author tkwa Thu, 18 Aug 2016 00:12:33 +0000 (17:12 -0700) committer tkwa Thu, 18 Aug 2016 00:12:33 +0000 (17:12 -0700)
 doc/iotcloud.tex patch | blob | history

index f92126a..e08d6e1 100644 (file)
@@ -587,7 +587,7 @@ $\tuple{ck,\tuple{k, v}} \in KV_s \wedge \r \begin{algorithmic}[1]\r \Function{Put}{$KV_s,\tuple{k_s,v_s}$} \Comment{Interface function to update a key-value pair}\r -\State$\tuple{ck_s,\tuple{k_s,v_t}} \gets GetKVPair(KV,k_s)$\r +\State$\tuple{ck_s,\tuple{k_s,v_t}} \gets GetKVPair(KV_s,k_s)$\r \If{$\tuple{ck_s,\tuple{k_s,v_t}} = \emptyset$}\r \State$KV_s \gets KV_s \cup \{\tuple{ck_p, \tuple{k_s,v_s}}\}$\r \State$ck_p \gets ck_p + 1$\r @@ -951,9 +951,10 @@ call them$\mathsf{t}$and$\mathsf{u}$such that$\mathsf{s_t \le s_u}$. Then$\mathsf{t}$is in the path of$\mathsf{u}$. \r \end{lem}\r \begin{proof}\r -Assume otherwise. Then there are some pairs$\mathsf{(t,u)}$that violate this lemma. \r -Take a specific$\mathsf{(t,u)}$such that$\mathsf{s_u}$is minimized and \r -$\mathsf{s_t}$is maximized for this choice of$\mathsf{s_u}$.\r +Assume that there are some pairs of messages$\mathsf{(t,u)}$that violate this lemma. \r +Take a specific$\mathsf{(t,u)}$such that$\mathsf{s_u}$is minimized, and \r +$\mathsf{s_t}$is maximized for this choice of$\mathsf{s_u}$. We will show that$\mathsf{C}$\r +cannot receive both$\mathsf{t}$and$\mathsf{u}$without throwing an error.\r \r Clearly$\mathsf{C}$will throw an error if$\mathsf{s_t = s_u}$. So \r$\mathsf{s_t < s_u}$. Additionally, if$\mathsf{C}$receives$\mathsf{u}\$ before \r