                               priority for execution (not recommended).
88                               Default: 0
89 -e, --enabled=COUNT         Enabled count.
90                               Default: 1
91 -b, --bound=MAX             Upper length bound.
92                               Default: 0
93 -v, --verbose               Print verbose execution information.
94 -u, --uninitialized=VALUE   Return VALUE any load which may read from an
95                               uninitialized atomic.
96                               Default: 0
97 -t, --analysis=NAME         Use Analysis Plugin.
98 -o, --options=NAME          Option for previous analysis plugin.
99                             -o help for a list of options
100  --                         Program arguments follow.
101
102
103 Note that we also provide a series of benchmarks (distributed separately),
104 which can be placed under the benchmarks/ directory. After building CDSChecker,
105 you can build and run the benchmarks as follows:
106
107   cd benchmarks
108   make
109   ./run.sh barrier/barrier -y -m 2     # runs barrier test with fairness/memory liveness
110   ./bench.sh                           # run all benchmarks twice, with timing results
111
112 ----------------------------------------
113  III. Running your own code
114 ----------------------------------------
115
116 We provide several test and sample programs under the test/ directory, which
117 should compile and run with no trouble. Of course, you likely want to test your
118 own code. To do so, you need to perform a few steps.
119
120 First, because CDSChecker executes your program dozens (if not hundreds or
121 thousands) of times, you will have the most success if your code is written as a
122 unit test and not as a full-blown program.
123
124 Next, test programs should use the standard C11/C++11 library headers
125 (<atomic>/<stdatomic.h>, <mutex>, <condition_variable>, <thread.h>) and must
126 name their main routine as user_main(int, char**) rather than main(int, char**).
127 We only support C11 thread syntax (thrd_t, etc. from <thread.h>).
128
129 Test programs may also use our included happens-before race detector by
130 including <librace.h> and utilizing the appropriate functions
131 (store_{8,16,32,64}() and load_{8,16,32,64}()) for loading/storing data from/to
132 from non-atomic shared memory.
133
134 Test programs should be compiled against our shared library (libmodel.so) using
135 the headers in the include/ directory. Then the shared library must be made
136 available to the dynamic linker, using the LD_LIBRARY_PATH environment
137 variable, for instance.
138
139 ----------------------------------------
140  IV. Reading an execution trace
141 ----------------------------------------
142
143 When CDSChecker detects a bug in your program (or when run with the --verbose
144 flag), it prints the output of the program run (STDOUT) along with some summary
145 trace information for the execution in question. The trace is given as a
146 sequence of lines, where each line represents an operation in the execution
147 trace. These lines are ordered by the order in which they were run by CDSChecker
148 (i.e., the "execution order"), which does not necessarily align with the "order"
149 of the values observed (i.e., the modification order or the reads-from
150 relation).
151
152 The following list describes each of the columns in the execution trace output:
153
154  o #: The sequence number within the execution. That is, sequence number "9"
155    means the operation was the 9th operation executed by CDSChecker. Note that
156    this represents the execution order, not necessarily any other order (e.g.,
157    modification order or reads-from).
158
159  o t: The thread number
160
161  o Action type: The type of operation performed
162
163  o MO: The memory-order for this operation (i.e., memory_order_XXX, where XXX is
164    relaxed, release, acquire, rel_acq, or seq_cst)
165
166  o Location: The memory location on which this operation is operating. This is
167    well-defined for atomic write/read/RMW, but other operations are subject to
168    CDSChecker implementation details.
169
170  o Value: For reads/writes/RMW, the value returned by the operation. Note that
171    for RMW, this is the value that is *read*, not the value that was *written*.
172    For other operations, 'value' may have some CDSChecker-internal meaning, or
173    it may simply be a don't-care (such as 0xdeadbeef).
174
175  o Rf: For reads, the sequence number of the operation from which it reads.
176    [Note: If the execution is a partial, infeasible trace (labeled INFEASIBLE),
177    as printed during --verbose execution, reads may not be resolved and so may
178    have Rf=? or Rf=Px, where x is a promised future value.]
179
180  o CV: The clock vector, encapsulating the happens-before relation (see our
181    paper, or the C/C++ memory model itself). We use a Lamport-style clock vector
182    similar to [1]. The "clock" is just the sequence number (#). The clock vector
183    can be read as follows:
184
185    Each entry is indexed as CV[i], where
186
187      i = 0, 1, 2, ..., <number of threads>
188
189    So for any thread i, we say CV[i] is the sequence number of the most recent
190    operation in thread i such that operation i happens-before this operation.
191    Notably, thread 0 is reserved as a dummy thread for certain CDSChecker
192    operations.
193
194 See the following example trace:
195
196 ------------------------------------------------------------------------------------
197 #    t    Action type     MO       Location         Value               Rf  CV
198 ------------------------------------------------------------------------------------
199 1    1    thread start    seq_cst  0x7f68ff11e7c0   0xdeadbeef              ( 0,  1)
200 2    1    init atomic     relaxed        0x601068   0                       ( 0,  2)
201 3    1    init atomic     relaxed        0x60106c   0                       ( 0,  3)
202 4    1    thread create   seq_cst  0x7f68fe51c710   0x7f68fe51c6e0          ( 0,  4)
203 5    2    thread start    seq_cst  0x7f68ff11ebc0   0xdeadbeef              ( 0,  4,  5)
204 6    2    atomic read     relaxed        0x60106c   0                   3   ( 0,  4,  6)
205 7    1    thread create   seq_cst  0x7f68fe51c720   0x7f68fe51c6e0          ( 0,  7)
206 8    3    thread start    seq_cst  0x7f68ff11efc0   0xdeadbeef              ( 0,  7,  0,  8)
207 9    2    atomic write    relaxed        0x601068   0                       ( 0,  4,  9)
208 10   3    atomic read     relaxed        0x601068   0                   2   ( 0,  7,  0, 10)
209 11   2    thread finish   seq_cst  0x7f68ff11ebc0   0xdeadbeef              ( 0,  4, 11)
210 12   3    atomic write    relaxed        0x60106c   0x2a                    ( 0,  7,  0, 12)
211 13   1    thread join     seq_cst  0x7f68ff11ebc0   0x2                     ( 0, 13, 11)
212 14   3    thread finish   seq_cst  0x7f68ff11efc0   0xdeadbeef              ( 0,  7,  0, 14)
213 15   1    thread join     seq_cst  0x7f68ff11efc0   0x3                     ( 0, 15, 11, 14)
214 16   1    thread finish   seq_cst  0x7f68ff11e7c0   0xdeadbeef              ( 0, 16, 11, 14)
215 HASH 4073708854
216 ------------------------------------------------------------------------------------
217
218 Now consider, for example, operation 10:
219
220 This is the 10th operation in the execution order. It is an atomic read-relaxed
221 operation performed by thread 3 at memory address 0x601068. It reads the value
222 "0", which was written by the 2nd operation in the execution order. Its clock
223 vector consists of the following values:
224
225   CV[0] = 0, CV[1] = 7, CV[2] = 0, CV[3] = 10
226
227
228 ----------------------------------------
229  A. References
230 ----------------------------------------
231
232 [1] L. Lamport. Time, clocks, and the ordering of events in a distributed
233     system. CACM, 21(7):558–565, July 1978.