X-Git-Url: http://plrg.eecs.uci.edu/git/?p=folly.git;a=blobdiff_plain;f=folly%2FBits.h;h=ade5bbeeb7b39572f47e73e6405a54184d72984b;hp=9795f8f5650f1337d0509c48769dceb1b37fe8c0;hb=f975d3c54800b7065985e5e548ce1d91fef4926c;hpb=8ff6fe9e5593c1a5a0de24577f1e423fb6eae503 diff --git a/folly/Bits.h b/folly/Bits.h index 9795f8f5..ade5bbee 100644 --- a/folly/Bits.h +++ b/folly/Bits.h @@ -1,5 +1,5 @@ /* - * Copyright 2012 Facebook, Inc. + * Copyright 2017 Facebook, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -17,18 +17,24 @@ /** * Various low-level, bit-manipulation routines. * - * findFirstSet(x) + * findFirstSet(x) [constexpr] * find first (least significant) bit set in a value of an integral type, * 1-based (like ffs()). 0 = no bits are set (x == 0) * - * findLastSet(x) + * findLastSet(x) [constexpr] * find last (most significant) bit set in a value of an integral type, * 1-based. 0 = no bits are set (x == 0) - * for x != 0, findFirstSet(x) == 1 + floor(log2(x)) + * for x != 0, findLastSet(x) == 1 + floor(log2(x)) * - * nextPowTwo(x) + * nextPowTwo(x) [constexpr] * Finds the next power of two >= x. * + * isPowTwo(x) [constexpr] + * return true iff x is a power of two + * + * popcount(x) + * return the number of 1 bits in x + * * Endian * convert between native, big, and little endian representation * Endian::big(x) big <-> native @@ -46,23 +52,26 @@ * @author Tudor Bosman (tudorb@fb.com) */ -#ifndef FOLLY_BITS_H_ -#define FOLLY_BITS_H_ - -#include "folly/Portability.h" +#pragma once -#ifndef _GNU_SOURCE -#define _GNU_SOURCE 1 +#if !defined(__clang__) && !(defined(_MSC_VER) && (_MSC_VER < 1900)) +#define FOLLY_INTRINSIC_CONSTEXPR constexpr +#else +// GCC and MSVC 2015+ are the only compilers with +// intrinsics constexpr. +#define FOLLY_INTRINSIC_CONSTEXPR const #endif -#include "folly/detail/BitIteratorDetail.h" -#include "folly/Likely.h" +#include +#include + +#include +#include +#include -#include #include +#include #include -#include // for ffs, ffsl, ffsll -#include #include #include #include @@ -72,127 +81,96 @@ namespace folly { // Generate overloads for findFirstSet as wrappers around -// appropriate ffs, ffsl, ffsll functions from glibc. -// We first define these overloads for signed types (because ffs, ffsl, ffsll -// take int, long, and long long as arguments, respectively) and then -// define an overload for unsigned that forwards to the overload for the -// corresponding signed type. +// appropriate ffs, ffsl, ffsll gcc builtins template +inline FOLLY_INTRINSIC_CONSTEXPR typename std::enable_if< (std::is_integral::value && - std::is_signed::value && - (std::numeric_limits::digits <= std::numeric_limits::digits)), + std::is_unsigned::value && + sizeof(T) <= sizeof(unsigned int)), unsigned int>::type findFirstSet(T x) { - return ::ffs(static_cast(x)); + return static_cast(__builtin_ffs(static_cast(x))); } template +inline FOLLY_INTRINSIC_CONSTEXPR typename std::enable_if< (std::is_integral::value && - std::is_signed::value && - (std::numeric_limits::digits > std::numeric_limits::digits) && - (std::numeric_limits::digits <= std::numeric_limits::digits)), + std::is_unsigned::value && + sizeof(T) > sizeof(unsigned int) && + sizeof(T) <= sizeof(unsigned long)), unsigned int>::type findFirstSet(T x) { - return ::ffsl(static_cast(x)); + return static_cast(__builtin_ffsl(static_cast(x))); } -#ifdef FOLLY_HAVE_FFSLL - template +inline FOLLY_INTRINSIC_CONSTEXPR typename std::enable_if< (std::is_integral::value && - std::is_signed::value && - (std::numeric_limits::digits > std::numeric_limits::digits) && - (std::numeric_limits::digits <= std::numeric_limits::digits)), + std::is_unsigned::value && + sizeof(T) > sizeof(unsigned long) && + sizeof(T) <= sizeof(unsigned long long)), unsigned int>::type findFirstSet(T x) { - return ::ffsll(static_cast(x)); + return static_cast(__builtin_ffsll(static_cast(x))); } -#endif - template +inline FOLLY_INTRINSIC_CONSTEXPR typename std::enable_if< - (std::is_integral::value && - !std::is_signed::value), + (std::is_integral::value && std::is_signed::value), unsigned int>::type findFirstSet(T x) { - // Note that conversion from an unsigned type to the corresponding signed + // Note that conversion from a signed type to the corresponding unsigned // type is technically implementation-defined, but will likely work // on any impementation that uses two's complement. - return findFirstSet(static_cast::type>(x)); + return findFirstSet(static_cast::type>(x)); } -namespace detail { - -// Portable, but likely slow... -inline unsigned int findLastSetPortable(uint64_t x) { - unsigned int r = (x != 0); // 1-based index, except for x==0 - while (x >>= 1) { - ++r; - } - return r; -} - -} // namespace detail - -#ifdef __GNUC__ - // findLastSet: return the 1-based index of the highest bit set // for x > 0, findLastSet(x) == 1 + floor(log2(x)) template +inline FOLLY_INTRINSIC_CONSTEXPR typename std::enable_if< (std::is_integral::value && std::is_unsigned::value && - (std::numeric_limits::digits <= - std::numeric_limits::digits)), + sizeof(T) <= sizeof(unsigned int)), unsigned int>::type findLastSet(T x) { - return x ? 8 * sizeof(unsigned int) - __builtin_clz(x) : 0; + // If X is a power of two X - Y = ((X - 1) ^ Y) + 1. Doing this transformation + // allows GCC to remove its own xor that it adds to implement clz using bsr + return x ? ((8 * sizeof(unsigned int) - 1) ^ __builtin_clz(x)) + 1 : 0; } template +inline FOLLY_INTRINSIC_CONSTEXPR typename std::enable_if< (std::is_integral::value && std::is_unsigned::value && - (std::numeric_limits::digits > - std::numeric_limits::digits) && - (std::numeric_limits::digits <= - std::numeric_limits::digits)), + sizeof(T) > sizeof(unsigned int) && + sizeof(T) <= sizeof(unsigned long)), unsigned int>::type findLastSet(T x) { - return x ? 8 * sizeof(unsigned long) - __builtin_clzl(x) : 0; + return x ? ((8 * sizeof(unsigned long) - 1) ^ __builtin_clzl(x)) + 1 : 0; } template +inline FOLLY_INTRINSIC_CONSTEXPR typename std::enable_if< (std::is_integral::value && std::is_unsigned::value && - (std::numeric_limits::digits > - std::numeric_limits::digits) && - (std::numeric_limits::digits <= - std::numeric_limits::digits)), - unsigned int>::type - findLastSet(T x) { - return x ? 8 * sizeof(unsigned long long) - __builtin_clzll(x) : 0; -} - -#else /* !__GNUC__ */ - -template -typename std::enable_if< - (std::is_integral::value && - std::is_unsigned::value), + sizeof(T) > sizeof(unsigned long) && + sizeof(T) <= sizeof(unsigned long long)), unsigned int>::type findLastSet(T x) { - return detail:findLastSetPortable(x); + return x ? ((8 * sizeof(unsigned long long) - 1) ^ __builtin_clzll(x)) + 1 + : 0; } -#endif - template +inline FOLLY_INTRINSIC_CONSTEXPR typename std::enable_if< (std::is_integral::value && std::is_signed::value), @@ -201,112 +179,109 @@ typename std::enable_if< return findLastSet(static_cast::type>(x)); } -namespace detail { - template -inline +inline FOLLY_INTRINSIC_CONSTEXPR typename std::enable_if< std::is_integral::value && std::is_unsigned::value, T>::type -nextPowTwoPortable(T v) { - if (UNLIKELY(v == 0)) { - return 1; - } - - --v; - for (uint32_t i = 1; i < sizeof(T) * 8; i <<= 8) { - v |= (v >> i); - v |= (v >> (i << 1)); - v |= (v >> (i << 2)); - v |= (v >> (i << 3)); - v |= (v >> (i << 4)); - v |= (v >> (i << 5)); - v |= (v >> (i << 6)); - v |= (v >> (i << 7)); - } - return v + 1; +nextPowTwo(T v) { + return v ? (T(1) << findLastSet(v - 1)) : 1; } -} // namespace detail - -#ifdef __GNUC__ - template -inline -typename std::enable_if< - std::is_integral::value && std::is_unsigned::value, - T>::type -nextPowTwo(T v) { - if (UNLIKELY(v == 0)) { - return 1; - } - return 1ul << findLastSet(v - 1); +inline FOLLY_INTRINSIC_CONSTEXPR typename std:: + enable_if::value && std::is_unsigned::value, T>::type + prevPowTwo(T v) { + return v ? (T(1) << (findLastSet(v) - 1)) : 0; } -#else /* __GNUC__ */ - template -inline -typename std::enable_if< - std::is_integral::value && std::is_unsigned::value, - T>::type -nextPowTwo(T v) { - return detail::nextPowTwoPortable(v); +inline constexpr typename std::enable_if< + std::is_integral::value && std::is_unsigned::value, + bool>::type +isPowTwo(T v) { + return (v != 0) && !(v & (v - 1)); } -#endif /* __GNUC__ */ - +/** + * Population count + */ +template +inline typename std::enable_if< + (std::is_integral::value && + std::is_unsigned::value && + sizeof(T) <= sizeof(unsigned int)), + size_t>::type + popcount(T x) { + return size_t(__builtin_popcount(x)); +} +template +inline typename std::enable_if< + (std::is_integral::value && + std::is_unsigned::value && + sizeof(T) > sizeof(unsigned int) && + sizeof(T) <= sizeof(unsigned long long)), + size_t>::type + popcount(T x) { + return size_t(__builtin_popcountll(x)); +} /** * Endianness detection and manipulation primitives. */ namespace detail { -template -struct EndianIntBase { - public: - static T swap(T x); -}; - -#define FB_GEN(t, fn) \ -template<> inline t EndianIntBase::swap(t x) { return fn(x); } - -// fn(x) expands to (x) if the second argument is empty, which is exactly -// what we want for [u]int8_t -FB_GEN( int8_t,) -FB_GEN(uint8_t,) -FB_GEN( int64_t, bswap_64) -FB_GEN(uint64_t, bswap_64) -FB_GEN( int32_t, bswap_32) -FB_GEN(uint32_t, bswap_32) -FB_GEN( int16_t, bswap_16) -FB_GEN(uint16_t, bswap_16) +template +struct uint_types_by_size; + +#define FB_GEN(sz, fn) \ + static inline uint##sz##_t byteswap_gen(uint##sz##_t v) { \ + return fn(v); \ + } \ + template <> \ + struct uint_types_by_size { \ + using type = uint##sz##_t; \ + }; + +FB_GEN(8, uint8_t) +#ifdef _MSC_VER +FB_GEN(64, _byteswap_uint64) +FB_GEN(32, _byteswap_ulong) +FB_GEN(16, _byteswap_ushort) +#else +FB_GEN(64, __builtin_bswap64) +FB_GEN(32, __builtin_bswap32) +FB_GEN(16, __builtin_bswap16) +#endif #undef FB_GEN -#if __BYTE_ORDER == __LITTLE_ENDIAN - -template -struct EndianInt : public detail::EndianIntBase { - public: - static T big(T x) { return EndianInt::swap(x); } - static T little(T x) { return x; } -}; - -#elif __BYTE_ORDER == __BIG_ENDIAN - template -struct EndianInt : public detail::EndianIntBase { - public: - static T big(T x) { return x; } - static T little(T x) { return EndianInt::swap(x); } +struct EndianInt { + static_assert( + (std::is_integral::value && !std::is_same::value) || + std::is_floating_point::value, + "template type parameter must be non-bool integral or floating point"); + static T swap(T x) { + // we implement this with memcpy because that is defined behavior in C++ + // we rely on compilers to optimize away the memcpy calls + constexpr auto s = sizeof(T); + using B = typename uint_types_by_size::type; + B b; + std::memcpy(&b, &x, s); + b = byteswap_gen(b); + std::memcpy(&x, &b, s); + return x; + } + static T big(T x) { + return kIsLittleEndian ? EndianInt::swap(x) : x; + } + static T little(T x) { + return kIsBigEndian ? EndianInt::swap(x) : x; + } }; -#else -# error Your machine uses a weird endianness! -#endif /* __BYTE_ORDER */ - } // namespace detail // big* convert between native and big-endian representations @@ -329,20 +304,29 @@ struct EndianInt : public detail::EndianIntBase { class Endian { public: + enum class Order : uint8_t { + LITTLE, + BIG + }; + + static constexpr Order order = kIsLittleEndian ? Order::LITTLE : Order::BIG; + template static T swap(T x) { - return detail::EndianInt::swap(x); + return folly::detail::EndianInt::swap(x); } template static T big(T x) { - return detail::EndianInt::big(x); + return folly::detail::EndianInt::big(x); } template static T little(T x) { - return detail::EndianInt::little(x); + return folly::detail::EndianInt::little(x); } +#if !defined(__ANDROID__) FB_GEN(64) FB_GEN(32) FB_GEN(16) FB_GEN(8) +#endif }; #undef FB_GEN @@ -371,7 +355,7 @@ class BitIterator /** * Return the number of bits in an element of the underlying iterator. */ - static size_t bitsPerBlock() { + static unsigned int bitsPerBlock() { return std::numeric_limits< typename std::make_unsigned< typename std::iterator_traits::value_type @@ -383,9 +367,9 @@ class BitIterator * Construct a BitIterator that points at a given bit offset (default 0) * in iter. */ - explicit BitIterator(const BaseIter& iter, size_t bitOffset=0) + explicit BitIterator(const BaseIter& iter, size_t bitOff=0) : bititerator_detail::BitIteratorBase::type(iter), - bitOffset_(bitOffset) { + bitOffset_(bitOff) { assert(bitOffset_ < bitsPerBlock()); } @@ -424,7 +408,7 @@ class BitIterator void advance(ssize_t n) { size_t bpb = bitsPerBlock(); - ssize_t blocks = n / bpb; + ssize_t blocks = n / ssize_t(bpb); bitOffset_ += n % bpb; if (bitOffset_ >= bpb) { bitOffset_ -= bpb; @@ -452,12 +436,12 @@ class BitIterator } ssize_t distance_to(const BitIterator& other) const { - return - (other.base_reference() - this->base_reference()) * bitsPerBlock() + - (other.bitOffset_ - bitOffset_); + return ssize_t( + (other.base_reference() - this->base_reference()) * bitsPerBlock() + + other.bitOffset_ - bitOffset_); } - ssize_t bitOffset_; + size_t bitOffset_; }; /** @@ -514,26 +498,36 @@ BitIterator findFirstSet(BitIterator begin, } -namespace detail { - template struct Unaligned; +/** + * Representation of an unaligned value of a POD type. + */ +FOLLY_PACK_PUSH template struct Unaligned< - T, - typename std::enable_if::value>::type> { + T, + typename std::enable_if::value>::type> { + Unaligned() = default; // uninitialized + /* implicit */ Unaligned(T v) : value(v) { } T value; -} __attribute__((packed)); - -} // namespace detail +} FOLLY_PACK_ATTR; +FOLLY_PACK_POP /** * Read an unaligned value of type T and return it. */ template inline T loadUnaligned(const void* p) { - static_assert(alignof(detail::Unaligned) == 1, "Invalid alignment"); - return static_cast*>(p)->value; + static_assert(sizeof(Unaligned) == sizeof(T), "Invalid unaligned size"); + static_assert(alignof(Unaligned) == 1, "Invalid alignment"); + if (kHasUnalignedAccess) { + return static_cast*>(p)->value; + } else { + T value; + memcpy(&value, p, sizeof(T)); + return value; + } } /** @@ -541,11 +535,19 @@ inline T loadUnaligned(const void* p) { */ template inline void storeUnaligned(void* p, T value) { - static_assert(alignof(detail::Unaligned) == 1, "Invalid alignment"); - static_cast*>(p)->value = value; + static_assert(sizeof(Unaligned) == sizeof(T), "Invalid unaligned size"); + static_assert(alignof(Unaligned) == 1, "Invalid alignment"); + if (kHasUnalignedAccess) { + // Prior to C++14, the spec says that a placement new like this + // is required to check that p is not nullptr, and to do nothing + // if p is a nullptr. By assuming it's not a nullptr, we get a + // nice loud segfault in optimized builds if p is nullptr, rather + // than just silently doing nothing. + folly::assume(p != nullptr); + new (p) Unaligned(value); + } else { + memcpy(p, &value, sizeof(T)); + } } } // namespace folly - -#endif /* FOLLY_BITS_H_ */ -