

PROGRAMMING LANGUAGE RESEARCH GROUP

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE DEPARTMENT

UNIVERSITY OF CALIFORNIA, IRVINE

FIDELIUS DOCUMENTATION

Table of Contents

Getting Started

Code Repository: Master

Code Repository: Core

Server Setup

Linux Clients

Java Clients

Installation

Running a Basic Test

Running the Light Fan Test

C++ Clients

Installation

Running a Basic Test

Arduino Clients

C++ Clients

Installation

Running a Basic Test

Test bed on Particle Cloud

Test bed on Fidelius Cloud

Energy Measurements

Information Leakage

PyORAM Experiment

Getting Started
Please first read the ​Fidelius​ poster and technical report to understand the big picture of the system.

Code Repository: Master

● The ​Master​ branch contains code that can be run on a Linux client, e.g., desktop PC, Raspberry

Pi, etc.

● All the code for ​Fidelius​ is located in the ​iotcloud​ git repo.

○ git clone git://plrg.eecs.uci.edu/iotcloud.git

● Current version of ​Fidelius​ located in:

○ iotcloud -> version2 -> src

Folder Content

iotcloud/version2/src/server Server code

iotcloud/version2/src/java/iotcloud Fidelius​ client code in Java

iotcloud/version2/src/java/light_fan_benchmark Light fan demo running on computer

iotcloud/version2/src/java/light_fan_embed_benchmark Light fan demo running on Raspberry Pi’s

iotcloud/version2/src/java/Control Light fan demo Android app

iotcloud/version2/src/C Fidelius​ client code in C++

iotcloud/version2/src/server_malicious_ignore_seq Simulated Server attack (server code)

iotcloud/version2/src/server_malicious_override_do_rej Simulated Server attack (server code)

iotcloud/version2/src/server_malicious_switch_slot Simulated Server attack (server code)

Code Repository: Core

● The ​Core​ branch contains code that can be run on an Arduino device, e.g., Particle Photon. The

Java version is the same as the ​Master ​branch.

● All the code for ​Fidelius​ is located in the ​iotcloud​ git repo.

○ git clone git://plrg.eecs.uci.edu/iotcloud.git

○ git checkout -t remotes/origin/core

● Current version of ​Fidelius​ located in:

○ iotcloud -> version2 -> src

Folder Content

iotcloud/version2/src/server Server code

iotcloud/version2/src/server_malicious_ignore_seq Simulated Server attack (server code)

iotcloud/version2/src/server_malicious_override_do_rej Simulated Server attack (server code)

iotcloud/version2/src/server_malicious_switch_slot Simulated Server attack (server code)

iotcloud/version2/src/C Fidelius​ client code in C++

iotcloud/version2/src/others/Arduino_DHT Library for DHT devices from Arduino

iotcloud/version2/src/others/PietteTech_DHT Library for DHT devices from PietteTech

iotcloud/version2/src/others/functions Information leakage experiment

iotcloud/version2/src/others/ino INO files for testing

iotcloud/version2/src/others/ino/IR-Sensor INO files and Makefile for IR sensor

iotcloud/version2/src/others/ino/Magnetic-Sensor INO files and Makefile for magnetic sensor

iotcloud/version2/src/others/ino/Temp-Sensor INO files and Makefile for temperature sensor

iotcloud/version2/src/others/RPi LiFX controller for Particle Cloud

iotcloud/version2/src/others/setup Picture of sensor wiring

iotcloud/version2/src/Control-2bulbs.zip Android app to control 2 light bulbs

Server Setup

To compile this code do the following:

1. Do ​ssh​ to your cloud server.

2. Clone the git repo.

3. Run the following on command prompt.

○ $cd iotcloud/version2/src/server

○ $make

Once the code is compiled it must be placed in the correct location:

1. IMPORTANT: If this is the first time you set up the Fidelius cloud server, please follow

the instructions in the ​iotcloud/version2/src/server/​README.txt​.

2. If this is just to refresh the setup, do ​ssh​ to your cloud server.

3. Do ​cd​ to the location where the code was compiled.

4. Run the following on command prompt.

○ $sudo rm /usr/lib/cgi-bin/iotcloud.fcgi

○ $sudo cp iotcloud.fcgi /usr/lib/cgi-bin/iotcloud.fcgi

○ $sudo service apache2 restart

The server is now ready. If there are any issues, look into ​Server.txt​ in ​iotcloud/version2/src/server ​for

help.

Linux Clients

Java Clients

Installation

This code runs on a device, e.g., a Raspberry Pi or even a desktop computer that has Java (this was

tested on Java 8).

To compile this code do the following.

1. Clone git repo.

○ git clone git://plrg.eecs.uci.edu/iotcloud.git

2. Run the following commands.

○ $cd iotcloud/version2/src/java/iotcloud

○ $mkdir bin

○ $make

The code is now compiled.

Running a Basic Test

Before running any tests, please make sure that the Table instantiation URL in the classes are updated.

Currently we use ​dc-6.calit2.uci.edu​ as our cloud server and ​test.iotcloud​ as our repository folder in the

cloud. Thus, you need to update the following URL with the specific URL based on your server

configuration (see ​Server Setup​). 1

"http://dc-6.calit2.uci.edu/test.iotcloud/"

Within the implementation of ​Fidelius​ there is a test file called:

iotcloud/version2/src/java/iotcloud/Test.java

To run this test:

1. Run this command ​on server​ ​before running​ a new test.

○ $sudo rm -rf /iotcloud/test.iotcloud/*

1 ​Please note that command lines listed here have to be adjusted to your cloud server configuration as
well.

2. Run these commands on client whenever you want to run a new test.

○ $cd iotcloud/version2/src/java/iotcloud/bin

○ $java -cp .:./iotcloud/* iotcloud.Test <test number>

The test numbers range from 2 to 14. Look at

iotcloud/version2/src/java/iotcloud/Test.java

for what the test does.

Running the Light Fan Test

Perform the following to run this test. You have to prepare the necessary hardware, i.e., Raspberry Pi

devices, LiFX bulbs, and WeMo switches.

1. Run this command on server ​before running​ this test.

○ $sudo rm -rf /iotcloud/test.iotcloud/*

2. Run these commands on client.

○ $./iotcloud/version2/src/java/light_fan_embed_benchmark/build.bash

○ $./iotcloud/version2/src/java/light_fan_embed_benchmark/runSetup.bash

Open the Android app Control in Android Studios

○ In ​iotcloud/version2/src/Control/app/src/main/java/com/example/ali/control​ change

the IP address on line 320 to the IP address of the raspberry pi that will be running the

light bulb controller.

○ Compile the application. You might see errors depending on which Android Studios.

Please make the necessary adjustments to proceed.

○ Push and run the application on an Android device.

○ Shut down the application for now.

3. Perform these on each Raspberry Pi:.

○ Clone the git repo: ​git clone git://plrg.eecs.uci.edu/iotcloud.git

○ Compile the IoTCloud Client code (instructions above)

○ Run the following on command prompt.

○ $cd iotcloud/version2/src/java/light_fan_embed_benchmark

○ $./build.bash

○ Perform this on one Raspberry Pi (the one that is to control the LiFX bulbs):

○ $./run1.bash

○ Perform this on a different Raspberry Pi (the one that is to control the WeMo switches):

○ $./run2.bash

4. Now relaunch the Android app.

C++ Clients

Installation

This code runs on a device, e.g., a Raspberry Pi or even a desktop computer that has C++ (this was tested

on Java 8).

To compile this code do the following.

1. Clone git repo.

○ git clone git://plrg.eecs.uci.edu/iotcloud.git

2. Run the following commands.

○ $cd iotcloud/version2/src/C

○ $mkdir bin

○ $make

3. Install the necessary C++ libraries.

If it complains: ​SecureRandom.cpp:3:24: fatal error: bsd/stdlib.h: No such file or directory​, then

we need to install the standard ​libbsd-dev​ library. Run the following command.

○ sudo apt-get install libbsd-dev

The code is now compiled.

Running a Basic Test

Before running any tests, please make sure that the Table instantiation URL in the classes are updated.

Currently we use ​dc-6.calit2.uci.edu​ as our cloud server and ​test.iotcloud​ as our repository folder in the

cloud. Thus, you need to update the following URL with the specific URL based on your server

configuration (see ​Server Setup​). 2

"http://dc-6.calit2.uci.edu/test.iotcloud/"

To run this test:

1. Run the following commands ​on server​ ​before running​ a new test.

○ $sudo rm -rf /iotcloud/test.iotcloud/*

2. Run these commands on client to initialize the cloud server.

2 ​Please note that command lines listed here have to be adjusted to your cloud server configuration as
well.

○ $./bin/init

3. Run these commands on client to perform updates to the cloud.

○ $./bin/update

4. Run these commands on client to read from the cloud server.

○ $./bin/read

Look at the following files

iotcloud/version2/src/C/Init.C

iotcloud/version2/src/C/Update.C

iotcloud/version2/src/C/Read.C

for what the test does.

Arduino Clients

C++ Clients

Installation

This code runs on an Arduino class of device. In our experiment, we use the ​Particle Photon​ device.

To compile this code do the following.

1. Clone git repo and checkout the ​remotes/origin/core ​branch.

○ git clone git://plrg.eecs.uci.edu/iotcloud.git

○ git checkout -t remotes/origin/core

2. Install the ​Particle CLI toolchain​ on your system.

3. Run the following commands.

○ $cd iotcloud/version2/src/C

○ $make

The code is now compiled and we have firmware binary file, i.e., ​photon_firmware_XXXXXXXXXXXX.bin

in the same folder.

Running a Basic Test

Before running any tests, please make sure that the Table instantiation URL in the classes are updated.

Currently we use ​dc-6.calit2.uci.edu​ as our cloud server and ​test.iotcloud​ as our repository folder in the

cloud. Thus, you need to update the following URL with the specific URL based on your server

configuration (see ​Server Setup​). 3

"http://dc-6.calit2.uci.edu/test.iotcloud/"

To run this test:

1. Run this command ​on server​ ​before running​ a new test.

○ $sudo rm -rf /iotcloud/test.iotcloud/*

3 ​Please note that command lines listed here have to be adjusted to your cloud server configuration as
well.

https://store.particle.io/collections/photon
https://docs.particle.io/quickstart/photon/

2. Within the implementation of ​Fidelius​ there is a test file called:

iotcloud/version2/src/others/ino/Test.ino​. Copy this file into ​iotcloud/version2/src/C​.

3. Compile the code by running the following command.

○ $cd iotcloud/version2/src/C

○ $make

4. Run the following command to flash the binary (.bin) file into a Particle Photon.

○ $particle flash <photon-device-name> photon_firmware*.bin

Please consult ​Particle Photon​ documentation for further detail on how to do this. The current

Makefile​ has a list of ​particle flash​ commands that we used to flash the firmware we used in our

experiment. You can adjust these to your need.

5. Activate/reset the ​Particle Photon​ device to let the code run.

6. We can use the reader code (​Read.C​) to verify the data stored in the cloud server (see ​Running a

Basic Test​).

We can replace the INO (​Test.ino​) file that we compile with ​Fidelius ​with one of the INO files in

iotcloud/version2/src/others/ ​(see ​Code Repository: Core​).

Test bed on Particle Cloud

We first ran our test bed on Particle Cloud. This test bed consists of 16 devices:

1. 8 Particle Photons with ​temperature and humidity sensors​,

2. 4 Particle Photons with ​magnetic door sensors​,

3. 3 Particle Photons with ​IR-based motion sensors​, and

4. a Raspberry Pi 1 that controls 2 LiFX smart light bulbs.

The related files stored in the following folders.

Folder Content

iotcloud/version2/src/others/Arduino_DHT Library for DHT devices from Arduino

iotcloud/version2/src/others/PietteTech_DHT Library for DHT devices from PietteTech

iotcloud/version2/src/others/functions Information leakage experiment

iotcloud/version2/src/others/ino INO files for testing

https://store.particle.io/collections/photon
https://store.particle.io/collections/photon
https://www.amazon.com/HiLetgo-Temperature-Humidity-Electronic-Practice/dp/B01N9BA0O4
https://www.amazon.com/Gikfun-Sensor-Magnetic-Switch-Arduino/dp/B0154PTDFI
https://www.amazon.com/HC-SR501-Sensor-Module-Pyroelectric-Infrared/dp/B007XQRKD4

iotcloud/version2/src/others/ino/IR-Sensor INO files and Makefile for IR sensor

iotcloud/version2/src/others/ino/Magnetic-Sensor INO files and Makefile for magnetic sensor

iotcloud/version2/src/others/ino/Temp-Sensor INO files and Makefile for temperature sensor

iotcloud/version2/src/others/RPi LiFX controller for Particle Cloud

iotcloud/version2/src/others/setup Picture of sensor wiring

iotcloud/version2/src/Control-2bulbs.zip Android app to control 2 light bulbs

To prepare the benchmark please perform the following steps:

1. Run this command ​on server​ ​before running​ a new test.

a. $sudo rm -rf /iotcloud/test.iotcloud/*

2. Wire the sensor according to the pictures in ​iotcloud/version2/src/others/setup​ (please see the

INO file to get exact pin information for proper wiring as well).

3. Use the library for DHT devices either from Arduino or PietteTech; copy the ​.cpp​ and ​.h​ files into

iotcloud/version2/src/C​ (see ​Running a Basic Test​).

4. Copy the INO file (and other related files such as the Makefile) into the same folder. Please

adjust the Makefile to your specific configuration of ​Particle Photon​ device.

Please take note that there are two versions of INO files for each sensor; use the one with the

word “Particle” for this experiment.

5. Compile the INO file together with ​Fidelius​ to get the binary file and flash it onto a ​Particle

Photon​ device.

6. Please repeat steps 2 and 3 for all of the 3 sensors.

7. Compile the controller code for LiFX light bulbs in ​iotcloud/version2/src/others/RPi​. Flash the

binary file onto a Raspberry Pi (please see the most current Particle ​documentation​ to do this).

8. Execute/reset the ​Particle Photon​ devices that control the sensors and let the light bulb

controller run on the Raspberry Pi.

9. The ​Particle Photon​ devices are going to update the cloud server periodically to report sensor

readings.

https://store.particle.io/collections/photon
https://store.particle.io/collections/photon
https://store.particle.io/collections/photon
https://docs.particle.io/quickstart/photon/
https://store.particle.io/collections/photon
https://store.particle.io/collections/photon

10. The light bulb controller can be given inputs through the ​Particle Cloud login page​ or Particle

phone app (please see the most most current Particle ​documentation​ to figure out more about

function inputs).

11. The summary of sensor readings can also be monitored through the ​Particle Cloud login page​.

Test bed on Fidelius Cloud

We then also ran our test bed on ​Fidelius​ Cloud. This test bed also consists of 16 devices. The details on

types of device and folders have been presented in ​Test bed on Particle Cloud​.

To prepare the benchmark please perform the following steps:

1. Run this command ​on server​ ​before running​ a new test.

○ $sudo rm -rf /iotcloud/test.iotcloud/*

2. Wire the sensor according to the pictures in ​iotcloud/version2/src/others/setup​ (please see the

INO file to get exact pin information for proper wiring as well).

3. Use the library for DHT devices either from Arduino or PietteTech; copy the ​.cpp​ and ​.h​ files into

iotcloud/version2/src/C​ (see ​Running a Basic Test​).

4. Copy the INO file (and other related files such as the Makefile) into the same folder. Please

adjust the Makefile to your specific configuration of ​Particle Photon​ device.

Please take note that there are two versions of INO files for each sensor; use the one with the

word “Fidelius” for this experiment.

5. Compile the INO file together with ​Fidelius​ to get the binary file and flash it onto a ​Particle

Photon​ device.

6. Please repeat steps 2 and 3 for all of the 3 sensors.

7. We use the same ​Fidelius​ light bulb controller that we use in ​Running the Light Fan Test​. The

Android app has also been adjusted to control 2 light bulbs. Please unzip

iotcloud/version2/src/Control-2bulbs.zip​, and use Android Studios to compile and run it on an

Android phone.

8. Execute/reset the ​Particle Photon​ devices that control the sensors and let the light bulb

controller run on the Raspberry Pi.

9. The ​Particle Photon​ devices are going to update the cloud server periodically to report sensor

readings.

https://login.particle.io/login?redirect=https://build.particle.io/build
https://docs.particle.io/quickstart/photon/
https://login.particle.io/login?redirect=https://build.particle.io/build
https://store.particle.io/collections/photon
https://store.particle.io/collections/photon
https://store.particle.io/collections/photon
https://store.particle.io/collections/photon
https://store.particle.io/collections/photon

10. The light bulb controller can be given inputs through the phone app mentioned in step 6 above.

Energy Measurements

The energy measurement experiment was also done on the same test bed with ​Particle Photon​ devices

that control the 3 types of sensors. The experiment was performed also both on Particle and ​Fidelius

clouds.

Information Leakage

The information leakage experiment was done using the files stored in

iotcloud/version2/src/others/functions​. In this experiment, we varied the lengths of different messages

that we sent to the Particle Cloud and observed the network traffic trace captured using ​tcpdump​ on the

router. We used ​Wireshark​ to scrutinize the network trace.

PyORAM Experiment

We also conducted an experiment to compare ​Fidelius​ and an ORAM implementation called ​PyORAM​.
This is a Python implementation of the ​PathORAM​. Please see the code in ​iotcloud/PyORAM​. For this

experiment, we used ​iotcloud/PyORAM/examples/ali.py​. We varied the block size and block count

following the numbers we used for ​Fidelius​.

https://store.particle.io/collections/photon
https://pypi.org/project/PyORAM/
http://people.csail.mit.edu/yxy/pubs/PathORam.pdf

