ARM: rockchip: rk3228: add grf definition
[firefly-linux-kernel-4.4.55.git] / include / linux / slab.h
1 /*
2  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3  *
4  * (C) SGI 2006, Christoph Lameter
5  *      Cleaned up and restructured to ease the addition of alternative
6  *      implementations of SLAB allocators.
7  */
8
9 #ifndef _LINUX_SLAB_H
10 #define _LINUX_SLAB_H
11
12 #include <linux/gfp.h>
13 #include <linux/types.h>
14 #include <linux/workqueue.h>
15
16
17 /*
18  * Flags to pass to kmem_cache_create().
19  * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
20  */
21 #define SLAB_DEBUG_FREE         0x00000100UL    /* DEBUG: Perform (expensive) checks on free */
22 #define SLAB_RED_ZONE           0x00000400UL    /* DEBUG: Red zone objs in a cache */
23 #define SLAB_POISON             0x00000800UL    /* DEBUG: Poison objects */
24 #define SLAB_HWCACHE_ALIGN      0x00002000UL    /* Align objs on cache lines */
25 #define SLAB_CACHE_DMA          0x00004000UL    /* Use GFP_DMA memory */
26 #define SLAB_STORE_USER         0x00010000UL    /* DEBUG: Store the last owner for bug hunting */
27 #define SLAB_PANIC              0x00040000UL    /* Panic if kmem_cache_create() fails */
28 /*
29  * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
30  *
31  * This delays freeing the SLAB page by a grace period, it does _NOT_
32  * delay object freeing. This means that if you do kmem_cache_free()
33  * that memory location is free to be reused at any time. Thus it may
34  * be possible to see another object there in the same RCU grace period.
35  *
36  * This feature only ensures the memory location backing the object
37  * stays valid, the trick to using this is relying on an independent
38  * object validation pass. Something like:
39  *
40  *  rcu_read_lock()
41  * again:
42  *  obj = lockless_lookup(key);
43  *  if (obj) {
44  *    if (!try_get_ref(obj)) // might fail for free objects
45  *      goto again;
46  *
47  *    if (obj->key != key) { // not the object we expected
48  *      put_ref(obj);
49  *      goto again;
50  *    }
51  *  }
52  *  rcu_read_unlock();
53  *
54  * See also the comment on struct slab_rcu in mm/slab.c.
55  */
56 #define SLAB_DESTROY_BY_RCU     0x00080000UL    /* Defer freeing slabs to RCU */
57 #define SLAB_MEM_SPREAD         0x00100000UL    /* Spread some memory over cpuset */
58 #define SLAB_TRACE              0x00200000UL    /* Trace allocations and frees */
59
60 /* Flag to prevent checks on free */
61 #ifdef CONFIG_DEBUG_OBJECTS
62 # define SLAB_DEBUG_OBJECTS     0x00400000UL
63 #else
64 # define SLAB_DEBUG_OBJECTS     0x00000000UL
65 #endif
66
67 #define SLAB_NOLEAKTRACE        0x00800000UL    /* Avoid kmemleak tracing */
68
69 /* Don't track use of uninitialized memory */
70 #ifdef CONFIG_KMEMCHECK
71 # define SLAB_NOTRACK           0x01000000UL
72 #else
73 # define SLAB_NOTRACK           0x00000000UL
74 #endif
75 #ifdef CONFIG_FAILSLAB
76 # define SLAB_FAILSLAB          0x02000000UL    /* Fault injection mark */
77 #else
78 # define SLAB_FAILSLAB          0x00000000UL
79 #endif
80
81 /* The following flags affect the page allocator grouping pages by mobility */
82 #define SLAB_RECLAIM_ACCOUNT    0x00020000UL            /* Objects are reclaimable */
83 #define SLAB_TEMPORARY          SLAB_RECLAIM_ACCOUNT    /* Objects are short-lived */
84 /*
85  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
86  *
87  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
88  *
89  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
90  * Both make kfree a no-op.
91  */
92 #define ZERO_SIZE_PTR ((void *)16)
93
94 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
95                                 (unsigned long)ZERO_SIZE_PTR)
96
97
98 struct mem_cgroup;
99 /*
100  * struct kmem_cache related prototypes
101  */
102 void __init kmem_cache_init(void);
103 int slab_is_available(void);
104
105 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
106                         unsigned long,
107                         void (*)(void *));
108 struct kmem_cache *
109 kmem_cache_create_memcg(struct mem_cgroup *, const char *, size_t, size_t,
110                         unsigned long, void (*)(void *), struct kmem_cache *);
111 void kmem_cache_destroy(struct kmem_cache *);
112 int kmem_cache_shrink(struct kmem_cache *);
113 void kmem_cache_free(struct kmem_cache *, void *);
114
115 /*
116  * Please use this macro to create slab caches. Simply specify the
117  * name of the structure and maybe some flags that are listed above.
118  *
119  * The alignment of the struct determines object alignment. If you
120  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
121  * then the objects will be properly aligned in SMP configurations.
122  */
123 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
124                 sizeof(struct __struct), __alignof__(struct __struct),\
125                 (__flags), NULL)
126
127 /*
128  * Common kmalloc functions provided by all allocators
129  */
130 void * __must_check __krealloc(const void *, size_t, gfp_t);
131 void * __must_check krealloc(const void *, size_t, gfp_t);
132 void kfree(const void *);
133 void kzfree(const void *);
134 size_t ksize(const void *);
135
136 /*
137  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
138  * alignment larger than the alignment of a 64-bit integer.
139  * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
140  */
141 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
142 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
143 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
144 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
145 #else
146 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
147 #endif
148
149 #ifdef CONFIG_SLOB
150 /*
151  * Common fields provided in kmem_cache by all slab allocators
152  * This struct is either used directly by the allocator (SLOB)
153  * or the allocator must include definitions for all fields
154  * provided in kmem_cache_common in their definition of kmem_cache.
155  *
156  * Once we can do anonymous structs (C11 standard) we could put a
157  * anonymous struct definition in these allocators so that the
158  * separate allocations in the kmem_cache structure of SLAB and
159  * SLUB is no longer needed.
160  */
161 struct kmem_cache {
162         unsigned int object_size;/* The original size of the object */
163         unsigned int size;      /* The aligned/padded/added on size  */
164         unsigned int align;     /* Alignment as calculated */
165         unsigned long flags;    /* Active flags on the slab */
166         const char *name;       /* Slab name for sysfs */
167         int refcount;           /* Use counter */
168         void (*ctor)(void *);   /* Called on object slot creation */
169         struct list_head list;  /* List of all slab caches on the system */
170 };
171
172 #define KMALLOC_MAX_SIZE (1UL << 30)
173
174 #include <linux/slob_def.h>
175
176 #else /* CONFIG_SLOB */
177
178 /*
179  * Kmalloc array related definitions
180  */
181
182 #ifdef CONFIG_SLAB
183 /*
184  * The largest kmalloc size supported by the SLAB allocators is
185  * 32 megabyte (2^25) or the maximum allocatable page order if that is
186  * less than 32 MB.
187  *
188  * WARNING: Its not easy to increase this value since the allocators have
189  * to do various tricks to work around compiler limitations in order to
190  * ensure proper constant folding.
191  */
192 #define KMALLOC_SHIFT_HIGH      ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
193                                 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
194 #define KMALLOC_SHIFT_MAX       KMALLOC_SHIFT_HIGH
195 #ifndef KMALLOC_SHIFT_LOW
196 #define KMALLOC_SHIFT_LOW       5
197 #endif
198 #else
199 /*
200  * SLUB allocates up to order 2 pages directly and otherwise
201  * passes the request to the page allocator.
202  */
203 #define KMALLOC_SHIFT_HIGH      (PAGE_SHIFT + 1)
204 #define KMALLOC_SHIFT_MAX       (MAX_ORDER + PAGE_SHIFT)
205 #ifndef KMALLOC_SHIFT_LOW
206 #define KMALLOC_SHIFT_LOW       3
207 #endif
208 #endif
209
210 /* Maximum allocatable size */
211 #define KMALLOC_MAX_SIZE        (1UL << KMALLOC_SHIFT_MAX)
212 /* Maximum size for which we actually use a slab cache */
213 #define KMALLOC_MAX_CACHE_SIZE  (1UL << KMALLOC_SHIFT_HIGH)
214 /* Maximum order allocatable via the slab allocagtor */
215 #define KMALLOC_MAX_ORDER       (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
216
217 /*
218  * Kmalloc subsystem.
219  */
220 #ifndef KMALLOC_MIN_SIZE
221 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
222 #endif
223
224 extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
225 #ifdef CONFIG_ZONE_DMA
226 extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
227 #endif
228
229 /*
230  * Figure out which kmalloc slab an allocation of a certain size
231  * belongs to.
232  * 0 = zero alloc
233  * 1 =  65 .. 96 bytes
234  * 2 = 120 .. 192 bytes
235  * n = 2^(n-1) .. 2^n -1
236  */
237 static __always_inline int kmalloc_index(size_t size)
238 {
239         if (!size)
240                 return 0;
241
242         if (size <= KMALLOC_MIN_SIZE)
243                 return KMALLOC_SHIFT_LOW;
244
245         if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
246                 return 1;
247         if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
248                 return 2;
249         if (size <=          8) return 3;
250         if (size <=         16) return 4;
251         if (size <=         32) return 5;
252         if (size <=         64) return 6;
253         if (size <=        128) return 7;
254         if (size <=        256) return 8;
255         if (size <=        512) return 9;
256         if (size <=       1024) return 10;
257         if (size <=   2 * 1024) return 11;
258         if (size <=   4 * 1024) return 12;
259         if (size <=   8 * 1024) return 13;
260         if (size <=  16 * 1024) return 14;
261         if (size <=  32 * 1024) return 15;
262         if (size <=  64 * 1024) return 16;
263         if (size <= 128 * 1024) return 17;
264         if (size <= 256 * 1024) return 18;
265         if (size <= 512 * 1024) return 19;
266         if (size <= 1024 * 1024) return 20;
267         if (size <=  2 * 1024 * 1024) return 21;
268         if (size <=  4 * 1024 * 1024) return 22;
269         if (size <=  8 * 1024 * 1024) return 23;
270         if (size <=  16 * 1024 * 1024) return 24;
271         if (size <=  32 * 1024 * 1024) return 25;
272         if (size <=  64 * 1024 * 1024) return 26;
273         BUG();
274
275         /* Will never be reached. Needed because the compiler may complain */
276         return -1;
277 }
278
279 #ifdef CONFIG_SLAB
280 #include <linux/slab_def.h>
281 #elif defined(CONFIG_SLUB)
282 #include <linux/slub_def.h>
283 #else
284 #error "Unknown slab allocator"
285 #endif
286
287 /*
288  * Determine size used for the nth kmalloc cache.
289  * return size or 0 if a kmalloc cache for that
290  * size does not exist
291  */
292 static __always_inline int kmalloc_size(int n)
293 {
294         if (n > 2)
295                 return 1 << n;
296
297         if (n == 1 && KMALLOC_MIN_SIZE <= 32)
298                 return 96;
299
300         if (n == 2 && KMALLOC_MIN_SIZE <= 64)
301                 return 192;
302
303         return 0;
304 }
305 #endif /* !CONFIG_SLOB */
306
307 /*
308  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
309  * Intended for arches that get misalignment faults even for 64 bit integer
310  * aligned buffers.
311  */
312 #ifndef ARCH_SLAB_MINALIGN
313 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
314 #endif
315 /*
316  * This is the main placeholder for memcg-related information in kmem caches.
317  * struct kmem_cache will hold a pointer to it, so the memory cost while
318  * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it
319  * would otherwise be if that would be bundled in kmem_cache: we'll need an
320  * extra pointer chase. But the trade off clearly lays in favor of not
321  * penalizing non-users.
322  *
323  * Both the root cache and the child caches will have it. For the root cache,
324  * this will hold a dynamically allocated array large enough to hold
325  * information about the currently limited memcgs in the system.
326  *
327  * Child caches will hold extra metadata needed for its operation. Fields are:
328  *
329  * @memcg: pointer to the memcg this cache belongs to
330  * @list: list_head for the list of all caches in this memcg
331  * @root_cache: pointer to the global, root cache, this cache was derived from
332  * @dead: set to true after the memcg dies; the cache may still be around.
333  * @nr_pages: number of pages that belongs to this cache.
334  * @destroy: worker to be called whenever we are ready, or believe we may be
335  *           ready, to destroy this cache.
336  */
337 struct memcg_cache_params {
338         bool is_root_cache;
339         union {
340                 struct kmem_cache *memcg_caches[0];
341                 struct {
342                         struct mem_cgroup *memcg;
343                         struct list_head list;
344                         struct kmem_cache *root_cache;
345                         bool dead;
346                         atomic_t nr_pages;
347                         struct work_struct destroy;
348                 };
349         };
350 };
351
352 int memcg_update_all_caches(int num_memcgs);
353
354 struct seq_file;
355 int cache_show(struct kmem_cache *s, struct seq_file *m);
356 void print_slabinfo_header(struct seq_file *m);
357
358 /**
359  * kmalloc_array - allocate memory for an array.
360  * @n: number of elements.
361  * @size: element size.
362  * @flags: the type of memory to allocate.
363  *
364  * The @flags argument may be one of:
365  *
366  * %GFP_USER - Allocate memory on behalf of user.  May sleep.
367  *
368  * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
369  *
370  * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
371  *   For example, use this inside interrupt handlers.
372  *
373  * %GFP_HIGHUSER - Allocate pages from high memory.
374  *
375  * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
376  *
377  * %GFP_NOFS - Do not make any fs calls while trying to get memory.
378  *
379  * %GFP_NOWAIT - Allocation will not sleep.
380  *
381  * %GFP_THISNODE - Allocate node-local memory only.
382  *
383  * %GFP_DMA - Allocation suitable for DMA.
384  *   Should only be used for kmalloc() caches. Otherwise, use a
385  *   slab created with SLAB_DMA.
386  *
387  * Also it is possible to set different flags by OR'ing
388  * in one or more of the following additional @flags:
389  *
390  * %__GFP_COLD - Request cache-cold pages instead of
391  *   trying to return cache-warm pages.
392  *
393  * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
394  *
395  * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
396  *   (think twice before using).
397  *
398  * %__GFP_NORETRY - If memory is not immediately available,
399  *   then give up at once.
400  *
401  * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
402  *
403  * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
404  *
405  * There are other flags available as well, but these are not intended
406  * for general use, and so are not documented here. For a full list of
407  * potential flags, always refer to linux/gfp.h.
408  */
409 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
410 {
411         if (size != 0 && n > SIZE_MAX / size)
412                 return NULL;
413         return __kmalloc(n * size, flags);
414 }
415
416 /**
417  * kcalloc - allocate memory for an array. The memory is set to zero.
418  * @n: number of elements.
419  * @size: element size.
420  * @flags: the type of memory to allocate (see kmalloc).
421  */
422 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
423 {
424         return kmalloc_array(n, size, flags | __GFP_ZERO);
425 }
426
427 #if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
428 /**
429  * kmalloc_node - allocate memory from a specific node
430  * @size: how many bytes of memory are required.
431  * @flags: the type of memory to allocate (see kcalloc).
432  * @node: node to allocate from.
433  *
434  * kmalloc() for non-local nodes, used to allocate from a specific node
435  * if available. Equivalent to kmalloc() in the non-NUMA single-node
436  * case.
437  */
438 static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
439 {
440         return kmalloc(size, flags);
441 }
442
443 static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
444 {
445         return __kmalloc(size, flags);
446 }
447
448 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
449
450 static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
451                                         gfp_t flags, int node)
452 {
453         return kmem_cache_alloc(cachep, flags);
454 }
455 #endif /* !CONFIG_NUMA && !CONFIG_SLOB */
456
457 /*
458  * kmalloc_track_caller is a special version of kmalloc that records the
459  * calling function of the routine calling it for slab leak tracking instead
460  * of just the calling function (confusing, eh?).
461  * It's useful when the call to kmalloc comes from a widely-used standard
462  * allocator where we care about the real place the memory allocation
463  * request comes from.
464  */
465 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
466         (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
467         (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
468 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
469 #define kmalloc_track_caller(size, flags) \
470         __kmalloc_track_caller(size, flags, _RET_IP_)
471 #else
472 #define kmalloc_track_caller(size, flags) \
473         __kmalloc(size, flags)
474 #endif /* DEBUG_SLAB */
475
476 #ifdef CONFIG_NUMA
477 /*
478  * kmalloc_node_track_caller is a special version of kmalloc_node that
479  * records the calling function of the routine calling it for slab leak
480  * tracking instead of just the calling function (confusing, eh?).
481  * It's useful when the call to kmalloc_node comes from a widely-used
482  * standard allocator where we care about the real place the memory
483  * allocation request comes from.
484  */
485 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
486         (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
487         (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
488 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
489 #define kmalloc_node_track_caller(size, flags, node) \
490         __kmalloc_node_track_caller(size, flags, node, \
491                         _RET_IP_)
492 #else
493 #define kmalloc_node_track_caller(size, flags, node) \
494         __kmalloc_node(size, flags, node)
495 #endif
496
497 #else /* CONFIG_NUMA */
498
499 #define kmalloc_node_track_caller(size, flags, node) \
500         kmalloc_track_caller(size, flags)
501
502 #endif /* CONFIG_NUMA */
503
504 /*
505  * Shortcuts
506  */
507 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
508 {
509         return kmem_cache_alloc(k, flags | __GFP_ZERO);
510 }
511
512 /**
513  * kzalloc - allocate memory. The memory is set to zero.
514  * @size: how many bytes of memory are required.
515  * @flags: the type of memory to allocate (see kmalloc).
516  */
517 static inline void *kzalloc(size_t size, gfp_t flags)
518 {
519         return kmalloc(size, flags | __GFP_ZERO);
520 }
521
522 /**
523  * kzalloc_node - allocate zeroed memory from a particular memory node.
524  * @size: how many bytes of memory are required.
525  * @flags: the type of memory to allocate (see kmalloc).
526  * @node: memory node from which to allocate
527  */
528 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
529 {
530         return kmalloc_node(size, flags | __GFP_ZERO, node);
531 }
532
533 /*
534  * Determine the size of a slab object
535  */
536 static inline unsigned int kmem_cache_size(struct kmem_cache *s)
537 {
538         return s->object_size;
539 }
540
541 void __init kmem_cache_init_late(void);
542
543 #endif  /* _LINUX_SLAB_H */