Cleaning up DPORStateReducer.java
[jpf-core.git] / src / main / gov / nasa / jpf / listener / DPORStateReducer.java
old mode 100644 (file)
new mode 100755 (executable)
index 746adfe..9ce2c3d
@@ -20,43 +20,68 @@ package gov.nasa.jpf.listener;
 import gov.nasa.jpf.Config;
 import gov.nasa.jpf.JPF;
 import gov.nasa.jpf.ListenerAdapter;
+import gov.nasa.jpf.jvm.bytecode.INVOKEINTERFACE;
+import gov.nasa.jpf.jvm.bytecode.JVMFieldInstruction;
 import gov.nasa.jpf.search.Search;
-import gov.nasa.jpf.jvm.bytecode.*;
 import gov.nasa.jpf.vm.*;
 import gov.nasa.jpf.vm.bytecode.ReadInstruction;
 import gov.nasa.jpf.vm.bytecode.WriteInstruction;
 import gov.nasa.jpf.vm.choice.IntChoiceFromSet;
 import gov.nasa.jpf.vm.choice.IntIntervalGenerator;
 
+import java.io.FileWriter;
+import java.io.IOException;
 import java.io.PrintWriter;
 import java.util.*;
+import java.util.logging.Logger;
 
-// TODO: Fix for Groovy's model-checking
-// TODO: This is a setter to change the values of the ChoiceGenerator to implement POR
 /**
- * Simple tool to log state changes.
- *
- * This DPOR implementation is augmented by the algorithm presented in this SPIN paper:
- * http://spinroot.com/spin/symposia/ws08/spin2008_submission_33.pdf
- *
- * The algorithm is presented on page 11 of the paper. Basically, we create a graph G
- * (i.e., visible operation dependency graph)
- * that maps inter-related threads/sub-programs that trigger state changes.
- * The key to this approach is that we evaluate graph G in every iteration/recursion to
- * only update the backtrack sets of the threads/sub-programs that are reachable in graph G
- * from the currently running thread/sub-program.
+ * This a DPOR implementation for event-driven applications with loops that create cycles of state matching
+ * In this new DPOR algorithm/implementation, each run is terminated iff:
+ * - we find a state that matches a state in a previous run, or
+ * - we have a matched state in the current run that consists of cycles that contain all choices/events.
  */
 public class DPORStateReducer extends ListenerAdapter {
 
-  // Debug info fields
+  // Information printout fields for verbose mode
   private boolean verboseMode;
   private boolean stateReductionMode;
   private final PrintWriter out;
+  private PrintWriter fileWriter;
   private String detail;
   private int depth;
   private int id;
   private Transition transition;
 
+  // DPOR-related fields
+  // Basic information
+  private Integer[] choices;
+  private Integer[] refChoices; // Second reference to a copy of choices (choices may be modified for fair scheduling)
+  private int choiceCounter;
+  private int maxEventChoice;
+  // Data structure to track the events seen by each state to track cycles (containing all events) for termination
+  private HashSet<Integer> currVisitedStates;   // States being visited in the current execution
+  private HashSet<Integer> justVisitedStates;   // States just visited in the previous choice/event
+  private HashSet<Integer> prevVisitedStates;   // States visited in the previous execution
+  private HashSet<ClassInfo> nonRelevantClasses;// Class info objects of non-relevant classes
+  private HashSet<FieldInfo> nonRelevantFields; // Field info objects of non-relevant fields
+  private HashSet<FieldInfo> relevantFields;    // Field info objects of relevant fields
+  private HashMap<Integer, HashSet<Integer>> stateToEventMap;
+  // Data structure to analyze field Read/Write accesses and conflicts
+  private HashMap<Integer, LinkedList<BacktrackExecution>> backtrackMap;  // Track created backtracking points
+  private PriorityQueue<Integer> backtrackStateQ;                 // Heap that returns the latest state
+  private Execution currentExecution;                             // Holds the information about the current execution
+  private HashMap<Integer, HashSet<Integer>> doneBacktrackMap;    // Record state ID and trace already constructed
+  private HashMap<Integer, RestorableVMState> restorableStateMap; // Maps state IDs to the restorable state object
+  private RGraph rGraph;                                          // R-Graph for past executions
+
+  // Boolean states
+  private boolean isBooleanCGFlipped;
+  private boolean isEndOfExecution;
+
+  // Statistics
+  private int numOfTransitions;
+
   public DPORStateReducer(Config config, JPF jpf) {
     verboseMode = config.getBoolean("printout_state_transition", false);
     stateReductionMode = config.getBoolean("activate_state_reduction", true);
@@ -65,6 +90,20 @@ public class DPORStateReducer extends ListenerAdapter {
     } else {
       out = null;
     }
+    String outputFile = config.getString("file_output");
+    if (!outputFile.isEmpty()) {
+      try {
+        fileWriter = new PrintWriter(new FileWriter(outputFile, true), true);
+      } catch (IOException e) {
+      }
+    }
+    isBooleanCGFlipped = false;
+               numOfTransitions = 0;
+               nonRelevantClasses = new HashSet<>();
+               nonRelevantFields = new HashSet<>();
+               relevantFields = new HashSet<>();
+    restorableStateMap = new HashMap<>();
+    initializeStatesVariables();
   }
 
   @Override
@@ -105,6 +144,9 @@ public class DPORStateReducer extends ListenerAdapter {
       out.println("\n==> DEBUG: The state is forwarded to state with id: " + id + " with depth: " + depth +
               " which is " + detail + " Transition: " + transition + "\n");
     }
+    if (stateReductionMode) {
+      updateStateInfo(search);
+    }
   }
 
   @Override
@@ -118,12 +160,1032 @@ public class DPORStateReducer extends ListenerAdapter {
       out.println("\n==> DEBUG: The state is backtracked to state with id: " + id + " -- Transition: " + transition +
               " and depth: " + depth + "\n");
     }
+    if (stateReductionMode) {
+      updateStateInfo(search);
+    }
   }
 
+  static Logger log = JPF.getLogger("report");
+
   @Override
   public void searchFinished(Search search) {
     if (verboseMode) {
+      out.println("\n==> DEBUG: ----------------------------------- search finished");
+      out.println("\n==> DEBUG: State reduction mode  : " + stateReductionMode);
+      out.println("\n==> DEBUG: Number of transitions : " + numOfTransitions);
       out.println("\n==> DEBUG: ----------------------------------- search finished" + "\n");
+
+      fileWriter.println("==> DEBUG: State reduction mode  : " + stateReductionMode);
+      fileWriter.println("==> DEBUG: Number of transitions : " + numOfTransitions);
+      fileWriter.println();
+      fileWriter.close();
+    }
+  }
+
+  @Override
+  public void choiceGeneratorRegistered(VM vm, ChoiceGenerator<?> nextCG, ThreadInfo currentThread, Instruction executedInstruction) {
+    if (stateReductionMode) {
+      // Initialize with necessary information from the CG
+      if (nextCG instanceof IntChoiceFromSet) {
+        IntChoiceFromSet icsCG = (IntChoiceFromSet) nextCG;
+        // Tell JPF that we are performing DPOR
+        icsCG.setDpor();
+        if (!isEndOfExecution) {
+          // Check if CG has been initialized, otherwise initialize it
+          Integer[] cgChoices = icsCG.getAllChoices();
+          // Record the events (from choices)
+          if (choices == null) {
+            choices = cgChoices;
+            // Make a copy of choices as reference
+            refChoices = copyChoices(choices);
+            // Record the max event choice (the last element of the choice array)
+            maxEventChoice = choices[choices.length - 1];
+          }
+          icsCG.setNewValues(choices);
+          icsCG.reset();
+          // Use a modulo since choiceCounter is going to keep increasing
+          int choiceIndex = choiceCounter % choices.length;
+          icsCG.advance(choices[choiceIndex]);
+        } else {
+          // Set done all CGs while transitioning to a new execution
+          icsCG.setDone();
+        }
+      }
+    }
+  }
+
+  @Override
+  public void choiceGeneratorAdvanced(VM vm, ChoiceGenerator<?> currentCG) {
+    if (stateReductionMode) {
+      // Check the boolean CG and if it is flipped, we are resetting the analysis
+      if (currentCG instanceof BooleanChoiceGenerator) {
+        if (!isBooleanCGFlipped) {
+          isBooleanCGFlipped = true;
+        } else {
+          // Allocate new objects for data structure when the boolean is flipped from "false" to "true"
+          initializeStatesVariables();
+        }
+      }
+      // Check every choice generated and ensure fair scheduling!
+      if (currentCG instanceof IntChoiceFromSet) {
+        IntChoiceFromSet icsCG = (IntChoiceFromSet) currentCG;
+        // If this is a new CG then we need to update data structures
+        resetStatesForNewExecution(icsCG, vm);
+        // If we don't see a fair scheduling of events/choices then we have to enforce it
+        ensureFairSchedulingAndSetupTransition(icsCG, vm);
+        // Update backtrack set of an executed event (transition): one transition before this one
+        updateBacktrackSet(currentExecution, choiceCounter - 1);
+        // Explore the next backtrack point:
+        // 1) if we have seen this state or this state contains cycles that involve all events, and
+        // 2) after the current CG is advanced at least once
+        if (terminateCurrentExecution() && choiceCounter > 0) {
+          exploreNextBacktrackPoints(vm, icsCG);
+        } else {
+          numOfTransitions++;
+        }
+        // Map state to event
+        mapStateToEvent(icsCG.getNextChoice());
+        justVisitedStates.clear();
+        choiceCounter++;
+      }
+    } else {
+      numOfTransitions++;
+    }
+  }
+
+  @Override
+  public void instructionExecuted(VM vm, ThreadInfo ti, Instruction nextInsn, Instruction executedInsn) {
+    if (stateReductionMode) {
+      if (!isEndOfExecution) {
+        // Has to be initialized and a integer CG
+        ChoiceGenerator<?> cg = vm.getChoiceGenerator();
+        if (cg instanceof IntChoiceFromSet || cg instanceof IntIntervalGenerator) {
+          int currentChoice = choiceCounter - 1;  // Accumulative choice w.r.t the current trace
+          if (currentChoice < 0) { // If choice is -1 then skip
+            return;
+          }
+          currentChoice = checkAndAdjustChoice(currentChoice, vm);
+          // Record accesses from executed instructions
+          if (executedInsn instanceof JVMFieldInstruction) {
+            // We don't care about libraries
+            if (!isFieldExcluded(executedInsn)) {
+              analyzeReadWriteAccesses(executedInsn, currentChoice);
+            }
+          } else if (executedInsn instanceof INVOKEINTERFACE) {
+            // Handle the read/write accesses that occur through iterators
+            analyzeReadWriteAccesses(executedInsn, ti, currentChoice);
+          }
+        }
+      }
+    }
+  }
+
+
+  // == HELPERS
+
+  // -- INNER CLASSES
+
+  // This class compactly stores backtrack execution:
+  // 1) backtrack choice list, and
+  // 2) first backtrack point (linking with predecessor execution)
+  private class BacktrackExecution {
+    private Integer[] choiceList;
+    private TransitionEvent firstTransition;
+
+    public BacktrackExecution(Integer[] choList, TransitionEvent fTransition) {
+      choiceList = choList;
+      firstTransition = fTransition;
+    }
+
+    public Integer[] getChoiceList() {
+      return choiceList;
+    }
+
+    public TransitionEvent getFirstTransition() {
+      return firstTransition;
+    }
+  }
+
+  // This class stores a representation of an execution
+  // TODO: We can modify this class to implement some optimization (e.g., clock-vector)
+  // TODO: We basically need to keep track of:
+  // TODO:    (1) last read/write access to each memory location
+  // TODO:    (2) last state with two or more incoming events/transitions
+  private class Execution {
+    private HashMap<IntChoiceFromSet, Integer> cgToChoiceMap;   // Map between CG to choice numbers for O(1) access
+    private ArrayList<TransitionEvent> executionTrace;          // The BacktrackPoint objects of this execution
+    private boolean isNew;                                      // Track if this is the first time it is accessed
+    private HashMap<Integer, ReadWriteSet> readWriteFieldsMap;  // Record fields that are accessed
+
+    public Execution() {
+      cgToChoiceMap = new HashMap<>();
+      executionTrace = new ArrayList<>();
+      isNew = true;
+      readWriteFieldsMap = new HashMap<>();
+    }
+
+    public void addTransition(TransitionEvent newBacktrackPoint) {
+      executionTrace.add(newBacktrackPoint);
+    }
+
+    public void clearCGToChoiceMap() {
+      cgToChoiceMap = null;
+    }
+
+    public int getChoiceFromCG(IntChoiceFromSet icsCG) {
+      return cgToChoiceMap.get(icsCG);
+    }
+
+    public ArrayList<TransitionEvent> getExecutionTrace() {
+      return executionTrace;
+    }
+
+    public TransitionEvent getFirstTransition() {
+      return executionTrace.get(0);
+    }
+
+    public TransitionEvent getLastTransition() {
+      return executionTrace.get(executionTrace.size() - 1);
+    }
+
+    public HashMap<Integer, ReadWriteSet> getReadWriteFieldsMap() {
+      return readWriteFieldsMap;
+    }
+
+    public boolean isNew() {
+      if (isNew) {
+        // Right after this is accessed, it is no longer new
+        isNew = false;
+        return true;
+      }
+      return false;
+    }
+
+    public void mapCGToChoice(IntChoiceFromSet icsCG, int choice) {
+      cgToChoiceMap.put(icsCG, choice);
+    }
+  }
+
+  // This class compactly stores a predecessor
+  // 1) a predecessor execution
+  // 2) the predecessor choice in that predecessor execution
+  private class Predecessor {
+    private int choice;           // Predecessor choice
+    private Execution execution;  // Predecessor execution
+
+    public Predecessor(int predChoice, Execution predExec) {
+      choice = predChoice;
+      execution = predExec;
+    }
+
+    public int getChoice() {
+      return choice;
+    }
+
+    public Execution getExecution() {
+      return execution;
+    }
+  }
+
+  // This class represents a R-Graph (in the paper it is a state transition graph R)
+  // This implementation stores reachable transitions from and connects with past executions
+  private class RGraph {
+    private int hiStateId;                                     // Maximum state Id
+    private HashMap<Integer, HashSet<TransitionEvent>> graph;  // Reachable transitions from past executions
+
+    public RGraph() {
+      hiStateId = 0;
+      graph = new HashMap<>();
+    }
+
+    public void addReachableTransition(int stateId, TransitionEvent transition) {
+      HashSet<TransitionEvent> transitionSet;
+      if (graph.containsKey(stateId)) {
+        transitionSet = graph.get(stateId);
+      } else {
+        transitionSet = new HashSet<>();
+        graph.put(stateId, transitionSet);
+      }
+      // Insert into the set if it does not contain it yet
+      if (!transitionSet.contains(transition)) {
+        transitionSet.add(transition);
+      }
+      // Update highest state ID
+      if (hiStateId < stateId) {
+        hiStateId = stateId;
+      }
+    }
+
+    public HashSet<TransitionEvent> getReachableTransitionsAtState(int stateId) {
+      if (!graph.containsKey(stateId)) {
+        // This is a loop from a transition to itself, so just return the current transition
+        HashSet<TransitionEvent> transitionSet = new HashSet<>();
+        transitionSet.add(currentExecution.getLastTransition());
+        return transitionSet;
+      }
+      return graph.get(stateId);
+    }
+
+    public HashSet<TransitionEvent> getReachableTransitions(int stateId) {
+      HashSet<TransitionEvent> reachableTransitions = new HashSet<>();
+      // All transitions from states higher than the given state ID (until the highest state ID) are reachable
+      for(int stId = stateId; stId <= hiStateId; stId++) {
+        // We might encounter state IDs from the first round of Boolean CG
+        // The second round of Boolean CG should consider these new states
+        if (graph.containsKey(stId)) {
+          reachableTransitions.addAll(graph.get(stId));
+        }
+      }
+      return reachableTransitions;
+    }
+  }
+
+  // This class compactly stores Read and Write field sets
+  // We store the field name and its object ID
+  // Sharing the same field means the same field name and object ID
+  private class ReadWriteSet {
+    private HashMap<String, Integer> readMap;
+    private HashMap<String, Integer> writeMap;
+
+    public ReadWriteSet() {
+      readMap = new HashMap<>();
+      writeMap = new HashMap<>();
+    }
+
+    public void addReadField(String field, int objectId) {
+      readMap.put(field, objectId);
+    }
+
+    public void addWriteField(String field, int objectId) {
+      writeMap.put(field, objectId);
+    }
+
+    public void removeReadField(String field) {
+      readMap.remove(field);
+    }
+
+    public void removeWriteField(String field) {
+      writeMap.remove(field);
+    }
+
+    public boolean isEmpty() {
+      return readMap.isEmpty() && writeMap.isEmpty();
+    }
+
+    public ReadWriteSet getCopy() {
+      ReadWriteSet copyRWSet = new ReadWriteSet();
+      // Copy the maps in the set into the new object copy
+      copyRWSet.setReadMap(new HashMap<>(this.getReadMap()));
+      copyRWSet.setWriteMap(new HashMap<>(this.getWriteMap()));
+      return copyRWSet;
+    }
+
+    public Set<String> getReadSet() {
+      return readMap.keySet();
+    }
+
+    public Set<String> getWriteSet() {
+      return writeMap.keySet();
+    }
+
+    public boolean readFieldExists(String field) {
+      return readMap.containsKey(field);
+    }
+
+    public boolean writeFieldExists(String field) {
+      return writeMap.containsKey(field);
+    }
+
+    public int readFieldObjectId(String field) {
+      return readMap.get(field);
+    }
+
+    public int writeFieldObjectId(String field) {
+      return writeMap.get(field);
+    }
+
+    private HashMap<String, Integer> getReadMap() {
+      return readMap;
+    }
+
+    private HashMap<String, Integer> getWriteMap() {
+      return writeMap;
+    }
+
+    private void setReadMap(HashMap<String, Integer> rMap) {
+      readMap = rMap;
+    }
+
+    private void setWriteMap(HashMap<String, Integer> wMap) {
+      writeMap = wMap;
+    }
+  }
+
+  // This class compactly stores transitions:
+  // 1) CG,
+  // 2) state ID,
+  // 3) choice,
+  // 4) predecessors (for backward DFS).
+  private class TransitionEvent {
+    private int choice;                        // Choice chosen at this transition
+    private int choiceCounter;                 // Choice counter at this transition
+    private Execution execution;               // The execution where this transition belongs
+    private HashSet<Predecessor> predecessors; // Maps incoming events/transitions (execution and choice)
+    private HashMap<Execution, HashSet<Integer>> recordedPredecessors;
+                                               // Memorize event and choice number to not record them twice
+    private int stateId;                       // State at this transition
+    private IntChoiceFromSet transitionCG;     // CG at this transition
+
+    public TransitionEvent() {
+      choice = 0;
+      choiceCounter = 0;
+      execution = null;
+      predecessors = new HashSet<>();
+      recordedPredecessors = new HashMap<>();
+      stateId = 0;
+      transitionCG = null;
+    }
+
+    public int getChoice() {
+      return choice;
+    }
+
+    public int getChoiceCounter() {
+      return choiceCounter;
+    }
+
+    public Execution getExecution() {
+      return execution;
+    }
+
+    public HashSet<Predecessor> getPredecessors() {
+      return predecessors;
+    }
+
+    public int getStateId() {
+      return stateId;
+    }
+
+    public IntChoiceFromSet getTransitionCG() { return transitionCG; }
+
+    private boolean isRecordedPredecessor(Execution execution, int choice) {
+      // See if we have recorded this predecessor earlier
+      HashSet<Integer> recordedChoices;
+      if (recordedPredecessors.containsKey(execution)) {
+        recordedChoices = recordedPredecessors.get(execution);
+        if (recordedChoices.contains(choice)) {
+          return true;
+        }
+      } else {
+        recordedChoices = new HashSet<>();
+        recordedPredecessors.put(execution, recordedChoices);
+      }
+      // Record the choice if we haven't seen it
+      recordedChoices.add(choice);
+
+      return false;
+    }
+
+    public void recordPredecessor(Execution execution, int choice) {
+      if (!isRecordedPredecessor(execution, choice)) {
+        predecessors.add(new Predecessor(choice, execution));
+      }
+    }
+
+    public void setChoice(int cho) {
+      choice = cho;
+    }
+
+    public void setChoiceCounter(int choCounter) {
+      choiceCounter = choCounter;
+    }
+
+    public void setExecution(Execution exec) {
+      execution = exec;
+    }
+
+    public void setPredecessors(HashSet<Predecessor> preds) {
+      predecessors = new HashSet<>(preds);
+    }
+
+    public void setStateId(int stId) {
+      stateId = stId;
+    }
+
+    public void setTransitionCG(IntChoiceFromSet cg) {
+      transitionCG = cg;
+    }
+  }
+
+  // -- CONSTANTS
+  private final static String DO_CALL_METHOD = "doCall";
+  // We exclude fields that come from libraries (Java and Groovy), and also the infrastructure
+  private final static String[] EXCLUDED_FIELDS_CONTAINS_LIST = {"_closure"};
+  private final static String[] EXCLUDED_FIELDS_ENDS_WITH_LIST =
+          // Groovy library created fields
+          {"stMC", "callSiteArray", "metaClass", "staticClassInfo", "__constructor__",
+          // Infrastructure
+          "sendEvent", "Object", "reference", "location", "app", "state", "log", "functionList", "objectList",
+          "eventList", "valueList", "settings", "printToConsole", "app1", "app2"};
+  private final static String[] EXCLUDED_FIELDS_STARTS_WITH_LIST =
+          // Java and Groovy libraries
+          { "java", "org", "sun", "com", "gov", "groovy"};
+  private final static String[] EXCLUDED_FIELDS_READ_WRITE_INSTRUCTIONS_STARTS_WITH_LIST = {"Event"};
+  private final static String GET_PROPERTY_METHOD =
+          "invokeinterface org.codehaus.groovy.runtime.callsite.CallSite.callGetProperty";
+  private final static String GROOVY_CALLSITE_LIB = "org.codehaus.groovy.runtime.callsite";
+  private final static String JAVA_INTEGER = "int";
+  private final static String JAVA_STRING_LIB = "java.lang.String";
+
+  // -- FUNCTIONS
+  private Integer[] copyChoices(Integer[] choicesToCopy) {
+
+    Integer[] copyOfChoices = new Integer[choicesToCopy.length];
+    System.arraycopy(choicesToCopy, 0, copyOfChoices, 0, choicesToCopy.length);
+    return copyOfChoices;
+  }
+
+  private void ensureFairSchedulingAndSetupTransition(IntChoiceFromSet icsCG, VM vm) {
+    // Check the next choice and if the value is not the same as the expected then force the expected value
+    int choiceIndex = choiceCounter % refChoices.length;
+    int nextChoice = icsCG.getNextChoice();
+    if (refChoices[choiceIndex] != nextChoice) {
+      int expectedChoice = refChoices[choiceIndex];
+      int currCGIndex = icsCG.getNextChoiceIndex();
+      if ((currCGIndex >= 0) && (currCGIndex < refChoices.length)) {
+        icsCG.setChoice(currCGIndex, expectedChoice);
+      }
+    }
+    // Get state ID and associate it with this transition
+    int stateId = vm.getStateId();
+    TransitionEvent transition = setupTransition(icsCG, stateId, choiceIndex);
+    // Add new transition to the current execution and map it in R-Graph
+    for (Integer stId : justVisitedStates) {  // Map this transition to all the previously passed states
+      rGraph.addReachableTransition(stId, transition);
+    }
+    currentExecution.mapCGToChoice(icsCG, choiceCounter);
+    // Store restorable state object for this state (always store the latest)
+    if (!restorableStateMap.containsKey(stateId)) {
+      RestorableVMState restorableState = vm.getRestorableState();
+      restorableStateMap.put(stateId, restorableState);
+    }
+  }
+
+  private TransitionEvent setupTransition(IntChoiceFromSet icsCG, int stateId, int choiceIndex) {
+    // Get a new transition
+    TransitionEvent transition;
+    if (currentExecution.isNew()) {
+      // We need to handle the first transition differently because this has a predecessor execution
+      transition = currentExecution.getFirstTransition();
+    } else {
+      transition = new TransitionEvent();
+      currentExecution.addTransition(transition);
+      transition.recordPredecessor(currentExecution, choiceCounter - 1);
+    }
+    transition.setExecution(currentExecution);
+    transition.setTransitionCG(icsCG);
+    transition.setStateId(stateId);
+    transition.setChoice(refChoices[choiceIndex]);
+    transition.setChoiceCounter(choiceCounter);
+
+    return transition;
+  }
+
+  // --- Functions related to cycle detection and reachability graph
+
+  // Detect cycles in the current execution/trace
+  // We terminate the execution iff:
+  // (1) the state has been visited in the current execution
+  // (2) the state has one or more cycles that involve all the events
+  // With simple approach we only need to check for a re-visited state.
+  // Basically, we have to check that we have executed all events between two occurrences of such state.
+  private boolean completeFullCycle(int stId) {
+    // False if the state ID hasn't been recorded
+    if (!stateToEventMap.containsKey(stId)) {
+      return false;
+    }
+    HashSet<Integer> visitedEvents = stateToEventMap.get(stId);
+    // Check if this set contains all the event choices
+    // If not then this is not the terminating condition
+    for(int i=0; i<=maxEventChoice; i++) {
+      if (!visitedEvents.contains(i)) {
+        return false;
+      }
+    }
+    return true;
+  }
+
+  private void initializeStatesVariables() {
+    // DPOR-related
+    choices = null;
+    refChoices = null;
+    choiceCounter = 0;
+    maxEventChoice = 0;
+    // Cycle tracking
+    currVisitedStates = new HashSet<>();
+    justVisitedStates = new HashSet<>();
+    prevVisitedStates = new HashSet<>();
+    stateToEventMap = new HashMap<>();
+    // Backtracking
+    backtrackMap = new HashMap<>();
+    backtrackStateQ = new PriorityQueue<>(Collections.reverseOrder());
+    currentExecution = new Execution();
+    currentExecution.addTransition(new TransitionEvent()); // Always start with 1 backtrack point
+    doneBacktrackMap = new HashMap<>();
+    rGraph = new RGraph();
+    // Booleans
+    isEndOfExecution = false;
+  }
+
+  private void mapStateToEvent(int nextChoiceValue) {
+    // Update all states with this event/choice
+    // This means that all past states now see this transition
+    Set<Integer> stateSet = stateToEventMap.keySet();
+    for(Integer stateId : stateSet) {
+      HashSet<Integer> eventSet = stateToEventMap.get(stateId);
+      eventSet.add(nextChoiceValue);
+    }
+  }
+
+  private boolean terminateCurrentExecution() {
+    // We need to check all the states that have just been visited
+    // Often a transition (choice/event) can result into forwarding/backtracking to a number of states
+    for(Integer stateId : justVisitedStates) {
+      if (prevVisitedStates.contains(stateId) || completeFullCycle(stateId)) {
+        return true;
+      }
+    }
+    return false;
+  }
+
+  private void updateStateInfo(Search search) {
+    // Update the state variables
+    int stateId = search.getStateId();
+    // Insert state ID into the map if it is new
+    if (!stateToEventMap.containsKey(stateId)) {
+      HashSet<Integer> eventSet = new HashSet<>();
+      stateToEventMap.put(stateId, eventSet);
+    }
+    analyzeReachabilityAndCreateBacktrackPoints(search.getVM(), stateId);
+    justVisitedStates.add(stateId);
+    if (!prevVisitedStates.contains(stateId)) {
+      // It is a currently visited states if the state has not been seen in previous executions
+      currVisitedStates.add(stateId);
+    }
+  }
+
+  // --- Functions related to Read/Write access analysis on shared fields
+
+  private void addNewBacktrackPoint(int stateId, Integer[] newChoiceList, TransitionEvent conflictTransition) {
+    // Insert backtrack point to the right state ID
+    LinkedList<BacktrackExecution> backtrackExecList;
+    if (backtrackMap.containsKey(stateId)) {
+      backtrackExecList = backtrackMap.get(stateId);
+    } else {
+      backtrackExecList = new LinkedList<>();
+      backtrackMap.put(stateId, backtrackExecList);
+    }
+    // Add the new backtrack execution object
+    TransitionEvent backtrackTransition = new TransitionEvent();
+    backtrackTransition.setPredecessors(conflictTransition.getPredecessors());
+    backtrackExecList.addFirst(new BacktrackExecution(newChoiceList, backtrackTransition));
+    // Add to priority queue
+    if (!backtrackStateQ.contains(stateId)) {
+      backtrackStateQ.add(stateId);
+    }
+  }
+
+  // Analyze Read/Write accesses that are directly invoked on fields
+  private void analyzeReadWriteAccesses(Instruction executedInsn, int currentChoice) {
+    // Get the field info
+    FieldInfo fieldInfo = ((JVMFieldInstruction) executedInsn).getFieldInfo();
+    // Analyze only after being initialized
+    String fieldClass = fieldInfo.getFullName();
+    // Do the analysis to get Read and Write accesses to fields
+    ReadWriteSet rwSet = getReadWriteSet(currentChoice);
+    int objectId = fieldInfo.getClassInfo().getClassObjectRef();
+    // Record the field in the map
+    if (executedInsn instanceof WriteInstruction) {
+      // We first check the non-relevant fields set
+      if (!nonRelevantFields.contains(fieldInfo)) {
+        // Exclude certain field writes because of infrastructure needs, e.g., Event class field writes
+        for (String str : EXCLUDED_FIELDS_READ_WRITE_INSTRUCTIONS_STARTS_WITH_LIST) {
+          if (fieldClass.startsWith(str)) {
+            nonRelevantFields.add(fieldInfo);
+            return;
+          }
+        }
+      } else {
+        // If we have this field in the non-relevant fields set then we return right away
+        return;
+      }
+      rwSet.addWriteField(fieldClass, objectId);
+    } else if (executedInsn instanceof ReadInstruction) {
+      rwSet.addReadField(fieldClass, objectId);
+    }
+  }
+
+  // Analyze Read accesses that are indirect (performed through iterators)
+  // These accesses are marked by certain bytecode instructions, e.g., INVOKEINTERFACE
+  private void analyzeReadWriteAccesses(Instruction instruction, ThreadInfo ti, int currentChoice) {
+    // Get method name
+    INVOKEINTERFACE insn = (INVOKEINTERFACE) instruction;
+    if (insn.toString().startsWith(GET_PROPERTY_METHOD) &&
+            insn.getMethodInfo().getName().equals(DO_CALL_METHOD)) {
+      // Extract info from the stack frame
+      StackFrame frame = ti.getTopFrame();
+      int[] frameSlots = frame.getSlots();
+      // Get the Groovy callsite library at index 0
+      ElementInfo eiCallsite = VM.getVM().getHeap().get(frameSlots[0]);
+      if (!eiCallsite.getClassInfo().getName().startsWith(GROOVY_CALLSITE_LIB)) {
+        return;
+      }
+      // Get the iterated object whose property is accessed
+      ElementInfo eiAccessObj = VM.getVM().getHeap().get(frameSlots[1]);
+      if (eiAccessObj == null) {
+        return;
+      }
+      // We exclude library classes (they start with java, org, etc.) and some more
+      ClassInfo classInfo = eiAccessObj.getClassInfo();
+      String objClassName = classInfo.getName();
+      // Check if this class info is part of the non-relevant classes set already
+      if (!nonRelevantClasses.contains(classInfo)) {
+        if (excludeThisForItStartsWith(EXCLUDED_FIELDS_READ_WRITE_INSTRUCTIONS_STARTS_WITH_LIST, objClassName) ||
+                excludeThisForItStartsWith(EXCLUDED_FIELDS_STARTS_WITH_LIST, objClassName)) {
+          nonRelevantClasses.add(classInfo);
+          return;
+        }
+      } else {
+        // If it is part of the non-relevant classes set then return immediately
+        return;
+      }
+      // Extract fields from this object and put them into the read write
+      int numOfFields = eiAccessObj.getNumberOfFields();
+      for(int i=0; i<numOfFields; i++) {
+        FieldInfo fieldInfo = eiAccessObj.getFieldInfo(i);
+        if (fieldInfo.getType().equals(JAVA_STRING_LIB) || fieldInfo.getType().equals(JAVA_INTEGER)) {
+          String fieldClass = fieldInfo.getFullName();
+          ReadWriteSet rwSet = getReadWriteSet(currentChoice);
+          int objectId = fieldInfo.getClassInfo().getClassObjectRef();
+          // Record the field in the map
+          rwSet.addReadField(fieldClass, objectId);
+        }
+      }
+    }
+  }
+
+  private int checkAndAdjustChoice(int currentChoice, VM vm) {
+    // If current choice is not the same, then this is caused by the firing of IntIntervalGenerator
+    // for certain method calls in the infrastructure, e.g., eventSince()
+    ChoiceGenerator<?> currentCG = vm.getChoiceGenerator();
+    // This is the main event CG
+    if (currentCG instanceof IntIntervalGenerator) {
+      // This is the interval CG used in device handlers
+      ChoiceGenerator<?> parentCG = ((IntIntervalGenerator) currentCG).getPreviousChoiceGenerator();
+      // Iterate until we find the IntChoiceFromSet CG
+      while (!(parentCG instanceof IntChoiceFromSet)) {
+        parentCG = ((IntIntervalGenerator) parentCG).getPreviousChoiceGenerator();
+      }
+      // Find the choice related to the IntIntervalGenerator CG from the map
+      currentChoice = currentExecution.getChoiceFromCG((IntChoiceFromSet) parentCG);
+    }
+    return currentChoice;
+  }
+
+  private void createBacktrackingPoint(Execution execution, int currentChoice,
+                                       Execution conflictExecution, int conflictChoice) {
+    // Create a new list of choices for backtrack based on the current choice and conflicting event number
+    // E.g. if we have a conflict between 1 and 3, then we create the list {3, 1, 0, 2}
+    // for the original set {0, 1, 2, 3}
+    
+    // execution/currentChoice represent the event/transaction that will be put into the backtracking set of
+    // conflictExecution/conflictChoice
+    Integer[] newChoiceList = new Integer[refChoices.length];
+    ArrayList<TransitionEvent> currentTrace = execution.getExecutionTrace();
+    ArrayList<TransitionEvent> conflictTrace = conflictExecution.getExecutionTrace();
+    int currChoice = currentTrace.get(currentChoice).getChoice();
+    int stateId = conflictTrace.get(conflictChoice).getStateId();
+    // Check if this trace has been done from this state
+    if (isTraceAlreadyConstructed(currChoice, stateId)) {
+      return;
+    }
+    // Put the conflicting event numbers first and reverse the order
+    newChoiceList[0] = currChoice;
+    // Put the rest of the event numbers into the array starting from the minimum to the upper bound
+    for (int i = 0, j = 1; i < refChoices.length; i++) {
+      if (refChoices[i] != newChoiceList[0]) {
+        newChoiceList[j] = refChoices[i];
+        j++;
+      }
+    }
+    // Predecessor of the new backtrack point is the same as the conflict point's
+    addNewBacktrackPoint(stateId, newChoiceList, conflictTrace.get(conflictChoice));
+  }
+
+  private boolean excludeThisForItContains(String[] excludedStrings, String className) {
+    for (String excludedField : excludedStrings) {
+      if (className.contains(excludedField)) {
+        return true;
+      }
+    }
+    return false;
+  }
+
+  private boolean excludeThisForItEndsWith(String[] excludedStrings, String className) {
+    for (String excludedField : excludedStrings) {
+      if (className.endsWith(excludedField)) {
+        return true;
+      }
+    }
+    return false;
+  }
+
+  private boolean excludeThisForItStartsWith(String[] excludedStrings, String className) {
+    for (String excludedField : excludedStrings) {
+      if (className.startsWith(excludedField)) {
+        return true;
+      }
+    }
+    return false;
+  }
+
+  private void exploreNextBacktrackPoints(VM vm, IntChoiceFromSet icsCG) {
+               // Check if we are reaching the end of our execution: no more backtracking points to explore
+               // cgMap, backtrackMap, backtrackStateQ are updated simultaneously (checking backtrackStateQ is enough)
+               if (!backtrackStateQ.isEmpty()) {
+                       // Set done all the other backtrack points
+                       for (TransitionEvent backtrackTransition : currentExecution.getExecutionTrace()) {
+        backtrackTransition.getTransitionCG().setDone();
+                       }
+                       // Reset the next backtrack point with the latest state
+                       int hiStateId = backtrackStateQ.peek();
+                       // Restore the state first if necessary
+                       if (vm.getStateId() != hiStateId) {
+                               RestorableVMState restorableState = restorableStateMap.get(hiStateId);
+                               vm.restoreState(restorableState);
+                       }
+                       // Set the backtrack CG
+                       IntChoiceFromSet backtrackCG = (IntChoiceFromSet) vm.getChoiceGenerator();
+                       setBacktrackCG(hiStateId, backtrackCG);
+               } else {
+                       // Set done this last CG (we save a few rounds)
+                       icsCG.setDone();
+               }
+               // Save all the visited states when starting a new execution of trace
+               prevVisitedStates.addAll(currVisitedStates);
+               // This marks a transitional period to the new CG
+               isEndOfExecution = true;
+  }
+
+  private boolean isConflictFound(Execution execution, int reachableChoice, Execution conflictExecution, int conflictChoice,
+                                  ReadWriteSet currRWSet) {
+    // conflictExecution/conflictChoice represent a predecessor event/transaction that can potentially have a conflict
+    ArrayList<TransitionEvent> executionTrace = execution.getExecutionTrace();
+    ArrayList<TransitionEvent> conflictTrace = conflictExecution.getExecutionTrace();
+    HashMap<Integer, ReadWriteSet> confRWFieldsMap = conflictExecution.getReadWriteFieldsMap();
+    // Skip if this event does not have any Read/Write set or the two events are basically the same event (number)
+    if (!confRWFieldsMap.containsKey(conflictChoice) ||
+            executionTrace.get(reachableChoice).getChoice() == conflictTrace.get(conflictChoice).getChoice()) {
+      return false;
+    }
+    // R/W set of choice/event that may have a potential conflict
+    ReadWriteSet confRWSet = confRWFieldsMap.get(conflictChoice);
+    // Check for conflicts with Read and Write fields for Write instructions
+    Set<String> currWriteSet = currRWSet.getWriteSet();
+    for(String writeField : currWriteSet) {
+      int currObjId = currRWSet.writeFieldObjectId(writeField);
+      if ((confRWSet.readFieldExists(writeField) && confRWSet.readFieldObjectId(writeField) == currObjId) ||
+          (confRWSet.writeFieldExists(writeField) && confRWSet.writeFieldObjectId(writeField) == currObjId)) {
+        // Remove this from the write set as we are tracking per memory location
+        currRWSet.removeWriteField(writeField);
+        return true;
+      }
+    }
+    // Check for conflicts with Write fields for Read instructions
+    Set<String> currReadSet = currRWSet.getReadSet();
+    for(String readField : currReadSet) {
+      int currObjId = currRWSet.readFieldObjectId(readField);
+      if (confRWSet.writeFieldExists(readField) && confRWSet.writeFieldObjectId(readField) == currObjId) {
+        // Remove this from the read set as we are tracking per memory location
+        currRWSet.removeReadField(readField);
+        return true;
+      }
+    }
+    // Return false if no conflict is found
+    return false;
+  }
+
+  private ReadWriteSet getReadWriteSet(int currentChoice) {
+    // Do the analysis to get Read and Write accesses to fields
+    ReadWriteSet rwSet;
+    // We already have an entry
+    HashMap<Integer, ReadWriteSet> currReadWriteFieldsMap = currentExecution.getReadWriteFieldsMap();
+    if (currReadWriteFieldsMap.containsKey(currentChoice)) {
+      rwSet = currReadWriteFieldsMap.get(currentChoice);
+    } else { // We need to create a new entry
+      rwSet = new ReadWriteSet();
+      currReadWriteFieldsMap.put(currentChoice, rwSet);
+    }
+    return rwSet;
+  }
+
+  private boolean isFieldExcluded(Instruction executedInsn) {
+    // Get the field info
+    FieldInfo fieldInfo = ((JVMFieldInstruction) executedInsn).getFieldInfo();
+    // Check if the non-relevant fields set already has it
+    if (nonRelevantFields.contains(fieldInfo)) {
+      return true;
+    }
+    // Check if the relevant fields set already has it
+    if (relevantFields.contains(fieldInfo)) {
+      return false;
+    }
+    // Analyze only after being initialized
+    String field = fieldInfo.getFullName();
+    // Check against "starts-with", "ends-with", and "contains" list
+    if (excludeThisForItStartsWith(EXCLUDED_FIELDS_STARTS_WITH_LIST, field) ||
+            excludeThisForItEndsWith(EXCLUDED_FIELDS_ENDS_WITH_LIST, field) ||
+            excludeThisForItContains(EXCLUDED_FIELDS_CONTAINS_LIST, field)) {
+      nonRelevantFields.add(fieldInfo);
+      return true;
+    }
+    relevantFields.add(fieldInfo);
+    return false;
+  }
+
+  // Check if this trace is already constructed
+  private boolean isTraceAlreadyConstructed(int firstChoice, int stateId) {
+    // Concatenate state ID and only the first event in the string, e.g., "1:1 for the trace 10234 at state 1"
+    // Check if the trace has been constructed as a backtrack point for this state
+    // TODO: THIS IS AN OPTIMIZATION!
+    HashSet<Integer> choiceSet;
+    if (doneBacktrackMap.containsKey(stateId)) {
+      choiceSet = doneBacktrackMap.get(stateId);
+      if (choiceSet.contains(firstChoice)) {
+        return true;
+      }
+    } else {
+      choiceSet = new HashSet<>();
+      doneBacktrackMap.put(stateId, choiceSet);
+    }
+    choiceSet.add(firstChoice);
+
+    return false;
+  }
+
+  // Reset data structure for each new execution
+  private void resetStatesForNewExecution(IntChoiceFromSet icsCG, VM vm) {
+    if (choices == null || choices != icsCG.getAllChoices()) {
+      // Reset state variables
+      choiceCounter = 0;
+      choices = icsCG.getAllChoices();
+      refChoices = copyChoices(choices);
+      // Clear data structures
+      currVisitedStates = new HashSet<>();
+      stateToEventMap = new HashMap<>();
+      isEndOfExecution = false;
+    }
+  }
+
+  // Set a backtrack point for a particular state
+  private void setBacktrackCG(int stateId, IntChoiceFromSet backtrackCG) {
+    // Set a backtrack CG based on a state ID
+    LinkedList<BacktrackExecution> backtrackExecutions = backtrackMap.get(stateId);
+    BacktrackExecution backtrackExecution = backtrackExecutions.removeLast();
+    backtrackCG.setNewValues(backtrackExecution.getChoiceList());  // Get the last from the queue
+    backtrackCG.setStateId(stateId);
+    backtrackCG.reset();
+    // Update current execution with this new execution
+    Execution newExecution = new Execution();
+    TransitionEvent firstTransition = backtrackExecution.getFirstTransition();
+    newExecution.addTransition(firstTransition);
+    // Try to free some memory since this map is only used for the current execution
+    currentExecution.clearCGToChoiceMap();
+    currentExecution = newExecution;
+    // Remove from the queue if we don't have more backtrack points for that state
+    if (backtrackExecutions.isEmpty()) {
+      backtrackMap.remove(stateId);
+      backtrackStateQ.remove(stateId);
+    }
+  }
+
+  // Update backtrack sets
+  // 1) recursively, and
+  // 2) track accesses per memory location (per shared variable/field)
+  private void updateBacktrackSet(Execution execution, int currentChoice) {
+    // Copy ReadWriteSet object
+    HashMap<Integer, ReadWriteSet> currRWFieldsMap = execution.getReadWriteFieldsMap();
+    ReadWriteSet currRWSet = currRWFieldsMap.get(currentChoice);
+    if (currRWSet == null) {
+      return;
+    }
+    currRWSet = currRWSet.getCopy();
+    // Memorize visited TransitionEvent object while performing backward DFS to avoid getting caught up in a cycle
+    HashSet<TransitionEvent> visited = new HashSet<>();
+    // Update backtrack set recursively
+    updateBacktrackSetRecursive(execution, currentChoice, execution, currentChoice, currRWSet, visited);
+  }
+
+  private void updateBacktrackSetRecursive(Execution execution, int currentChoice,
+                                           Execution conflictExecution, int conflictChoice,
+                                           ReadWriteSet currRWSet, HashSet<TransitionEvent> visited) {
+    // Halt when we have found the first read/write conflicts for all memory locations
+    if (currRWSet.isEmpty()) {
+      return;
+    }
+    TransitionEvent currTrans = execution.getExecutionTrace().get(currentChoice);
+    // Halt when we have visited this transition (in a cycle)
+    if (visited.contains(currTrans)) {
+      return;
+    }
+    visited.add(currTrans);
+    // Explore all predecessors
+    for (Predecessor predecessor : currTrans.getPredecessors()) {
+      // Get the predecessor (previous conflict choice)
+      int predecessorChoice = predecessor.getChoice();
+      Execution predecessorExecution = predecessor.getExecution();
+      // Push up one happens-before transition
+      int newConflictChoice = conflictChoice;
+      Execution newConflictExecution = conflictExecution;
+      // Check if a conflict is found
+      if (isConflictFound(conflictExecution, conflictChoice, predecessorExecution, predecessorChoice, currRWSet)) {
+        createBacktrackingPoint(conflictExecution, conflictChoice, predecessorExecution, predecessorChoice);
+        newConflictChoice = predecessorChoice;
+        newConflictExecution = predecessorExecution;
+      }
+      // Continue performing DFS if conflict is not found
+      updateBacktrackSetRecursive(predecessorExecution, predecessorChoice, newConflictExecution, newConflictChoice,
+              currRWSet, visited);
+    }
+  }
+
+  // --- Functions related to the reachability analysis when there is a state match
+
+  private void analyzeReachabilityAndCreateBacktrackPoints(VM vm, int stateId) {
+    // Perform this analysis only when:
+    // 1) this is not during a switch to a new execution,
+    // 2) at least 2 choices/events have been explored (choiceCounter > 1),
+    // 3) state > 0 (state 0 is for boolean CG)
+    if (!isEndOfExecution && choiceCounter > 1 && stateId > 0) {
+      if (currVisitedStates.contains(stateId) || prevVisitedStates.contains(stateId)) {
+        // Update reachable transitions in the graph with a predecessor
+        HashSet<TransitionEvent> reachableTransitions = rGraph.getReachableTransitionsAtState(stateId);
+        for(TransitionEvent transition : reachableTransitions) {
+          transition.recordPredecessor(currentExecution, choiceCounter - 1);
+        }
+        updateBacktrackSetsFromGraph(stateId);
+      }
+    }
+  }
+
+  // Update the backtrack sets from previous executions
+  private void updateBacktrackSetsFromGraph(int stateId) {
+    // Collect all the reachable transitions from R-Graph
+    HashSet<TransitionEvent> reachableTransitions = rGraph.getReachableTransitions(stateId);
+    for(TransitionEvent transition : reachableTransitions) {
+      Execution execution = transition.getExecution();
+      int currentChoice = transition.getChoiceCounter();
+      updateBacktrackSet(execution, currentChoice);
     }
   }
 }