
1 Introduction

2 Approach

2.1 Keys

Each device has: user id + password
Server login is: hash1(user id), hash1(password)
Symmetric Crypto keys is: hash2(user id — password)
Server has finite length queue of entries + max entry identifier + server
login key

2.2 Entry layout

Each entry has:

1. Sequence identifier

2. Random IV (if needed by crypto algorithm)

3. Encrypted payload

Payload has:

1. Sequence identifier

2. Machine id (most probably something like a 64-bit random number
that is self-generated by client)

3. HMAC of previous slot

4. Data entries

5. HMAC of current slot

A data entry can be one of these:

1. A transaction:

• Contains a sequence number, a set of key value pair updates and
a guard condition that can be evaluated.

• Must have the same arbitrator for all its key value pair updates
and reads within the guard condition

1

2. A Commit
Commits a transaction into the block chain. Until a transaction is
committed, no client can be sure if that transaction’s key value updates
will be used to update the state of the system. Once an arbitrator
commits a transaction then that transaction becomes a permanent
state change in the system. Transactions should be committed and
aborted in order of their sequence numbers.

3. An Abort
An abort is used to show that a transactions key value update should
not be used in the state change of the system. This occurs when the
guard of a transaction evaluates to false meaning that the conditions
under-which this transaction should be committed no longer exists
in the system (another transaction could have been committed first
that would have changed the system in a way that makes the current
transaction invalid).

4. New Key:
This creates a new key and assignes an arbitrator to that key. Only
the first new key message for a given key is valid. Once a new key
message is inserted into the block chain it is never removed and no
other new key entries for the same key name can be inserted into the
block chain.

5. Slot sequence entry: Machine id + last message identifier
The purpose of this is to keep the record of the last slot from a certain
client if a client’s update has to expunge that other client’s last entry
from the queue. This is kept in the slot until the entry owner inserts
a newer update into the queue.

6. Queue state entry: Includes queue size
The purpose of this is for the client to tell if the server lies about the
number of slots in the queue, e.g. if there are 2 queue state entry in
the queue, e.g. 50 and 70, the client knows that when it sees 50, it
should expect at most 50 slots in the queue and after it sees 70, it
should expect 50 slots before that queue state entry slot 50 and at
most 70 slots. The queue state entry slot 70 is counted as slot number
51 in the queue.

7. Collision resolution entry: message identifier + machine id of a colli-
sion winner

2

The purpose of this is to keep keep track of the winner of all the
collisions until all clients have seen the particular entry.

2.3 Live status

Live status of entries:

1. Transaction is live if it has not been committed or aborted yet.

2. Abort is live until the machine ID that created the transaction that is
being aborted inserts into the block chain a message with a sequence
number greater than the abort (that client sees the abort).

3. Commit is dead if for all key value updates in the commit there is
a commit with the same key value update that is newer (larger se-
quence number). The committing client (arbitrator) will see those
newer commits since it is the one that generates them.

4. New Key messages are always kept alive. Keys can not be deleted.
Deleted keys will cause arbitration to fail if a key is deleted then re-
assigned to a new client device for arbitration.

5. Slot sequence number (of either a message version data or user-level
data) is dead if there is a newer slot from the same machine.

6. Queue state entry is dead if there is a newer queue state entry. In
the case of queue state entries 50 and 70, this means that queue state
entry 50 is dead and 70 is live. However, not until the number of slots
reaches 70 that queue state entry 50 will be expunged from the queue.
Further all entries before the 50 entry will also not be expunged until
the queue size has reached 70

7. Collision resolution entry is dead if this entry has been seen by all
clients after a collision happens.

When data is at the end of the queue ready to expunge, if:

1. If any entry is not dead it must be reinserted into the queue.

2. If the slot sequence number is not dead, then a message sequence entry
must be inserted.

3

Validation procedure on client:

1. Decrypt each new slot in order.

2. For each slot: (a) check its HMAC, and (b) check that the previous
entry HMAC field matches the previous entry (in case of a gap do not
check for slots on gap margins).

3. That no slots are slots we have seen before (server trying to pass old
slots).

4. For all other machines, check that the latest sequence number is at
least as large (never goes backwards).

5. That the queue has a current queue state entry.

6. That the number of entries received is consistent with the size specified
in the queue state entry and/or the queue is growing in size.

2.4 Resizing Queue

Client can make a request to resize the queue. This is done as a write that
combines: (a) a slot with the message, and (b) a request to the server. The
queue can only be expanded, never contracted; attempting to decrease the
size of the queue will cause future clients to throw an error.

2.5 The Arbitrator

Each key has an arbitrator that makes the final decision when it comes to
whether a specific transaction containing that key updates the state of the
system or is aborted. This ensures that clients can make offline updates
and then push those updates to the server at a later time. The arbitrator
then tries to merge those updates and if possible will commit them into the
current working state of the system. If not possible then the arbitrator will
abort that transaction. The arbitrator arbitrates on transactions in order
of transaction sequence number.

3 Server Algorithm

s ∈ SN is a sequence number
sv ∈ SV is a slot’s value
slots = 〈s, sv〉 ∈ SL ⊆ SN × SV

4

State
SL = set of live slots on server
max = maximum number of slots (input only for resize message)
n = number of slots

Helper Function
MaxSlot(SLs) = 〈s, sv〉 | 〈s, sv〉 ∈ SLs ∧ ∀〈ss, svs〉 ∈ SLs, s ≥ ss
MinSlot(SLs) = 〈s, sv〉 | 〈s, sv〉 ∈ SLs ∧ ∀〈ss, svs〉 ∈ SLs, s ≤ ss
SeqN(slots = 〈s, sv〉) = s
SlotV al(slots = 〈s, sv〉) = sv

Get Slot:
Returns to the client the slots that have a sequence number that is greater
than or equal to the sequence number that is in the requese.

1: function GetSlot(sg)
2: return {〈s, sv〉 ∈ SL | s ≥ sg}
3: end function

5

Get Slot:
Puts a slot in the server memory if the slot has the correct sequence num-
ber. Also resizes the server memory if needed.

1: function PutSlot(sp, svp,max′)
2: if (max′ 6= ∅) then . Resize
3: max← max′

4: end if
5: 〈sn, svn〉 ←MaxSlot(SL) . Last sv
6: if (sp = sn + 1) then
7: if n = max then
8: 〈sm, svm〉 ←MinSlot(SL) . First sv
9: SL← SL− {〈sm, svm〉}

10: else . n < max
11: n← n + 1
12: end if
13: SL← SL ∪ {〈sp, svp〉}
14: return (true, ∅)
15: else
16: return (false, {〈s, sv〉 ∈ SL | s ≥ sp})
17: end if
18: end function

4 Client

4.1 Client Notation Conventions

k is key of entry
v is value of entry
size is a size (target size of the current block chain)
kv is a key-value pair 〈k, v〉
KV is a set of kv
id is a machine ID
seq is a sequence number
hmacp is the HMAC value of the previous slot
hmacc is the HMAC value of the current slot
Guard is a set of〈k, v,logical operator〉 which can be evaluated to a boolean

trans is a transaction entry , 〈seq, id,KV,Guard〉
lastmsg is a last message entry, 〈seq, id〉

6

qstate is a queue state entry, 〈size〉
colres is a collision resolution entry, 〈id, seqold, seqnew, true ∨ false〉
newkey is a new key entry, 〈k, id〉, id is ID of arbitrator
commit is a commit transaction entry, 〈seqtrans,KV 〉, id is id of arbitrator
abort is an abort transaction entry, 〈seqtrans, idtrans〉

de is a data entry that can one of: trans, lastmsg, qstate, colres, newkey,
commit, abort
DE is a set of all data entries, possibly of different types, in a single mes-
sage, set of de

slotDat = 〈seq, id,DE, hmacp, hmacc〉
slot = 〈seq, Encrpt(slotDat)〉

4.2 Client State

4.2.1 Constants

LOCAL ID = machine ID of this client.
RESIZE THRESH PERCENT = percent of slots that need to have live
data to trigger a resize.
RESIZE PERCENT = percent that we should grow the block chain to.
DATA ENTRY SET MAX SIZE = max size that a data entry set can
have (in bytes).
DEAD SLOT COUNT = number of slots to keep dead if possible at the
end of the block chain.
MAX RESCUE SKIPS = number of skips that are allowed when saving
data entries.

4.2.2 Primitive Variables

max size = max size of the block chain

4.2.3 Sets and Lists

PendingTransQueue = Queue of pending transactions that need to be
pushed to the block chain, 〈PendingTrans〉
PendingTrans = 〈KV,Guard〉 = 〈set of key value pairs, set of guard

7

conditions〉.
Arbitrator = set of 〈k, id〉 containing the key and its arbitrating device.
LastSlot = set of 〈id, seq〉 containing the machine ID and the largest se-
quence number from that machine ID.
LocalSlots = set of slots that are in the clients local buffer (initially ∅), data
is decrypted.
RejectedSlotList = ordered list of the sequence numbers of slots that this
client tried to insert but were rejected.
CommittedKV = set of committed key value pairs (initially ∅).
SpeculatedKV = set of speculated key value pairs (initially ∅).

4.3 Helper Functions

The following helper functions are needed:

MaxSlot(SLs) = 〈s, sv〉 | 〈s, sv〉 ∈ SLs ∧ ∀〈ss, svs〉 ∈ SLs, s ≥ ss
MinSlot(SLs) = 〈s, sv〉 | 〈s, sv〉 ∈ SLs ∧ ∀〈ss, svs〉 ∈ SLs, s ≤ ss

Get Byte Size:
Get the size in bytes of the thing that is passed in.

1: function GetSize(a)
2: return Size in bytes of a
3: end function

Error:
Prints an error message and halts the execution of the client.

1: function Error(msg)
2: Print(msg)
3: Halt()
4: end function

8

Get Next Sequence Number:
Get the next sequence number for insertion into the block chain.

1: function GetNextSeq(k)
. Get the largest known sequence number

2: seqret ← seq such that 〈id, seq〉 ∈ LastSlo ∧ (∀〈id′, seq′〉 ∈
LastSlo, seq ≥ seq′)

3:

. Add one to the largest seq number to generate the new seq number
4: return seqret + 1
5: end function

Get Arbitrator:
Get the arbitrator for a given key.

1: function GetArbitrator(k)
2: 〈k1, id1〉 ← 〈k2, id2〉 such that 〈k2, id2〉 ∈ Arbitrator ∧ k2 = k
3: return id1
4: end function

Get Arbitrator for KV Set:
Get the arbitrator for a given key value set.

1: function GetArbitratorKV(KV)
2: 〈k, v〉 ← 〈k′, v′〉 such that 〈k′, v′〉 ∈ KV
3: 〈k1, id1〉 ← 〈k2, id2〉 such that 〈k2, id2〉 ∈ Arbitrator ∧ k2 = k
4: return id1
5: end function

9

Check Arbitrator for a Transaction:
Check that the arbitrators for a given set are all the same arbitrator.

1: function CheckArbitrator(PendingTransa)
2: idarb ← NULL
3:

4: 〈KVa, Guarda〉 ← PendingTransa
5: for all 〈k′, v′〉 ∈ KVa do
6: id′ ← GetArbitrator(k′)
7:

8: if idarb = NULL then
9: idarb ← id′

10: else if id′ 6= idarb then . Check all arbitrators are the same
11: Error(”Multiple arbitrators for key values in transaction.”)
12: end if
13: end for
14: for all 〈k′, v′, lop′〉 ∈ Guarda do
15: id′ ← GetArbitrator(k′)
16:

17: if idarb = NULL then
18: idarb ← id′

19: else if id′ 6= idarb then . Check all arbitrators are the same
20: Error(”Multiple arbitrators for key values in transaction.”)
21: end if
22: end for
23: end function

Get all Commits:
Get all commits that are currently in the local block chain. Iterate over
all the local slots and extract all the commits from each slot.

1: function GetCommits()
2: ComSet← ∅ . Set of the commits
3:

. Iterate over all the slots saved locally
4: for all 〈s′1, 〈seq′2, id′, DE′, hmac′p, hmac′c〉〉 ∈ LocalSlots do
5: ComSet← ComSet ∪ {c|c ∈ DE′, cis a commit}
6: end for
7: return ComSet
8: end function

10

Get all Transactions:
Get all transactions that are currently in the local block chain. Iterate
over all the local slots and extract all the transactions from each slot.

1: function GetTrans()
2: TransSet← ∅ . Set of the trans
3:

. Iterate over all the slots saved locally
4: for all 〈s′1, 〈seq′2, id′, DE′, hmac′p, hmac′c〉〉 ∈ LocalSlots do
5: TransSet← TransSet ∪ {c|c ∈ DE′, cis a trans}
6: end for
7: return TransSet
8: end function

Get all aborts:
Get all aborts that are currently in the local block chain. Iterate over all
the local slots and extract all the aborts from each slot.

1: function GetAborts()
2: AbrtSet← ∅ . Set of the aborts
3:

. Iterate over all the slots saved locally
4: for all 〈s′1, 〈seq′2, id′, DE′, hmac′p, hmac′c〉〉 ∈ LocalSlots do
5: AbrtSet← AbrtSet ∪ {c|c ∈ DE′, cis a abort}
6: end for
7: return AbrtSet
8: end function

Get all queue states:
Get all qstates that are currently in the local block chain. Iterate over all
the local slots and extract all the qstates from each slot.

1: function GetQStates()
2: QSet← ∅ . Set of the qstates
3:

. Iterate over all the slots saved locally
4: for all 〈s′1, 〈seq′2, id′, DE′, hmac′p, hmac′c〉〉 ∈ LocalSlots do
5: QSet← QSet ∪ {c|c ∈ DE′, cis a qstate}
6: end for
7: return QSet
8: end function

11

Get all last message data entrues:
Get all last msg that are currently in the local block chain. Iterate over all
the local slots and extract all the last msg from each slot.

1: function GetLastMsg()
2: LMSet← ∅ . Set of the last msg
3:

. Iterate over all the slots saved locally
4: for all 〈s′1, 〈seq′2, id′, DE′, hmac′p, hmac′c〉〉 ∈ LocalSlots do
5: LMSet← LMSet ∪ {c|c ∈ DE′, cis a lastmsg}
6: end for
7: return LMSet
8: end function

Check Queue State Live:
A queue state is dead if there is another queue state data entry that has a
larger queue state.

1: function CheckQStateLive(qstatea)
2: 〈sizea〉 ← qstatea
3: AllQStates← GetQState . Get all the qstates
4:

5: if ∃〈size′〉 ∈ AllQStates, size′ > sizea then
6: return false
7: end if
8: return true
9: end function

12

Check Commit Live:
A commit is dead if for every key value pair in the commit there is a
commit with a larger transaction sequence number that has a key value
pair with the same key.

1: function CheckCommitLive(commita)
2: 〈seqatrans ,KVa〉 ← commita
3: KSet← {k|〈k, v〉 ∈ KV }
4: AllCommits← GetCommits . Get all the commits
5:

. Iterate all commits that are newer in time
6: for all 〈seq′trans,KV ′〉 ∈ AllCommits, seq′trans > seqatrans do
7: KV Set← KV Set \ {k|〈k, v〉 ∈ KV ′}
8:

9: if KV Set = ∅ then
10: return false . All keys have a newer commit
11: end if
12: end for
13: return true . If got here then some keys still live
14: end function

Check Last Message Live:
The last message is dead if the device in question pushed a slot that has
a larger sequence number than the one recorded in the last message data
entry.

1: function CheckLastMsgLive(lastmsga)
2: 〈seqa, ida〉 ← lastmsga
3:

4: if ∃〈id′, seq′〉 ∈ LastSlot, id′ = ida ∧ seq′ > seqa then
5: return false
6: end if
7: return True
8: end function

13

Check Collision Resolution Live:
Check if a collision resolution data entry is live or not. This done by
checking if all clients that we know about have seen the collision resolution
entry. This is checked by seeing if all devices have inserted a message with
a larger sequence number into the block chain.

1: function CheckColResLive(colresa)
2: 〈ida, seqaold , seqanew , equala〉 ← colresa
3:

4: if ∀〈id′, seq′〉 ∈ LastSlot, seq′ ≥ seqanew then
5: return false
6: end if
7: return true
8: end function

Check New Key Live:
A new key data entry is always live.

1: function CheckNewkeyLive(newkeya)
2: return True
3: end function

Check Abort Live:
Check if an abort data entry is live or not. Abort is dead if the device whos
transaction was aborted sees the abort. This is checked by seeing if that
device inserted a slot into the block chain which has a sequence numberl
that is larger than the aborts sequence number.

1: function CheckAbortLive(aborta, seqa)
2: 〈seqatrans , ida〉 ← aborta
3:

. The device whos transaction was aborted saw the abort
4: if ∃〈id′, seq′〉 ∈ LastSlot, id′ = ida ∧ seq′ > seqa then
5: return false
6: end if
7: return True
8: end function

14

Check Transaction Live:
A transaction is dead if there is an abort for that transaction or if there is a
commit for that a transaction that came after this transaction. Since trans-
actions must be committed in order of there insertion, seeing a transaction
that is committed and has a larger sequence number than the transaction
in question means that the transaction in question was committed at some
point.

1: function CheckTransLive(transa)
2: 〈seqa, ida,KVa, Guarda〉 ← transa
3: AllCommits← GetCommits . Get all the commits
4: AllAborts← GetAborts . Get all the aborts
5:

6: if ∃〈seq′abrt, seq′trans, id′〉 ∈ AllAborts, seq′trans = seqa then
7: return false
8: else if ∃〈seq′trans,KV ′〉 ∈ AllCommits, seq′trans ≥ seqa then
9: return false

10: end if
11: return true
12: end function

15

Check Live:
Checks if a data entry is live based on its type.

1: function CheckLive(datentry, seq)
2: if datentry is a commit then
3: return CheckCommitLive(datentry)
4: else if datentry is a abort then
5: return CheckAbortLive(datentry, seq)
6: else if datentry is a trans then
7: return CheckTransLive(datentry)
8: else if datentry is a lastmsg then
9: return CheckLastMsgLive(datentry)

10: else if datentry is a colres then
11: return CheckColResLive(datentry)
12: else if datentry is a qstate then
13: return CheckQStateLive(datentry)
14: else if datentry is a newkey then
15: return CheckNewkeyLive(datentry)
16: else
17: Error(”Unknown data entry type.”)
18: end if
19: end function

Slot Has Live:
Check if the slot has any live data entries in it. Do this by looking at all
the data entries in the slot and checking if they are live

1: function SlotHasLive(slota)
2: 〈s1, 〈seq2, id,DE, hmacp, hmacc〉〉 ∈ LocalSlots
3: for all datentry ∈ DE do
4: if CheckLive(datentry, s1) then . an entry is alive
5: return true
6: end if
7: end for
8: return false . All entries were dead
9: end function

16

Calculate Resize Threshold:
Calculate a threshold for how many slots need to have live data entries in
them for a resize to take place.

1: function CalcResizeThresh(maxsize)
2: return bmaxsize ∗RESIZE THRESH PERCENT c
3: end function

Calculate Block Chain New Size:
Calculate the new size of the block chain which we need if we are to resize
the data structure.

1: function CalcNewSize(maxsize)
2: return dmaxsize ∗RESIZE THRESH PERCENT e
3: end function

Should Resize:
Check if the block should resize based on some metric of how many slots
in the block chain are filled with live data.

1: function ShouldResize()
2: LiveSlots← {slots|slots ∈ LocalSlots∧SlotHasLive(slots)}
3: resizethreshold← CalcResizeThresh(max size)
4: return |LiveSlots| ≥ resizethreshold . If passes threshold then

resize
5: end function

Create Queue State:
Generate a queue state data entry.

1: function CreateQState(sizea)
2: return 〈sizea〉
3: end function

Create Abort:
Generate a abort data entry.

1: function CreateAbort(seqa, ida)
2: return 〈seqa, ida〉
3: end function

17

Create ColRes:
Generate a colres data entry.

1: function CreateColRes(isa, seqaold , seqanew , isequala)
2: return 〈ida, seqaold , seqanew , 〉isequala
3: end function

Create Transaction:
Generate a transaction data entry.

1: function CreateTrans(pendingtransa, seqa)
2: 〈KVa, Guarda〉 ← pendingtransa
3: return 〈seqa, LOCAL ID,KVa, Guarda〉
4: end function

Create Commit:
Generate a commit data entry.

1: function CreateCommit(seqa,KVa)
2: return 〈seqa,KVa〉
3: end function

Create New Key:
Generate a new key data entry.

1: function CreateNewKey(ka, ida)
2: return 〈ka, ida〉
3: end function

Data Entry Set Has Space :
Checks if a data entry set has enough space for a new data entry to be
inserted.

1: function DEHasSpace(DEa, dea)
2: newsize← GetSize(DEa)
3: newsize← newsize+ GetSize(dea)
4: return newsize ≤ DATA ENTRY SET MAX SIZE
5: end function

18

Create Rescued Date Entry:
For commits only the key-value pairs that are most recent (no newer com-
mit that has those key values in it).

1: function CreateRescuedCommit(commita)
2: AllCommits← GetCommits
3: 〈seqatrans ,KVa〉 ← dea
4: NewKV ← KVa

5:

. Get rid of all key values that have newer commits
6: for all 〈ka, va〉 ∈ KVa do

. Iterate over all commits that are newer than the rescue commit
7: for all 〈seq′,KV ′〉 ∈ AllCommits, seq′ > seqatrans do
8: if ∃〈k′, v′〉 ∈ KV ′, k′ = ka then
9: NewKV ← NewKV \ 〈ka, va〉

10: Break
11: end if
12: end for
13: end for
14: return 〈seqatrans , NewKV 〉
15: end function

Create Rescued Date Entry:
Generate the data entry rescued version of the entry. For some data entry
types such as commits, the entry is not rescued as is. For commits only
the key-value pairs that are most recent (no newer commit that has those
key values in it).

1: function CreateRescuedEntry(dea)
2: if deais a commit then
3: return CreateRescuedCommit(dea)
4: end if
5: return dea . No Modification needed
6: end function

19

Check Slot HMACs:
Check that each slot has not been tampered with by checking that the
stored HMAC matches the calculated HMAC. Also check thatthe slot num-
ber reported by the server matches the slot number of the actual slot.

1: function CheckSlotsHmacAndSeq(Slotsa)
2: for all slota ∈ Slotsa do
3: 〈seqa1 , 〈seqa2 , ida, DEa, hmacap , hmacac〉〉 ← slota
4: calchmac← GenerateHmac(seqa2 , ida, DEa, hmacap)
5: if seqa1 6= seqa2 then
6: Error(”Slot sequence number mismatch”)
7: else if calchmac 6= hmacac then
8: Error(”Slot HMAC mismatch”)
9: end if

10: end for
11: end function

20

Check HMAC Chain:
Check that the HMAC chain has not been violated.

1: function CheckHmacChain(Slotsa)
2: SlotsList← Slotsa sorted by sequence number
3:

. Check all new slots
4: for all index ∈ [2 : |SlotsList|] do
5: 〈seqa1 , 〈seqa2 , ida, DEa, hmacap , hmacac〉〉 ← SlotList[i− 1]
6: 〈seqb1 , 〈seqb2 , idb, DEb, hmacbp , hmacbc〉〉 ← SlotList[i]
7: if hmacbp 6= hmacbc then
8: Error(”Invalid previous HMAC.”)
9: end if

10: end for
11:

. Check against slots that we already have in the block chain
12: if |LocalSlots| 6= 0 then
13: 〈seq, SDE〉 ←MaxSlot(LocalSlots)
14: 〈seqlast2, idlast, DElast, hmaclastp , hmaclastc〉 ← SDE
15:

16: 〈seqa1 , 〈seqa2 , ida, DEa, hmacap , hmacac〉〉 ← SlotList[1]
17:

18: if (seqlast2 + 1) = seqa1 then
19: if hmacap 6= hmaclastc then
20: Error(”Invalid previous HMAC.”)
21: end if
22: end if
23: end if
24: end function

21

Check For Old Slots:
Check if the slots are not new. Checks if the ”new” slots are actually new
or if they are older than the most recent slot that we have.

1: function CheckOldSlots(Slotsa)
2: 〈seqnew, Datnew〉 ← MinSlot (Slotsa) . Get the oldest new slot
3: 〈seqlocal, Datlocal〉 ← MaxSlot (LocalSlots) . Get the newest

slot seen
4:

5: if seqnew ≤ seqlocal then . The slots were not newer than what
was already seen

6: Error(”Server sent old slots.”)
7: end if
8:

. Check if slots have the same sequence number but different data
entries

9: for all 〈seq,Dat〉 ∈ Slotsa do
10: if ∃〈seq′, Dat′〉 ∈ (LocalSlots∪Slotsa), seq′ = seq∧Dat′ 6= Dat

then
11: Error(”Slot sequence number match but data does not”)
12: end if
13: end for
14: end function

Get All Queue States:
Gets all the queue states from the slots that were passed in.

1: function GetQState(Slotsa)
2: QSet← ∅
3:

4: for all 〈seq′1, 〈seq′2, id′, DE′, hmac′p, hmac′c〉〉 ∈ Slotsa do
5: for all de′ ∈ DE′ do
6: if de′ is a qstate then
7: QSet← QSet ∪ {de′}
8: end if
9: end for

10: end for
11:

12: return QSet
13: end function

22

Check Size With Gap:
Checks that the block chain size is correct when there is a gap in the block
chain. This check makes sure that the server is not hiding any information
from the client. If there is a gap and there is only 1 queue state in the new
slot entries then there must have at least that many slots since the old slot
entry must have been purged. If there is more than 1 queue state then the
block chain is still growing check the smallest max size and there should
be at least that many slots.

1: function CheckSizeWithGap(Slotsa)
2: QSet← GetQState(Slotsa)
3: sizemax ← size such that size ∈ QSet∧∀size′ ∈ QSet, size ≥ size′

4: sizemin ← size such that size ∈ QSet∧∀size′ ∈ QSet, size ≤ size′

5: Slotsoldmax ← ∅
6:

. If only 1 max size then we must have all the slots for that size
7: if (|QSSet| = 1) ∧ (|Slotsa| 6= sizemax) then
8: Error(”Missing Slots”)
9: end if

10:

. We definitely have all the slots
11: if then|Slotsa| = sizemax

12: return . We have all the slots
13: end if
14:

. We must have at least this many slots
15: if then|Slotsa| < sizemin

16: Error(”Missing Slots”)
17: end if
18:

19: end function

23

Check Size:

1: function CheckSize(Slotsa)
2: 〈seqoldmax , Datoldmax〉 ← MaxSlot(LocalSlots)
3: 〈seqnewmax , Datnewmax〉 ← MinSlot(Slotsa)
4:

5: if (seqoldmax + 1) = seqnewmax then
. No Gap so cannot say anything about the size

6: return
7: else

. Has a gap so we need to do checks
8: CheckSizeWithGap(Slotsa)
9: end if

10: end function

Process Commit Data Entry:
Process a commit entry. Updates the local copy of commits.

1: function UpdateLastMessage(seqa, ida, LstSlta, updateinglocala)
2: 〈idold, seqold〉 ← 〈id′, seq′〉 such that 〈id′, seq′〉 ∈ LastSlot∧ id′ = id
3:

4: if ida = LOCAL ID then
5: if ¬updateinglocala ∧ (seqa 6= seqold) then

. This client did not make any updates so its latest sequence number
should not change

6: Error(”Mismatch on local machine sequence number”)
7: end if
8: else
9: if seqold > seqa then

10: Error(”Rollback on remote machine sequence number”)
11: end if
12: end if
13:

14: LastSlot← LastSlot \ {〈id, seq〉|〈id, seq〉 ∈ LastSlot, id = ida}
15: LastSlot← LastSlot ∪ {〈ida, seqa〉}
16: return LstSlta \ {〈id, seq〉|〈id, seq〉 ∈ LstSlta, id = ida}
17: end function

24

Process Commit Data Entry:
Process a commit entry. Updates the local copy of commits.

1: function ProcessCommit(commita)
2: 〈seqatrans ,KVa〉 ← commita
3: DKV ← {〈k, v〉|〈k, v〉 ∈ CommittedKV ∧ 〈k′, v′〉 ∈ KVa ∧ k′ = k}
4: CommittedKV ← (CommittedKV \DKV) ∪KVa

5: end function

Process Queue State Entry:
Process a queue state entry. Updates the max size of the block chain

1: function ProcessQState(qstatea)
2: 〈sizea〉 ← qstatea
3: max size← sizea . Update the max size we can have
4: end function

Process Queue State Entry:
Process a collision resolution entry.

1: function ProcessColres(colresa, NewSlotsa)
2: 〈ida, seqaold , seqanew , isequala〉
3: AllSlots← LocalSlots ∪NewSlotsa
4: index← seqaold
5:

6: while index <= seqanew do
7: slt← 〈seq′Dat′〉 such that 〈seq′Dat′〉 ∈ AllSlots∧seq′ = index
8: if ∃〈seq′Dat′〉 ∈ AllSlots, seq′ = index then
9: 〈seq,Dat〉 ← 〈seq′Dat′〉 such that 〈seq′Dat′〉 ∈ AllSlots ∧

seq′ = index
10: 〈seq, id,DE, hmacp, hmacc〉 ← Dat
11: if isequala 6= (id = ida) then
12: Error(”Trying to insert rejected messages for slot”)
13: end if
14: end if
15:

16: index← index + 1
17: end while
18: end function

25

Process New Key Entry:
Process a queue state entry. Adds a key to the key arbitrator set

1: function ProcessNewkey(newkeya)
2: 〈seqa, ka, ida〉 ← newkeya
3: Arbitrator ← Arbitrator ∪ {〈ka, ida〉}
4: end function

Process Data Entry:
Process the data entry based on what kind of entry it is.

1: function ProcessDatEntry(slota, NewSlotsa, LstSlta)
2: if datentrya is a commit then
3: ProcessCommit(dataentrya)
4: else if datentrya is a abort then

. Do Nothing in this case
5: else if datentrya is a trans then

. Do Nothing in this case
6: else if datentrya is a lastmsg then
7: 〈seqa, ida〉 ← dataentrya
8: LstSlta ← UpdateLastMessage(seqa, ida, LstSlta, false)
9: else if datentrya is a colres then

10: ProcessColres(dataentrya, NewSlotsa)
11: else if datentrya is a qstate then
12: ProcessQState(dataentrya)
13: else if datentrya is a newkey then
14: ProcessNewkey(dataentrya)
15: else
16: Error(”Unknown data entry type.”)
17: end if
18: return LstSlta
19: end function

26

Delete Local Slots:
Deletes local slots that are deleted at the server. This keeps the size of the
local block chain bounded.

1: function DeleteLocalSlots()
2: 〈seqmax, Datmax〉 ← MaxSlot(LocalSlots)
3: seqmin ← seqmax −max size . Min sequence number we should

keep
4: LSDelete← ∅
5: if |LocalSlots| ≤ max size then
6: return . Nothing to delete
7: end if
8:

9: LSDelete ← {〈seq′, Dat′〉|〈seq′, Dat′〉 ∈ LocalSlots, seq′ >
seqmin}

10: LocalSlots← LocalSlots \ LSDelete
11: end function

Create Speculative KV:
Speculates on what the most recent key value pairs will be based on the
latest committed key value pairs and the uncommitted transactions.

1: function SpeculateKV()
2: AllTrans← GetTrans
3: LiveTrans← {t|t ∈ AllTrans,CheckTransLive(t)}
4: CurrKV ← CommittedKV
5: DKV ← ∅
6: for all 〈seqt, idt,KVt, Guardt〉 ∈ LiveTrans ordered by seq′ do
7: if EvaluateGuard(Guardt, CurrKV) then
8: DKV ← {〈k, v〉|〈k, v〉 ∈ CurrKV ∧ 〈k′, v′〉 ∈ KVt ∧ k′ = k}
9: CurrKV ← (CurrKV \DKV) ∪KVt

10: end if
11: end for
12: return CurrKV
13: end function

27

Validate Update:
Validate the block chain and insert into the local block chain.

1: function ValidateUpdate(NewSlotsa, updatinglocala)
2: 〈seqoldest, Datoldest〉 ← MinSlot(NewSlotsa)
3: 〈seqnewest, Datnewest〉 ← MaxSlot(NewSlotsa)
4: 〈seqlocal, Datlocal〉 ← MaxSlot(LocalSlots)
5: LastSlotTmp← LastSlot
6:

7: CheckSlotsHmacAndSeq(NewSlotsa) . Check all the HMACs
8: CheckHmacChain(NewSlotsa) . Check HMAC Chain
9: CheckOldSlots(NewSlotsa) . Check if new slots are actually

old slots
10: CheckSize(NewSlotsa) . Check if the size is correct
11:

12: for all slota ∈ NewSlotsa in order of sequence number do
13: if slota ∈ LocalSlots then . Client already has this slot
14: NewSlotsa ← NewSlotsa \ {slota}
15: Continue
16: end if
17:

18: 〈seqa1 , 〈seqa2 , ida, DEa, hmacap , hmacac〉〉 ← slota
19: LstSlta ← UpdateLastMes-

sage(seqa1 , ida, LstSlta, updatinglocala)
20:

21: for all dea ∈ DEa do . Process each data entry
22: LstSlta ← ProccessDatEntry(dea, NewSlotsa, LstSlta)
23: end for
24:

25: LocalSlots← LocalSlots ∪ {slota} . Add to local Chain
26: end for
27:

28: if seqoldest > (seqlocal + 1) ∧ LastSlotTmp 6= ∅ then
. There was a gap so there should be a complete set of information on
each previously seen client

29: Error(”Missing records for machines”)
30: end if
31:

32: DeleteLocalSlots() . Delete old slots from local
33: SpeculatedKV ←SpeculateKV() . Speculate on what will be

latest KV set
34: end function 28

Decrypt Validate Insert Slots:
Decrypts slots, validates (checks for malicious activity) slots and inserts
the slots into the local block chain.

1: function DecryptValidateInsert(NewSlotsa, updatinglocala)
2: DecryptedSlots← ∅
3: DDat← NULL
4:

5: for all 〈seq′, EDat′〉 ∈ NewSlotsa do
6: DDat← Decrypt(EDat′)
7: DecryptedSlots← DecryptedSlots ∪ 〈seq′, DDat〉
8: end for
9:

10: ValidateUpdate(DecryptedSlots, updatinglocala)
11: end function

Check and Create Last Message Data Entry:
Check if a last message entry needs to be created for this slot and if so
create it. The check is done by checking if there are any newer slots with
the same id or if there is already a last message slot with a newer sequence
number

1: function CheckCreateLastMsgEntry(seqa, ida)
2: AllLastMsg ← GetLastMsg
3:

. Already Has one
4: if ∃〈seq′, id′〉 ∈ AllLastMsg, ida = id′ ∧ seq′ = seqa then
5: return {}
6:

7: end if
8:

. Not latest slot from that client
9: if ∃〈seq′1, 〈seq′2, id′, DE′, hmac′p, hmac′c〉〉 ∈ LocalSlots, ida = id′ ∧

seq′1 > seqa then
10: return {}
11:

12: end if
13:

14: return {〈seqa, ida〉}
15: end function

29

Mandatory Rescue:
This rescue is mandatory before any types of data entries (excpet queue
states) can be placed into the data entry section of the new slot. Returns
the data entry Set or null if the first slot could not be cleared (the live
data in that slot could not fit in this current slot).

1: function MandatoryRescue(DEa)
2: smallestseq ← seq such that 〈seq,DE〉 ∈ LocalSlots ∧

(∀〈seq′, DE′〉 ∈ LocalSlots, seq ≤ seq′)
3: cseq ← smallestseq
4:

. Check the least slots to rescue and live entries
5: while cseq < (smallestseq + DEAD SLOT COUNT) do
6: currentslot← s′ such that 〈s′, DE′〉 ∈ LocalSlots ∧ s′ = cseq
7: 〈seq′, 〈seq′2, id′, DE′, hmac′p, hmac′c〉〉 ← currentslot
8: DE′ ← DE′∪ CheckCreateLastMsgEntry(seq′, id′) . Get

the last message too if we need it
9:

10: for all de ∈ DE′ do . Iterate over all the entries
11: if CheckLive(de, cseq) then . data entry is live
12: de← CreateRescuedEntry(de) . Resize entry if

needed
13: if DEHasSpace(DEa, de) then
14: DEa ← DEa ∪ de . Had enough space to add it
15: else if currentseq = smallestseq then
16: return NULL
17: else
18: return DEa

19: end if
20: end if
21: end for
22:

23: cseq ← cseq + 1 . Move onto the next slot
24: end while
25: return DEa

26: end function

30

Optional Rescue:
This rescue is not mandatory. This is trying to fill the remaining portion
of the slot with rescued data so that no space is wasted. If we encounter a
data entry that does not fit move on to the next, maybe that one will fit.
Do this until we skipped too many live data entries

1: function OptionalRescue(DEa)
2: smallestseq ← seq such that 〈seq,DE〉 ∈ LocalSlots ∧

(∀〈seq′, DE′〉 ∈ LocalSlots, seq ≤ seq′)
3: largestseq ← seq such that 〈seq,DE〉 ∈ LocalSlots ∧

(∀〈seq′, DE′〉 ∈ LocalSlots, seq ≥ seq′)
4: numofskips← 0
5: cseq ← smallestseq
6:

. Check the least slots to rescue and live entries
7: while cseq < largestseq do
8: currentslot← s′ such that 〈s′, DE′〉 ∈ LocalSlots ∧ s′ = cseq
9: 〈seq′, 〈seq′2, id′, DE′, hmac′p, hmac′c〉〉 ← currentslot

10:

11: for all de ∈ DE′ do . Iterate over all the entries
12: if CheckLive(de, cseq) then . data entry is live
13: de← CreateRescuedEntry(de) . Resize entry if

needed
14:

15: if de ∈ DEa then . Already being rescued
16: Continue
17: end if
18:

19: if DEHasSpace(DEa, de) then
20: DEa ← DEa ∪ de . Had enoug space to add it
21: else if numofskips ≥MAX RESCUE SKIPS then
22: return DEa

23: elsenumofskips← numofskips + 1
24: end if
25: end if
26: end for
27:

28: cseq ← cseq + 1 . Move onto the next slot
29: end while
30: return DEa

31: end function

31

Rejected Messages:

1: function RejectedMessages(DEa)
2: seqold ← seq such that 〈seq〉 ∈ RejectedSlotList ∧ ∀〈seq′〉 ∈

RejectedSlotList, seq ≥ seq′

3: prev ← −1
4:

5: if |RejectedSlotList| ≥ REJECTED THRESH then
6: seqnew ← seq such that 〈seq〉 ∈ RejectedSlotList ∧ ∀〈seq′〉 ∈

RejectedSlotList, seq ≤ seq′

7:

8: colres← CreateColRes(LOCAL ID, seqold, seqnew, false)
9: return DEa ∪ {colres}

10: end if
11:

12: for all 〈seq〉 ∈ RejectedSlotList sorted by seq do
13: if ∃〈seq′, Dat′〉 ∈ LocalSlots then
14: Break
15: end if
16: prev ← seq
17: end for
18:

19: if prev 6= −1 then
20: DEa ← DEa∪ CreateCol-

Res(LOCAL ID, seqold, prev, false)
21: end if
22:

23: RejectedSlotList← {〈seq〉|〈seq〉 ∈ RejectedSlotList, seq > prev}
24:

25: for all 〈seq〉 ∈ RejectedSlotList sorted by seq do
26: DEa ← DEa∪ CreateColRes(LOCAL ID, seq, seq, false)
27: end for
28:

29: return DEa

30: end function

32

Arbitrate:

1: function Arbitrate(DEa)
2: AllCommits← GetCommits
3: AllTrans← GetTrans
4: LiveCommits← {c|c ∈ AllCommits,CheckCommitLive(c)}
5: LiveTrans← {t|t ∈ AllTrans,CheckTransLive(t)}
6: KV ← ∅
7: lastcomseq ← −1
8: CurrKV ← ∅
9: DKV ← ∅

10: KV Tmp← ∅
11:

. Get all the latest commits
12: for all 〈seq′trans,KV ′〉 ∈ LiveCommits do
13: CurrKV ← CurrKV ∪KV ′

14: end for
15:

16: for all 〈seqt, idt,KVt, Guardt〉 ∈ LiveTrans ordered by seq′ do
17: if GetArbitratorKV(KVt) 6= LOCAL ID then
18: Continue . Client not arbitrator for this transaction
19: end if
20:

21: if ¬EvaluateGuard(Guardt, CurrKV) then
22: abortde←CreateAbort(seqt, idt)

. No more space so we cant arbitrate any further
23: if (thenlnotDeHasSpace(DEa, abortde))
24: return DEa

25: end if
26: DEa ← DEa ∪ abortde
27: else
28: DKV ← {〈k, v〉|〈k, v〉 ∈ KV ∧ 〈k′, v′〉 ∈ KVt ∧ k′ = k}
29: KV Tmp← (KV \DKV) ∪KV ′

30: DKV ← {〈k, v〉|〈k, v〉 ∈ CurrKV ∧〈k′, v′〉 ∈ KV Tmp∧k′ =
k}

31: CurrKV ← (CurrKV \DKV) ∪KV Tmp
32: commitde← CreateCommit(seqt,KV Tmp)
33: if ¬ DeHasSpace(DEa, commitde) then
34: if lastcomseq 6= −1 then
35: DEa ← DEa∪ CreateCommit(lastcomseq,KV)
36: end if
37: return DEa

38: else
39: KV ← KV Tmp
40: lastcomseq ← seqt
41: end if
42: end if
43: end for
44: DEa ← DEa∪ CreateCommit(lastcomseq,KV)
45: return DEa

46: end function

33

Create New Slot:
Create a slot and encrypt it.

1: function CreateNewSlot(seqa, DEa)
2: 〈seq, SDE〉 ← 〈seq′, SDE′〉 such that 〈seq′, SDE′〉 ∈ LocalSlots ∧

(∀〈seq′′, DE′′〉 ∈ LocalSlots, seq′ ≥ seq′′)
3: 〈seq, id,DE, hmacp, hmacc〉 ← SDE
4:

5: newhmac← GenerateHmac(seqa, LOCAL ID,DEa, hmacp)
6: newSDE ← 〈seq, LOCAL ID,DEa, hmacc, newhmac〉
7: encryptnewSDE ←Encrypt(newSDE)
8:

9: return 〈seqa, encryptnewSDE〉
10: end function

Send Data to Server:
Send the data to the server. If this fails then new slots will be returned by
the server.

1: function SendToServer(seqa, DEa, newsizea)
. Make the slot and try to send to server

2: newslot← CreateNewSlot(seqa, DEa)
3: 〈success, newslots〉 ← PutSlot(seqa, newslot, newsizea)
4:

5: if success then
6: RejectedSlotList← ∅
7: return 〈true, {newslot}〉
8: else
9: if |newslots| = 0 then

10: Error(”Server rejected but did not send any slots”)
11: end if
12: RejectedSlotList← RejectedSlotList ∪ {seqa}
13: return 〈false, newslots〉
14: end if
15:

16: end function

34

Try Insert Transaction:
Try to insert a transaction into the block chain. Does resizing, rescues and
insertion of other data entry types as needed.

1: function TryInsertTransaction(pendingtransa, forceresize)
2: DE ← ∅ . The data entries for this slot
3: seq ← GetNextSeq . Get the sequence number for this slot
4: newsize← 0
5: trans← CreateTrans(pendingtransa, seq)
6: transinserted← false
7: slotstoinsert← ∅
8:

9: resize← ShouldResize() . Check if we should resize
10: resize← resize ∨ forceresize
11: if resize then
12: newsize← CalcNewSize(max size)
13: DE ← DE ∪ {CreateQState(newsize)}
14: end if
15:

16: if RejectedSlotList 6= ∅ then
17: DE ← RejectedMessages(DE)
18: end if
19:

20: DE ← MandatoryRescue(DE) . Round 1 of rescue
21: if DE = NULL then

. Data was going to fall off the end so try again with a forced resize
22: return TryInsertTransaction(transa, true)
23: end if
24:

25: DE ←Arbitrate(DE)
26:

27: if DEHasSpace(DE, trans) then . transaction fits
28: DE ← DE ∪ trans
29: transinserted← true
30: end if
31:

. Rescue data to fill slot data entry section
32: DE ← OptionalRescue(DE)
33:

. Send to server.
34: 〈sendsuccess, newslots〉 ← SendToServer(seq,DE, newsize)
35:

. Insert the slots into the local bloakc chain
36: DecryptValidateInsert(newslots, true)
37:

38: return transinserted ∧ success . Return if succeeded or not
39: end function

35

Try Insert New Key:
Try to insert a new key into the block chain. Does resizing, rescues and
insertion of other data entry types as needed.

1: function TryInsertNewKey(ka, ida, forceresize)
2: DE ← ∅ . The data entries for this slot
3: seq ← GetNextSeq . Get the sequence number for this slot
4: newsize← 0
5: newkey ← CreateNewKey(ka, ida)
6: newkeyinserted← false
7: slotstoinsert← ∅
8:

9: resize← ShouldResize() . Check if we should resize
10: resize← resize ∨ forceresize
11: if resize then
12: newsize← CalcNewSize(max size)
13: DE ← DE ∪ {CreateQState(newsize)}
14: end if
15:

16: if RejectedSlotList 6= ∅ then
17: DE ← RejectedMessages(DE)
18: end if
19:

20: DE ← MandatoryRescue(DE) . Round 1 of rescue
21: if DE = NULL then

. Data was going to fall off the end so try again with a forced resize
22: return TryInsertNewKey(ka, ida, true)
23: end if
24:

25: DE ←Arbitrate(DE)
26:

27: if DEHasSpace(DE,newkey) then . new key fits
28: DE ← DE ∪ newkey
29: newkeyinserted← true
30: end if
31:

. Rescue data to fill slot data entry section
32: DE ← OptionalRescue(DE)
33:

. Send to server.
34: 〈sendsuccess, newslots〉 ← SendToServer(seq,DE, newsize)
35:

. Insert the slots into the local block chain
36: DecryptValidateInsert(newslots, true)
37:

38: return newkeyinserted ∧ success . Return if succeeded or not
39: end function

36

4.4 Client Interfaces

Put Key Value Pair:
Puts a key value pair into the key value pair buffer

1: function PutKeyValue(k, v)
2: 〈seq,KV,Guard〉 ← PendingTrans
3:

. Check if KV already has a key value pair for the specified key
4: DSet← {〈k1, v1〉|〈k1, v1〉 ∈ KV ∧ k1 = k}
5:

6: if DSet 6= ∅ then
7: Error(”Value for key already in most recent update”)
8: end if
9:

10: KV ← KV ∪ {〈k, v〉} . Add key value pair
11: PendingTrans← 〈seq,KV,Guard〉
12: CheckArbitrator(PendingTrans) . Check that the

transaction still valid
13: end function

Get KV Pair Speculative:
Get the value for the key while speculating.

1: function GetValueSpeculate(ka)
2: 〈k, v〉 ← 〈k, v〉 such that 〈k, v〉 ∈ SpeculatedKV ∧ k = ka
3: return v
4: end function

Update
Sync with the server and get all the latest slots.

1: function Update()
2: 〈seq,Dat〉 ← MaxSlot(LocalSlots)
3: NewSlots← GetSlots(seq)
4: DecryptValidateInsert(NewSlots, false)
5: end function

37

Get KV Pair Committed:
Get the value for the key which have been committed.

1: function GetValueCommit(ka)
2: 〈k, v〉 ← 〈k, v〉 such that 〈k, v〉 ∈ Committed ∧ k = ka
3: return v
4: end function

Put Guard:
Puts a guard transaction into the key value update. A guard is a key value
with a logical operator (lop).

1: function PutGuard(k, v, lop)
2: 〈seq,KV,Guard〉 ← PendingTrans
3:

4: if 〈k, v, lop〉 ∈ Guard then
5: return . Already have guard condition in update
6: end if
7:

8: Guard← Guard ∪ {〈k, v, lop〉}
9: PendingTrans← 〈seq,KV,Guard〉

10: CheckArbitrator(PendingTrans) . Check that the
transaction still valid

11: end function

Transaction Start:
Starts a transaction. Clears out the key value pair update buffer.

1: function TransactionStart()
2: PendingTrans← NULL
3: end function

38

Transaction Commit:
Commits the transaction into the block chain. Keeps attempting to insert
the transaction into the block chain until it succeeds.

1: function Transaction Commit()
2: DKV ← ∅
3: pt← NULL
4:

5: PendingTransQueue.push(PendingTrans)
6:

7: while HasConnectionToServer() ∧PendingTransQueue 6= ∅
do

8: pt← PendingTransQueue.peak()
9:

10: if TryInsertTransaction(pt, false) then
11: PendingTransQueue.pop()
12: end if
13: end while
14:

. Go Through local pending transactions and speculate
15: for all 〈KV,Guard〉 ∈ PendingTransQueue do
16: if EvaluateGuard(Guard, SpeculatedKV) then
17: DKV ← {〈k, v〉|〈k, v〉 ∈ SpeculatedKV ∧ 〈k′, v′〉 ∈ KV ∧

k′ = k}
18: SpeculatedKV ← (SpeculatedKV \DKV) ∪KV
19: end if
20: end for
21: end function

39

Create New Key:
Creates a new key and specifies which machine ID is the arbitrator. If
there is already a new key entry in the block chain for this key name then
do not insert into the chain, another client got there first.

1: function Transaction Commit(ka, ida)
2: success← false
3:

4: while ¬success do
5: if ∃〈k′, id′〉 ∈ Arbitrator, k′ = ka then
6: return false . Key already created
7: end if
8:

9: success← TryInsertNewKey(ka, ida, false)
10: end while
11: return true . If got here then insertion was correct
12: end function

40

