263a2df66581c7bf1ab999214117b867f6f75603
[firefly-linux-kernel-4.4.55.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49
50 #include "usb.h"
51
52
53 /*-------------------------------------------------------------------------*/
54
55 /*
56  * USB Host Controller Driver framework
57  *
58  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59  * HCD-specific behaviors/bugs.
60  *
61  * This does error checks, tracks devices and urbs, and delegates to a
62  * "hc_driver" only for code (and data) that really needs to know about
63  * hardware differences.  That includes root hub registers, i/o queues,
64  * and so on ... but as little else as possible.
65  *
66  * Shared code includes most of the "root hub" code (these are emulated,
67  * though each HC's hardware works differently) and PCI glue, plus request
68  * tracking overhead.  The HCD code should only block on spinlocks or on
69  * hardware handshaking; blocking on software events (such as other kernel
70  * threads releasing resources, or completing actions) is all generic.
71  *
72  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74  * only by the hub driver ... and that neither should be seen or used by
75  * usb client device drivers.
76  *
77  * Contributors of ideas or unattributed patches include: David Brownell,
78  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
79  *
80  * HISTORY:
81  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
82  *              associated cleanup.  "usb_hcd" still != "usb_bus".
83  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
84  */
85
86 /*-------------------------------------------------------------------------*/
87
88 /* Keep track of which host controller drivers are loaded */
89 unsigned long usb_hcds_loaded;
90 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
91
92 /* host controllers we manage */
93 LIST_HEAD (usb_bus_list);
94 EXPORT_SYMBOL_GPL (usb_bus_list);
95
96 /* used when allocating bus numbers */
97 #define USB_MAXBUS              64
98 static DECLARE_BITMAP(busmap, USB_MAXBUS);
99
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118         return (udev->parent == NULL);
119 }
120
121 /*-------------------------------------------------------------------------*/
122
123 /*
124  * Sharable chunks of root hub code.
125  */
126
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131 /* usb 3.0 root hub device descriptor */
132 static const u8 usb3_rh_dev_descriptor[18] = {
133         0x12,       /*  __u8  bLength; */
134         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
135         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
136
137         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
138         0x00,       /*  __u8  bDeviceSubClass; */
139         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
140         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
141
142         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
143         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
144         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145
146         0x03,       /*  __u8  iManufacturer; */
147         0x02,       /*  __u8  iProduct; */
148         0x01,       /*  __u8  iSerialNumber; */
149         0x01        /*  __u8  bNumConfigurations; */
150 };
151
152 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
153 static const u8 usb25_rh_dev_descriptor[18] = {
154         0x12,       /*  __u8  bLength; */
155         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
156         0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
157
158         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
159         0x00,       /*  __u8  bDeviceSubClass; */
160         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
161         0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
162
163         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
164         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
165         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
166
167         0x03,       /*  __u8  iManufacturer; */
168         0x02,       /*  __u8  iProduct; */
169         0x01,       /*  __u8  iSerialNumber; */
170         0x01        /*  __u8  bNumConfigurations; */
171 };
172
173 /* usb 2.0 root hub device descriptor */
174 static const u8 usb2_rh_dev_descriptor[18] = {
175         0x12,       /*  __u8  bLength; */
176         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
177         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
178
179         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
180         0x00,       /*  __u8  bDeviceSubClass; */
181         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
182         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
183
184         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
185         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
186         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
187
188         0x03,       /*  __u8  iManufacturer; */
189         0x02,       /*  __u8  iProduct; */
190         0x01,       /*  __u8  iSerialNumber; */
191         0x01        /*  __u8  bNumConfigurations; */
192 };
193
194 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
195
196 /* usb 1.1 root hub device descriptor */
197 static const u8 usb11_rh_dev_descriptor[18] = {
198         0x12,       /*  __u8  bLength; */
199         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
200         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
201
202         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
203         0x00,       /*  __u8  bDeviceSubClass; */
204         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
205         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
206
207         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
208         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
209         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
210
211         0x03,       /*  __u8  iManufacturer; */
212         0x02,       /*  __u8  iProduct; */
213         0x01,       /*  __u8  iSerialNumber; */
214         0x01        /*  __u8  bNumConfigurations; */
215 };
216
217
218 /*-------------------------------------------------------------------------*/
219
220 /* Configuration descriptors for our root hubs */
221
222 static const u8 fs_rh_config_descriptor[] = {
223
224         /* one configuration */
225         0x09,       /*  __u8  bLength; */
226         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
227         0x19, 0x00, /*  __le16 wTotalLength; */
228         0x01,       /*  __u8  bNumInterfaces; (1) */
229         0x01,       /*  __u8  bConfigurationValue; */
230         0x00,       /*  __u8  iConfiguration; */
231         0xc0,       /*  __u8  bmAttributes;
232                                  Bit 7: must be set,
233                                      6: Self-powered,
234                                      5: Remote wakeup,
235                                      4..0: resvd */
236         0x00,       /*  __u8  MaxPower; */
237
238         /* USB 1.1:
239          * USB 2.0, single TT organization (mandatory):
240          *      one interface, protocol 0
241          *
242          * USB 2.0, multiple TT organization (optional):
243          *      two interfaces, protocols 1 (like single TT)
244          *      and 2 (multiple TT mode) ... config is
245          *      sometimes settable
246          *      NOT IMPLEMENTED
247          */
248
249         /* one interface */
250         0x09,       /*  __u8  if_bLength; */
251         USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
252         0x00,       /*  __u8  if_bInterfaceNumber; */
253         0x00,       /*  __u8  if_bAlternateSetting; */
254         0x01,       /*  __u8  if_bNumEndpoints; */
255         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
256         0x00,       /*  __u8  if_bInterfaceSubClass; */
257         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
258         0x00,       /*  __u8  if_iInterface; */
259
260         /* one endpoint (status change endpoint) */
261         0x07,       /*  __u8  ep_bLength; */
262         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
263         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
264         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
265         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
266         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
267 };
268
269 static const u8 hs_rh_config_descriptor[] = {
270
271         /* one configuration */
272         0x09,       /*  __u8  bLength; */
273         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
274         0x19, 0x00, /*  __le16 wTotalLength; */
275         0x01,       /*  __u8  bNumInterfaces; (1) */
276         0x01,       /*  __u8  bConfigurationValue; */
277         0x00,       /*  __u8  iConfiguration; */
278         0xc0,       /*  __u8  bmAttributes;
279                                  Bit 7: must be set,
280                                      6: Self-powered,
281                                      5: Remote wakeup,
282                                      4..0: resvd */
283         0x00,       /*  __u8  MaxPower; */
284
285         /* USB 1.1:
286          * USB 2.0, single TT organization (mandatory):
287          *      one interface, protocol 0
288          *
289          * USB 2.0, multiple TT organization (optional):
290          *      two interfaces, protocols 1 (like single TT)
291          *      and 2 (multiple TT mode) ... config is
292          *      sometimes settable
293          *      NOT IMPLEMENTED
294          */
295
296         /* one interface */
297         0x09,       /*  __u8  if_bLength; */
298         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
299         0x00,       /*  __u8  if_bInterfaceNumber; */
300         0x00,       /*  __u8  if_bAlternateSetting; */
301         0x01,       /*  __u8  if_bNumEndpoints; */
302         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
303         0x00,       /*  __u8  if_bInterfaceSubClass; */
304         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
305         0x00,       /*  __u8  if_iInterface; */
306
307         /* one endpoint (status change endpoint) */
308         0x07,       /*  __u8  ep_bLength; */
309         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
310         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
311         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
312                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
313                      * see hub.c:hub_configure() for details. */
314         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
315         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
316 };
317
318 static const u8 ss_rh_config_descriptor[] = {
319         /* one configuration */
320         0x09,       /*  __u8  bLength; */
321         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
322         0x1f, 0x00, /*  __le16 wTotalLength; */
323         0x01,       /*  __u8  bNumInterfaces; (1) */
324         0x01,       /*  __u8  bConfigurationValue; */
325         0x00,       /*  __u8  iConfiguration; */
326         0xc0,       /*  __u8  bmAttributes;
327                                  Bit 7: must be set,
328                                      6: Self-powered,
329                                      5: Remote wakeup,
330                                      4..0: resvd */
331         0x00,       /*  __u8  MaxPower; */
332
333         /* one interface */
334         0x09,       /*  __u8  if_bLength; */
335         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
336         0x00,       /*  __u8  if_bInterfaceNumber; */
337         0x00,       /*  __u8  if_bAlternateSetting; */
338         0x01,       /*  __u8  if_bNumEndpoints; */
339         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
340         0x00,       /*  __u8  if_bInterfaceSubClass; */
341         0x00,       /*  __u8  if_bInterfaceProtocol; */
342         0x00,       /*  __u8  if_iInterface; */
343
344         /* one endpoint (status change endpoint) */
345         0x07,       /*  __u8  ep_bLength; */
346         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
347         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
348         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
349                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
350                      * see hub.c:hub_configure() for details. */
351         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
352         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
353
354         /* one SuperSpeed endpoint companion descriptor */
355         0x06,        /* __u8 ss_bLength */
356         USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
357                      /* Companion */
358         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
359         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
360         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
361 };
362
363 /* authorized_default behaviour:
364  * -1 is authorized for all devices except wireless (old behaviour)
365  * 0 is unauthorized for all devices
366  * 1 is authorized for all devices
367  */
368 static int authorized_default = -1;
369 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
370 MODULE_PARM_DESC(authorized_default,
371                 "Default USB device authorization: 0 is not authorized, 1 is "
372                 "authorized, -1 is authorized except for wireless USB (default, "
373                 "old behaviour");
374 /*-------------------------------------------------------------------------*/
375
376 /**
377  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
378  * @s: Null-terminated ASCII (actually ISO-8859-1) string
379  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
380  * @len: Length (in bytes; may be odd) of descriptor buffer.
381  *
382  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
383  * whichever is less.
384  *
385  * Note:
386  * USB String descriptors can contain at most 126 characters; input
387  * strings longer than that are truncated.
388  */
389 static unsigned
390 ascii2desc(char const *s, u8 *buf, unsigned len)
391 {
392         unsigned n, t = 2 + 2*strlen(s);
393
394         if (t > 254)
395                 t = 254;        /* Longest possible UTF string descriptor */
396         if (len > t)
397                 len = t;
398
399         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
400
401         n = len;
402         while (n--) {
403                 *buf++ = t;
404                 if (!n--)
405                         break;
406                 *buf++ = t >> 8;
407                 t = (unsigned char)*s++;
408         }
409         return len;
410 }
411
412 /**
413  * rh_string() - provides string descriptors for root hub
414  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
415  * @hcd: the host controller for this root hub
416  * @data: buffer for output packet
417  * @len: length of the provided buffer
418  *
419  * Produces either a manufacturer, product or serial number string for the
420  * virtual root hub device.
421  *
422  * Return: The number of bytes filled in: the length of the descriptor or
423  * of the provided buffer, whichever is less.
424  */
425 static unsigned
426 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
427 {
428         char buf[100];
429         char const *s;
430         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
431
432         /* language ids */
433         switch (id) {
434         case 0:
435                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
436                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
437                 if (len > 4)
438                         len = 4;
439                 memcpy(data, langids, len);
440                 return len;
441         case 1:
442                 /* Serial number */
443                 s = hcd->self.bus_name;
444                 break;
445         case 2:
446                 /* Product name */
447                 s = hcd->product_desc;
448                 break;
449         case 3:
450                 /* Manufacturer */
451                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
452                         init_utsname()->release, hcd->driver->description);
453                 s = buf;
454                 break;
455         default:
456                 /* Can't happen; caller guarantees it */
457                 return 0;
458         }
459
460         return ascii2desc(s, data, len);
461 }
462
463
464 /* Root hub control transfers execute synchronously */
465 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
466 {
467         struct usb_ctrlrequest *cmd;
468         u16             typeReq, wValue, wIndex, wLength;
469         u8              *ubuf = urb->transfer_buffer;
470         unsigned        len = 0;
471         int             status;
472         u8              patch_wakeup = 0;
473         u8              patch_protocol = 0;
474         u16             tbuf_size;
475         u8              *tbuf = NULL;
476         const u8        *bufp;
477
478         might_sleep();
479
480         spin_lock_irq(&hcd_root_hub_lock);
481         status = usb_hcd_link_urb_to_ep(hcd, urb);
482         spin_unlock_irq(&hcd_root_hub_lock);
483         if (status)
484                 return status;
485         urb->hcpriv = hcd;      /* Indicate it's queued */
486
487         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
488         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
489         wValue   = le16_to_cpu (cmd->wValue);
490         wIndex   = le16_to_cpu (cmd->wIndex);
491         wLength  = le16_to_cpu (cmd->wLength);
492
493         if (wLength > urb->transfer_buffer_length)
494                 goto error;
495
496         /*
497          * tbuf should be at least as big as the
498          * USB hub descriptor.
499          */
500         tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
501         tbuf = kzalloc(tbuf_size, GFP_KERNEL);
502         if (!tbuf)
503                 return -ENOMEM;
504
505         bufp = tbuf;
506
507
508         urb->actual_length = 0;
509         switch (typeReq) {
510
511         /* DEVICE REQUESTS */
512
513         /* The root hub's remote wakeup enable bit is implemented using
514          * driver model wakeup flags.  If this system supports wakeup
515          * through USB, userspace may change the default "allow wakeup"
516          * policy through sysfs or these calls.
517          *
518          * Most root hubs support wakeup from downstream devices, for
519          * runtime power management (disabling USB clocks and reducing
520          * VBUS power usage).  However, not all of them do so; silicon,
521          * board, and BIOS bugs here are not uncommon, so these can't
522          * be treated quite like external hubs.
523          *
524          * Likewise, not all root hubs will pass wakeup events upstream,
525          * to wake up the whole system.  So don't assume root hub and
526          * controller capabilities are identical.
527          */
528
529         case DeviceRequest | USB_REQ_GET_STATUS:
530                 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
531                                         << USB_DEVICE_REMOTE_WAKEUP)
532                                 | (1 << USB_DEVICE_SELF_POWERED);
533                 tbuf[1] = 0;
534                 len = 2;
535                 break;
536         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
537                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
538                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
539                 else
540                         goto error;
541                 break;
542         case DeviceOutRequest | USB_REQ_SET_FEATURE:
543                 if (device_can_wakeup(&hcd->self.root_hub->dev)
544                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
545                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
546                 else
547                         goto error;
548                 break;
549         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
550                 tbuf[0] = 1;
551                 len = 1;
552                         /* FALLTHROUGH */
553         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
554                 break;
555         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
556                 switch (wValue & 0xff00) {
557                 case USB_DT_DEVICE << 8:
558                         switch (hcd->speed) {
559                         case HCD_USB31:
560                         case HCD_USB3:
561                                 bufp = usb3_rh_dev_descriptor;
562                                 break;
563                         case HCD_USB25:
564                                 bufp = usb25_rh_dev_descriptor;
565                                 break;
566                         case HCD_USB2:
567                                 bufp = usb2_rh_dev_descriptor;
568                                 break;
569                         case HCD_USB11:
570                                 bufp = usb11_rh_dev_descriptor;
571                                 break;
572                         default:
573                                 goto error;
574                         }
575                         len = 18;
576                         if (hcd->has_tt)
577                                 patch_protocol = 1;
578                         break;
579                 case USB_DT_CONFIG << 8:
580                         switch (hcd->speed) {
581                         case HCD_USB31:
582                         case HCD_USB3:
583                                 bufp = ss_rh_config_descriptor;
584                                 len = sizeof ss_rh_config_descriptor;
585                                 break;
586                         case HCD_USB25:
587                         case HCD_USB2:
588                                 bufp = hs_rh_config_descriptor;
589                                 len = sizeof hs_rh_config_descriptor;
590                                 break;
591                         case HCD_USB11:
592                                 bufp = fs_rh_config_descriptor;
593                                 len = sizeof fs_rh_config_descriptor;
594                                 break;
595                         default:
596                                 goto error;
597                         }
598                         if (device_can_wakeup(&hcd->self.root_hub->dev))
599                                 patch_wakeup = 1;
600                         break;
601                 case USB_DT_STRING << 8:
602                         if ((wValue & 0xff) < 4)
603                                 urb->actual_length = rh_string(wValue & 0xff,
604                                                 hcd, ubuf, wLength);
605                         else /* unsupported IDs --> "protocol stall" */
606                                 goto error;
607                         break;
608                 case USB_DT_BOS << 8:
609                         goto nongeneric;
610                 default:
611                         goto error;
612                 }
613                 break;
614         case DeviceRequest | USB_REQ_GET_INTERFACE:
615                 tbuf[0] = 0;
616                 len = 1;
617                         /* FALLTHROUGH */
618         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
619                 break;
620         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
621                 /* wValue == urb->dev->devaddr */
622                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
623                         wValue);
624                 break;
625
626         /* INTERFACE REQUESTS (no defined feature/status flags) */
627
628         /* ENDPOINT REQUESTS */
629
630         case EndpointRequest | USB_REQ_GET_STATUS:
631                 /* ENDPOINT_HALT flag */
632                 tbuf[0] = 0;
633                 tbuf[1] = 0;
634                 len = 2;
635                         /* FALLTHROUGH */
636         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
637         case EndpointOutRequest | USB_REQ_SET_FEATURE:
638                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
639                 break;
640
641         /* CLASS REQUESTS (and errors) */
642
643         default:
644 nongeneric:
645                 /* non-generic request */
646                 switch (typeReq) {
647                 case GetHubStatus:
648                 case GetPortStatus:
649                         len = 4;
650                         break;
651                 case GetHubDescriptor:
652                         len = sizeof (struct usb_hub_descriptor);
653                         break;
654                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
655                         /* len is returned by hub_control */
656                         break;
657                 }
658                 status = hcd->driver->hub_control (hcd,
659                         typeReq, wValue, wIndex,
660                         tbuf, wLength);
661
662                 if (typeReq == GetHubDescriptor)
663                         usb_hub_adjust_deviceremovable(hcd->self.root_hub,
664                                 (struct usb_hub_descriptor *)tbuf);
665                 break;
666 error:
667                 /* "protocol stall" on error */
668                 status = -EPIPE;
669         }
670
671         if (status < 0) {
672                 len = 0;
673                 if (status != -EPIPE) {
674                         dev_dbg (hcd->self.controller,
675                                 "CTRL: TypeReq=0x%x val=0x%x "
676                                 "idx=0x%x len=%d ==> %d\n",
677                                 typeReq, wValue, wIndex,
678                                 wLength, status);
679                 }
680         } else if (status > 0) {
681                 /* hub_control may return the length of data copied. */
682                 len = status;
683                 status = 0;
684         }
685         if (len) {
686                 if (urb->transfer_buffer_length < len)
687                         len = urb->transfer_buffer_length;
688                 urb->actual_length = len;
689                 /* always USB_DIR_IN, toward host */
690                 memcpy (ubuf, bufp, len);
691
692                 /* report whether RH hardware supports remote wakeup */
693                 if (patch_wakeup &&
694                                 len > offsetof (struct usb_config_descriptor,
695                                                 bmAttributes))
696                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
697                                 |= USB_CONFIG_ATT_WAKEUP;
698
699                 /* report whether RH hardware has an integrated TT */
700                 if (patch_protocol &&
701                                 len > offsetof(struct usb_device_descriptor,
702                                                 bDeviceProtocol))
703                         ((struct usb_device_descriptor *) ubuf)->
704                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
705         }
706
707         kfree(tbuf);
708
709         /* any errors get returned through the urb completion */
710         spin_lock_irq(&hcd_root_hub_lock);
711         usb_hcd_unlink_urb_from_ep(hcd, urb);
712         usb_hcd_giveback_urb(hcd, urb, status);
713         spin_unlock_irq(&hcd_root_hub_lock);
714         return 0;
715 }
716
717 /*-------------------------------------------------------------------------*/
718
719 /*
720  * Root Hub interrupt transfers are polled using a timer if the
721  * driver requests it; otherwise the driver is responsible for
722  * calling usb_hcd_poll_rh_status() when an event occurs.
723  *
724  * Completions are called in_interrupt(), but they may or may not
725  * be in_irq().
726  */
727 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
728 {
729         struct urb      *urb;
730         int             length;
731         unsigned long   flags;
732         char            buffer[6];      /* Any root hubs with > 31 ports? */
733
734         if (unlikely(!hcd->rh_pollable))
735                 return;
736         if (!hcd->uses_new_polling && !hcd->status_urb)
737                 return;
738
739         length = hcd->driver->hub_status_data(hcd, buffer);
740         if (length > 0) {
741
742                 /* try to complete the status urb */
743                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
744                 urb = hcd->status_urb;
745                 if (urb) {
746                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
747                         hcd->status_urb = NULL;
748                         urb->actual_length = length;
749                         memcpy(urb->transfer_buffer, buffer, length);
750
751                         usb_hcd_unlink_urb_from_ep(hcd, urb);
752                         usb_hcd_giveback_urb(hcd, urb, 0);
753                 } else {
754                         length = 0;
755                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
756                 }
757                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
758         }
759
760         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
761          * exceed that limit if HZ is 100. The math is more clunky than
762          * maybe expected, this is to make sure that all timers for USB devices
763          * fire at the same time to give the CPU a break in between */
764         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
765                         (length == 0 && hcd->status_urb != NULL))
766                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
767 }
768 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
769
770 /* timer callback */
771 static void rh_timer_func (unsigned long _hcd)
772 {
773         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
774 }
775
776 /*-------------------------------------------------------------------------*/
777
778 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
779 {
780         int             retval;
781         unsigned long   flags;
782         unsigned        len = 1 + (urb->dev->maxchild / 8);
783
784         spin_lock_irqsave (&hcd_root_hub_lock, flags);
785         if (hcd->status_urb || urb->transfer_buffer_length < len) {
786                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
787                 retval = -EINVAL;
788                 goto done;
789         }
790
791         retval = usb_hcd_link_urb_to_ep(hcd, urb);
792         if (retval)
793                 goto done;
794
795         hcd->status_urb = urb;
796         urb->hcpriv = hcd;      /* indicate it's queued */
797         if (!hcd->uses_new_polling)
798                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799
800         /* If a status change has already occurred, report it ASAP */
801         else if (HCD_POLL_PENDING(hcd))
802                 mod_timer(&hcd->rh_timer, jiffies);
803         retval = 0;
804  done:
805         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
806         return retval;
807 }
808
809 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
810 {
811         if (usb_endpoint_xfer_int(&urb->ep->desc))
812                 return rh_queue_status (hcd, urb);
813         if (usb_endpoint_xfer_control(&urb->ep->desc))
814                 return rh_call_control (hcd, urb);
815         return -EINVAL;
816 }
817
818 /*-------------------------------------------------------------------------*/
819
820 /* Unlinks of root-hub control URBs are legal, but they don't do anything
821  * since these URBs always execute synchronously.
822  */
823 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
824 {
825         unsigned long   flags;
826         int             rc;
827
828         spin_lock_irqsave(&hcd_root_hub_lock, flags);
829         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
830         if (rc)
831                 goto done;
832
833         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
834                 ;       /* Do nothing */
835
836         } else {                                /* Status URB */
837                 if (!hcd->uses_new_polling)
838                         del_timer (&hcd->rh_timer);
839                 if (urb == hcd->status_urb) {
840                         hcd->status_urb = NULL;
841                         usb_hcd_unlink_urb_from_ep(hcd, urb);
842                         usb_hcd_giveback_urb(hcd, urb, status);
843                 }
844         }
845  done:
846         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
847         return rc;
848 }
849
850
851
852 /*
853  * Show & store the current value of authorized_default
854  */
855 static ssize_t authorized_default_show(struct device *dev,
856                                        struct device_attribute *attr, char *buf)
857 {
858         struct usb_device *rh_usb_dev = to_usb_device(dev);
859         struct usb_bus *usb_bus = rh_usb_dev->bus;
860         struct usb_hcd *hcd;
861
862         hcd = bus_to_hcd(usb_bus);
863         return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
864 }
865
866 static ssize_t authorized_default_store(struct device *dev,
867                                         struct device_attribute *attr,
868                                         const char *buf, size_t size)
869 {
870         ssize_t result;
871         unsigned val;
872         struct usb_device *rh_usb_dev = to_usb_device(dev);
873         struct usb_bus *usb_bus = rh_usb_dev->bus;
874         struct usb_hcd *hcd;
875
876         hcd = bus_to_hcd(usb_bus);
877         result = sscanf(buf, "%u\n", &val);
878         if (result == 1) {
879                 if (val)
880                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
881                 else
882                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
883
884                 result = size;
885         } else {
886                 result = -EINVAL;
887         }
888         return result;
889 }
890 static DEVICE_ATTR_RW(authorized_default);
891
892 /*
893  * interface_authorized_default_show - show default authorization status
894  * for USB interfaces
895  *
896  * note: interface_authorized_default is the default value
897  *       for initializing the authorized attribute of interfaces
898  */
899 static ssize_t interface_authorized_default_show(struct device *dev,
900                 struct device_attribute *attr, char *buf)
901 {
902         struct usb_device *usb_dev = to_usb_device(dev);
903         struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
904
905         return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
906 }
907
908 /*
909  * interface_authorized_default_store - store default authorization status
910  * for USB interfaces
911  *
912  * note: interface_authorized_default is the default value
913  *       for initializing the authorized attribute of interfaces
914  */
915 static ssize_t interface_authorized_default_store(struct device *dev,
916                 struct device_attribute *attr, const char *buf, size_t count)
917 {
918         struct usb_device *usb_dev = to_usb_device(dev);
919         struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
920         int rc = count;
921         bool val;
922
923         if (strtobool(buf, &val) != 0)
924                 return -EINVAL;
925
926         if (val)
927                 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
928         else
929                 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
930
931         return rc;
932 }
933 static DEVICE_ATTR_RW(interface_authorized_default);
934
935 /* Group all the USB bus attributes */
936 static struct attribute *usb_bus_attrs[] = {
937                 &dev_attr_authorized_default.attr,
938                 &dev_attr_interface_authorized_default.attr,
939                 NULL,
940 };
941
942 static struct attribute_group usb_bus_attr_group = {
943         .name = NULL,   /* we want them in the same directory */
944         .attrs = usb_bus_attrs,
945 };
946
947
948
949 /*-------------------------------------------------------------------------*/
950
951 /**
952  * usb_bus_init - shared initialization code
953  * @bus: the bus structure being initialized
954  *
955  * This code is used to initialize a usb_bus structure, memory for which is
956  * separately managed.
957  */
958 static void usb_bus_init (struct usb_bus *bus)
959 {
960         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
961
962         bus->devnum_next = 1;
963
964         bus->root_hub = NULL;
965         bus->busnum = -1;
966         bus->bandwidth_allocated = 0;
967         bus->bandwidth_int_reqs  = 0;
968         bus->bandwidth_isoc_reqs = 0;
969         mutex_init(&bus->devnum_next_mutex);
970
971         INIT_LIST_HEAD (&bus->bus_list);
972 }
973
974 /*-------------------------------------------------------------------------*/
975
976 /**
977  * usb_register_bus - registers the USB host controller with the usb core
978  * @bus: pointer to the bus to register
979  * Context: !in_interrupt()
980  *
981  * Assigns a bus number, and links the controller into usbcore data
982  * structures so that it can be seen by scanning the bus list.
983  *
984  * Return: 0 if successful. A negative error code otherwise.
985  */
986 static int usb_register_bus(struct usb_bus *bus)
987 {
988         int result = -E2BIG;
989         int busnum;
990
991         mutex_lock(&usb_bus_list_lock);
992         busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
993         if (busnum >= USB_MAXBUS) {
994                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
995                 goto error_find_busnum;
996         }
997         set_bit(busnum, busmap);
998         bus->busnum = busnum;
999
1000         /* Add it to the local list of buses */
1001         list_add (&bus->bus_list, &usb_bus_list);
1002         mutex_unlock(&usb_bus_list_lock);
1003
1004         usb_notify_add_bus(bus);
1005
1006         dev_info (bus->controller, "new USB bus registered, assigned bus "
1007                   "number %d\n", bus->busnum);
1008         return 0;
1009
1010 error_find_busnum:
1011         mutex_unlock(&usb_bus_list_lock);
1012         return result;
1013 }
1014
1015 /**
1016  * usb_deregister_bus - deregisters the USB host controller
1017  * @bus: pointer to the bus to deregister
1018  * Context: !in_interrupt()
1019  *
1020  * Recycles the bus number, and unlinks the controller from usbcore data
1021  * structures so that it won't be seen by scanning the bus list.
1022  */
1023 static void usb_deregister_bus (struct usb_bus *bus)
1024 {
1025         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1026
1027         /*
1028          * NOTE: make sure that all the devices are removed by the
1029          * controller code, as well as having it call this when cleaning
1030          * itself up
1031          */
1032         mutex_lock(&usb_bus_list_lock);
1033         list_del (&bus->bus_list);
1034         mutex_unlock(&usb_bus_list_lock);
1035
1036         usb_notify_remove_bus(bus);
1037
1038         clear_bit(bus->busnum, busmap);
1039 }
1040
1041 /**
1042  * register_root_hub - called by usb_add_hcd() to register a root hub
1043  * @hcd: host controller for this root hub
1044  *
1045  * This function registers the root hub with the USB subsystem.  It sets up
1046  * the device properly in the device tree and then calls usb_new_device()
1047  * to register the usb device.  It also assigns the root hub's USB address
1048  * (always 1).
1049  *
1050  * Return: 0 if successful. A negative error code otherwise.
1051  */
1052 static int register_root_hub(struct usb_hcd *hcd)
1053 {
1054         struct device *parent_dev = hcd->self.controller;
1055         struct usb_device *usb_dev = hcd->self.root_hub;
1056         const int devnum = 1;
1057         int retval;
1058
1059         usb_dev->devnum = devnum;
1060         usb_dev->bus->devnum_next = devnum + 1;
1061         memset (&usb_dev->bus->devmap.devicemap, 0,
1062                         sizeof usb_dev->bus->devmap.devicemap);
1063         set_bit (devnum, usb_dev->bus->devmap.devicemap);
1064         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1065
1066         mutex_lock(&usb_bus_list_lock);
1067
1068         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1069         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1070         if (retval != sizeof usb_dev->descriptor) {
1071                 mutex_unlock(&usb_bus_list_lock);
1072                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1073                                 dev_name(&usb_dev->dev), retval);
1074                 return (retval < 0) ? retval : -EMSGSIZE;
1075         }
1076
1077         if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1078                 retval = usb_get_bos_descriptor(usb_dev);
1079                 if (!retval) {
1080                         usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1081                 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1082                         mutex_unlock(&usb_bus_list_lock);
1083                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1084                                         dev_name(&usb_dev->dev), retval);
1085                         return retval;
1086                 }
1087         }
1088
1089         retval = usb_new_device (usb_dev);
1090         if (retval) {
1091                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1092                                 dev_name(&usb_dev->dev), retval);
1093         } else {
1094                 spin_lock_irq (&hcd_root_hub_lock);
1095                 hcd->rh_registered = 1;
1096                 spin_unlock_irq (&hcd_root_hub_lock);
1097
1098                 /* Did the HC die before the root hub was registered? */
1099                 if (HCD_DEAD(hcd))
1100                         usb_hc_died (hcd);      /* This time clean up */
1101         }
1102         mutex_unlock(&usb_bus_list_lock);
1103
1104         return retval;
1105 }
1106
1107 /*
1108  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1109  * @bus: the bus which the root hub belongs to
1110  * @portnum: the port which is being resumed
1111  *
1112  * HCDs should call this function when they know that a resume signal is
1113  * being sent to a root-hub port.  The root hub will be prevented from
1114  * going into autosuspend until usb_hcd_end_port_resume() is called.
1115  *
1116  * The bus's private lock must be held by the caller.
1117  */
1118 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1119 {
1120         unsigned bit = 1 << portnum;
1121
1122         if (!(bus->resuming_ports & bit)) {
1123                 bus->resuming_ports |= bit;
1124                 pm_runtime_get_noresume(&bus->root_hub->dev);
1125         }
1126 }
1127 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1128
1129 /*
1130  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1131  * @bus: the bus which the root hub belongs to
1132  * @portnum: the port which is being resumed
1133  *
1134  * HCDs should call this function when they know that a resume signal has
1135  * stopped being sent to a root-hub port.  The root hub will be allowed to
1136  * autosuspend again.
1137  *
1138  * The bus's private lock must be held by the caller.
1139  */
1140 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1141 {
1142         unsigned bit = 1 << portnum;
1143
1144         if (bus->resuming_ports & bit) {
1145                 bus->resuming_ports &= ~bit;
1146                 pm_runtime_put_noidle(&bus->root_hub->dev);
1147         }
1148 }
1149 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1150
1151 /*-------------------------------------------------------------------------*/
1152
1153 /**
1154  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1155  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1156  * @is_input: true iff the transaction sends data to the host
1157  * @isoc: true for isochronous transactions, false for interrupt ones
1158  * @bytecount: how many bytes in the transaction.
1159  *
1160  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1161  *
1162  * Note:
1163  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1164  * scheduled in software, this function is only used for such scheduling.
1165  */
1166 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1167 {
1168         unsigned long   tmp;
1169
1170         switch (speed) {
1171         case USB_SPEED_LOW:     /* INTR only */
1172                 if (is_input) {
1173                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1174                         return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1175                 } else {
1176                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1177                         return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1178                 }
1179         case USB_SPEED_FULL:    /* ISOC or INTR */
1180                 if (isoc) {
1181                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1182                         return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1183                 } else {
1184                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1185                         return 9107L + BW_HOST_DELAY + tmp;
1186                 }
1187         case USB_SPEED_HIGH:    /* ISOC or INTR */
1188                 /* FIXME adjust for input vs output */
1189                 if (isoc)
1190                         tmp = HS_NSECS_ISO (bytecount);
1191                 else
1192                         tmp = HS_NSECS (bytecount);
1193                 return tmp;
1194         default:
1195                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1196                 return -1;
1197         }
1198 }
1199 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1200
1201
1202 /*-------------------------------------------------------------------------*/
1203
1204 /*
1205  * Generic HC operations.
1206  */
1207
1208 /*-------------------------------------------------------------------------*/
1209
1210 /**
1211  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1212  * @hcd: host controller to which @urb was submitted
1213  * @urb: URB being submitted
1214  *
1215  * Host controller drivers should call this routine in their enqueue()
1216  * method.  The HCD's private spinlock must be held and interrupts must
1217  * be disabled.  The actions carried out here are required for URB
1218  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1219  *
1220  * Return: 0 for no error, otherwise a negative error code (in which case
1221  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1222  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1223  * the private spinlock and returning.
1224  */
1225 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1226 {
1227         int             rc = 0;
1228
1229         spin_lock(&hcd_urb_list_lock);
1230
1231         /* Check that the URB isn't being killed */
1232         if (unlikely(atomic_read(&urb->reject))) {
1233                 rc = -EPERM;
1234                 goto done;
1235         }
1236
1237         if (unlikely(!urb->ep->enabled)) {
1238                 rc = -ENOENT;
1239                 goto done;
1240         }
1241
1242         if (unlikely(!urb->dev->can_submit)) {
1243                 rc = -EHOSTUNREACH;
1244                 goto done;
1245         }
1246
1247         /*
1248          * Check the host controller's state and add the URB to the
1249          * endpoint's queue.
1250          */
1251         if (HCD_RH_RUNNING(hcd)) {
1252                 urb->unlinked = 0;
1253                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1254         } else {
1255                 rc = -ESHUTDOWN;
1256                 goto done;
1257         }
1258  done:
1259         spin_unlock(&hcd_urb_list_lock);
1260         return rc;
1261 }
1262 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1263
1264 /**
1265  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1266  * @hcd: host controller to which @urb was submitted
1267  * @urb: URB being checked for unlinkability
1268  * @status: error code to store in @urb if the unlink succeeds
1269  *
1270  * Host controller drivers should call this routine in their dequeue()
1271  * method.  The HCD's private spinlock must be held and interrupts must
1272  * be disabled.  The actions carried out here are required for making
1273  * sure than an unlink is valid.
1274  *
1275  * Return: 0 for no error, otherwise a negative error code (in which case
1276  * the dequeue() method must fail).  The possible error codes are:
1277  *
1278  *      -EIDRM: @urb was not submitted or has already completed.
1279  *              The completion function may not have been called yet.
1280  *
1281  *      -EBUSY: @urb has already been unlinked.
1282  */
1283 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1284                 int status)
1285 {
1286         struct list_head        *tmp;
1287
1288         /* insist the urb is still queued */
1289         list_for_each(tmp, &urb->ep->urb_list) {
1290                 if (tmp == &urb->urb_list)
1291                         break;
1292         }
1293         if (tmp != &urb->urb_list)
1294                 return -EIDRM;
1295
1296         /* Any status except -EINPROGRESS means something already started to
1297          * unlink this URB from the hardware.  So there's no more work to do.
1298          */
1299         if (urb->unlinked)
1300                 return -EBUSY;
1301         urb->unlinked = status;
1302         return 0;
1303 }
1304 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1305
1306 /**
1307  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1308  * @hcd: host controller to which @urb was submitted
1309  * @urb: URB being unlinked
1310  *
1311  * Host controller drivers should call this routine before calling
1312  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1313  * interrupts must be disabled.  The actions carried out here are required
1314  * for URB completion.
1315  */
1316 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1317 {
1318         /* clear all state linking urb to this dev (and hcd) */
1319         spin_lock(&hcd_urb_list_lock);
1320         list_del_init(&urb->urb_list);
1321         spin_unlock(&hcd_urb_list_lock);
1322 }
1323 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1324
1325 /*
1326  * Some usb host controllers can only perform dma using a small SRAM area.
1327  * The usb core itself is however optimized for host controllers that can dma
1328  * using regular system memory - like pci devices doing bus mastering.
1329  *
1330  * To support host controllers with limited dma capabilities we provide dma
1331  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1332  * For this to work properly the host controller code must first use the
1333  * function dma_declare_coherent_memory() to point out which memory area
1334  * that should be used for dma allocations.
1335  *
1336  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1337  * dma using dma_alloc_coherent() which in turn allocates from the memory
1338  * area pointed out with dma_declare_coherent_memory().
1339  *
1340  * So, to summarize...
1341  *
1342  * - We need "local" memory, canonical example being
1343  *   a small SRAM on a discrete controller being the
1344  *   only memory that the controller can read ...
1345  *   (a) "normal" kernel memory is no good, and
1346  *   (b) there's not enough to share
1347  *
1348  * - The only *portable* hook for such stuff in the
1349  *   DMA framework is dma_declare_coherent_memory()
1350  *
1351  * - So we use that, even though the primary requirement
1352  *   is that the memory be "local" (hence addressable
1353  *   by that device), not "coherent".
1354  *
1355  */
1356
1357 static int hcd_alloc_coherent(struct usb_bus *bus,
1358                               gfp_t mem_flags, dma_addr_t *dma_handle,
1359                               void **vaddr_handle, size_t size,
1360                               enum dma_data_direction dir)
1361 {
1362         unsigned char *vaddr;
1363
1364         if (*vaddr_handle == NULL) {
1365                 WARN_ON_ONCE(1);
1366                 return -EFAULT;
1367         }
1368
1369         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1370                                  mem_flags, dma_handle);
1371         if (!vaddr)
1372                 return -ENOMEM;
1373
1374         /*
1375          * Store the virtual address of the buffer at the end
1376          * of the allocated dma buffer. The size of the buffer
1377          * may be uneven so use unaligned functions instead
1378          * of just rounding up. It makes sense to optimize for
1379          * memory footprint over access speed since the amount
1380          * of memory available for dma may be limited.
1381          */
1382         put_unaligned((unsigned long)*vaddr_handle,
1383                       (unsigned long *)(vaddr + size));
1384
1385         if (dir == DMA_TO_DEVICE)
1386                 memcpy(vaddr, *vaddr_handle, size);
1387
1388         *vaddr_handle = vaddr;
1389         return 0;
1390 }
1391
1392 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1393                               void **vaddr_handle, size_t size,
1394                               enum dma_data_direction dir)
1395 {
1396         unsigned char *vaddr = *vaddr_handle;
1397
1398         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1399
1400         if (dir == DMA_FROM_DEVICE)
1401                 memcpy(vaddr, *vaddr_handle, size);
1402
1403         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1404
1405         *vaddr_handle = vaddr;
1406         *dma_handle = 0;
1407 }
1408
1409 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1410 {
1411         if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1412                 dma_unmap_single(hcd->self.controller,
1413                                 urb->setup_dma,
1414                                 sizeof(struct usb_ctrlrequest),
1415                                 DMA_TO_DEVICE);
1416         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1417                 hcd_free_coherent(urb->dev->bus,
1418                                 &urb->setup_dma,
1419                                 (void **) &urb->setup_packet,
1420                                 sizeof(struct usb_ctrlrequest),
1421                                 DMA_TO_DEVICE);
1422
1423         /* Make it safe to call this routine more than once */
1424         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1425 }
1426 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1427
1428 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1429 {
1430         if (hcd->driver->unmap_urb_for_dma)
1431                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1432         else
1433                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1434 }
1435
1436 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1437 {
1438         enum dma_data_direction dir;
1439
1440         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1441
1442         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1443         if (urb->transfer_flags & URB_DMA_MAP_SG)
1444                 dma_unmap_sg(hcd->self.controller,
1445                                 urb->sg,
1446                                 urb->num_sgs,
1447                                 dir);
1448         else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1449                 dma_unmap_page(hcd->self.controller,
1450                                 urb->transfer_dma,
1451                                 urb->transfer_buffer_length,
1452                                 dir);
1453         else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1454                 dma_unmap_single(hcd->self.controller,
1455                                 urb->transfer_dma,
1456                                 urb->transfer_buffer_length,
1457                                 dir);
1458         else if (urb->transfer_flags & URB_MAP_LOCAL)
1459                 hcd_free_coherent(urb->dev->bus,
1460                                 &urb->transfer_dma,
1461                                 &urb->transfer_buffer,
1462                                 urb->transfer_buffer_length,
1463                                 dir);
1464
1465         /* Make it safe to call this routine more than once */
1466         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1467                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1468 }
1469 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1470
1471 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1472                            gfp_t mem_flags)
1473 {
1474         if (hcd->driver->map_urb_for_dma)
1475                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1476         else
1477                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1478 }
1479
1480 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1481                             gfp_t mem_flags)
1482 {
1483         enum dma_data_direction dir;
1484         int ret = 0;
1485
1486         /* Map the URB's buffers for DMA access.
1487          * Lower level HCD code should use *_dma exclusively,
1488          * unless it uses pio or talks to another transport,
1489          * or uses the provided scatter gather list for bulk.
1490          */
1491
1492         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1493                 if (hcd->self.uses_pio_for_control)
1494                         return ret;
1495                 if (hcd->self.uses_dma) {
1496                         urb->setup_dma = dma_map_single(
1497                                         hcd->self.controller,
1498                                         urb->setup_packet,
1499                                         sizeof(struct usb_ctrlrequest),
1500                                         DMA_TO_DEVICE);
1501                         if (dma_mapping_error(hcd->self.controller,
1502                                                 urb->setup_dma))
1503                                 return -EAGAIN;
1504                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1505                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1506                         ret = hcd_alloc_coherent(
1507                                         urb->dev->bus, mem_flags,
1508                                         &urb->setup_dma,
1509                                         (void **)&urb->setup_packet,
1510                                         sizeof(struct usb_ctrlrequest),
1511                                         DMA_TO_DEVICE);
1512                         if (ret)
1513                                 return ret;
1514                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1515                 }
1516         }
1517
1518         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1519         if (urb->transfer_buffer_length != 0
1520             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1521                 if (hcd->self.uses_dma) {
1522                         if (urb->num_sgs) {
1523                                 int n;
1524
1525                                 /* We don't support sg for isoc transfers ! */
1526                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1527                                         WARN_ON(1);
1528                                         return -EINVAL;
1529                                 }
1530
1531                                 n = dma_map_sg(
1532                                                 hcd->self.controller,
1533                                                 urb->sg,
1534                                                 urb->num_sgs,
1535                                                 dir);
1536                                 if (n <= 0)
1537                                         ret = -EAGAIN;
1538                                 else
1539                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1540                                 urb->num_mapped_sgs = n;
1541                                 if (n != urb->num_sgs)
1542                                         urb->transfer_flags |=
1543                                                         URB_DMA_SG_COMBINED;
1544                         } else if (urb->sg) {
1545                                 struct scatterlist *sg = urb->sg;
1546                                 urb->transfer_dma = dma_map_page(
1547                                                 hcd->self.controller,
1548                                                 sg_page(sg),
1549                                                 sg->offset,
1550                                                 urb->transfer_buffer_length,
1551                                                 dir);
1552                                 if (dma_mapping_error(hcd->self.controller,
1553                                                 urb->transfer_dma))
1554                                         ret = -EAGAIN;
1555                                 else
1556                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1557                         } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1558                                 WARN_ONCE(1, "transfer buffer not dma capable\n");
1559                                 ret = -EAGAIN;
1560                         } else {
1561                                 urb->transfer_dma = dma_map_single(
1562                                                 hcd->self.controller,
1563                                                 urb->transfer_buffer,
1564                                                 urb->transfer_buffer_length,
1565                                                 dir);
1566                                 if (dma_mapping_error(hcd->self.controller,
1567                                                 urb->transfer_dma))
1568                                         ret = -EAGAIN;
1569                                 else
1570                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1571                         }
1572                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1573                         ret = hcd_alloc_coherent(
1574                                         urb->dev->bus, mem_flags,
1575                                         &urb->transfer_dma,
1576                                         &urb->transfer_buffer,
1577                                         urb->transfer_buffer_length,
1578                                         dir);
1579                         if (ret == 0)
1580                                 urb->transfer_flags |= URB_MAP_LOCAL;
1581                 }
1582                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1583                                 URB_SETUP_MAP_LOCAL)))
1584                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1585         }
1586         return ret;
1587 }
1588 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1589
1590 /*-------------------------------------------------------------------------*/
1591
1592 /* may be called in any context with a valid urb->dev usecount
1593  * caller surrenders "ownership" of urb
1594  * expects usb_submit_urb() to have sanity checked and conditioned all
1595  * inputs in the urb
1596  */
1597 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1598 {
1599         int                     status;
1600         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1601
1602         /* increment urb's reference count as part of giving it to the HCD
1603          * (which will control it).  HCD guarantees that it either returns
1604          * an error or calls giveback(), but not both.
1605          */
1606         usb_get_urb(urb);
1607         atomic_inc(&urb->use_count);
1608         atomic_inc(&urb->dev->urbnum);
1609         usbmon_urb_submit(&hcd->self, urb);
1610
1611         /* NOTE requirements on root-hub callers (usbfs and the hub
1612          * driver, for now):  URBs' urb->transfer_buffer must be
1613          * valid and usb_buffer_{sync,unmap}() not be needed, since
1614          * they could clobber root hub response data.  Also, control
1615          * URBs must be submitted in process context with interrupts
1616          * enabled.
1617          */
1618
1619         if (is_root_hub(urb->dev)) {
1620                 status = rh_urb_enqueue(hcd, urb);
1621         } else {
1622                 status = map_urb_for_dma(hcd, urb, mem_flags);
1623                 if (likely(status == 0)) {
1624                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1625                         if (unlikely(status))
1626                                 unmap_urb_for_dma(hcd, urb);
1627                 }
1628         }
1629
1630         if (unlikely(status)) {
1631                 usbmon_urb_submit_error(&hcd->self, urb, status);
1632                 urb->hcpriv = NULL;
1633                 INIT_LIST_HEAD(&urb->urb_list);
1634                 atomic_dec(&urb->use_count);
1635                 atomic_dec(&urb->dev->urbnum);
1636                 if (atomic_read(&urb->reject))
1637                         wake_up(&usb_kill_urb_queue);
1638                 usb_put_urb(urb);
1639         }
1640         return status;
1641 }
1642
1643 /*-------------------------------------------------------------------------*/
1644
1645 /* this makes the hcd giveback() the urb more quickly, by kicking it
1646  * off hardware queues (which may take a while) and returning it as
1647  * soon as practical.  we've already set up the urb's return status,
1648  * but we can't know if the callback completed already.
1649  */
1650 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1651 {
1652         int             value;
1653
1654         if (is_root_hub(urb->dev))
1655                 value = usb_rh_urb_dequeue(hcd, urb, status);
1656         else {
1657
1658                 /* The only reason an HCD might fail this call is if
1659                  * it has not yet fully queued the urb to begin with.
1660                  * Such failures should be harmless. */
1661                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1662         }
1663         return value;
1664 }
1665
1666 /*
1667  * called in any context
1668  *
1669  * caller guarantees urb won't be recycled till both unlink()
1670  * and the urb's completion function return
1671  */
1672 int usb_hcd_unlink_urb (struct urb *urb, int status)
1673 {
1674         struct usb_hcd          *hcd;
1675         struct usb_device       *udev = urb->dev;
1676         int                     retval = -EIDRM;
1677         unsigned long           flags;
1678
1679         /* Prevent the device and bus from going away while
1680          * the unlink is carried out.  If they are already gone
1681          * then urb->use_count must be 0, since disconnected
1682          * devices can't have any active URBs.
1683          */
1684         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1685         if (atomic_read(&urb->use_count) > 0) {
1686                 retval = 0;
1687                 usb_get_dev(udev);
1688         }
1689         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1690         if (retval == 0) {
1691                 hcd = bus_to_hcd(urb->dev->bus);
1692                 retval = unlink1(hcd, urb, status);
1693                 if (retval == 0)
1694                         retval = -EINPROGRESS;
1695                 else if (retval != -EIDRM && retval != -EBUSY)
1696                         dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1697                                         urb, retval);
1698                 usb_put_dev(udev);
1699         }
1700         return retval;
1701 }
1702
1703 /*-------------------------------------------------------------------------*/
1704
1705 static void __usb_hcd_giveback_urb(struct urb *urb)
1706 {
1707         struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1708         struct usb_anchor *anchor = urb->anchor;
1709         int status = urb->unlinked;
1710         unsigned long flags;
1711
1712         urb->hcpriv = NULL;
1713         if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1714             urb->actual_length < urb->transfer_buffer_length &&
1715             !status))
1716                 status = -EREMOTEIO;
1717
1718         unmap_urb_for_dma(hcd, urb);
1719         usbmon_urb_complete(&hcd->self, urb, status);
1720         usb_anchor_suspend_wakeups(anchor);
1721         usb_unanchor_urb(urb);
1722         if (likely(status == 0))
1723                 usb_led_activity(USB_LED_EVENT_HOST);
1724
1725         /* pass ownership to the completion handler */
1726         urb->status = status;
1727
1728         /*
1729          * We disable local IRQs here avoid possible deadlock because
1730          * drivers may call spin_lock() to hold lock which might be
1731          * acquired in one hard interrupt handler.
1732          *
1733          * The local_irq_save()/local_irq_restore() around complete()
1734          * will be removed if current USB drivers have been cleaned up
1735          * and no one may trigger the above deadlock situation when
1736          * running complete() in tasklet.
1737          */
1738         local_irq_save(flags);
1739         urb->complete(urb);
1740         local_irq_restore(flags);
1741
1742         usb_anchor_resume_wakeups(anchor);
1743         atomic_dec(&urb->use_count);
1744         if (unlikely(atomic_read(&urb->reject)))
1745                 wake_up(&usb_kill_urb_queue);
1746         usb_put_urb(urb);
1747 }
1748
1749 static void usb_giveback_urb_bh(unsigned long param)
1750 {
1751         struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1752         struct list_head local_list;
1753
1754         spin_lock_irq(&bh->lock);
1755         bh->running = true;
1756  restart:
1757         list_replace_init(&bh->head, &local_list);
1758         spin_unlock_irq(&bh->lock);
1759
1760         while (!list_empty(&local_list)) {
1761                 struct urb *urb;
1762
1763                 urb = list_entry(local_list.next, struct urb, urb_list);
1764                 list_del_init(&urb->urb_list);
1765                 bh->completing_ep = urb->ep;
1766                 __usb_hcd_giveback_urb(urb);
1767                 bh->completing_ep = NULL;
1768         }
1769
1770         /* check if there are new URBs to giveback */
1771         spin_lock_irq(&bh->lock);
1772         if (!list_empty(&bh->head))
1773                 goto restart;
1774         bh->running = false;
1775         spin_unlock_irq(&bh->lock);
1776 }
1777
1778 /**
1779  * usb_hcd_giveback_urb - return URB from HCD to device driver
1780  * @hcd: host controller returning the URB
1781  * @urb: urb being returned to the USB device driver.
1782  * @status: completion status code for the URB.
1783  * Context: in_interrupt()
1784  *
1785  * This hands the URB from HCD to its USB device driver, using its
1786  * completion function.  The HCD has freed all per-urb resources
1787  * (and is done using urb->hcpriv).  It also released all HCD locks;
1788  * the device driver won't cause problems if it frees, modifies,
1789  * or resubmits this URB.
1790  *
1791  * If @urb was unlinked, the value of @status will be overridden by
1792  * @urb->unlinked.  Erroneous short transfers are detected in case
1793  * the HCD hasn't checked for them.
1794  */
1795 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1796 {
1797         struct giveback_urb_bh *bh;
1798         bool running, high_prio_bh;
1799
1800         /* pass status to tasklet via unlinked */
1801         if (likely(!urb->unlinked))
1802                 urb->unlinked = status;
1803
1804         if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1805                 __usb_hcd_giveback_urb(urb);
1806                 return;
1807         }
1808
1809         if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1810                 bh = &hcd->high_prio_bh;
1811                 high_prio_bh = true;
1812         } else {
1813                 bh = &hcd->low_prio_bh;
1814                 high_prio_bh = false;
1815         }
1816
1817         spin_lock(&bh->lock);
1818         list_add_tail(&urb->urb_list, &bh->head);
1819         running = bh->running;
1820         spin_unlock(&bh->lock);
1821
1822         if (running)
1823                 ;
1824         else if (high_prio_bh)
1825                 tasklet_hi_schedule(&bh->bh);
1826         else
1827                 tasklet_schedule(&bh->bh);
1828 }
1829 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1830
1831 /*-------------------------------------------------------------------------*/
1832
1833 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1834  * queue to drain completely.  The caller must first insure that no more
1835  * URBs can be submitted for this endpoint.
1836  */
1837 void usb_hcd_flush_endpoint(struct usb_device *udev,
1838                 struct usb_host_endpoint *ep)
1839 {
1840         struct usb_hcd          *hcd;
1841         struct urb              *urb;
1842
1843         if (!ep)
1844                 return;
1845         might_sleep();
1846         hcd = bus_to_hcd(udev->bus);
1847
1848         /* No more submits can occur */
1849         spin_lock_irq(&hcd_urb_list_lock);
1850 rescan:
1851         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1852                 int     is_in;
1853
1854                 if (urb->unlinked)
1855                         continue;
1856                 usb_get_urb (urb);
1857                 is_in = usb_urb_dir_in(urb);
1858                 spin_unlock(&hcd_urb_list_lock);
1859
1860                 /* kick hcd */
1861                 unlink1(hcd, urb, -ESHUTDOWN);
1862                 dev_dbg (hcd->self.controller,
1863                         "shutdown urb %p ep%d%s%s\n",
1864                         urb, usb_endpoint_num(&ep->desc),
1865                         is_in ? "in" : "out",
1866                         ({      char *s;
1867
1868                                  switch (usb_endpoint_type(&ep->desc)) {
1869                                  case USB_ENDPOINT_XFER_CONTROL:
1870                                         s = ""; break;
1871                                  case USB_ENDPOINT_XFER_BULK:
1872                                         s = "-bulk"; break;
1873                                  case USB_ENDPOINT_XFER_INT:
1874                                         s = "-intr"; break;
1875                                  default:
1876                                         s = "-iso"; break;
1877                                 };
1878                                 s;
1879                         }));
1880                 usb_put_urb (urb);
1881
1882                 /* list contents may have changed */
1883                 spin_lock(&hcd_urb_list_lock);
1884                 goto rescan;
1885         }
1886         spin_unlock_irq(&hcd_urb_list_lock);
1887
1888         /* Wait until the endpoint queue is completely empty */
1889         while (!list_empty (&ep->urb_list)) {
1890                 spin_lock_irq(&hcd_urb_list_lock);
1891
1892                 /* The list may have changed while we acquired the spinlock */
1893                 urb = NULL;
1894                 if (!list_empty (&ep->urb_list)) {
1895                         urb = list_entry (ep->urb_list.prev, struct urb,
1896                                         urb_list);
1897                         usb_get_urb (urb);
1898                 }
1899                 spin_unlock_irq(&hcd_urb_list_lock);
1900
1901                 if (urb) {
1902                         usb_kill_urb (urb);
1903                         usb_put_urb (urb);
1904                 }
1905         }
1906 }
1907
1908 /**
1909  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1910  *                              the bus bandwidth
1911  * @udev: target &usb_device
1912  * @new_config: new configuration to install
1913  * @cur_alt: the current alternate interface setting
1914  * @new_alt: alternate interface setting that is being installed
1915  *
1916  * To change configurations, pass in the new configuration in new_config,
1917  * and pass NULL for cur_alt and new_alt.
1918  *
1919  * To reset a device's configuration (put the device in the ADDRESSED state),
1920  * pass in NULL for new_config, cur_alt, and new_alt.
1921  *
1922  * To change alternate interface settings, pass in NULL for new_config,
1923  * pass in the current alternate interface setting in cur_alt,
1924  * and pass in the new alternate interface setting in new_alt.
1925  *
1926  * Return: An error if the requested bandwidth change exceeds the
1927  * bus bandwidth or host controller internal resources.
1928  */
1929 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1930                 struct usb_host_config *new_config,
1931                 struct usb_host_interface *cur_alt,
1932                 struct usb_host_interface *new_alt)
1933 {
1934         int num_intfs, i, j;
1935         struct usb_host_interface *alt = NULL;
1936         int ret = 0;
1937         struct usb_hcd *hcd;
1938         struct usb_host_endpoint *ep;
1939
1940         hcd = bus_to_hcd(udev->bus);
1941         if (!hcd->driver->check_bandwidth)
1942                 return 0;
1943
1944         /* Configuration is being removed - set configuration 0 */
1945         if (!new_config && !cur_alt) {
1946                 for (i = 1; i < 16; ++i) {
1947                         ep = udev->ep_out[i];
1948                         if (ep)
1949                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1950                         ep = udev->ep_in[i];
1951                         if (ep)
1952                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1953                 }
1954                 hcd->driver->check_bandwidth(hcd, udev);
1955                 return 0;
1956         }
1957         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1958          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1959          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1960          * ok to exclude it.
1961          */
1962         if (new_config) {
1963                 num_intfs = new_config->desc.bNumInterfaces;
1964                 /* Remove endpoints (except endpoint 0, which is always on the
1965                  * schedule) from the old config from the schedule
1966                  */
1967                 for (i = 1; i < 16; ++i) {
1968                         ep = udev->ep_out[i];
1969                         if (ep) {
1970                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1971                                 if (ret < 0)
1972                                         goto reset;
1973                         }
1974                         ep = udev->ep_in[i];
1975                         if (ep) {
1976                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1977                                 if (ret < 0)
1978                                         goto reset;
1979                         }
1980                 }
1981                 for (i = 0; i < num_intfs; ++i) {
1982                         struct usb_host_interface *first_alt;
1983                         int iface_num;
1984
1985                         first_alt = &new_config->intf_cache[i]->altsetting[0];
1986                         iface_num = first_alt->desc.bInterfaceNumber;
1987                         /* Set up endpoints for alternate interface setting 0 */
1988                         alt = usb_find_alt_setting(new_config, iface_num, 0);
1989                         if (!alt)
1990                                 /* No alt setting 0? Pick the first setting. */
1991                                 alt = first_alt;
1992
1993                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1994                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1995                                 if (ret < 0)
1996                                         goto reset;
1997                         }
1998                 }
1999         }
2000         if (cur_alt && new_alt) {
2001                 struct usb_interface *iface = usb_ifnum_to_if(udev,
2002                                 cur_alt->desc.bInterfaceNumber);
2003
2004                 if (!iface)
2005                         return -EINVAL;
2006                 if (iface->resetting_device) {
2007                         /*
2008                          * The USB core just reset the device, so the xHCI host
2009                          * and the device will think alt setting 0 is installed.
2010                          * However, the USB core will pass in the alternate
2011                          * setting installed before the reset as cur_alt.  Dig
2012                          * out the alternate setting 0 structure, or the first
2013                          * alternate setting if a broken device doesn't have alt
2014                          * setting 0.
2015                          */
2016                         cur_alt = usb_altnum_to_altsetting(iface, 0);
2017                         if (!cur_alt)
2018                                 cur_alt = &iface->altsetting[0];
2019                 }
2020
2021                 /* Drop all the endpoints in the current alt setting */
2022                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2023                         ret = hcd->driver->drop_endpoint(hcd, udev,
2024                                         &cur_alt->endpoint[i]);
2025                         if (ret < 0)
2026                                 goto reset;
2027                 }
2028                 /* Add all the endpoints in the new alt setting */
2029                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2030                         ret = hcd->driver->add_endpoint(hcd, udev,
2031                                         &new_alt->endpoint[i]);
2032                         if (ret < 0)
2033                                 goto reset;
2034                 }
2035         }
2036         ret = hcd->driver->check_bandwidth(hcd, udev);
2037 reset:
2038         if (ret < 0)
2039                 hcd->driver->reset_bandwidth(hcd, udev);
2040         return ret;
2041 }
2042
2043 /* Disables the endpoint: synchronizes with the hcd to make sure all
2044  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2045  * have been called previously.  Use for set_configuration, set_interface,
2046  * driver removal, physical disconnect.
2047  *
2048  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2049  * type, maxpacket size, toggle, halt status, and scheduling.
2050  */
2051 void usb_hcd_disable_endpoint(struct usb_device *udev,
2052                 struct usb_host_endpoint *ep)
2053 {
2054         struct usb_hcd          *hcd;
2055
2056         might_sleep();
2057         hcd = bus_to_hcd(udev->bus);
2058         if (hcd->driver->endpoint_disable)
2059                 hcd->driver->endpoint_disable(hcd, ep);
2060 }
2061
2062 /**
2063  * usb_hcd_reset_endpoint - reset host endpoint state
2064  * @udev: USB device.
2065  * @ep:   the endpoint to reset.
2066  *
2067  * Resets any host endpoint state such as the toggle bit, sequence
2068  * number and current window.
2069  */
2070 void usb_hcd_reset_endpoint(struct usb_device *udev,
2071                             struct usb_host_endpoint *ep)
2072 {
2073         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2074
2075         if (hcd->driver->endpoint_reset)
2076                 hcd->driver->endpoint_reset(hcd, ep);
2077         else {
2078                 int epnum = usb_endpoint_num(&ep->desc);
2079                 int is_out = usb_endpoint_dir_out(&ep->desc);
2080                 int is_control = usb_endpoint_xfer_control(&ep->desc);
2081
2082                 usb_settoggle(udev, epnum, is_out, 0);
2083                 if (is_control)
2084                         usb_settoggle(udev, epnum, !is_out, 0);
2085         }
2086 }
2087
2088 /**
2089  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2090  * @interface:          alternate setting that includes all endpoints.
2091  * @eps:                array of endpoints that need streams.
2092  * @num_eps:            number of endpoints in the array.
2093  * @num_streams:        number of streams to allocate.
2094  * @mem_flags:          flags hcd should use to allocate memory.
2095  *
2096  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2097  * Drivers may queue multiple transfers to different stream IDs, which may
2098  * complete in a different order than they were queued.
2099  *
2100  * Return: On success, the number of allocated streams. On failure, a negative
2101  * error code.
2102  */
2103 int usb_alloc_streams(struct usb_interface *interface,
2104                 struct usb_host_endpoint **eps, unsigned int num_eps,
2105                 unsigned int num_streams, gfp_t mem_flags)
2106 {
2107         struct usb_hcd *hcd;
2108         struct usb_device *dev;
2109         int i, ret;
2110
2111         dev = interface_to_usbdev(interface);
2112         hcd = bus_to_hcd(dev->bus);
2113         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2114                 return -EINVAL;
2115         if (dev->speed < USB_SPEED_SUPER)
2116                 return -EINVAL;
2117         if (dev->state < USB_STATE_CONFIGURED)
2118                 return -ENODEV;
2119
2120         for (i = 0; i < num_eps; i++) {
2121                 /* Streams only apply to bulk endpoints. */
2122                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2123                         return -EINVAL;
2124                 /* Re-alloc is not allowed */
2125                 if (eps[i]->streams)
2126                         return -EINVAL;
2127         }
2128
2129         ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2130                         num_streams, mem_flags);
2131         if (ret < 0)
2132                 return ret;
2133
2134         for (i = 0; i < num_eps; i++)
2135                 eps[i]->streams = ret;
2136
2137         return ret;
2138 }
2139 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2140
2141 /**
2142  * usb_free_streams - free bulk endpoint stream IDs.
2143  * @interface:  alternate setting that includes all endpoints.
2144  * @eps:        array of endpoints to remove streams from.
2145  * @num_eps:    number of endpoints in the array.
2146  * @mem_flags:  flags hcd should use to allocate memory.
2147  *
2148  * Reverts a group of bulk endpoints back to not using stream IDs.
2149  * Can fail if we are given bad arguments, or HCD is broken.
2150  *
2151  * Return: 0 on success. On failure, a negative error code.
2152  */
2153 int usb_free_streams(struct usb_interface *interface,
2154                 struct usb_host_endpoint **eps, unsigned int num_eps,
2155                 gfp_t mem_flags)
2156 {
2157         struct usb_hcd *hcd;
2158         struct usb_device *dev;
2159         int i, ret;
2160
2161         dev = interface_to_usbdev(interface);
2162         hcd = bus_to_hcd(dev->bus);
2163         if (dev->speed < USB_SPEED_SUPER)
2164                 return -EINVAL;
2165
2166         /* Double-free is not allowed */
2167         for (i = 0; i < num_eps; i++)
2168                 if (!eps[i] || !eps[i]->streams)
2169                         return -EINVAL;
2170
2171         ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2172         if (ret < 0)
2173                 return ret;
2174
2175         for (i = 0; i < num_eps; i++)
2176                 eps[i]->streams = 0;
2177
2178         return ret;
2179 }
2180 EXPORT_SYMBOL_GPL(usb_free_streams);
2181
2182 /* Protect against drivers that try to unlink URBs after the device
2183  * is gone, by waiting until all unlinks for @udev are finished.
2184  * Since we don't currently track URBs by device, simply wait until
2185  * nothing is running in the locked region of usb_hcd_unlink_urb().
2186  */
2187 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2188 {
2189         spin_lock_irq(&hcd_urb_unlink_lock);
2190         spin_unlock_irq(&hcd_urb_unlink_lock);
2191 }
2192
2193 /*-------------------------------------------------------------------------*/
2194
2195 /* called in any context */
2196 int usb_hcd_get_frame_number (struct usb_device *udev)
2197 {
2198         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2199
2200         if (!HCD_RH_RUNNING(hcd))
2201                 return -ESHUTDOWN;
2202         return hcd->driver->get_frame_number (hcd);
2203 }
2204
2205 /*-------------------------------------------------------------------------*/
2206
2207 #ifdef  CONFIG_PM
2208
2209 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2210 {
2211         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2212         int             status;
2213         int             old_state = hcd->state;
2214
2215         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2216                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2217                         rhdev->do_remote_wakeup);
2218         if (HCD_DEAD(hcd)) {
2219                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2220                 return 0;
2221         }
2222
2223         if (!hcd->driver->bus_suspend) {
2224                 status = -ENOENT;
2225         } else {
2226                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2227                 hcd->state = HC_STATE_QUIESCING;
2228                 status = hcd->driver->bus_suspend(hcd);
2229         }
2230         if (status == 0) {
2231                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2232                 hcd->state = HC_STATE_SUSPENDED;
2233
2234                 /* Did we race with a root-hub wakeup event? */
2235                 if (rhdev->do_remote_wakeup) {
2236                         char    buffer[6];
2237
2238                         status = hcd->driver->hub_status_data(hcd, buffer);
2239                         if (status != 0) {
2240                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2241                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2242                                 status = -EBUSY;
2243                         }
2244                 }
2245         } else {
2246                 spin_lock_irq(&hcd_root_hub_lock);
2247                 if (!HCD_DEAD(hcd)) {
2248                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2249                         hcd->state = old_state;
2250                 }
2251                 spin_unlock_irq(&hcd_root_hub_lock);
2252                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2253                                 "suspend", status);
2254         }
2255         return status;
2256 }
2257
2258 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2259 {
2260         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2261         int             status;
2262         int             old_state = hcd->state;
2263
2264         dev_dbg(&rhdev->dev, "usb %sresume\n",
2265                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2266         if (HCD_DEAD(hcd)) {
2267                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2268                 return 0;
2269         }
2270         if (!hcd->driver->bus_resume)
2271                 return -ENOENT;
2272         if (HCD_RH_RUNNING(hcd))
2273                 return 0;
2274
2275         hcd->state = HC_STATE_RESUMING;
2276         status = hcd->driver->bus_resume(hcd);
2277         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2278         if (status == 0) {
2279                 struct usb_device *udev;
2280                 int port1;
2281
2282                 spin_lock_irq(&hcd_root_hub_lock);
2283                 if (!HCD_DEAD(hcd)) {
2284                         usb_set_device_state(rhdev, rhdev->actconfig
2285                                         ? USB_STATE_CONFIGURED
2286                                         : USB_STATE_ADDRESS);
2287                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2288                         hcd->state = HC_STATE_RUNNING;
2289                 }
2290                 spin_unlock_irq(&hcd_root_hub_lock);
2291
2292                 /*
2293                  * Check whether any of the enabled ports on the root hub are
2294                  * unsuspended.  If they are then a TRSMRCY delay is needed
2295                  * (this is what the USB-2 spec calls a "global resume").
2296                  * Otherwise we can skip the delay.
2297                  */
2298                 usb_hub_for_each_child(rhdev, port1, udev) {
2299                         if (udev->state != USB_STATE_NOTATTACHED &&
2300                                         !udev->port_is_suspended) {
2301                                 usleep_range(10000, 11000);     /* TRSMRCY */
2302                                 break;
2303                         }
2304                 }
2305         } else {
2306                 hcd->state = old_state;
2307                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2308                                 "resume", status);
2309                 if (status != -ESHUTDOWN)
2310                         usb_hc_died(hcd);
2311         }
2312         return status;
2313 }
2314
2315 /* Workqueue routine for root-hub remote wakeup */
2316 static void hcd_resume_work(struct work_struct *work)
2317 {
2318         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2319         struct usb_device *udev = hcd->self.root_hub;
2320
2321         usb_remote_wakeup(udev);
2322 }
2323
2324 /**
2325  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2326  * @hcd: host controller for this root hub
2327  *
2328  * The USB host controller calls this function when its root hub is
2329  * suspended (with the remote wakeup feature enabled) and a remote
2330  * wakeup request is received.  The routine submits a workqueue request
2331  * to resume the root hub (that is, manage its downstream ports again).
2332  */
2333 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2334 {
2335         unsigned long flags;
2336
2337         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2338         if (hcd->rh_registered) {
2339                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2340                 queue_work(pm_wq, &hcd->wakeup_work);
2341         }
2342         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2343 }
2344 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2345
2346 #endif  /* CONFIG_PM */
2347
2348 /*-------------------------------------------------------------------------*/
2349
2350 #ifdef  CONFIG_USB_OTG
2351
2352 /**
2353  * usb_bus_start_enum - start immediate enumeration (for OTG)
2354  * @bus: the bus (must use hcd framework)
2355  * @port_num: 1-based number of port; usually bus->otg_port
2356  * Context: in_interrupt()
2357  *
2358  * Starts enumeration, with an immediate reset followed later by
2359  * hub_wq identifying and possibly configuring the device.
2360  * This is needed by OTG controller drivers, where it helps meet
2361  * HNP protocol timing requirements for starting a port reset.
2362  *
2363  * Return: 0 if successful.
2364  */
2365 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2366 {
2367         struct usb_hcd          *hcd;
2368         int                     status = -EOPNOTSUPP;
2369
2370         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2371          * boards with root hubs hooked up to internal devices (instead of
2372          * just the OTG port) may need more attention to resetting...
2373          */
2374         hcd = container_of (bus, struct usb_hcd, self);
2375         if (port_num && hcd->driver->start_port_reset)
2376                 status = hcd->driver->start_port_reset(hcd, port_num);
2377
2378         /* allocate hub_wq shortly after (first) root port reset finishes;
2379          * it may issue others, until at least 50 msecs have passed.
2380          */
2381         if (status == 0)
2382                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2383         return status;
2384 }
2385 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2386
2387 #endif
2388
2389 /*-------------------------------------------------------------------------*/
2390
2391 /**
2392  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2393  * @irq: the IRQ being raised
2394  * @__hcd: pointer to the HCD whose IRQ is being signaled
2395  *
2396  * If the controller isn't HALTed, calls the driver's irq handler.
2397  * Checks whether the controller is now dead.
2398  *
2399  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2400  */
2401 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2402 {
2403         struct usb_hcd          *hcd = __hcd;
2404         irqreturn_t             rc;
2405
2406         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2407                 rc = IRQ_NONE;
2408         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2409                 rc = IRQ_NONE;
2410         else
2411                 rc = IRQ_HANDLED;
2412
2413         return rc;
2414 }
2415 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2416
2417 /*-------------------------------------------------------------------------*/
2418
2419 /**
2420  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2421  * @hcd: pointer to the HCD representing the controller
2422  *
2423  * This is called by bus glue to report a USB host controller that died
2424  * while operations may still have been pending.  It's called automatically
2425  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2426  *
2427  * Only call this function with the primary HCD.
2428  */
2429 void usb_hc_died (struct usb_hcd *hcd)
2430 {
2431         unsigned long flags;
2432
2433         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2434
2435         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2436         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2437         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2438         if (hcd->rh_registered) {
2439                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2440
2441                 /* make hub_wq clean up old urbs and devices */
2442                 usb_set_device_state (hcd->self.root_hub,
2443                                 USB_STATE_NOTATTACHED);
2444                 usb_kick_hub_wq(hcd->self.root_hub);
2445         }
2446         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2447                 hcd = hcd->shared_hcd;
2448                 if (hcd->rh_registered) {
2449                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2450
2451                         /* make hub_wq clean up old urbs and devices */
2452                         usb_set_device_state(hcd->self.root_hub,
2453                                         USB_STATE_NOTATTACHED);
2454                         usb_kick_hub_wq(hcd->self.root_hub);
2455                 }
2456         }
2457         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2458         /* Make sure that the other roothub is also deallocated. */
2459 }
2460 EXPORT_SYMBOL_GPL (usb_hc_died);
2461
2462 /*-------------------------------------------------------------------------*/
2463
2464 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2465 {
2466
2467         spin_lock_init(&bh->lock);
2468         INIT_LIST_HEAD(&bh->head);
2469         tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2470 }
2471
2472 /**
2473  * usb_create_shared_hcd - create and initialize an HCD structure
2474  * @driver: HC driver that will use this hcd
2475  * @dev: device for this HC, stored in hcd->self.controller
2476  * @bus_name: value to store in hcd->self.bus_name
2477  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2478  *              PCI device.  Only allocate certain resources for the primary HCD
2479  * Context: !in_interrupt()
2480  *
2481  * Allocate a struct usb_hcd, with extra space at the end for the
2482  * HC driver's private data.  Initialize the generic members of the
2483  * hcd structure.
2484  *
2485  * Return: On success, a pointer to the created and initialized HCD structure.
2486  * On failure (e.g. if memory is unavailable), %NULL.
2487  */
2488 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2489                 struct device *dev, const char *bus_name,
2490                 struct usb_hcd *primary_hcd)
2491 {
2492         struct usb_hcd *hcd;
2493
2494         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2495         if (!hcd) {
2496                 dev_dbg (dev, "hcd alloc failed\n");
2497                 return NULL;
2498         }
2499         if (primary_hcd == NULL) {
2500                 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2501                                 GFP_KERNEL);
2502                 if (!hcd->address0_mutex) {
2503                         kfree(hcd);
2504                         dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2505                         return NULL;
2506                 }
2507                 mutex_init(hcd->address0_mutex);
2508                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2509                                 GFP_KERNEL);
2510                 if (!hcd->bandwidth_mutex) {
2511                         kfree(hcd);
2512                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2513                         return NULL;
2514                 }
2515                 mutex_init(hcd->bandwidth_mutex);
2516                 dev_set_drvdata(dev, hcd);
2517         } else {
2518                 mutex_lock(&usb_port_peer_mutex);
2519                 hcd->address0_mutex = primary_hcd->address0_mutex;
2520                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2521                 hcd->primary_hcd = primary_hcd;
2522                 primary_hcd->primary_hcd = primary_hcd;
2523                 hcd->shared_hcd = primary_hcd;
2524                 primary_hcd->shared_hcd = hcd;
2525                 mutex_unlock(&usb_port_peer_mutex);
2526         }
2527
2528         kref_init(&hcd->kref);
2529
2530         usb_bus_init(&hcd->self);
2531         hcd->self.controller = dev;
2532         hcd->self.bus_name = bus_name;
2533         hcd->self.uses_dma = (dev->dma_mask != NULL);
2534
2535         init_timer(&hcd->rh_timer);
2536         hcd->rh_timer.function = rh_timer_func;
2537         hcd->rh_timer.data = (unsigned long) hcd;
2538 #ifdef CONFIG_PM
2539         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2540 #endif
2541
2542         hcd->driver = driver;
2543         hcd->speed = driver->flags & HCD_MASK;
2544         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2545                         "USB Host Controller";
2546         return hcd;
2547 }
2548 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2549
2550 /**
2551  * usb_create_hcd - create and initialize an HCD structure
2552  * @driver: HC driver that will use this hcd
2553  * @dev: device for this HC, stored in hcd->self.controller
2554  * @bus_name: value to store in hcd->self.bus_name
2555  * Context: !in_interrupt()
2556  *
2557  * Allocate a struct usb_hcd, with extra space at the end for the
2558  * HC driver's private data.  Initialize the generic members of the
2559  * hcd structure.
2560  *
2561  * Return: On success, a pointer to the created and initialized HCD
2562  * structure. On failure (e.g. if memory is unavailable), %NULL.
2563  */
2564 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2565                 struct device *dev, const char *bus_name)
2566 {
2567         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2568 }
2569 EXPORT_SYMBOL_GPL(usb_create_hcd);
2570
2571 /*
2572  * Roothubs that share one PCI device must also share the bandwidth mutex.
2573  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2574  * deallocated.
2575  *
2576  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2577  * freed.  When hcd_release() is called for either hcd in a peer set
2578  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to
2579  * block new peering attempts
2580  */
2581 static void hcd_release(struct kref *kref)
2582 {
2583         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2584
2585         mutex_lock(&usb_port_peer_mutex);
2586         if (usb_hcd_is_primary_hcd(hcd)) {
2587                 kfree(hcd->address0_mutex);
2588                 kfree(hcd->bandwidth_mutex);
2589         }
2590         if (hcd->shared_hcd) {
2591                 struct usb_hcd *peer = hcd->shared_hcd;
2592
2593                 peer->shared_hcd = NULL;
2594                 if (peer->primary_hcd == hcd)
2595                         peer->primary_hcd = NULL;
2596         }
2597         mutex_unlock(&usb_port_peer_mutex);
2598         kfree(hcd);
2599 }
2600
2601 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2602 {
2603         if (hcd)
2604                 kref_get (&hcd->kref);
2605         return hcd;
2606 }
2607 EXPORT_SYMBOL_GPL(usb_get_hcd);
2608
2609 void usb_put_hcd (struct usb_hcd *hcd)
2610 {
2611         if (hcd)
2612                 kref_put (&hcd->kref, hcd_release);
2613 }
2614 EXPORT_SYMBOL_GPL(usb_put_hcd);
2615
2616 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2617 {
2618         if (!hcd->primary_hcd)
2619                 return 1;
2620         return hcd == hcd->primary_hcd;
2621 }
2622 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2623
2624 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2625 {
2626         if (!hcd->driver->find_raw_port_number)
2627                 return port1;
2628
2629         return hcd->driver->find_raw_port_number(hcd, port1);
2630 }
2631
2632 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2633                 unsigned int irqnum, unsigned long irqflags)
2634 {
2635         int retval;
2636
2637         if (hcd->driver->irq) {
2638
2639                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2640                                 hcd->driver->description, hcd->self.busnum);
2641                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2642                                 hcd->irq_descr, hcd);
2643                 if (retval != 0) {
2644                         dev_err(hcd->self.controller,
2645                                         "request interrupt %d failed\n",
2646                                         irqnum);
2647                         return retval;
2648                 }
2649                 hcd->irq = irqnum;
2650                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2651                                 (hcd->driver->flags & HCD_MEMORY) ?
2652                                         "io mem" : "io base",
2653                                         (unsigned long long)hcd->rsrc_start);
2654         } else {
2655                 hcd->irq = 0;
2656                 if (hcd->rsrc_start)
2657                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2658                                         (hcd->driver->flags & HCD_MEMORY) ?
2659                                         "io mem" : "io base",
2660                                         (unsigned long long)hcd->rsrc_start);
2661         }
2662         return 0;
2663 }
2664
2665 /*
2666  * Before we free this root hub, flush in-flight peering attempts
2667  * and disable peer lookups
2668  */
2669 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2670 {
2671         struct usb_device *rhdev;
2672
2673         mutex_lock(&usb_port_peer_mutex);
2674         rhdev = hcd->self.root_hub;
2675         hcd->self.root_hub = NULL;
2676         mutex_unlock(&usb_port_peer_mutex);
2677         usb_put_dev(rhdev);
2678 }
2679
2680 /**
2681  * usb_add_hcd - finish generic HCD structure initialization and register
2682  * @hcd: the usb_hcd structure to initialize
2683  * @irqnum: Interrupt line to allocate
2684  * @irqflags: Interrupt type flags
2685  *
2686  * Finish the remaining parts of generic HCD initialization: allocate the
2687  * buffers of consistent memory, register the bus, request the IRQ line,
2688  * and call the driver's reset() and start() routines.
2689  */
2690 int usb_add_hcd(struct usb_hcd *hcd,
2691                 unsigned int irqnum, unsigned long irqflags)
2692 {
2693         int retval;
2694         struct usb_device *rhdev;
2695
2696         if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2697                 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2698
2699                 if (IS_ERR(phy)) {
2700                         retval = PTR_ERR(phy);
2701                         if (retval == -EPROBE_DEFER)
2702                                 return retval;
2703                 } else {
2704                         retval = usb_phy_init(phy);
2705                         if (retval) {
2706                                 usb_put_phy(phy);
2707                                 return retval;
2708                         }
2709                         hcd->usb_phy = phy;
2710                         hcd->remove_phy = 1;
2711                 }
2712         }
2713
2714         if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2715                 struct phy *phy = phy_get(hcd->self.controller, "usb");
2716
2717                 if (IS_ERR(phy)) {
2718                         retval = PTR_ERR(phy);
2719                         if (retval == -EPROBE_DEFER)
2720                                 goto err_phy;
2721                 } else {
2722                         retval = phy_init(phy);
2723                         if (retval) {
2724                                 phy_put(phy);
2725                                 goto err_phy;
2726                         }
2727                         retval = phy_power_on(phy);
2728                         if (retval) {
2729                                 phy_exit(phy);
2730                                 phy_put(phy);
2731                                 goto err_phy;
2732                         }
2733                         hcd->phy = phy;
2734                         hcd->remove_phy = 1;
2735                 }
2736         }
2737
2738         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2739
2740         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2741         if (authorized_default < 0 || authorized_default > 1) {
2742                 if (hcd->wireless)
2743                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2744                 else
2745                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2746         } else {
2747                 if (authorized_default)
2748                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2749                 else
2750                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2751         }
2752         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2753
2754         /* per default all interfaces are authorized */
2755         set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2756
2757         /* HC is in reset state, but accessible.  Now do the one-time init,
2758          * bottom up so that hcds can customize the root hubs before hub_wq
2759          * starts talking to them.  (Note, bus id is assigned early too.)
2760          */
2761         retval = hcd_buffer_create(hcd);
2762         if (retval != 0) {
2763                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2764                 goto err_create_buf;
2765         }
2766
2767         retval = usb_register_bus(&hcd->self);
2768         if (retval < 0)
2769                 goto err_register_bus;
2770
2771         rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2772         if (rhdev == NULL) {
2773                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2774                 retval = -ENOMEM;
2775                 goto err_allocate_root_hub;
2776         }
2777         mutex_lock(&usb_port_peer_mutex);
2778         hcd->self.root_hub = rhdev;
2779         mutex_unlock(&usb_port_peer_mutex);
2780
2781         switch (hcd->speed) {
2782         case HCD_USB11:
2783                 rhdev->speed = USB_SPEED_FULL;
2784                 break;
2785         case HCD_USB2:
2786                 rhdev->speed = USB_SPEED_HIGH;
2787                 break;
2788         case HCD_USB25:
2789                 rhdev->speed = USB_SPEED_WIRELESS;
2790                 break;
2791         case HCD_USB3:
2792         case HCD_USB31:
2793                 rhdev->speed = USB_SPEED_SUPER;
2794                 break;
2795         default:
2796                 retval = -EINVAL;
2797                 goto err_set_rh_speed;
2798         }
2799
2800         /* wakeup flag init defaults to "everything works" for root hubs,
2801          * but drivers can override it in reset() if needed, along with
2802          * recording the overall controller's system wakeup capability.
2803          */
2804         device_set_wakeup_capable(&rhdev->dev, 1);
2805
2806         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2807          * registered.  But since the controller can die at any time,
2808          * let's initialize the flag before touching the hardware.
2809          */
2810         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2811
2812         /* "reset" is misnamed; its role is now one-time init. the controller
2813          * should already have been reset (and boot firmware kicked off etc).
2814          */
2815         if (hcd->driver->reset) {
2816                 retval = hcd->driver->reset(hcd);
2817                 if (retval < 0) {
2818                         dev_err(hcd->self.controller, "can't setup: %d\n",
2819                                         retval);
2820                         goto err_hcd_driver_setup;
2821                 }
2822         }
2823         hcd->rh_pollable = 1;
2824
2825         /* NOTE: root hub and controller capabilities may not be the same */
2826         if (device_can_wakeup(hcd->self.controller)
2827                         && device_can_wakeup(&hcd->self.root_hub->dev))
2828                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2829
2830         /* initialize tasklets */
2831         init_giveback_urb_bh(&hcd->high_prio_bh);
2832         init_giveback_urb_bh(&hcd->low_prio_bh);
2833
2834         /* enable irqs just before we start the controller,
2835          * if the BIOS provides legacy PCI irqs.
2836          */
2837         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2838                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2839                 if (retval)
2840                         goto err_request_irq;
2841         }
2842
2843         hcd->state = HC_STATE_RUNNING;
2844         retval = hcd->driver->start(hcd);
2845         if (retval < 0) {
2846                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2847                 goto err_hcd_driver_start;
2848         }
2849
2850         /* starting here, usbcore will pay attention to this root hub */
2851         retval = register_root_hub(hcd);
2852         if (retval != 0)
2853                 goto err_register_root_hub;
2854
2855         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2856         if (retval < 0) {
2857                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2858                        retval);
2859                 goto error_create_attr_group;
2860         }
2861         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2862                 usb_hcd_poll_rh_status(hcd);
2863
2864         return retval;
2865
2866 error_create_attr_group:
2867         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2868         if (HC_IS_RUNNING(hcd->state))
2869                 hcd->state = HC_STATE_QUIESCING;
2870         spin_lock_irq(&hcd_root_hub_lock);
2871         hcd->rh_registered = 0;
2872         spin_unlock_irq(&hcd_root_hub_lock);
2873
2874 #ifdef CONFIG_PM
2875         cancel_work_sync(&hcd->wakeup_work);
2876 #endif
2877         mutex_lock(&usb_bus_list_lock);
2878         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2879         mutex_unlock(&usb_bus_list_lock);
2880 err_register_root_hub:
2881         hcd->rh_pollable = 0;
2882         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2883         del_timer_sync(&hcd->rh_timer);
2884         hcd->driver->stop(hcd);
2885         hcd->state = HC_STATE_HALT;
2886         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2887         del_timer_sync(&hcd->rh_timer);
2888 err_hcd_driver_start:
2889         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2890                 free_irq(irqnum, hcd);
2891 err_request_irq:
2892 err_hcd_driver_setup:
2893 err_set_rh_speed:
2894         usb_put_invalidate_rhdev(hcd);
2895 err_allocate_root_hub:
2896         usb_deregister_bus(&hcd->self);
2897 err_register_bus:
2898         hcd_buffer_destroy(hcd);
2899 err_create_buf:
2900         if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2901                 phy_power_off(hcd->phy);
2902                 phy_exit(hcd->phy);
2903                 phy_put(hcd->phy);
2904                 hcd->phy = NULL;
2905         }
2906 err_phy:
2907         if (hcd->remove_phy && hcd->usb_phy) {
2908                 usb_phy_shutdown(hcd->usb_phy);
2909                 usb_put_phy(hcd->usb_phy);
2910                 hcd->usb_phy = NULL;
2911         }
2912         return retval;
2913 }
2914 EXPORT_SYMBOL_GPL(usb_add_hcd);
2915
2916 /**
2917  * usb_remove_hcd - shutdown processing for generic HCDs
2918  * @hcd: the usb_hcd structure to remove
2919  * Context: !in_interrupt()
2920  *
2921  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2922  * invoking the HCD's stop() method.
2923  */
2924 void usb_remove_hcd(struct usb_hcd *hcd)
2925 {
2926         struct usb_device *rhdev = hcd->self.root_hub;
2927
2928         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2929
2930         usb_get_dev(rhdev);
2931         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2932
2933         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2934         if (HC_IS_RUNNING (hcd->state))
2935                 hcd->state = HC_STATE_QUIESCING;
2936
2937         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2938         spin_lock_irq (&hcd_root_hub_lock);
2939         hcd->rh_registered = 0;
2940         spin_unlock_irq (&hcd_root_hub_lock);
2941
2942 #ifdef CONFIG_PM
2943         cancel_work_sync(&hcd->wakeup_work);
2944 #endif
2945
2946         mutex_lock(&usb_bus_list_lock);
2947         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2948         mutex_unlock(&usb_bus_list_lock);
2949
2950         /*
2951          * tasklet_kill() isn't needed here because:
2952          * - driver's disconnect() called from usb_disconnect() should
2953          *   make sure its URBs are completed during the disconnect()
2954          *   callback
2955          *
2956          * - it is too late to run complete() here since driver may have
2957          *   been removed already now
2958          */
2959
2960         /* Prevent any more root-hub status calls from the timer.
2961          * The HCD might still restart the timer (if a port status change
2962          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2963          * the hub_status_data() callback.
2964          */
2965         hcd->rh_pollable = 0;
2966         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2967         del_timer_sync(&hcd->rh_timer);
2968
2969         hcd->driver->stop(hcd);
2970         hcd->state = HC_STATE_HALT;
2971
2972         /* In case the HCD restarted the timer, stop it again. */
2973         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2974         del_timer_sync(&hcd->rh_timer);
2975
2976         if (usb_hcd_is_primary_hcd(hcd)) {
2977                 if (hcd->irq > 0)
2978                         free_irq(hcd->irq, hcd);
2979         }
2980
2981         usb_deregister_bus(&hcd->self);
2982         hcd_buffer_destroy(hcd);
2983
2984         if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2985                 phy_power_off(hcd->phy);
2986                 phy_exit(hcd->phy);
2987                 phy_put(hcd->phy);
2988                 hcd->phy = NULL;
2989         }
2990         if (hcd->remove_phy && hcd->usb_phy) {
2991                 usb_phy_shutdown(hcd->usb_phy);
2992                 usb_put_phy(hcd->usb_phy);
2993                 hcd->usb_phy = NULL;
2994         }
2995
2996         usb_put_invalidate_rhdev(hcd);
2997         hcd->flags = 0;
2998 }
2999 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3000
3001 void
3002 usb_hcd_platform_shutdown(struct platform_device *dev)
3003 {
3004         struct usb_hcd *hcd = platform_get_drvdata(dev);
3005
3006         if (hcd->driver->shutdown)
3007                 hcd->driver->shutdown(hcd);
3008 }
3009 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3010
3011 /*-------------------------------------------------------------------------*/
3012
3013 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
3014
3015 struct usb_mon_operations *mon_ops;
3016
3017 /*
3018  * The registration is unlocked.
3019  * We do it this way because we do not want to lock in hot paths.
3020  *
3021  * Notice that the code is minimally error-proof. Because usbmon needs
3022  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3023  */
3024
3025 int usb_mon_register (struct usb_mon_operations *ops)
3026 {
3027
3028         if (mon_ops)
3029                 return -EBUSY;
3030
3031         mon_ops = ops;
3032         mb();
3033         return 0;
3034 }
3035 EXPORT_SYMBOL_GPL (usb_mon_register);
3036
3037 void usb_mon_deregister (void)
3038 {
3039
3040         if (mon_ops == NULL) {
3041                 printk(KERN_ERR "USB: monitor was not registered\n");
3042                 return;
3043         }
3044         mon_ops = NULL;
3045         mb();
3046 }
3047 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3048
3049 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */