Merge tag 'lsk-v4.4-17.03-android' of git://git.linaro.org/kernel/linux-linaro-stable.git
[firefly-linux-kernel-4.4.55.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137         if (!rdev->constraints) {
138                 rdev_err(rdev, "no constraints\n");
139                 return false;
140         }
141
142         if (rdev->constraints->valid_ops_mask & ops)
143                 return true;
144
145         return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150         if (rdev && rdev->supply)
151                 return rdev->supply->rdev;
152
153         return NULL;
154 }
155
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162         int i;
163
164         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165                 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174         struct regulator *supply;
175
176         while (1) {
177                 mutex_unlock(&rdev->mutex);
178                 supply = rdev->supply;
179
180                 if (!rdev->supply)
181                         return;
182
183                 rdev = supply->rdev;
184         }
185 }
186
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198         struct device_node *regnode = NULL;
199         char prop_name[32]; /* 32 is max size of property name */
200
201         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203         snprintf(prop_name, 32, "%s-supply", supply);
204         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206         if (!regnode) {
207                 dev_dbg(dev, "Looking up %s property in node %s failed",
208                                 prop_name, dev->of_node->full_name);
209                 return NULL;
210         }
211         return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216                                    int *min_uV, int *max_uV)
217 {
218         BUG_ON(*min_uV > *max_uV);
219
220         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221                 rdev_err(rdev, "voltage operation not allowed\n");
222                 return -EPERM;
223         }
224
225         if (*max_uV > rdev->constraints->max_uV)
226                 *max_uV = rdev->constraints->max_uV;
227         if (*min_uV < rdev->constraints->min_uV)
228                 *min_uV = rdev->constraints->min_uV;
229
230         if (*min_uV > *max_uV) {
231                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232                          *min_uV, *max_uV);
233                 return -EINVAL;
234         }
235
236         return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243                                      int *min_uV, int *max_uV)
244 {
245         struct regulator *regulator;
246
247         list_for_each_entry(regulator, &rdev->consumer_list, list) {
248                 /*
249                  * Assume consumers that didn't say anything are OK
250                  * with anything in the constraint range.
251                  */
252                 if (!regulator->min_uV && !regulator->max_uV)
253                         continue;
254
255                 if (*max_uV > regulator->max_uV)
256                         *max_uV = regulator->max_uV;
257                 if (*min_uV < regulator->min_uV)
258                         *min_uV = regulator->min_uV;
259         }
260
261         if (*min_uV > *max_uV) {
262                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263                         *min_uV, *max_uV);
264                 return -EINVAL;
265         }
266
267         return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272                                         int *min_uA, int *max_uA)
273 {
274         BUG_ON(*min_uA > *max_uA);
275
276         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277                 rdev_err(rdev, "current operation not allowed\n");
278                 return -EPERM;
279         }
280
281         if (*max_uA > rdev->constraints->max_uA)
282                 *max_uA = rdev->constraints->max_uA;
283         if (*min_uA < rdev->constraints->min_uA)
284                 *min_uA = rdev->constraints->min_uA;
285
286         if (*min_uA > *max_uA) {
287                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288                          *min_uA, *max_uA);
289                 return -EINVAL;
290         }
291
292         return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
297 {
298         switch (*mode) {
299         case REGULATOR_MODE_FAST:
300         case REGULATOR_MODE_NORMAL:
301         case REGULATOR_MODE_IDLE:
302         case REGULATOR_MODE_STANDBY:
303                 break;
304         default:
305                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
306                 return -EINVAL;
307         }
308
309         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
310                 rdev_err(rdev, "mode operation not allowed\n");
311                 return -EPERM;
312         }
313
314         /* The modes are bitmasks, the most power hungry modes having
315          * the lowest values. If the requested mode isn't supported
316          * try higher modes. */
317         while (*mode) {
318                 if (rdev->constraints->valid_modes_mask & *mode)
319                         return 0;
320                 *mode /= 2;
321         }
322
323         return -EINVAL;
324 }
325
326 static ssize_t regulator_uV_show(struct device *dev,
327                                 struct device_attribute *attr, char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330         ssize_t ret;
331
332         mutex_lock(&rdev->mutex);
333         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
334         mutex_unlock(&rdev->mutex);
335
336         return ret;
337 }
338 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
339
340 static ssize_t regulator_uA_show(struct device *dev,
341                                 struct device_attribute *attr, char *buf)
342 {
343         struct regulator_dev *rdev = dev_get_drvdata(dev);
344
345         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
346 }
347 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
348
349 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
350                          char *buf)
351 {
352         struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354         return sprintf(buf, "%s\n", rdev_get_name(rdev));
355 }
356 static DEVICE_ATTR_RO(name);
357
358 static ssize_t regulator_print_opmode(char *buf, int mode)
359 {
360         switch (mode) {
361         case REGULATOR_MODE_FAST:
362                 return sprintf(buf, "fast\n");
363         case REGULATOR_MODE_NORMAL:
364                 return sprintf(buf, "normal\n");
365         case REGULATOR_MODE_IDLE:
366                 return sprintf(buf, "idle\n");
367         case REGULATOR_MODE_STANDBY:
368                 return sprintf(buf, "standby\n");
369         }
370         return sprintf(buf, "unknown\n");
371 }
372
373 static ssize_t regulator_opmode_show(struct device *dev,
374                                     struct device_attribute *attr, char *buf)
375 {
376         struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
379 }
380 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
381
382 static ssize_t regulator_print_state(char *buf, int state)
383 {
384         if (state > 0)
385                 return sprintf(buf, "enabled\n");
386         else if (state == 0)
387                 return sprintf(buf, "disabled\n");
388         else
389                 return sprintf(buf, "unknown\n");
390 }
391
392 static ssize_t regulator_state_show(struct device *dev,
393                                    struct device_attribute *attr, char *buf)
394 {
395         struct regulator_dev *rdev = dev_get_drvdata(dev);
396         ssize_t ret;
397
398         mutex_lock(&rdev->mutex);
399         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
400         mutex_unlock(&rdev->mutex);
401
402         return ret;
403 }
404 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
405
406 static ssize_t regulator_status_show(struct device *dev,
407                                    struct device_attribute *attr, char *buf)
408 {
409         struct regulator_dev *rdev = dev_get_drvdata(dev);
410         int status;
411         char *label;
412
413         status = rdev->desc->ops->get_status(rdev);
414         if (status < 0)
415                 return status;
416
417         switch (status) {
418         case REGULATOR_STATUS_OFF:
419                 label = "off";
420                 break;
421         case REGULATOR_STATUS_ON:
422                 label = "on";
423                 break;
424         case REGULATOR_STATUS_ERROR:
425                 label = "error";
426                 break;
427         case REGULATOR_STATUS_FAST:
428                 label = "fast";
429                 break;
430         case REGULATOR_STATUS_NORMAL:
431                 label = "normal";
432                 break;
433         case REGULATOR_STATUS_IDLE:
434                 label = "idle";
435                 break;
436         case REGULATOR_STATUS_STANDBY:
437                 label = "standby";
438                 break;
439         case REGULATOR_STATUS_BYPASS:
440                 label = "bypass";
441                 break;
442         case REGULATOR_STATUS_UNDEFINED:
443                 label = "undefined";
444                 break;
445         default:
446                 return -ERANGE;
447         }
448
449         return sprintf(buf, "%s\n", label);
450 }
451 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
452
453 static ssize_t regulator_min_uA_show(struct device *dev,
454                                     struct device_attribute *attr, char *buf)
455 {
456         struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458         if (!rdev->constraints)
459                 return sprintf(buf, "constraint not defined\n");
460
461         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
462 }
463 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
464
465 static ssize_t regulator_max_uA_show(struct device *dev,
466                                     struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         if (!rdev->constraints)
471                 return sprintf(buf, "constraint not defined\n");
472
473         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
474 }
475 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
476
477 static ssize_t regulator_min_uV_show(struct device *dev,
478                                     struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482         if (!rdev->constraints)
483                 return sprintf(buf, "constraint not defined\n");
484
485         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
486 }
487 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
488
489 static ssize_t regulator_max_uV_show(struct device *dev,
490                                     struct device_attribute *attr, char *buf)
491 {
492         struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494         if (!rdev->constraints)
495                 return sprintf(buf, "constraint not defined\n");
496
497         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
498 }
499 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
500
501 static ssize_t regulator_total_uA_show(struct device *dev,
502                                       struct device_attribute *attr, char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505         struct regulator *regulator;
506         int uA = 0;
507
508         mutex_lock(&rdev->mutex);
509         list_for_each_entry(regulator, &rdev->consumer_list, list)
510                 uA += regulator->uA_load;
511         mutex_unlock(&rdev->mutex);
512         return sprintf(buf, "%d\n", uA);
513 }
514 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
515
516 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
517                               char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520         return sprintf(buf, "%d\n", rdev->use_count);
521 }
522 static DEVICE_ATTR_RO(num_users);
523
524 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
525                          char *buf)
526 {
527         struct regulator_dev *rdev = dev_get_drvdata(dev);
528
529         switch (rdev->desc->type) {
530         case REGULATOR_VOLTAGE:
531                 return sprintf(buf, "voltage\n");
532         case REGULATOR_CURRENT:
533                 return sprintf(buf, "current\n");
534         }
535         return sprintf(buf, "unknown\n");
536 }
537 static DEVICE_ATTR_RO(type);
538
539 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
540                                 struct device_attribute *attr, char *buf)
541 {
542         struct regulator_dev *rdev = dev_get_drvdata(dev);
543
544         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
545 }
546 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
547                 regulator_suspend_mem_uV_show, NULL);
548
549 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
550                                 struct device_attribute *attr, char *buf)
551 {
552         struct regulator_dev *rdev = dev_get_drvdata(dev);
553
554         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
555 }
556 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
557                 regulator_suspend_disk_uV_show, NULL);
558
559 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
560                                 struct device_attribute *attr, char *buf)
561 {
562         struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
565 }
566 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
567                 regulator_suspend_standby_uV_show, NULL);
568
569 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
570                                 struct device_attribute *attr, char *buf)
571 {
572         struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574         return regulator_print_opmode(buf,
575                 rdev->constraints->state_mem.mode);
576 }
577 static DEVICE_ATTR(suspend_mem_mode, 0444,
578                 regulator_suspend_mem_mode_show, NULL);
579
580 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
581                                 struct device_attribute *attr, char *buf)
582 {
583         struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585         return regulator_print_opmode(buf,
586                 rdev->constraints->state_disk.mode);
587 }
588 static DEVICE_ATTR(suspend_disk_mode, 0444,
589                 regulator_suspend_disk_mode_show, NULL);
590
591 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
592                                 struct device_attribute *attr, char *buf)
593 {
594         struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596         return regulator_print_opmode(buf,
597                 rdev->constraints->state_standby.mode);
598 }
599 static DEVICE_ATTR(suspend_standby_mode, 0444,
600                 regulator_suspend_standby_mode_show, NULL);
601
602 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
603                                    struct device_attribute *attr, char *buf)
604 {
605         struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607         return regulator_print_state(buf,
608                         rdev->constraints->state_mem.enabled);
609 }
610 static DEVICE_ATTR(suspend_mem_state, 0444,
611                 regulator_suspend_mem_state_show, NULL);
612
613 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
614                                    struct device_attribute *attr, char *buf)
615 {
616         struct regulator_dev *rdev = dev_get_drvdata(dev);
617
618         return regulator_print_state(buf,
619                         rdev->constraints->state_disk.enabled);
620 }
621 static DEVICE_ATTR(suspend_disk_state, 0444,
622                 regulator_suspend_disk_state_show, NULL);
623
624 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
625                                    struct device_attribute *attr, char *buf)
626 {
627         struct regulator_dev *rdev = dev_get_drvdata(dev);
628
629         return regulator_print_state(buf,
630                         rdev->constraints->state_standby.enabled);
631 }
632 static DEVICE_ATTR(suspend_standby_state, 0444,
633                 regulator_suspend_standby_state_show, NULL);
634
635 static ssize_t regulator_bypass_show(struct device *dev,
636                                      struct device_attribute *attr, char *buf)
637 {
638         struct regulator_dev *rdev = dev_get_drvdata(dev);
639         const char *report;
640         bool bypass;
641         int ret;
642
643         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
644
645         if (ret != 0)
646                 report = "unknown";
647         else if (bypass)
648                 report = "enabled";
649         else
650                 report = "disabled";
651
652         return sprintf(buf, "%s\n", report);
653 }
654 static DEVICE_ATTR(bypass, 0444,
655                    regulator_bypass_show, NULL);
656
657 /* Calculate the new optimum regulator operating mode based on the new total
658  * consumer load. All locks held by caller */
659 static int drms_uA_update(struct regulator_dev *rdev)
660 {
661         struct regulator *sibling;
662         int current_uA = 0, output_uV, input_uV, err;
663         unsigned int mode;
664
665         lockdep_assert_held_once(&rdev->mutex);
666
667         /*
668          * first check to see if we can set modes at all, otherwise just
669          * tell the consumer everything is OK.
670          */
671         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
672                 return 0;
673
674         if (!rdev->desc->ops->get_optimum_mode &&
675             !rdev->desc->ops->set_load)
676                 return 0;
677
678         if (!rdev->desc->ops->set_mode &&
679             !rdev->desc->ops->set_load)
680                 return -EINVAL;
681
682         /* get output voltage */
683         output_uV = _regulator_get_voltage(rdev);
684         if (output_uV <= 0) {
685                 rdev_err(rdev, "invalid output voltage found\n");
686                 return -EINVAL;
687         }
688
689         /* get input voltage */
690         input_uV = 0;
691         if (rdev->supply)
692                 input_uV = regulator_get_voltage(rdev->supply);
693         if (input_uV <= 0)
694                 input_uV = rdev->constraints->input_uV;
695         if (input_uV <= 0) {
696                 rdev_err(rdev, "invalid input voltage found\n");
697                 return -EINVAL;
698         }
699
700         /* calc total requested load */
701         list_for_each_entry(sibling, &rdev->consumer_list, list)
702                 current_uA += sibling->uA_load;
703
704         current_uA += rdev->constraints->system_load;
705
706         if (rdev->desc->ops->set_load) {
707                 /* set the optimum mode for our new total regulator load */
708                 err = rdev->desc->ops->set_load(rdev, current_uA);
709                 if (err < 0)
710                         rdev_err(rdev, "failed to set load %d\n", current_uA);
711         } else {
712                 /* now get the optimum mode for our new total regulator load */
713                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
714                                                          output_uV, current_uA);
715
716                 /* check the new mode is allowed */
717                 err = regulator_mode_constrain(rdev, &mode);
718                 if (err < 0) {
719                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
720                                  current_uA, input_uV, output_uV);
721                         return err;
722                 }
723
724                 err = rdev->desc->ops->set_mode(rdev, mode);
725                 if (err < 0)
726                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
727         }
728
729         return err;
730 }
731
732 static int suspend_set_state(struct regulator_dev *rdev,
733         struct regulator_state *rstate)
734 {
735         int ret = 0;
736
737         /* If we have no suspend mode configration don't set anything;
738          * only warn if the driver implements set_suspend_voltage or
739          * set_suspend_mode callback.
740          */
741         if (!rstate->enabled && !rstate->disabled) {
742                 if (rdev->desc->ops->set_suspend_voltage ||
743                     rdev->desc->ops->set_suspend_mode)
744                         rdev_warn(rdev, "No configuration\n");
745                 return 0;
746         }
747
748         if (rstate->enabled && rstate->disabled) {
749                 rdev_err(rdev, "invalid configuration\n");
750                 return -EINVAL;
751         }
752
753         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
754                 ret = rdev->desc->ops->set_suspend_enable(rdev);
755         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
756                 ret = rdev->desc->ops->set_suspend_disable(rdev);
757         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
758                 ret = 0;
759
760         if (ret < 0) {
761                 rdev_err(rdev, "failed to enabled/disable\n");
762                 return ret;
763         }
764
765         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
766                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
767                 if (ret < 0) {
768                         rdev_err(rdev, "failed to set voltage\n");
769                         return ret;
770                 }
771         }
772
773         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
774                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
775                 if (ret < 0) {
776                         rdev_err(rdev, "failed to set mode\n");
777                         return ret;
778                 }
779         }
780         return ret;
781 }
782
783 /* locks held by caller */
784 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
785 {
786         if (!rdev->constraints)
787                 return -EINVAL;
788
789         switch (state) {
790         case PM_SUSPEND_STANDBY:
791                 return suspend_set_state(rdev,
792                         &rdev->constraints->state_standby);
793         case PM_SUSPEND_MEM:
794                 return suspend_set_state(rdev,
795                         &rdev->constraints->state_mem);
796         case PM_SUSPEND_MAX:
797                 return suspend_set_state(rdev,
798                         &rdev->constraints->state_disk);
799         default:
800                 return -EINVAL;
801         }
802 }
803
804 static void print_constraints(struct regulator_dev *rdev)
805 {
806         struct regulation_constraints *constraints = rdev->constraints;
807         char buf[160] = "";
808         size_t len = sizeof(buf) - 1;
809         int count = 0;
810         int ret;
811
812         if (constraints->min_uV && constraints->max_uV) {
813                 if (constraints->min_uV == constraints->max_uV)
814                         count += scnprintf(buf + count, len - count, "%d mV ",
815                                            constraints->min_uV / 1000);
816                 else
817                         count += scnprintf(buf + count, len - count,
818                                            "%d <--> %d mV ",
819                                            constraints->min_uV / 1000,
820                                            constraints->max_uV / 1000);
821         }
822
823         if (!constraints->min_uV ||
824             constraints->min_uV != constraints->max_uV) {
825                 ret = _regulator_get_voltage(rdev);
826                 if (ret > 0)
827                         count += scnprintf(buf + count, len - count,
828                                            "at %d mV ", ret / 1000);
829         }
830
831         if (constraints->uV_offset)
832                 count += scnprintf(buf + count, len - count, "%dmV offset ",
833                                    constraints->uV_offset / 1000);
834
835         if (constraints->min_uA && constraints->max_uA) {
836                 if (constraints->min_uA == constraints->max_uA)
837                         count += scnprintf(buf + count, len - count, "%d mA ",
838                                            constraints->min_uA / 1000);
839                 else
840                         count += scnprintf(buf + count, len - count,
841                                            "%d <--> %d mA ",
842                                            constraints->min_uA / 1000,
843                                            constraints->max_uA / 1000);
844         }
845
846         if (!constraints->min_uA ||
847             constraints->min_uA != constraints->max_uA) {
848                 ret = _regulator_get_current_limit(rdev);
849                 if (ret > 0)
850                         count += scnprintf(buf + count, len - count,
851                                            "at %d mA ", ret / 1000);
852         }
853
854         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
855                 count += scnprintf(buf + count, len - count, "fast ");
856         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
857                 count += scnprintf(buf + count, len - count, "normal ");
858         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
859                 count += scnprintf(buf + count, len - count, "idle ");
860         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
861                 count += scnprintf(buf + count, len - count, "standby");
862
863         if (!count)
864                 scnprintf(buf, len, "no parameters");
865
866         rdev_dbg(rdev, "%s\n", buf);
867
868         if ((constraints->min_uV != constraints->max_uV) &&
869             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
870                 rdev_warn(rdev,
871                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
872 }
873
874 static int machine_constraints_voltage(struct regulator_dev *rdev,
875         struct regulation_constraints *constraints)
876 {
877         const struct regulator_ops *ops = rdev->desc->ops;
878         int ret;
879
880         /* do we need to apply the constraint voltage */
881         if (rdev->constraints->apply_uV &&
882             rdev->constraints->min_uV && rdev->constraints->max_uV) {
883                 int target_min, target_max;
884                 int current_uV = _regulator_get_voltage(rdev);
885                 if (current_uV < 0) {
886                         rdev_err(rdev,
887                                  "failed to get the current voltage(%d)\n",
888                                  current_uV);
889                         return current_uV;
890                 }
891
892                 /*
893                  * If we're below the minimum voltage move up to the
894                  * minimum voltage, if we're above the maximum voltage
895                  * then move down to the maximum.
896                  */
897                 target_min = current_uV;
898                 target_max = current_uV;
899
900                 if (current_uV < rdev->constraints->min_uV) {
901                         target_min = rdev->constraints->min_uV;
902                         target_max = rdev->constraints->min_uV;
903                 }
904
905                 if (current_uV > rdev->constraints->max_uV) {
906                         target_min = rdev->constraints->max_uV;
907                         target_max = rdev->constraints->max_uV;
908                 }
909
910                 if (target_min != current_uV || target_max != current_uV) {
911                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
912                                   current_uV, target_min, target_max);
913                         ret = _regulator_do_set_voltage(
914                                 rdev, target_min, target_max);
915                         if (ret < 0) {
916                                 rdev_err(rdev,
917                                         "failed to apply %d-%duV constraint(%d)\n",
918                                         target_min, target_max, ret);
919                                 return ret;
920                         }
921                 }
922         }
923
924         /* constrain machine-level voltage specs to fit
925          * the actual range supported by this regulator.
926          */
927         if (ops->list_voltage && rdev->desc->n_voltages) {
928                 int     count = rdev->desc->n_voltages;
929                 int     i;
930                 int     min_uV = INT_MAX;
931                 int     max_uV = INT_MIN;
932                 int     cmin = constraints->min_uV;
933                 int     cmax = constraints->max_uV;
934
935                 /* it's safe to autoconfigure fixed-voltage supplies
936                    and the constraints are used by list_voltage. */
937                 if (count == 1 && !cmin) {
938                         cmin = 1;
939                         cmax = INT_MAX;
940                         constraints->min_uV = cmin;
941                         constraints->max_uV = cmax;
942                 }
943
944                 /* voltage constraints are optional */
945                 if ((cmin == 0) && (cmax == 0))
946                         return 0;
947
948                 /* else require explicit machine-level constraints */
949                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
950                         rdev_err(rdev, "invalid voltage constraints\n");
951                         return -EINVAL;
952                 }
953
954                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
955                 for (i = 0; i < count; i++) {
956                         int     value;
957
958                         value = ops->list_voltage(rdev, i);
959                         if (value <= 0)
960                                 continue;
961
962                         /* maybe adjust [min_uV..max_uV] */
963                         if (value >= cmin && value < min_uV)
964                                 min_uV = value;
965                         if (value <= cmax && value > max_uV)
966                                 max_uV = value;
967                 }
968
969                 /* final: [min_uV..max_uV] valid iff constraints valid */
970                 if (max_uV < min_uV) {
971                         rdev_err(rdev,
972                                  "unsupportable voltage constraints %u-%uuV\n",
973                                  min_uV, max_uV);
974                         return -EINVAL;
975                 }
976
977                 /* use regulator's subset of machine constraints */
978                 if (constraints->min_uV < min_uV) {
979                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
980                                  constraints->min_uV, min_uV);
981                         constraints->min_uV = min_uV;
982                 }
983                 if (constraints->max_uV > max_uV) {
984                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
985                                  constraints->max_uV, max_uV);
986                         constraints->max_uV = max_uV;
987                 }
988         }
989
990         return 0;
991 }
992
993 static int machine_constraints_current(struct regulator_dev *rdev,
994         struct regulation_constraints *constraints)
995 {
996         const struct regulator_ops *ops = rdev->desc->ops;
997         int ret;
998
999         if (!constraints->min_uA && !constraints->max_uA)
1000                 return 0;
1001
1002         if (constraints->min_uA > constraints->max_uA) {
1003                 rdev_err(rdev, "Invalid current constraints\n");
1004                 return -EINVAL;
1005         }
1006
1007         if (!ops->set_current_limit || !ops->get_current_limit) {
1008                 rdev_warn(rdev, "Operation of current configuration missing\n");
1009                 return 0;
1010         }
1011
1012         /* Set regulator current in constraints range */
1013         ret = ops->set_current_limit(rdev, constraints->min_uA,
1014                         constraints->max_uA);
1015         if (ret < 0) {
1016                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1017                 return ret;
1018         }
1019
1020         return 0;
1021 }
1022
1023 static int _regulator_do_enable(struct regulator_dev *rdev);
1024
1025 /**
1026  * set_machine_constraints - sets regulator constraints
1027  * @rdev: regulator source
1028  * @constraints: constraints to apply
1029  *
1030  * Allows platform initialisation code to define and constrain
1031  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1032  * Constraints *must* be set by platform code in order for some
1033  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1034  * set_mode.
1035  */
1036 static int set_machine_constraints(struct regulator_dev *rdev,
1037         const struct regulation_constraints *constraints)
1038 {
1039         int ret = 0;
1040         const struct regulator_ops *ops = rdev->desc->ops;
1041
1042         if (constraints)
1043                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1044                                             GFP_KERNEL);
1045         else
1046                 rdev->constraints = kzalloc(sizeof(*constraints),
1047                                             GFP_KERNEL);
1048         if (!rdev->constraints)
1049                 return -ENOMEM;
1050
1051         ret = machine_constraints_voltage(rdev, rdev->constraints);
1052         if (ret != 0)
1053                 return ret;
1054
1055         ret = machine_constraints_current(rdev, rdev->constraints);
1056         if (ret != 0)
1057                 return ret;
1058
1059         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1060                 ret = ops->set_input_current_limit(rdev,
1061                                                    rdev->constraints->ilim_uA);
1062                 if (ret < 0) {
1063                         rdev_err(rdev, "failed to set input limit\n");
1064                         return ret;
1065                 }
1066         }
1067
1068         /* do we need to setup our suspend state */
1069         if (rdev->constraints->initial_state) {
1070                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1071                 if (ret < 0) {
1072                         rdev_err(rdev, "failed to set suspend state\n");
1073                         return ret;
1074                 }
1075         }
1076
1077         if (rdev->constraints->initial_mode) {
1078                 if (!ops->set_mode) {
1079                         rdev_err(rdev, "no set_mode operation\n");
1080                         return -EINVAL;
1081                 }
1082
1083                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1084                 if (ret < 0) {
1085                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1086                         return ret;
1087                 }
1088         }
1089
1090         /* If the constraints say the regulator should be on at this point
1091          * and we have control then make sure it is enabled.
1092          */
1093         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1094                 ret = _regulator_do_enable(rdev);
1095                 if (ret < 0 && ret != -EINVAL) {
1096                         rdev_err(rdev, "failed to enable\n");
1097                         return ret;
1098                 }
1099         }
1100
1101         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1102                 && ops->set_ramp_delay) {
1103                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1104                 if (ret < 0) {
1105                         rdev_err(rdev, "failed to set ramp_delay\n");
1106                         return ret;
1107                 }
1108         }
1109
1110         if (rdev->constraints->pull_down && ops->set_pull_down) {
1111                 ret = ops->set_pull_down(rdev);
1112                 if (ret < 0) {
1113                         rdev_err(rdev, "failed to set pull down\n");
1114                         return ret;
1115                 }
1116         }
1117
1118         if (rdev->constraints->soft_start && ops->set_soft_start) {
1119                 ret = ops->set_soft_start(rdev);
1120                 if (ret < 0) {
1121                         rdev_err(rdev, "failed to set soft start\n");
1122                         return ret;
1123                 }
1124         }
1125
1126         if (rdev->constraints->over_current_protection
1127                 && ops->set_over_current_protection) {
1128                 ret = ops->set_over_current_protection(rdev);
1129                 if (ret < 0) {
1130                         rdev_err(rdev, "failed to set over current protection\n");
1131                         return ret;
1132                 }
1133         }
1134
1135         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1136                 bool ad_state = (rdev->constraints->active_discharge ==
1137                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1138
1139                 ret = ops->set_active_discharge(rdev, ad_state);
1140                 if (ret < 0) {
1141                         rdev_err(rdev, "failed to set active discharge\n");
1142                         return ret;
1143                 }
1144         }
1145
1146         print_constraints(rdev);
1147         return 0;
1148 }
1149
1150 /**
1151  * set_supply - set regulator supply regulator
1152  * @rdev: regulator name
1153  * @supply_rdev: supply regulator name
1154  *
1155  * Called by platform initialisation code to set the supply regulator for this
1156  * regulator. This ensures that a regulators supply will also be enabled by the
1157  * core if it's child is enabled.
1158  */
1159 static int set_supply(struct regulator_dev *rdev,
1160                       struct regulator_dev *supply_rdev)
1161 {
1162         int err;
1163
1164         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1165
1166         if (!try_module_get(supply_rdev->owner))
1167                 return -ENODEV;
1168
1169         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1170         if (rdev->supply == NULL) {
1171                 err = -ENOMEM;
1172                 return err;
1173         }
1174         supply_rdev->open_count++;
1175
1176         return 0;
1177 }
1178
1179 /**
1180  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1181  * @rdev:         regulator source
1182  * @consumer_dev_name: dev_name() string for device supply applies to
1183  * @supply:       symbolic name for supply
1184  *
1185  * Allows platform initialisation code to map physical regulator
1186  * sources to symbolic names for supplies for use by devices.  Devices
1187  * should use these symbolic names to request regulators, avoiding the
1188  * need to provide board-specific regulator names as platform data.
1189  */
1190 static int set_consumer_device_supply(struct regulator_dev *rdev,
1191                                       const char *consumer_dev_name,
1192                                       const char *supply)
1193 {
1194         struct regulator_map *node;
1195         int has_dev;
1196
1197         if (supply == NULL)
1198                 return -EINVAL;
1199
1200         if (consumer_dev_name != NULL)
1201                 has_dev = 1;
1202         else
1203                 has_dev = 0;
1204
1205         list_for_each_entry(node, &regulator_map_list, list) {
1206                 if (node->dev_name && consumer_dev_name) {
1207                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1208                                 continue;
1209                 } else if (node->dev_name || consumer_dev_name) {
1210                         continue;
1211                 }
1212
1213                 if (strcmp(node->supply, supply) != 0)
1214                         continue;
1215
1216                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1217                          consumer_dev_name,
1218                          dev_name(&node->regulator->dev),
1219                          node->regulator->desc->name,
1220                          supply,
1221                          dev_name(&rdev->dev), rdev_get_name(rdev));
1222                 return -EBUSY;
1223         }
1224
1225         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1226         if (node == NULL)
1227                 return -ENOMEM;
1228
1229         node->regulator = rdev;
1230         node->supply = supply;
1231
1232         if (has_dev) {
1233                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1234                 if (node->dev_name == NULL) {
1235                         kfree(node);
1236                         return -ENOMEM;
1237                 }
1238         }
1239
1240         list_add(&node->list, &regulator_map_list);
1241         return 0;
1242 }
1243
1244 static void unset_regulator_supplies(struct regulator_dev *rdev)
1245 {
1246         struct regulator_map *node, *n;
1247
1248         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1249                 if (rdev == node->regulator) {
1250                         list_del(&node->list);
1251                         kfree(node->dev_name);
1252                         kfree(node);
1253                 }
1254         }
1255 }
1256
1257 #ifdef CONFIG_DEBUG_FS
1258 static ssize_t constraint_flags_read_file(struct file *file,
1259                                           char __user *user_buf,
1260                                           size_t count, loff_t *ppos)
1261 {
1262         const struct regulator *regulator = file->private_data;
1263         const struct regulation_constraints *c = regulator->rdev->constraints;
1264         char *buf;
1265         ssize_t ret;
1266
1267         if (!c)
1268                 return 0;
1269
1270         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1271         if (!buf)
1272                 return -ENOMEM;
1273
1274         ret = snprintf(buf, PAGE_SIZE,
1275                         "always_on: %u\n"
1276                         "boot_on: %u\n"
1277                         "apply_uV: %u\n"
1278                         "ramp_disable: %u\n"
1279                         "soft_start: %u\n"
1280                         "pull_down: %u\n"
1281                         "over_current_protection: %u\n",
1282                         c->always_on,
1283                         c->boot_on,
1284                         c->apply_uV,
1285                         c->ramp_disable,
1286                         c->soft_start,
1287                         c->pull_down,
1288                         c->over_current_protection);
1289
1290         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1291         kfree(buf);
1292
1293         return ret;
1294 }
1295
1296 #endif
1297
1298 static const struct file_operations constraint_flags_fops = {
1299 #ifdef CONFIG_DEBUG_FS
1300         .open = simple_open,
1301         .read = constraint_flags_read_file,
1302         .llseek = default_llseek,
1303 #endif
1304 };
1305
1306 #define REG_STR_SIZE    64
1307
1308 static struct regulator *create_regulator(struct regulator_dev *rdev,
1309                                           struct device *dev,
1310                                           const char *supply_name)
1311 {
1312         struct regulator *regulator;
1313         char buf[REG_STR_SIZE];
1314         int err, size;
1315
1316         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1317         if (regulator == NULL)
1318                 return NULL;
1319
1320         mutex_lock(&rdev->mutex);
1321         regulator->rdev = rdev;
1322         list_add(&regulator->list, &rdev->consumer_list);
1323
1324         if (dev) {
1325                 regulator->dev = dev;
1326
1327                 /* Add a link to the device sysfs entry */
1328                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1329                                  dev->kobj.name, supply_name);
1330                 if (size >= REG_STR_SIZE)
1331                         goto overflow_err;
1332
1333                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1334                 if (regulator->supply_name == NULL)
1335                         goto overflow_err;
1336
1337                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1338                                         buf);
1339                 if (err) {
1340                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1341                                   dev->kobj.name, err);
1342                         /* non-fatal */
1343                 }
1344         } else {
1345                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1346                 if (regulator->supply_name == NULL)
1347                         goto overflow_err;
1348         }
1349
1350         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1351                                                 rdev->debugfs);
1352         if (!regulator->debugfs) {
1353                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1354         } else {
1355                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1356                                    &regulator->uA_load);
1357                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1358                                    &regulator->min_uV);
1359                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1360                                    &regulator->max_uV);
1361                 debugfs_create_file("constraint_flags", 0444,
1362                                     regulator->debugfs, regulator,
1363                                     &constraint_flags_fops);
1364         }
1365
1366         /*
1367          * Check now if the regulator is an always on regulator - if
1368          * it is then we don't need to do nearly so much work for
1369          * enable/disable calls.
1370          */
1371         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1372             _regulator_is_enabled(rdev))
1373                 regulator->always_on = true;
1374
1375         mutex_unlock(&rdev->mutex);
1376         return regulator;
1377 overflow_err:
1378         list_del(&regulator->list);
1379         kfree(regulator);
1380         mutex_unlock(&rdev->mutex);
1381         return NULL;
1382 }
1383
1384 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1385 {
1386         if (rdev->constraints && rdev->constraints->enable_time)
1387                 return rdev->constraints->enable_time;
1388         if (!rdev->desc->ops->enable_time)
1389                 return rdev->desc->enable_time;
1390         return rdev->desc->ops->enable_time(rdev);
1391 }
1392
1393 static struct regulator_supply_alias *regulator_find_supply_alias(
1394                 struct device *dev, const char *supply)
1395 {
1396         struct regulator_supply_alias *map;
1397
1398         list_for_each_entry(map, &regulator_supply_alias_list, list)
1399                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1400                         return map;
1401
1402         return NULL;
1403 }
1404
1405 static void regulator_supply_alias(struct device **dev, const char **supply)
1406 {
1407         struct regulator_supply_alias *map;
1408
1409         map = regulator_find_supply_alias(*dev, *supply);
1410         if (map) {
1411                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1412                                 *supply, map->alias_supply,
1413                                 dev_name(map->alias_dev));
1414                 *dev = map->alias_dev;
1415                 *supply = map->alias_supply;
1416         }
1417 }
1418
1419 static int of_node_match(struct device *dev, const void *data)
1420 {
1421         return dev->of_node == data;
1422 }
1423
1424 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1425 {
1426         struct device *dev;
1427
1428         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1429
1430         return dev ? dev_to_rdev(dev) : NULL;
1431 }
1432
1433 static int regulator_match(struct device *dev, const void *data)
1434 {
1435         struct regulator_dev *r = dev_to_rdev(dev);
1436
1437         return strcmp(rdev_get_name(r), data) == 0;
1438 }
1439
1440 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1441 {
1442         struct device *dev;
1443
1444         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1445
1446         return dev ? dev_to_rdev(dev) : NULL;
1447 }
1448
1449 /**
1450  * regulator_dev_lookup - lookup a regulator device.
1451  * @dev: device for regulator "consumer".
1452  * @supply: Supply name or regulator ID.
1453  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1454  * lookup could succeed in the future.
1455  *
1456  * If successful, returns a struct regulator_dev that corresponds to the name
1457  * @supply and with the embedded struct device refcount incremented by one,
1458  * or NULL on failure. The refcount must be dropped by calling put_device().
1459  */
1460 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1461                                                   const char *supply,
1462                                                   int *ret)
1463 {
1464         struct regulator_dev *r;
1465         struct device_node *node;
1466         struct regulator_map *map;
1467         const char *devname = NULL;
1468
1469         regulator_supply_alias(&dev, &supply);
1470
1471         /* first do a dt based lookup */
1472         if (dev && dev->of_node) {
1473                 node = of_get_regulator(dev, supply);
1474                 if (node) {
1475                         r = of_find_regulator_by_node(node);
1476                         if (r)
1477                                 return r;
1478                         *ret = -EPROBE_DEFER;
1479                         return NULL;
1480                 } else {
1481                         /*
1482                          * If we couldn't even get the node then it's
1483                          * not just that the device didn't register
1484                          * yet, there's no node and we'll never
1485                          * succeed.
1486                          */
1487                         *ret = -ENODEV;
1488                 }
1489         }
1490
1491         /* if not found, try doing it non-dt way */
1492         if (dev)
1493                 devname = dev_name(dev);
1494
1495         r = regulator_lookup_by_name(supply);
1496         if (r)
1497                 return r;
1498
1499         mutex_lock(&regulator_list_mutex);
1500         list_for_each_entry(map, &regulator_map_list, list) {
1501                 /* If the mapping has a device set up it must match */
1502                 if (map->dev_name &&
1503                     (!devname || strcmp(map->dev_name, devname)))
1504                         continue;
1505
1506                 if (strcmp(map->supply, supply) == 0 &&
1507                     get_device(&map->regulator->dev)) {
1508                         mutex_unlock(&regulator_list_mutex);
1509                         return map->regulator;
1510                 }
1511         }
1512         mutex_unlock(&regulator_list_mutex);
1513
1514         return NULL;
1515 }
1516
1517 static int regulator_resolve_supply(struct regulator_dev *rdev)
1518 {
1519         struct regulator_dev *r;
1520         struct device *dev = rdev->dev.parent;
1521         int ret;
1522
1523         /* No supply to resovle? */
1524         if (!rdev->supply_name)
1525                 return 0;
1526
1527         /* Supply already resolved? */
1528         if (rdev->supply)
1529                 return 0;
1530
1531         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1532         if (!r) {
1533                 if (ret == -ENODEV) {
1534                         /*
1535                          * No supply was specified for this regulator and
1536                          * there will never be one.
1537                          */
1538                         return 0;
1539                 }
1540
1541                 /* Did the lookup explicitly defer for us? */
1542                 if (ret == -EPROBE_DEFER)
1543                         return ret;
1544
1545                 if (have_full_constraints()) {
1546                         r = dummy_regulator_rdev;
1547                         get_device(&r->dev);
1548                 } else {
1549                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1550                                 rdev->supply_name, rdev->desc->name);
1551                         return -EPROBE_DEFER;
1552                 }
1553         }
1554
1555         /* Recursively resolve the supply of the supply */
1556         ret = regulator_resolve_supply(r);
1557         if (ret < 0) {
1558                 put_device(&r->dev);
1559                 return ret;
1560         }
1561
1562         ret = set_supply(rdev, r);
1563         if (ret < 0) {
1564                 put_device(&r->dev);
1565                 return ret;
1566         }
1567
1568         /* Cascade always-on state to supply */
1569         if (_regulator_is_enabled(rdev)) {
1570                 ret = regulator_enable(rdev->supply);
1571                 if (ret < 0) {
1572                         _regulator_put(rdev->supply);
1573                         rdev->supply = NULL;
1574                         return ret;
1575                 }
1576         }
1577
1578         return 0;
1579 }
1580
1581 /* Internal regulator request function */
1582 static struct regulator *_regulator_get(struct device *dev, const char *id,
1583                                         bool exclusive, bool allow_dummy)
1584 {
1585         struct regulator_dev *rdev;
1586         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1587         const char *devname = NULL;
1588         int ret;
1589
1590         if (id == NULL) {
1591                 pr_err("get() with no identifier\n");
1592                 return ERR_PTR(-EINVAL);
1593         }
1594
1595         if (dev)
1596                 devname = dev_name(dev);
1597
1598         if (have_full_constraints())
1599                 ret = -ENODEV;
1600         else
1601                 ret = -EPROBE_DEFER;
1602
1603         rdev = regulator_dev_lookup(dev, id, &ret);
1604         if (rdev)
1605                 goto found;
1606
1607         regulator = ERR_PTR(ret);
1608
1609         /*
1610          * If we have return value from dev_lookup fail, we do not expect to
1611          * succeed, so, quit with appropriate error value
1612          */
1613         if (ret && ret != -ENODEV)
1614                 return regulator;
1615
1616         if (!devname)
1617                 devname = "deviceless";
1618
1619         /*
1620          * Assume that a regulator is physically present and enabled
1621          * even if it isn't hooked up and just provide a dummy.
1622          */
1623         if (have_full_constraints() && allow_dummy) {
1624                 pr_warn("%s supply %s not found, using dummy regulator\n",
1625                         devname, id);
1626
1627                 rdev = dummy_regulator_rdev;
1628                 get_device(&rdev->dev);
1629                 goto found;
1630         /* Don't log an error when called from regulator_get_optional() */
1631         } else if (!have_full_constraints() || exclusive) {
1632                 dev_warn(dev, "dummy supplies not allowed\n");
1633         }
1634
1635         return regulator;
1636
1637 found:
1638         if (rdev->exclusive) {
1639                 regulator = ERR_PTR(-EPERM);
1640                 put_device(&rdev->dev);
1641                 return regulator;
1642         }
1643
1644         if (exclusive && rdev->open_count) {
1645                 regulator = ERR_PTR(-EBUSY);
1646                 put_device(&rdev->dev);
1647                 return regulator;
1648         }
1649
1650         ret = regulator_resolve_supply(rdev);
1651         if (ret < 0) {
1652                 regulator = ERR_PTR(ret);
1653                 put_device(&rdev->dev);
1654                 return regulator;
1655         }
1656
1657         if (!try_module_get(rdev->owner)) {
1658                 put_device(&rdev->dev);
1659                 return regulator;
1660         }
1661
1662         regulator = create_regulator(rdev, dev, id);
1663         if (regulator == NULL) {
1664                 regulator = ERR_PTR(-ENOMEM);
1665                 put_device(&rdev->dev);
1666                 module_put(rdev->owner);
1667                 return regulator;
1668         }
1669
1670         rdev->open_count++;
1671         if (exclusive) {
1672                 rdev->exclusive = 1;
1673
1674                 ret = _regulator_is_enabled(rdev);
1675                 if (ret > 0)
1676                         rdev->use_count = 1;
1677                 else
1678                         rdev->use_count = 0;
1679         }
1680
1681         return regulator;
1682 }
1683
1684 /**
1685  * regulator_get - lookup and obtain a reference to a regulator.
1686  * @dev: device for regulator "consumer"
1687  * @id: Supply name or regulator ID.
1688  *
1689  * Returns a struct regulator corresponding to the regulator producer,
1690  * or IS_ERR() condition containing errno.
1691  *
1692  * Use of supply names configured via regulator_set_device_supply() is
1693  * strongly encouraged.  It is recommended that the supply name used
1694  * should match the name used for the supply and/or the relevant
1695  * device pins in the datasheet.
1696  */
1697 struct regulator *regulator_get(struct device *dev, const char *id)
1698 {
1699         return _regulator_get(dev, id, false, true);
1700 }
1701 EXPORT_SYMBOL_GPL(regulator_get);
1702
1703 /**
1704  * regulator_get_exclusive - obtain exclusive access to a regulator.
1705  * @dev: device for regulator "consumer"
1706  * @id: Supply name or regulator ID.
1707  *
1708  * Returns a struct regulator corresponding to the regulator producer,
1709  * or IS_ERR() condition containing errno.  Other consumers will be
1710  * unable to obtain this regulator while this reference is held and the
1711  * use count for the regulator will be initialised to reflect the current
1712  * state of the regulator.
1713  *
1714  * This is intended for use by consumers which cannot tolerate shared
1715  * use of the regulator such as those which need to force the
1716  * regulator off for correct operation of the hardware they are
1717  * controlling.
1718  *
1719  * Use of supply names configured via regulator_set_device_supply() is
1720  * strongly encouraged.  It is recommended that the supply name used
1721  * should match the name used for the supply and/or the relevant
1722  * device pins in the datasheet.
1723  */
1724 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1725 {
1726         return _regulator_get(dev, id, true, false);
1727 }
1728 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1729
1730 /**
1731  * regulator_get_optional - obtain optional access to a regulator.
1732  * @dev: device for regulator "consumer"
1733  * @id: Supply name or regulator ID.
1734  *
1735  * Returns a struct regulator corresponding to the regulator producer,
1736  * or IS_ERR() condition containing errno.
1737  *
1738  * This is intended for use by consumers for devices which can have
1739  * some supplies unconnected in normal use, such as some MMC devices.
1740  * It can allow the regulator core to provide stub supplies for other
1741  * supplies requested using normal regulator_get() calls without
1742  * disrupting the operation of drivers that can handle absent
1743  * supplies.
1744  *
1745  * Use of supply names configured via regulator_set_device_supply() is
1746  * strongly encouraged.  It is recommended that the supply name used
1747  * should match the name used for the supply and/or the relevant
1748  * device pins in the datasheet.
1749  */
1750 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1751 {
1752         return _regulator_get(dev, id, false, false);
1753 }
1754 EXPORT_SYMBOL_GPL(regulator_get_optional);
1755
1756 /* regulator_list_mutex lock held by regulator_put() */
1757 static void _regulator_put(struct regulator *regulator)
1758 {
1759         struct regulator_dev *rdev;
1760
1761         if (IS_ERR_OR_NULL(regulator))
1762                 return;
1763
1764         lockdep_assert_held_once(&regulator_list_mutex);
1765
1766         rdev = regulator->rdev;
1767
1768         debugfs_remove_recursive(regulator->debugfs);
1769
1770         /* remove any sysfs entries */
1771         if (regulator->dev)
1772                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1773         mutex_lock(&rdev->mutex);
1774         list_del(&regulator->list);
1775
1776         rdev->open_count--;
1777         rdev->exclusive = 0;
1778         put_device(&rdev->dev);
1779         mutex_unlock(&rdev->mutex);
1780
1781         kfree(regulator->supply_name);
1782         kfree(regulator);
1783
1784         module_put(rdev->owner);
1785 }
1786
1787 /**
1788  * regulator_put - "free" the regulator source
1789  * @regulator: regulator source
1790  *
1791  * Note: drivers must ensure that all regulator_enable calls made on this
1792  * regulator source are balanced by regulator_disable calls prior to calling
1793  * this function.
1794  */
1795 void regulator_put(struct regulator *regulator)
1796 {
1797         mutex_lock(&regulator_list_mutex);
1798         _regulator_put(regulator);
1799         mutex_unlock(&regulator_list_mutex);
1800 }
1801 EXPORT_SYMBOL_GPL(regulator_put);
1802
1803 /**
1804  * regulator_register_supply_alias - Provide device alias for supply lookup
1805  *
1806  * @dev: device that will be given as the regulator "consumer"
1807  * @id: Supply name or regulator ID
1808  * @alias_dev: device that should be used to lookup the supply
1809  * @alias_id: Supply name or regulator ID that should be used to lookup the
1810  * supply
1811  *
1812  * All lookups for id on dev will instead be conducted for alias_id on
1813  * alias_dev.
1814  */
1815 int regulator_register_supply_alias(struct device *dev, const char *id,
1816                                     struct device *alias_dev,
1817                                     const char *alias_id)
1818 {
1819         struct regulator_supply_alias *map;
1820
1821         map = regulator_find_supply_alias(dev, id);
1822         if (map)
1823                 return -EEXIST;
1824
1825         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1826         if (!map)
1827                 return -ENOMEM;
1828
1829         map->src_dev = dev;
1830         map->src_supply = id;
1831         map->alias_dev = alias_dev;
1832         map->alias_supply = alias_id;
1833
1834         list_add(&map->list, &regulator_supply_alias_list);
1835
1836         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1837                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1838
1839         return 0;
1840 }
1841 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1842
1843 /**
1844  * regulator_unregister_supply_alias - Remove device alias
1845  *
1846  * @dev: device that will be given as the regulator "consumer"
1847  * @id: Supply name or regulator ID
1848  *
1849  * Remove a lookup alias if one exists for id on dev.
1850  */
1851 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1852 {
1853         struct regulator_supply_alias *map;
1854
1855         map = regulator_find_supply_alias(dev, id);
1856         if (map) {
1857                 list_del(&map->list);
1858                 kfree(map);
1859         }
1860 }
1861 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1862
1863 /**
1864  * regulator_bulk_register_supply_alias - register multiple aliases
1865  *
1866  * @dev: device that will be given as the regulator "consumer"
1867  * @id: List of supply names or regulator IDs
1868  * @alias_dev: device that should be used to lookup the supply
1869  * @alias_id: List of supply names or regulator IDs that should be used to
1870  * lookup the supply
1871  * @num_id: Number of aliases to register
1872  *
1873  * @return 0 on success, an errno on failure.
1874  *
1875  * This helper function allows drivers to register several supply
1876  * aliases in one operation.  If any of the aliases cannot be
1877  * registered any aliases that were registered will be removed
1878  * before returning to the caller.
1879  */
1880 int regulator_bulk_register_supply_alias(struct device *dev,
1881                                          const char *const *id,
1882                                          struct device *alias_dev,
1883                                          const char *const *alias_id,
1884                                          int num_id)
1885 {
1886         int i;
1887         int ret;
1888
1889         for (i = 0; i < num_id; ++i) {
1890                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1891                                                       alias_id[i]);
1892                 if (ret < 0)
1893                         goto err;
1894         }
1895
1896         return 0;
1897
1898 err:
1899         dev_err(dev,
1900                 "Failed to create supply alias %s,%s -> %s,%s\n",
1901                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1902
1903         while (--i >= 0)
1904                 regulator_unregister_supply_alias(dev, id[i]);
1905
1906         return ret;
1907 }
1908 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1909
1910 /**
1911  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1912  *
1913  * @dev: device that will be given as the regulator "consumer"
1914  * @id: List of supply names or regulator IDs
1915  * @num_id: Number of aliases to unregister
1916  *
1917  * This helper function allows drivers to unregister several supply
1918  * aliases in one operation.
1919  */
1920 void regulator_bulk_unregister_supply_alias(struct device *dev,
1921                                             const char *const *id,
1922                                             int num_id)
1923 {
1924         int i;
1925
1926         for (i = 0; i < num_id; ++i)
1927                 regulator_unregister_supply_alias(dev, id[i]);
1928 }
1929 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1930
1931
1932 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1933 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1934                                 const struct regulator_config *config)
1935 {
1936         struct regulator_enable_gpio *pin;
1937         struct gpio_desc *gpiod;
1938         int ret;
1939
1940         gpiod = gpio_to_desc(config->ena_gpio);
1941
1942         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1943                 if (pin->gpiod == gpiod) {
1944                         rdev_dbg(rdev, "GPIO %d is already used\n",
1945                                 config->ena_gpio);
1946                         goto update_ena_gpio_to_rdev;
1947                 }
1948         }
1949
1950         ret = gpio_request_one(config->ena_gpio,
1951                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1952                                 rdev_get_name(rdev));
1953         if (ret)
1954                 return ret;
1955
1956         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1957         if (pin == NULL) {
1958                 gpio_free(config->ena_gpio);
1959                 return -ENOMEM;
1960         }
1961
1962         pin->gpiod = gpiod;
1963         pin->ena_gpio_invert = config->ena_gpio_invert;
1964         list_add(&pin->list, &regulator_ena_gpio_list);
1965
1966 update_ena_gpio_to_rdev:
1967         pin->request_count++;
1968         rdev->ena_pin = pin;
1969         return 0;
1970 }
1971
1972 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1973 {
1974         struct regulator_enable_gpio *pin, *n;
1975
1976         if (!rdev->ena_pin)
1977                 return;
1978
1979         /* Free the GPIO only in case of no use */
1980         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1981                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1982                         if (pin->request_count <= 1) {
1983                                 pin->request_count = 0;
1984                                 gpiod_put(pin->gpiod);
1985                                 list_del(&pin->list);
1986                                 kfree(pin);
1987                                 rdev->ena_pin = NULL;
1988                                 return;
1989                         } else {
1990                                 pin->request_count--;
1991                         }
1992                 }
1993         }
1994 }
1995
1996 /**
1997  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1998  * @rdev: regulator_dev structure
1999  * @enable: enable GPIO at initial use?
2000  *
2001  * GPIO is enabled in case of initial use. (enable_count is 0)
2002  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2003  */
2004 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2005 {
2006         struct regulator_enable_gpio *pin = rdev->ena_pin;
2007
2008         if (!pin)
2009                 return -EINVAL;
2010
2011         if (enable) {
2012                 /* Enable GPIO at initial use */
2013                 if (pin->enable_count == 0)
2014                         gpiod_set_value_cansleep(pin->gpiod,
2015                                                  !pin->ena_gpio_invert);
2016
2017                 pin->enable_count++;
2018         } else {
2019                 if (pin->enable_count > 1) {
2020                         pin->enable_count--;
2021                         return 0;
2022                 }
2023
2024                 /* Disable GPIO if not used */
2025                 if (pin->enable_count <= 1) {
2026                         gpiod_set_value_cansleep(pin->gpiod,
2027                                                  pin->ena_gpio_invert);
2028                         pin->enable_count = 0;
2029                 }
2030         }
2031
2032         return 0;
2033 }
2034
2035 /**
2036  * _regulator_enable_delay - a delay helper function
2037  * @delay: time to delay in microseconds
2038  *
2039  * Delay for the requested amount of time as per the guidelines in:
2040  *
2041  *     Documentation/timers/timers-howto.txt
2042  *
2043  * The assumption here is that regulators will never be enabled in
2044  * atomic context and therefore sleeping functions can be used.
2045  */
2046 static void _regulator_enable_delay(unsigned int delay)
2047 {
2048         unsigned int ms = delay / 1000;
2049         unsigned int us = delay % 1000;
2050
2051         if (ms > 0) {
2052                 /*
2053                  * For small enough values, handle super-millisecond
2054                  * delays in the usleep_range() call below.
2055                  */
2056                 if (ms < 20)
2057                         us += ms * 1000;
2058                 else
2059                         msleep(ms);
2060         }
2061
2062         /*
2063          * Give the scheduler some room to coalesce with any other
2064          * wakeup sources. For delays shorter than 10 us, don't even
2065          * bother setting up high-resolution timers and just busy-
2066          * loop.
2067          */
2068         if (us >= 10)
2069                 usleep_range(us, us + 100);
2070         else
2071                 udelay(us);
2072 }
2073
2074 static int _regulator_do_enable(struct regulator_dev *rdev)
2075 {
2076         int ret, delay;
2077
2078         /* Query before enabling in case configuration dependent.  */
2079         ret = _regulator_get_enable_time(rdev);
2080         if (ret >= 0) {
2081                 delay = ret;
2082         } else {
2083                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2084                 delay = 0;
2085         }
2086
2087         trace_regulator_enable(rdev_get_name(rdev));
2088
2089         if (rdev->desc->off_on_delay) {
2090                 /* if needed, keep a distance of off_on_delay from last time
2091                  * this regulator was disabled.
2092                  */
2093                 unsigned long start_jiffy = jiffies;
2094                 unsigned long intended, max_delay, remaining;
2095
2096                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2097                 intended = rdev->last_off_jiffy + max_delay;
2098
2099                 if (time_before(start_jiffy, intended)) {
2100                         /* calc remaining jiffies to deal with one-time
2101                          * timer wrapping.
2102                          * in case of multiple timer wrapping, either it can be
2103                          * detected by out-of-range remaining, or it cannot be
2104                          * detected and we gets a panelty of
2105                          * _regulator_enable_delay().
2106                          */
2107                         remaining = intended - start_jiffy;
2108                         if (remaining <= max_delay)
2109                                 _regulator_enable_delay(
2110                                                 jiffies_to_usecs(remaining));
2111                 }
2112         }
2113
2114         if (rdev->ena_pin) {
2115                 if (!rdev->ena_gpio_state) {
2116                         ret = regulator_ena_gpio_ctrl(rdev, true);
2117                         if (ret < 0)
2118                                 return ret;
2119                         rdev->ena_gpio_state = 1;
2120                 }
2121         } else if (rdev->desc->ops->enable) {
2122                 ret = rdev->desc->ops->enable(rdev);
2123                 if (ret < 0)
2124                         return ret;
2125         } else {
2126                 return -EINVAL;
2127         }
2128
2129         /* Allow the regulator to ramp; it would be useful to extend
2130          * this for bulk operations so that the regulators can ramp
2131          * together.  */
2132         trace_regulator_enable_delay(rdev_get_name(rdev));
2133
2134         _regulator_enable_delay(delay);
2135
2136         trace_regulator_enable_complete(rdev_get_name(rdev));
2137
2138         return 0;
2139 }
2140
2141 /* locks held by regulator_enable() */
2142 static int _regulator_enable(struct regulator_dev *rdev)
2143 {
2144         int ret;
2145
2146         lockdep_assert_held_once(&rdev->mutex);
2147
2148         /* check voltage and requested load before enabling */
2149         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2150                 drms_uA_update(rdev);
2151
2152         if (rdev->use_count == 0) {
2153                 /* The regulator may on if it's not switchable or left on */
2154                 ret = _regulator_is_enabled(rdev);
2155                 if (ret == -EINVAL || ret == 0) {
2156                         if (!regulator_ops_is_valid(rdev,
2157                                         REGULATOR_CHANGE_STATUS))
2158                                 return -EPERM;
2159
2160                         ret = _regulator_do_enable(rdev);
2161                         if (ret < 0)
2162                                 return ret;
2163
2164                 } else if (ret < 0) {
2165                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2166                         return ret;
2167                 }
2168                 /* Fallthrough on positive return values - already enabled */
2169         }
2170
2171         rdev->use_count++;
2172
2173         return 0;
2174 }
2175
2176 /**
2177  * regulator_enable - enable regulator output
2178  * @regulator: regulator source
2179  *
2180  * Request that the regulator be enabled with the regulator output at
2181  * the predefined voltage or current value.  Calls to regulator_enable()
2182  * must be balanced with calls to regulator_disable().
2183  *
2184  * NOTE: the output value can be set by other drivers, boot loader or may be
2185  * hardwired in the regulator.
2186  */
2187 int regulator_enable(struct regulator *regulator)
2188 {
2189         struct regulator_dev *rdev = regulator->rdev;
2190         int ret = 0;
2191
2192         if (regulator->always_on)
2193                 return 0;
2194
2195         if (rdev->supply) {
2196                 ret = regulator_enable(rdev->supply);
2197                 if (ret != 0)
2198                         return ret;
2199         }
2200
2201         mutex_lock(&rdev->mutex);
2202         ret = _regulator_enable(rdev);
2203         mutex_unlock(&rdev->mutex);
2204
2205         if (ret != 0 && rdev->supply)
2206                 regulator_disable(rdev->supply);
2207
2208         return ret;
2209 }
2210 EXPORT_SYMBOL_GPL(regulator_enable);
2211
2212 static int _regulator_do_disable(struct regulator_dev *rdev)
2213 {
2214         int ret;
2215
2216         trace_regulator_disable(rdev_get_name(rdev));
2217
2218         if (rdev->ena_pin) {
2219                 if (rdev->ena_gpio_state) {
2220                         ret = regulator_ena_gpio_ctrl(rdev, false);
2221                         if (ret < 0)
2222                                 return ret;
2223                         rdev->ena_gpio_state = 0;
2224                 }
2225
2226         } else if (rdev->desc->ops->disable) {
2227                 ret = rdev->desc->ops->disable(rdev);
2228                 if (ret != 0)
2229                         return ret;
2230         }
2231
2232         /* cares about last_off_jiffy only if off_on_delay is required by
2233          * device.
2234          */
2235         if (rdev->desc->off_on_delay)
2236                 rdev->last_off_jiffy = jiffies;
2237
2238         trace_regulator_disable_complete(rdev_get_name(rdev));
2239
2240         return 0;
2241 }
2242
2243 /* locks held by regulator_disable() */
2244 static int _regulator_disable(struct regulator_dev *rdev)
2245 {
2246         int ret = 0;
2247
2248         lockdep_assert_held_once(&rdev->mutex);
2249
2250         if (WARN(rdev->use_count <= 0,
2251                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2252                 return -EIO;
2253
2254         /* are we the last user and permitted to disable ? */
2255         if (rdev->use_count == 1 &&
2256             (rdev->constraints && !rdev->constraints->always_on)) {
2257
2258                 /* we are last user */
2259                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2260                         ret = _notifier_call_chain(rdev,
2261                                                    REGULATOR_EVENT_PRE_DISABLE,
2262                                                    NULL);
2263                         if (ret & NOTIFY_STOP_MASK)
2264                                 return -EINVAL;
2265
2266                         ret = _regulator_do_disable(rdev);
2267                         if (ret < 0) {
2268                                 rdev_err(rdev, "failed to disable\n");
2269                                 _notifier_call_chain(rdev,
2270                                                 REGULATOR_EVENT_ABORT_DISABLE,
2271                                                 NULL);
2272                                 return ret;
2273                         }
2274                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2275                                         NULL);
2276                 }
2277
2278                 rdev->use_count = 0;
2279         } else if (rdev->use_count > 1) {
2280                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2281                         drms_uA_update(rdev);
2282
2283                 rdev->use_count--;
2284         }
2285
2286         return ret;
2287 }
2288
2289 /**
2290  * regulator_disable - disable regulator output
2291  * @regulator: regulator source
2292  *
2293  * Disable the regulator output voltage or current.  Calls to
2294  * regulator_enable() must be balanced with calls to
2295  * regulator_disable().
2296  *
2297  * NOTE: this will only disable the regulator output if no other consumer
2298  * devices have it enabled, the regulator device supports disabling and
2299  * machine constraints permit this operation.
2300  */
2301 int regulator_disable(struct regulator *regulator)
2302 {
2303         struct regulator_dev *rdev = regulator->rdev;
2304         int ret = 0;
2305
2306         if (regulator->always_on)
2307                 return 0;
2308
2309         mutex_lock(&rdev->mutex);
2310         ret = _regulator_disable(rdev);
2311         mutex_unlock(&rdev->mutex);
2312
2313         if (ret == 0 && rdev->supply)
2314                 regulator_disable(rdev->supply);
2315
2316         return ret;
2317 }
2318 EXPORT_SYMBOL_GPL(regulator_disable);
2319
2320 /* locks held by regulator_force_disable() */
2321 static int _regulator_force_disable(struct regulator_dev *rdev)
2322 {
2323         int ret = 0;
2324
2325         lockdep_assert_held_once(&rdev->mutex);
2326
2327         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2328                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2329         if (ret & NOTIFY_STOP_MASK)
2330                 return -EINVAL;
2331
2332         ret = _regulator_do_disable(rdev);
2333         if (ret < 0) {
2334                 rdev_err(rdev, "failed to force disable\n");
2335                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2336                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2337                 return ret;
2338         }
2339
2340         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2341                         REGULATOR_EVENT_DISABLE, NULL);
2342
2343         return 0;
2344 }
2345
2346 /**
2347  * regulator_force_disable - force disable regulator output
2348  * @regulator: regulator source
2349  *
2350  * Forcibly disable the regulator output voltage or current.
2351  * NOTE: this *will* disable the regulator output even if other consumer
2352  * devices have it enabled. This should be used for situations when device
2353  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2354  */
2355 int regulator_force_disable(struct regulator *regulator)
2356 {
2357         struct regulator_dev *rdev = regulator->rdev;
2358         int ret;
2359
2360         mutex_lock(&rdev->mutex);
2361         regulator->uA_load = 0;
2362         ret = _regulator_force_disable(regulator->rdev);
2363         mutex_unlock(&rdev->mutex);
2364
2365         if (rdev->supply)
2366                 while (rdev->open_count--)
2367                         regulator_disable(rdev->supply);
2368
2369         return ret;
2370 }
2371 EXPORT_SYMBOL_GPL(regulator_force_disable);
2372
2373 static void regulator_disable_work(struct work_struct *work)
2374 {
2375         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2376                                                   disable_work.work);
2377         int count, i, ret;
2378
2379         mutex_lock(&rdev->mutex);
2380
2381         BUG_ON(!rdev->deferred_disables);
2382
2383         count = rdev->deferred_disables;
2384         rdev->deferred_disables = 0;
2385
2386         for (i = 0; i < count; i++) {
2387                 ret = _regulator_disable(rdev);
2388                 if (ret != 0)
2389                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2390         }
2391
2392         mutex_unlock(&rdev->mutex);
2393
2394         if (rdev->supply) {
2395                 for (i = 0; i < count; i++) {
2396                         ret = regulator_disable(rdev->supply);
2397                         if (ret != 0) {
2398                                 rdev_err(rdev,
2399                                          "Supply disable failed: %d\n", ret);
2400                         }
2401                 }
2402         }
2403 }
2404
2405 /**
2406  * regulator_disable_deferred - disable regulator output with delay
2407  * @regulator: regulator source
2408  * @ms: miliseconds until the regulator is disabled
2409  *
2410  * Execute regulator_disable() on the regulator after a delay.  This
2411  * is intended for use with devices that require some time to quiesce.
2412  *
2413  * NOTE: this will only disable the regulator output if no other consumer
2414  * devices have it enabled, the regulator device supports disabling and
2415  * machine constraints permit this operation.
2416  */
2417 int regulator_disable_deferred(struct regulator *regulator, int ms)
2418 {
2419         struct regulator_dev *rdev = regulator->rdev;
2420
2421         if (regulator->always_on)
2422                 return 0;
2423
2424         if (!ms)
2425                 return regulator_disable(regulator);
2426
2427         mutex_lock(&rdev->mutex);
2428         rdev->deferred_disables++;
2429         mutex_unlock(&rdev->mutex);
2430
2431         queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2432                            msecs_to_jiffies(ms));
2433         return 0;
2434 }
2435 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2436
2437 static int _regulator_is_enabled(struct regulator_dev *rdev)
2438 {
2439         /* A GPIO control always takes precedence */
2440         if (rdev->ena_pin)
2441                 return rdev->ena_gpio_state;
2442
2443         /* If we don't know then assume that the regulator is always on */
2444         if (!rdev->desc->ops->is_enabled)
2445                 return 1;
2446
2447         return rdev->desc->ops->is_enabled(rdev);
2448 }
2449
2450 static int _regulator_list_voltage(struct regulator *regulator,
2451                                     unsigned selector, int lock)
2452 {
2453         struct regulator_dev *rdev = regulator->rdev;
2454         const struct regulator_ops *ops = rdev->desc->ops;
2455         int ret;
2456
2457         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2458                 return rdev->desc->fixed_uV;
2459
2460         if (ops->list_voltage) {
2461                 if (selector >= rdev->desc->n_voltages)
2462                         return -EINVAL;
2463                 if (lock)
2464                         mutex_lock(&rdev->mutex);
2465                 ret = ops->list_voltage(rdev, selector);
2466                 if (lock)
2467                         mutex_unlock(&rdev->mutex);
2468         } else if (rdev->supply) {
2469                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2470         } else {
2471                 return -EINVAL;
2472         }
2473
2474         if (ret > 0) {
2475                 if (ret < rdev->constraints->min_uV)
2476                         ret = 0;
2477                 else if (ret > rdev->constraints->max_uV)
2478                         ret = 0;
2479         }
2480
2481         return ret;
2482 }
2483
2484 /**
2485  * regulator_is_enabled - is the regulator output enabled
2486  * @regulator: regulator source
2487  *
2488  * Returns positive if the regulator driver backing the source/client
2489  * has requested that the device be enabled, zero if it hasn't, else a
2490  * negative errno code.
2491  *
2492  * Note that the device backing this regulator handle can have multiple
2493  * users, so it might be enabled even if regulator_enable() was never
2494  * called for this particular source.
2495  */
2496 int regulator_is_enabled(struct regulator *regulator)
2497 {
2498         int ret;
2499
2500         if (regulator->always_on)
2501                 return 1;
2502
2503         mutex_lock(&regulator->rdev->mutex);
2504         ret = _regulator_is_enabled(regulator->rdev);
2505         mutex_unlock(&regulator->rdev->mutex);
2506
2507         return ret;
2508 }
2509 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2510
2511 /**
2512  * regulator_can_change_voltage - check if regulator can change voltage
2513  * @regulator: regulator source
2514  *
2515  * Returns positive if the regulator driver backing the source/client
2516  * can change its voltage, false otherwise. Useful for detecting fixed
2517  * or dummy regulators and disabling voltage change logic in the client
2518  * driver.
2519  */
2520 int regulator_can_change_voltage(struct regulator *regulator)
2521 {
2522         struct regulator_dev    *rdev = regulator->rdev;
2523
2524         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2525                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2526                         return 1;
2527
2528                 if (rdev->desc->continuous_voltage_range &&
2529                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2530                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2531                         return 1;
2532         }
2533
2534         return 0;
2535 }
2536 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2537
2538 /**
2539  * regulator_count_voltages - count regulator_list_voltage() selectors
2540  * @regulator: regulator source
2541  *
2542  * Returns number of selectors, or negative errno.  Selectors are
2543  * numbered starting at zero, and typically correspond to bitfields
2544  * in hardware registers.
2545  */
2546 int regulator_count_voltages(struct regulator *regulator)
2547 {
2548         struct regulator_dev    *rdev = regulator->rdev;
2549
2550         if (rdev->desc->n_voltages)
2551                 return rdev->desc->n_voltages;
2552
2553         if (!rdev->supply)
2554                 return -EINVAL;
2555
2556         return regulator_count_voltages(rdev->supply);
2557 }
2558 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2559
2560 /**
2561  * regulator_list_voltage - enumerate supported voltages
2562  * @regulator: regulator source
2563  * @selector: identify voltage to list
2564  * Context: can sleep
2565  *
2566  * Returns a voltage that can be passed to @regulator_set_voltage(),
2567  * zero if this selector code can't be used on this system, or a
2568  * negative errno.
2569  */
2570 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2571 {
2572         return _regulator_list_voltage(regulator, selector, 1);
2573 }
2574 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2575
2576 /**
2577  * regulator_get_regmap - get the regulator's register map
2578  * @regulator: regulator source
2579  *
2580  * Returns the register map for the given regulator, or an ERR_PTR value
2581  * if the regulator doesn't use regmap.
2582  */
2583 struct regmap *regulator_get_regmap(struct regulator *regulator)
2584 {
2585         struct regmap *map = regulator->rdev->regmap;
2586
2587         return map ? map : ERR_PTR(-EOPNOTSUPP);
2588 }
2589
2590 /**
2591  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2592  * @regulator: regulator source
2593  * @vsel_reg: voltage selector register, output parameter
2594  * @vsel_mask: mask for voltage selector bitfield, output parameter
2595  *
2596  * Returns the hardware register offset and bitmask used for setting the
2597  * regulator voltage. This might be useful when configuring voltage-scaling
2598  * hardware or firmware that can make I2C requests behind the kernel's back,
2599  * for example.
2600  *
2601  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2602  * and 0 is returned, otherwise a negative errno is returned.
2603  */
2604 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2605                                          unsigned *vsel_reg,
2606                                          unsigned *vsel_mask)
2607 {
2608         struct regulator_dev *rdev = regulator->rdev;
2609         const struct regulator_ops *ops = rdev->desc->ops;
2610
2611         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2612                 return -EOPNOTSUPP;
2613
2614          *vsel_reg = rdev->desc->vsel_reg;
2615          *vsel_mask = rdev->desc->vsel_mask;
2616
2617          return 0;
2618 }
2619 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2620
2621 /**
2622  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2623  * @regulator: regulator source
2624  * @selector: identify voltage to list
2625  *
2626  * Converts the selector to a hardware-specific voltage selector that can be
2627  * directly written to the regulator registers. The address of the voltage
2628  * register can be determined by calling @regulator_get_hardware_vsel_register.
2629  *
2630  * On error a negative errno is returned.
2631  */
2632 int regulator_list_hardware_vsel(struct regulator *regulator,
2633                                  unsigned selector)
2634 {
2635         struct regulator_dev *rdev = regulator->rdev;
2636         const struct regulator_ops *ops = rdev->desc->ops;
2637
2638         if (selector >= rdev->desc->n_voltages)
2639                 return -EINVAL;
2640         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2641                 return -EOPNOTSUPP;
2642
2643         return selector;
2644 }
2645 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2646
2647 /**
2648  * regulator_get_linear_step - return the voltage step size between VSEL values
2649  * @regulator: regulator source
2650  *
2651  * Returns the voltage step size between VSEL values for linear
2652  * regulators, or return 0 if the regulator isn't a linear regulator.
2653  */
2654 unsigned int regulator_get_linear_step(struct regulator *regulator)
2655 {
2656         struct regulator_dev *rdev = regulator->rdev;
2657
2658         return rdev->desc->uV_step;
2659 }
2660 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2661
2662 /**
2663  * regulator_is_supported_voltage - check if a voltage range can be supported
2664  *
2665  * @regulator: Regulator to check.
2666  * @min_uV: Minimum required voltage in uV.
2667  * @max_uV: Maximum required voltage in uV.
2668  *
2669  * Returns a boolean or a negative error code.
2670  */
2671 int regulator_is_supported_voltage(struct regulator *regulator,
2672                                    int min_uV, int max_uV)
2673 {
2674         struct regulator_dev *rdev = regulator->rdev;
2675         int i, voltages, ret;
2676
2677         /* If we can't change voltage check the current voltage */
2678         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2679                 ret = regulator_get_voltage(regulator);
2680                 if (ret >= 0)
2681                         return min_uV <= ret && ret <= max_uV;
2682                 else
2683                         return ret;
2684         }
2685
2686         /* Any voltage within constrains range is fine? */
2687         if (rdev->desc->continuous_voltage_range)
2688                 return min_uV >= rdev->constraints->min_uV &&
2689                                 max_uV <= rdev->constraints->max_uV;
2690
2691         ret = regulator_count_voltages(regulator);
2692         if (ret < 0)
2693                 return ret;
2694         voltages = ret;
2695
2696         for (i = 0; i < voltages; i++) {
2697                 ret = regulator_list_voltage(regulator, i);
2698
2699                 if (ret >= min_uV && ret <= max_uV)
2700                         return 1;
2701         }
2702
2703         return 0;
2704 }
2705 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2706
2707 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2708                                  int max_uV)
2709 {
2710         const struct regulator_desc *desc = rdev->desc;
2711
2712         if (desc->ops->map_voltage)
2713                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2714
2715         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2716                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2717
2718         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2719                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2720
2721         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2722 }
2723
2724 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2725                                        int min_uV, int max_uV,
2726                                        unsigned *selector)
2727 {
2728         struct pre_voltage_change_data data;
2729         int ret;
2730
2731         data.old_uV = _regulator_get_voltage(rdev);
2732         data.min_uV = min_uV;
2733         data.max_uV = max_uV;
2734         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2735                                    &data);
2736         if (ret & NOTIFY_STOP_MASK)
2737                 return -EINVAL;
2738
2739         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2740         if (ret >= 0)
2741                 return ret;
2742
2743         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2744                              (void *)data.old_uV);
2745
2746         return ret;
2747 }
2748
2749 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2750                                            int uV, unsigned selector)
2751 {
2752         struct pre_voltage_change_data data;
2753         int ret;
2754
2755         data.old_uV = _regulator_get_voltage(rdev);
2756         data.min_uV = uV;
2757         data.max_uV = uV;
2758         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2759                                    &data);
2760         if (ret & NOTIFY_STOP_MASK)
2761                 return -EINVAL;
2762
2763         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2764         if (ret >= 0)
2765                 return ret;
2766
2767         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2768                              (void *)data.old_uV);
2769
2770         return ret;
2771 }
2772
2773 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2774                                      int min_uV, int max_uV)
2775 {
2776         int ret;
2777         int delay = 0;
2778         int best_val = 0;
2779         unsigned int selector;
2780         int old_selector = -1;
2781
2782         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2783
2784         min_uV += rdev->constraints->uV_offset;
2785         max_uV += rdev->constraints->uV_offset;
2786
2787         /*
2788          * If we can't obtain the old selector there is not enough
2789          * info to call set_voltage_time_sel().
2790          */
2791         if (_regulator_is_enabled(rdev) &&
2792             rdev->desc->ops->set_voltage_time_sel &&
2793             rdev->desc->ops->get_voltage_sel) {
2794                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2795                 if (old_selector < 0)
2796                         return old_selector;
2797         }
2798
2799         if (rdev->desc->ops->set_voltage) {
2800                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2801                                                   &selector);
2802
2803                 if (ret >= 0) {
2804                         if (rdev->desc->ops->list_voltage)
2805                                 best_val = rdev->desc->ops->list_voltage(rdev,
2806                                                                          selector);
2807                         else
2808                                 best_val = _regulator_get_voltage(rdev);
2809                 }
2810
2811         } else if (rdev->desc->ops->set_voltage_sel) {
2812                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2813                 if (ret >= 0) {
2814                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2815                         if (min_uV <= best_val && max_uV >= best_val) {
2816                                 selector = ret;
2817                                 if (old_selector == selector)
2818                                         ret = 0;
2819                                 else
2820                                         ret = _regulator_call_set_voltage_sel(
2821                                                 rdev, best_val, selector);
2822                         } else {
2823                                 ret = -EINVAL;
2824                         }
2825                 }
2826         } else {
2827                 ret = -EINVAL;
2828         }
2829
2830         /* Call set_voltage_time_sel if successfully obtained old_selector */
2831         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2832                 && old_selector != selector) {
2833
2834                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2835                                                 old_selector, selector);
2836                 if (delay < 0) {
2837                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2838                                   delay);
2839                         delay = 0;
2840                 }
2841
2842                 /* Insert any necessary delays */
2843                 if (delay >= 1000) {
2844                         mdelay(delay / 1000);
2845                         udelay(delay % 1000);
2846                 } else if (delay) {
2847                         udelay(delay);
2848                 }
2849         }
2850
2851         if (ret == 0 && best_val >= 0) {
2852                 unsigned long data = best_val;
2853
2854                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2855                                      (void *)data);
2856         }
2857
2858         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2859
2860         return ret;
2861 }
2862
2863 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2864                                           int min_uV, int max_uV)
2865 {
2866         struct regulator_dev *rdev = regulator->rdev;
2867         int ret = 0;
2868         int old_min_uV, old_max_uV;
2869         int current_uV;
2870         int best_supply_uV = 0;
2871         int supply_change_uV = 0;
2872
2873         /* If we're setting the same range as last time the change
2874          * should be a noop (some cpufreq implementations use the same
2875          * voltage for multiple frequencies, for example).
2876          */
2877         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2878                 goto out;
2879
2880         /* If we're trying to set a range that overlaps the current voltage,
2881          * return successfully even though the regulator does not support
2882          * changing the voltage.
2883          */
2884         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2885                 current_uV = _regulator_get_voltage(rdev);
2886                 if (min_uV <= current_uV && current_uV <= max_uV) {
2887                         regulator->min_uV = min_uV;
2888                         regulator->max_uV = max_uV;
2889                         goto out;
2890                 }
2891         }
2892
2893         /* sanity check */
2894         if (!rdev->desc->ops->set_voltage &&
2895             !rdev->desc->ops->set_voltage_sel) {
2896                 ret = -EINVAL;
2897                 goto out;
2898         }
2899
2900         /* constraints check */
2901         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2902         if (ret < 0)
2903                 goto out;
2904
2905         /* restore original values in case of error */
2906         old_min_uV = regulator->min_uV;
2907         old_max_uV = regulator->max_uV;
2908         regulator->min_uV = min_uV;
2909         regulator->max_uV = max_uV;
2910
2911         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2912         if (ret < 0)
2913                 goto out2;
2914
2915         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2916                                 !rdev->desc->ops->get_voltage)) {
2917                 int current_supply_uV;
2918                 int selector;
2919
2920                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2921                 if (selector < 0) {
2922                         ret = selector;
2923                         goto out2;
2924                 }
2925
2926                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2927                 if (best_supply_uV < 0) {
2928                         ret = best_supply_uV;
2929                         goto out2;
2930                 }
2931
2932                 best_supply_uV += rdev->desc->min_dropout_uV;
2933
2934                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2935                 if (current_supply_uV < 0) {
2936                         ret = current_supply_uV;
2937                         goto out2;
2938                 }
2939
2940                 supply_change_uV = best_supply_uV - current_supply_uV;
2941         }
2942
2943         if (supply_change_uV > 0) {
2944                 ret = regulator_set_voltage_unlocked(rdev->supply,
2945                                 best_supply_uV, INT_MAX);
2946                 if (ret) {
2947                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2948                                         ret);
2949                         goto out2;
2950                 }
2951         }
2952
2953         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2954         if (ret < 0)
2955                 goto out2;
2956
2957         if (supply_change_uV < 0) {
2958                 ret = regulator_set_voltage_unlocked(rdev->supply,
2959                                 best_supply_uV, INT_MAX);
2960                 if (ret)
2961                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2962                                         ret);
2963                 /* No need to fail here */
2964                 ret = 0;
2965         }
2966
2967 out:
2968         return ret;
2969 out2:
2970         regulator->min_uV = old_min_uV;
2971         regulator->max_uV = old_max_uV;
2972
2973         return ret;
2974 }
2975
2976 /**
2977  * regulator_set_voltage - set regulator output voltage
2978  * @regulator: regulator source
2979  * @min_uV: Minimum required voltage in uV
2980  * @max_uV: Maximum acceptable voltage in uV
2981  *
2982  * Sets a voltage regulator to the desired output voltage. This can be set
2983  * during any regulator state. IOW, regulator can be disabled or enabled.
2984  *
2985  * If the regulator is enabled then the voltage will change to the new value
2986  * immediately otherwise if the regulator is disabled the regulator will
2987  * output at the new voltage when enabled.
2988  *
2989  * NOTE: If the regulator is shared between several devices then the lowest
2990  * request voltage that meets the system constraints will be used.
2991  * Regulator system constraints must be set for this regulator before
2992  * calling this function otherwise this call will fail.
2993  */
2994 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2995 {
2996         int ret = 0;
2997
2998         regulator_lock_supply(regulator->rdev);
2999
3000         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3001
3002         regulator_unlock_supply(regulator->rdev);
3003
3004         return ret;
3005 }
3006 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3007
3008 /**
3009  * regulator_set_voltage_time - get raise/fall time
3010  * @regulator: regulator source
3011  * @old_uV: starting voltage in microvolts
3012  * @new_uV: target voltage in microvolts
3013  *
3014  * Provided with the starting and ending voltage, this function attempts to
3015  * calculate the time in microseconds required to rise or fall to this new
3016  * voltage.
3017  */
3018 int regulator_set_voltage_time(struct regulator *regulator,
3019                                int old_uV, int new_uV)
3020 {
3021         struct regulator_dev *rdev = regulator->rdev;
3022         const struct regulator_ops *ops = rdev->desc->ops;
3023         int old_sel = -1;
3024         int new_sel = -1;
3025         int voltage;
3026         int i;
3027
3028         /* Currently requires operations to do this */
3029         if (!ops->list_voltage || !ops->set_voltage_time_sel
3030             || !rdev->desc->n_voltages)
3031                 return -EINVAL;
3032
3033         for (i = 0; i < rdev->desc->n_voltages; i++) {
3034                 /* We only look for exact voltage matches here */
3035                 voltage = regulator_list_voltage(regulator, i);
3036                 if (voltage < 0)
3037                         return -EINVAL;
3038                 if (voltage == 0)
3039                         continue;
3040                 if (voltage == old_uV)
3041                         old_sel = i;
3042                 if (voltage == new_uV)
3043                         new_sel = i;
3044         }
3045
3046         if (old_sel < 0 || new_sel < 0)
3047                 return -EINVAL;
3048
3049         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3050 }
3051 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3052
3053 /**
3054  * regulator_set_voltage_time_sel - get raise/fall time
3055  * @rdev: regulator source device
3056  * @old_selector: selector for starting voltage
3057  * @new_selector: selector for target voltage
3058  *
3059  * Provided with the starting and target voltage selectors, this function
3060  * returns time in microseconds required to rise or fall to this new voltage
3061  *
3062  * Drivers providing ramp_delay in regulation_constraints can use this as their
3063  * set_voltage_time_sel() operation.
3064  */
3065 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3066                                    unsigned int old_selector,
3067                                    unsigned int new_selector)
3068 {
3069         unsigned int ramp_delay = 0;
3070         int old_volt, new_volt;
3071
3072         if (rdev->constraints->ramp_delay)
3073                 ramp_delay = rdev->constraints->ramp_delay;
3074         else if (rdev->desc->ramp_delay)
3075                 ramp_delay = rdev->desc->ramp_delay;
3076
3077         if (ramp_delay == 0) {
3078                 rdev_warn(rdev, "ramp_delay not set\n");
3079                 return 0;
3080         }
3081
3082         /* sanity check */
3083         if (!rdev->desc->ops->list_voltage)
3084                 return -EINVAL;
3085
3086         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3087         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3088
3089         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3090 }
3091 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3092
3093 /**
3094  * regulator_sync_voltage - re-apply last regulator output voltage
3095  * @regulator: regulator source
3096  *
3097  * Re-apply the last configured voltage.  This is intended to be used
3098  * where some external control source the consumer is cooperating with
3099  * has caused the configured voltage to change.
3100  */
3101 int regulator_sync_voltage(struct regulator *regulator)
3102 {
3103         struct regulator_dev *rdev = regulator->rdev;
3104         int ret, min_uV, max_uV;
3105
3106         mutex_lock(&rdev->mutex);
3107
3108         if (!rdev->desc->ops->set_voltage &&
3109             !rdev->desc->ops->set_voltage_sel) {
3110                 ret = -EINVAL;
3111                 goto out;
3112         }
3113
3114         /* This is only going to work if we've had a voltage configured. */
3115         if (!regulator->min_uV && !regulator->max_uV) {
3116                 ret = -EINVAL;
3117                 goto out;
3118         }
3119
3120         min_uV = regulator->min_uV;
3121         max_uV = regulator->max_uV;
3122
3123         /* This should be a paranoia check... */
3124         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3125         if (ret < 0)
3126                 goto out;
3127
3128         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3129         if (ret < 0)
3130                 goto out;
3131
3132         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3133
3134 out:
3135         mutex_unlock(&rdev->mutex);
3136         return ret;
3137 }
3138 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3139
3140 static int _regulator_get_voltage(struct regulator_dev *rdev)
3141 {
3142         int sel, ret;
3143         bool bypassed;
3144
3145         if (rdev->desc->ops->get_bypass) {
3146                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3147                 if (ret < 0)
3148                         return ret;
3149                 if (bypassed) {
3150                         /* if bypassed the regulator must have a supply */
3151                         if (!rdev->supply) {
3152                                 rdev_err(rdev,
3153                                          "bypassed regulator has no supply!\n");
3154                                 return -EPROBE_DEFER;
3155                         }
3156
3157                         return _regulator_get_voltage(rdev->supply->rdev);
3158                 }
3159         }
3160
3161         if (rdev->desc->ops->get_voltage_sel) {
3162                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3163                 if (sel < 0)
3164                         return sel;
3165                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3166         } else if (rdev->desc->ops->get_voltage) {
3167                 ret = rdev->desc->ops->get_voltage(rdev);
3168         } else if (rdev->desc->ops->list_voltage) {
3169                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3170         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3171                 ret = rdev->desc->fixed_uV;
3172         } else if (rdev->supply) {
3173                 ret = _regulator_get_voltage(rdev->supply->rdev);
3174         } else {
3175                 return -EINVAL;
3176         }
3177
3178         if (ret < 0)
3179                 return ret;
3180         return ret - rdev->constraints->uV_offset;
3181 }
3182
3183 /**
3184  * regulator_get_voltage - get regulator output voltage
3185  * @regulator: regulator source
3186  *
3187  * This returns the current regulator voltage in uV.
3188  *
3189  * NOTE: If the regulator is disabled it will return the voltage value. This
3190  * function should not be used to determine regulator state.
3191  */
3192 int regulator_get_voltage(struct regulator *regulator)
3193 {
3194         int ret;
3195
3196         regulator_lock_supply(regulator->rdev);
3197
3198         ret = _regulator_get_voltage(regulator->rdev);
3199
3200         regulator_unlock_supply(regulator->rdev);
3201
3202         return ret;
3203 }
3204 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3205
3206 /**
3207  * regulator_set_current_limit - set regulator output current limit
3208  * @regulator: regulator source
3209  * @min_uA: Minimum supported current in uA
3210  * @max_uA: Maximum supported current in uA
3211  *
3212  * Sets current sink to the desired output current. This can be set during
3213  * any regulator state. IOW, regulator can be disabled or enabled.
3214  *
3215  * If the regulator is enabled then the current will change to the new value
3216  * immediately otherwise if the regulator is disabled the regulator will
3217  * output at the new current when enabled.
3218  *
3219  * NOTE: Regulator system constraints must be set for this regulator before
3220  * calling this function otherwise this call will fail.
3221  */
3222 int regulator_set_current_limit(struct regulator *regulator,
3223                                int min_uA, int max_uA)
3224 {
3225         struct regulator_dev *rdev = regulator->rdev;
3226         int ret;
3227
3228         mutex_lock(&rdev->mutex);
3229
3230         /* sanity check */
3231         if (!rdev->desc->ops->set_current_limit) {
3232                 ret = -EINVAL;
3233                 goto out;
3234         }
3235
3236         /* constraints check */
3237         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3238         if (ret < 0)
3239                 goto out;
3240
3241         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3242 out:
3243         mutex_unlock(&rdev->mutex);
3244         return ret;
3245 }
3246 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3247
3248 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3249 {
3250         int ret;
3251
3252         mutex_lock(&rdev->mutex);
3253
3254         /* sanity check */
3255         if (!rdev->desc->ops->get_current_limit) {
3256                 ret = -EINVAL;
3257                 goto out;
3258         }
3259
3260         ret = rdev->desc->ops->get_current_limit(rdev);
3261 out:
3262         mutex_unlock(&rdev->mutex);
3263         return ret;
3264 }
3265
3266 /**
3267  * regulator_get_current_limit - get regulator output current
3268  * @regulator: regulator source
3269  *
3270  * This returns the current supplied by the specified current sink in uA.
3271  *
3272  * NOTE: If the regulator is disabled it will return the current value. This
3273  * function should not be used to determine regulator state.
3274  */
3275 int regulator_get_current_limit(struct regulator *regulator)
3276 {
3277         return _regulator_get_current_limit(regulator->rdev);
3278 }
3279 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3280
3281 /**
3282  * regulator_set_mode - set regulator operating mode
3283  * @regulator: regulator source
3284  * @mode: operating mode - one of the REGULATOR_MODE constants
3285  *
3286  * Set regulator operating mode to increase regulator efficiency or improve
3287  * regulation performance.
3288  *
3289  * NOTE: Regulator system constraints must be set for this regulator before
3290  * calling this function otherwise this call will fail.
3291  */
3292 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3293 {
3294         struct regulator_dev *rdev = regulator->rdev;
3295         int ret;
3296         int regulator_curr_mode;
3297
3298         mutex_lock(&rdev->mutex);
3299
3300         /* sanity check */
3301         if (!rdev->desc->ops->set_mode) {
3302                 ret = -EINVAL;
3303                 goto out;
3304         }
3305
3306         /* return if the same mode is requested */
3307         if (rdev->desc->ops->get_mode) {
3308                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3309                 if (regulator_curr_mode == mode) {
3310                         ret = 0;
3311                         goto out;
3312                 }
3313         }
3314
3315         /* constraints check */
3316         ret = regulator_mode_constrain(rdev, &mode);
3317         if (ret < 0)
3318                 goto out;
3319
3320         ret = rdev->desc->ops->set_mode(rdev, mode);
3321 out:
3322         mutex_unlock(&rdev->mutex);
3323         return ret;
3324 }
3325 EXPORT_SYMBOL_GPL(regulator_set_mode);
3326
3327 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3328 {
3329         int ret;
3330
3331         mutex_lock(&rdev->mutex);
3332
3333         /* sanity check */
3334         if (!rdev->desc->ops->get_mode) {
3335                 ret = -EINVAL;
3336                 goto out;
3337         }
3338
3339         ret = rdev->desc->ops->get_mode(rdev);
3340 out:
3341         mutex_unlock(&rdev->mutex);
3342         return ret;
3343 }
3344
3345 /**
3346  * regulator_get_mode - get regulator operating mode
3347  * @regulator: regulator source
3348  *
3349  * Get the current regulator operating mode.
3350  */
3351 unsigned int regulator_get_mode(struct regulator *regulator)
3352 {
3353         return _regulator_get_mode(regulator->rdev);
3354 }
3355 EXPORT_SYMBOL_GPL(regulator_get_mode);
3356
3357 /**
3358  * regulator_set_load - set regulator load
3359  * @regulator: regulator source
3360  * @uA_load: load current
3361  *
3362  * Notifies the regulator core of a new device load. This is then used by
3363  * DRMS (if enabled by constraints) to set the most efficient regulator
3364  * operating mode for the new regulator loading.
3365  *
3366  * Consumer devices notify their supply regulator of the maximum power
3367  * they will require (can be taken from device datasheet in the power
3368  * consumption tables) when they change operational status and hence power
3369  * state. Examples of operational state changes that can affect power
3370  * consumption are :-
3371  *
3372  *    o Device is opened / closed.
3373  *    o Device I/O is about to begin or has just finished.
3374  *    o Device is idling in between work.
3375  *
3376  * This information is also exported via sysfs to userspace.
3377  *
3378  * DRMS will sum the total requested load on the regulator and change
3379  * to the most efficient operating mode if platform constraints allow.
3380  *
3381  * On error a negative errno is returned.
3382  */
3383 int regulator_set_load(struct regulator *regulator, int uA_load)
3384 {
3385         struct regulator_dev *rdev = regulator->rdev;
3386         int ret;
3387
3388         mutex_lock(&rdev->mutex);
3389         regulator->uA_load = uA_load;
3390         ret = drms_uA_update(rdev);
3391         mutex_unlock(&rdev->mutex);
3392
3393         return ret;
3394 }
3395 EXPORT_SYMBOL_GPL(regulator_set_load);
3396
3397 /**
3398  * regulator_allow_bypass - allow the regulator to go into bypass mode
3399  *
3400  * @regulator: Regulator to configure
3401  * @enable: enable or disable bypass mode
3402  *
3403  * Allow the regulator to go into bypass mode if all other consumers
3404  * for the regulator also enable bypass mode and the machine
3405  * constraints allow this.  Bypass mode means that the regulator is
3406  * simply passing the input directly to the output with no regulation.
3407  */
3408 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3409 {
3410         struct regulator_dev *rdev = regulator->rdev;
3411         int ret = 0;
3412
3413         if (!rdev->desc->ops->set_bypass)
3414                 return 0;
3415
3416         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3417                 return 0;
3418
3419         mutex_lock(&rdev->mutex);
3420
3421         if (enable && !regulator->bypass) {
3422                 rdev->bypass_count++;
3423
3424                 if (rdev->bypass_count == rdev->open_count) {
3425                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3426                         if (ret != 0)
3427                                 rdev->bypass_count--;
3428                 }
3429
3430         } else if (!enable && regulator->bypass) {
3431                 rdev->bypass_count--;
3432
3433                 if (rdev->bypass_count != rdev->open_count) {
3434                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3435                         if (ret != 0)
3436                                 rdev->bypass_count++;
3437                 }
3438         }
3439
3440         if (ret == 0)
3441                 regulator->bypass = enable;
3442
3443         mutex_unlock(&rdev->mutex);
3444
3445         return ret;
3446 }
3447 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3448
3449 /**
3450  * regulator_register_notifier - register regulator event notifier
3451  * @regulator: regulator source
3452  * @nb: notifier block
3453  *
3454  * Register notifier block to receive regulator events.
3455  */
3456 int regulator_register_notifier(struct regulator *regulator,
3457                               struct notifier_block *nb)
3458 {
3459         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3460                                                 nb);
3461 }
3462 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3463
3464 /**
3465  * regulator_unregister_notifier - unregister regulator event notifier
3466  * @regulator: regulator source
3467  * @nb: notifier block
3468  *
3469  * Unregister regulator event notifier block.
3470  */
3471 int regulator_unregister_notifier(struct regulator *regulator,
3472                                 struct notifier_block *nb)
3473 {
3474         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3475                                                   nb);
3476 }
3477 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3478
3479 /* notify regulator consumers and downstream regulator consumers.
3480  * Note mutex must be held by caller.
3481  */
3482 static int _notifier_call_chain(struct regulator_dev *rdev,
3483                                   unsigned long event, void *data)
3484 {
3485         /* call rdev chain first */
3486         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3487 }
3488
3489 /**
3490  * regulator_bulk_get - get multiple regulator consumers
3491  *
3492  * @dev:           Device to supply
3493  * @num_consumers: Number of consumers to register
3494  * @consumers:     Configuration of consumers; clients are stored here.
3495  *
3496  * @return 0 on success, an errno on failure.
3497  *
3498  * This helper function allows drivers to get several regulator
3499  * consumers in one operation.  If any of the regulators cannot be
3500  * acquired then any regulators that were allocated will be freed
3501  * before returning to the caller.
3502  */
3503 int regulator_bulk_get(struct device *dev, int num_consumers,
3504                        struct regulator_bulk_data *consumers)
3505 {
3506         int i;
3507         int ret;
3508
3509         for (i = 0; i < num_consumers; i++)
3510                 consumers[i].consumer = NULL;
3511
3512         for (i = 0; i < num_consumers; i++) {
3513                 consumers[i].consumer = _regulator_get(dev,
3514                                                        consumers[i].supply,
3515                                                        false,
3516                                                        !consumers[i].optional);
3517                 if (IS_ERR(consumers[i].consumer)) {
3518                         ret = PTR_ERR(consumers[i].consumer);
3519                         dev_err(dev, "Failed to get supply '%s': %d\n",
3520                                 consumers[i].supply, ret);
3521                         consumers[i].consumer = NULL;
3522                         goto err;
3523                 }
3524         }
3525
3526         return 0;
3527
3528 err:
3529         while (--i >= 0)
3530                 regulator_put(consumers[i].consumer);
3531
3532         return ret;
3533 }
3534 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3535
3536 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3537 {
3538         struct regulator_bulk_data *bulk = data;
3539
3540         bulk->ret = regulator_enable(bulk->consumer);
3541 }
3542
3543 /**
3544  * regulator_bulk_enable - enable multiple regulator consumers
3545  *
3546  * @num_consumers: Number of consumers
3547  * @consumers:     Consumer data; clients are stored here.
3548  * @return         0 on success, an errno on failure
3549  *
3550  * This convenience API allows consumers to enable multiple regulator
3551  * clients in a single API call.  If any consumers cannot be enabled
3552  * then any others that were enabled will be disabled again prior to
3553  * return.
3554  */
3555 int regulator_bulk_enable(int num_consumers,
3556                           struct regulator_bulk_data *consumers)
3557 {
3558         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3559         int i;
3560         int ret = 0;
3561
3562         for (i = 0; i < num_consumers; i++) {
3563                 if (consumers[i].consumer->always_on)
3564                         consumers[i].ret = 0;
3565                 else
3566                         async_schedule_domain(regulator_bulk_enable_async,
3567                                               &consumers[i], &async_domain);
3568         }
3569
3570         async_synchronize_full_domain(&async_domain);
3571
3572         /* If any consumer failed we need to unwind any that succeeded */
3573         for (i = 0; i < num_consumers; i++) {
3574                 if (consumers[i].ret != 0) {
3575                         ret = consumers[i].ret;
3576                         goto err;
3577                 }
3578         }
3579
3580         return 0;
3581
3582 err:
3583         for (i = 0; i < num_consumers; i++) {
3584                 if (consumers[i].ret < 0)
3585                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3586                                consumers[i].ret);
3587                 else
3588                         regulator_disable(consumers[i].consumer);
3589         }
3590
3591         return ret;
3592 }
3593 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3594
3595 /**
3596  * regulator_bulk_disable - disable multiple regulator consumers
3597  *
3598  * @num_consumers: Number of consumers
3599  * @consumers:     Consumer data; clients are stored here.
3600  * @return         0 on success, an errno on failure
3601  *
3602  * This convenience API allows consumers to disable multiple regulator
3603  * clients in a single API call.  If any consumers cannot be disabled
3604  * then any others that were disabled will be enabled again prior to
3605  * return.
3606  */
3607 int regulator_bulk_disable(int num_consumers,
3608                            struct regulator_bulk_data *consumers)
3609 {
3610         int i;
3611         int ret, r;
3612
3613         for (i = num_consumers - 1; i >= 0; --i) {
3614                 ret = regulator_disable(consumers[i].consumer);
3615                 if (ret != 0)
3616                         goto err;
3617         }
3618
3619         return 0;
3620
3621 err:
3622         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3623         for (++i; i < num_consumers; ++i) {
3624                 r = regulator_enable(consumers[i].consumer);
3625                 if (r != 0)
3626                         pr_err("Failed to reename %s: %d\n",
3627                                consumers[i].supply, r);
3628         }
3629
3630         return ret;
3631 }
3632 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3633
3634 /**
3635  * regulator_bulk_force_disable - force disable multiple regulator consumers
3636  *
3637  * @num_consumers: Number of consumers
3638  * @consumers:     Consumer data; clients are stored here.
3639  * @return         0 on success, an errno on failure
3640  *
3641  * This convenience API allows consumers to forcibly disable multiple regulator
3642  * clients in a single API call.
3643  * NOTE: This should be used for situations when device damage will
3644  * likely occur if the regulators are not disabled (e.g. over temp).
3645  * Although regulator_force_disable function call for some consumers can
3646  * return error numbers, the function is called for all consumers.
3647  */
3648 int regulator_bulk_force_disable(int num_consumers,
3649                            struct regulator_bulk_data *consumers)
3650 {
3651         int i;
3652         int ret;
3653
3654         for (i = 0; i < num_consumers; i++)
3655                 consumers[i].ret =
3656                             regulator_force_disable(consumers[i].consumer);
3657
3658         for (i = 0; i < num_consumers; i++) {
3659                 if (consumers[i].ret != 0) {
3660                         ret = consumers[i].ret;
3661                         goto out;
3662                 }
3663         }
3664
3665         return 0;
3666 out:
3667         return ret;
3668 }
3669 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3670
3671 /**
3672  * regulator_bulk_free - free multiple regulator consumers
3673  *
3674  * @num_consumers: Number of consumers
3675  * @consumers:     Consumer data; clients are stored here.
3676  *
3677  * This convenience API allows consumers to free multiple regulator
3678  * clients in a single API call.
3679  */
3680 void regulator_bulk_free(int num_consumers,
3681                          struct regulator_bulk_data *consumers)
3682 {
3683         int i;
3684
3685         for (i = 0; i < num_consumers; i++) {
3686                 regulator_put(consumers[i].consumer);
3687                 consumers[i].consumer = NULL;
3688         }
3689 }
3690 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3691
3692 /**
3693  * regulator_notifier_call_chain - call regulator event notifier
3694  * @rdev: regulator source
3695  * @event: notifier block
3696  * @data: callback-specific data.
3697  *
3698  * Called by regulator drivers to notify clients a regulator event has
3699  * occurred. We also notify regulator clients downstream.
3700  * Note lock must be held by caller.
3701  */
3702 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3703                                   unsigned long event, void *data)
3704 {
3705         lockdep_assert_held_once(&rdev->mutex);
3706
3707         _notifier_call_chain(rdev, event, data);
3708         return NOTIFY_DONE;
3709
3710 }
3711 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3712
3713 /**
3714  * regulator_mode_to_status - convert a regulator mode into a status
3715  *
3716  * @mode: Mode to convert
3717  *
3718  * Convert a regulator mode into a status.
3719  */
3720 int regulator_mode_to_status(unsigned int mode)
3721 {
3722         switch (mode) {
3723         case REGULATOR_MODE_FAST:
3724                 return REGULATOR_STATUS_FAST;
3725         case REGULATOR_MODE_NORMAL:
3726                 return REGULATOR_STATUS_NORMAL;
3727         case REGULATOR_MODE_IDLE:
3728                 return REGULATOR_STATUS_IDLE;
3729         case REGULATOR_MODE_STANDBY:
3730                 return REGULATOR_STATUS_STANDBY;
3731         default:
3732                 return REGULATOR_STATUS_UNDEFINED;
3733         }
3734 }
3735 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3736
3737 static struct attribute *regulator_dev_attrs[] = {
3738         &dev_attr_name.attr,
3739         &dev_attr_num_users.attr,
3740         &dev_attr_type.attr,
3741         &dev_attr_microvolts.attr,
3742         &dev_attr_microamps.attr,
3743         &dev_attr_opmode.attr,
3744         &dev_attr_state.attr,
3745         &dev_attr_status.attr,
3746         &dev_attr_bypass.attr,
3747         &dev_attr_requested_microamps.attr,
3748         &dev_attr_min_microvolts.attr,
3749         &dev_attr_max_microvolts.attr,
3750         &dev_attr_min_microamps.attr,
3751         &dev_attr_max_microamps.attr,
3752         &dev_attr_suspend_standby_state.attr,
3753         &dev_attr_suspend_mem_state.attr,
3754         &dev_attr_suspend_disk_state.attr,
3755         &dev_attr_suspend_standby_microvolts.attr,
3756         &dev_attr_suspend_mem_microvolts.attr,
3757         &dev_attr_suspend_disk_microvolts.attr,
3758         &dev_attr_suspend_standby_mode.attr,
3759         &dev_attr_suspend_mem_mode.attr,
3760         &dev_attr_suspend_disk_mode.attr,
3761         NULL
3762 };
3763
3764 /*
3765  * To avoid cluttering sysfs (and memory) with useless state, only
3766  * create attributes that can be meaningfully displayed.
3767  */
3768 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3769                                          struct attribute *attr, int idx)
3770 {
3771         struct device *dev = kobj_to_dev(kobj);
3772         struct regulator_dev *rdev = dev_to_rdev(dev);
3773         const struct regulator_ops *ops = rdev->desc->ops;
3774         umode_t mode = attr->mode;
3775
3776         /* these three are always present */
3777         if (attr == &dev_attr_name.attr ||
3778             attr == &dev_attr_num_users.attr ||
3779             attr == &dev_attr_type.attr)
3780                 return mode;
3781
3782         /* some attributes need specific methods to be displayed */
3783         if (attr == &dev_attr_microvolts.attr) {
3784                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3785                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3786                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3787                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3788                         return mode;
3789                 return 0;
3790         }
3791
3792         if (attr == &dev_attr_microamps.attr)
3793                 return ops->get_current_limit ? mode : 0;
3794
3795         if (attr == &dev_attr_opmode.attr)
3796                 return ops->get_mode ? mode : 0;
3797
3798         if (attr == &dev_attr_state.attr)
3799                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3800
3801         if (attr == &dev_attr_status.attr)
3802                 return ops->get_status ? mode : 0;
3803
3804         if (attr == &dev_attr_bypass.attr)
3805                 return ops->get_bypass ? mode : 0;
3806
3807         /* some attributes are type-specific */
3808         if (attr == &dev_attr_requested_microamps.attr)
3809                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3810
3811         /* constraints need specific supporting methods */
3812         if (attr == &dev_attr_min_microvolts.attr ||
3813             attr == &dev_attr_max_microvolts.attr)
3814                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3815
3816         if (attr == &dev_attr_min_microamps.attr ||
3817             attr == &dev_attr_max_microamps.attr)
3818                 return ops->set_current_limit ? mode : 0;
3819
3820         if (attr == &dev_attr_suspend_standby_state.attr ||
3821             attr == &dev_attr_suspend_mem_state.attr ||
3822             attr == &dev_attr_suspend_disk_state.attr)
3823                 return mode;
3824
3825         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3826             attr == &dev_attr_suspend_mem_microvolts.attr ||
3827             attr == &dev_attr_suspend_disk_microvolts.attr)
3828                 return ops->set_suspend_voltage ? mode : 0;
3829
3830         if (attr == &dev_attr_suspend_standby_mode.attr ||
3831             attr == &dev_attr_suspend_mem_mode.attr ||
3832             attr == &dev_attr_suspend_disk_mode.attr)
3833                 return ops->set_suspend_mode ? mode : 0;
3834
3835         return mode;
3836 }
3837
3838 static const struct attribute_group regulator_dev_group = {
3839         .attrs = regulator_dev_attrs,
3840         .is_visible = regulator_attr_is_visible,
3841 };
3842
3843 static const struct attribute_group *regulator_dev_groups[] = {
3844         &regulator_dev_group,
3845         NULL
3846 };
3847
3848 static void regulator_dev_release(struct device *dev)
3849 {
3850         struct regulator_dev *rdev = dev_get_drvdata(dev);
3851
3852         kfree(rdev->constraints);
3853         of_node_put(rdev->dev.of_node);
3854         kfree(rdev);
3855 }
3856
3857 static struct class regulator_class = {
3858         .name = "regulator",
3859         .dev_release = regulator_dev_release,
3860         .dev_groups = regulator_dev_groups,
3861 };
3862
3863 static void rdev_init_debugfs(struct regulator_dev *rdev)
3864 {
3865         struct device *parent = rdev->dev.parent;
3866         const char *rname = rdev_get_name(rdev);
3867         char name[NAME_MAX];
3868
3869         /* Avoid duplicate debugfs directory names */
3870         if (parent && rname == rdev->desc->name) {
3871                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3872                          rname);
3873                 rname = name;
3874         }
3875
3876         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3877         if (!rdev->debugfs) {
3878                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3879                 return;
3880         }
3881
3882         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3883                            &rdev->use_count);
3884         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3885                            &rdev->open_count);
3886         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3887                            &rdev->bypass_count);
3888 }
3889
3890 static int regulator_register_resolve_supply(struct device *dev, void *data)
3891 {
3892         struct regulator_dev *rdev = dev_to_rdev(dev);
3893
3894         if (regulator_resolve_supply(rdev))
3895                 rdev_dbg(rdev, "unable to resolve supply\n");
3896
3897         return 0;
3898 }
3899
3900 /**
3901  * regulator_register - register regulator
3902  * @regulator_desc: regulator to register
3903  * @cfg: runtime configuration for regulator
3904  *
3905  * Called by regulator drivers to register a regulator.
3906  * Returns a valid pointer to struct regulator_dev on success
3907  * or an ERR_PTR() on error.
3908  */
3909 struct regulator_dev *
3910 regulator_register(const struct regulator_desc *regulator_desc,
3911                    const struct regulator_config *cfg)
3912 {
3913         const struct regulation_constraints *constraints = NULL;
3914         const struct regulator_init_data *init_data;
3915         struct regulator_config *config = NULL;
3916         static atomic_t regulator_no = ATOMIC_INIT(-1);
3917         struct regulator_dev *rdev;
3918         struct device *dev;
3919         int ret, i;
3920
3921         if (regulator_desc == NULL || cfg == NULL)
3922                 return ERR_PTR(-EINVAL);
3923
3924         dev = cfg->dev;
3925         WARN_ON(!dev);
3926
3927         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3928                 return ERR_PTR(-EINVAL);
3929
3930         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3931             regulator_desc->type != REGULATOR_CURRENT)
3932                 return ERR_PTR(-EINVAL);
3933
3934         /* Only one of each should be implemented */
3935         WARN_ON(regulator_desc->ops->get_voltage &&
3936                 regulator_desc->ops->get_voltage_sel);
3937         WARN_ON(regulator_desc->ops->set_voltage &&
3938                 regulator_desc->ops->set_voltage_sel);
3939
3940         /* If we're using selectors we must implement list_voltage. */
3941         if (regulator_desc->ops->get_voltage_sel &&
3942             !regulator_desc->ops->list_voltage) {
3943                 return ERR_PTR(-EINVAL);
3944         }
3945         if (regulator_desc->ops->set_voltage_sel &&
3946             !regulator_desc->ops->list_voltage) {
3947                 return ERR_PTR(-EINVAL);
3948         }
3949
3950         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3951         if (rdev == NULL)
3952                 return ERR_PTR(-ENOMEM);
3953
3954         /*
3955          * Duplicate the config so the driver could override it after
3956          * parsing init data.
3957          */
3958         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3959         if (config == NULL) {
3960                 kfree(rdev);
3961                 return ERR_PTR(-ENOMEM);
3962         }
3963
3964         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3965                                                &rdev->dev.of_node);
3966         if (!init_data) {
3967                 init_data = config->init_data;
3968                 rdev->dev.of_node = of_node_get(config->of_node);
3969         }
3970
3971         mutex_init(&rdev->mutex);
3972         rdev->reg_data = config->driver_data;
3973         rdev->owner = regulator_desc->owner;
3974         rdev->desc = regulator_desc;
3975         if (config->regmap)
3976                 rdev->regmap = config->regmap;
3977         else if (dev_get_regmap(dev, NULL))
3978                 rdev->regmap = dev_get_regmap(dev, NULL);
3979         else if (dev->parent)
3980                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3981         INIT_LIST_HEAD(&rdev->consumer_list);
3982         INIT_LIST_HEAD(&rdev->list);
3983         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3984         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3985
3986         /* preform any regulator specific init */
3987         if (init_data && init_data->regulator_init) {
3988                 ret = init_data->regulator_init(rdev->reg_data);
3989                 if (ret < 0)
3990                         goto clean;
3991         }
3992
3993         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3994             gpio_is_valid(config->ena_gpio)) {
3995                 mutex_lock(&regulator_list_mutex);
3996                 ret = regulator_ena_gpio_request(rdev, config);
3997                 mutex_unlock(&regulator_list_mutex);
3998                 if (ret != 0) {
3999                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4000                                  config->ena_gpio, ret);
4001                         goto clean;
4002                 }
4003         }
4004
4005         /* register with sysfs */
4006         rdev->dev.class = &regulator_class;
4007         rdev->dev.parent = dev;
4008         dev_set_name(&rdev->dev, "regulator.%lu",
4009                     (unsigned long) atomic_inc_return(&regulator_no));
4010
4011         /* set regulator constraints */
4012         if (init_data)
4013                 constraints = &init_data->constraints;
4014
4015         if (init_data && init_data->supply_regulator)
4016                 rdev->supply_name = init_data->supply_regulator;
4017         else if (regulator_desc->supply_name)
4018                 rdev->supply_name = regulator_desc->supply_name;
4019
4020         /*
4021          * Attempt to resolve the regulator supply, if specified,
4022          * but don't return an error if we fail because we will try
4023          * to resolve it again later as more regulators are added.
4024          */
4025         if (regulator_resolve_supply(rdev))
4026                 rdev_dbg(rdev, "unable to resolve supply\n");
4027
4028         ret = set_machine_constraints(rdev, constraints);
4029         if (ret < 0)
4030                 goto wash;
4031
4032         /* add consumers devices */
4033         if (init_data) {
4034                 mutex_lock(&regulator_list_mutex);
4035                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4036                         ret = set_consumer_device_supply(rdev,
4037                                 init_data->consumer_supplies[i].dev_name,
4038                                 init_data->consumer_supplies[i].supply);
4039                         if (ret < 0) {
4040                                 mutex_unlock(&regulator_list_mutex);
4041                                 dev_err(dev, "Failed to set supply %s\n",
4042                                         init_data->consumer_supplies[i].supply);
4043                                 goto unset_supplies;
4044                         }
4045                 }
4046                 mutex_unlock(&regulator_list_mutex);
4047         }
4048
4049         ret = device_register(&rdev->dev);
4050         if (ret != 0) {
4051                 put_device(&rdev->dev);
4052                 goto unset_supplies;
4053         }
4054
4055         dev_set_drvdata(&rdev->dev, rdev);
4056         rdev_init_debugfs(rdev);
4057
4058         /* try to resolve regulators supply since a new one was registered */
4059         class_for_each_device(&regulator_class, NULL, NULL,
4060                               regulator_register_resolve_supply);
4061         kfree(config);
4062         return rdev;
4063
4064 unset_supplies:
4065         mutex_lock(&regulator_list_mutex);
4066         unset_regulator_supplies(rdev);
4067         mutex_unlock(&regulator_list_mutex);
4068 wash:
4069         kfree(rdev->constraints);
4070         mutex_lock(&regulator_list_mutex);
4071         regulator_ena_gpio_free(rdev);
4072         mutex_unlock(&regulator_list_mutex);
4073 clean:
4074         kfree(rdev);
4075         kfree(config);
4076         return ERR_PTR(ret);
4077 }
4078 EXPORT_SYMBOL_GPL(regulator_register);
4079
4080 /**
4081  * regulator_unregister - unregister regulator
4082  * @rdev: regulator to unregister
4083  *
4084  * Called by regulator drivers to unregister a regulator.
4085  */
4086 void regulator_unregister(struct regulator_dev *rdev)
4087 {
4088         if (rdev == NULL)
4089                 return;
4090
4091         if (rdev->supply) {
4092                 while (rdev->use_count--)
4093                         regulator_disable(rdev->supply);
4094                 regulator_put(rdev->supply);
4095         }
4096         mutex_lock(&regulator_list_mutex);
4097         debugfs_remove_recursive(rdev->debugfs);
4098         flush_work(&rdev->disable_work.work);
4099         WARN_ON(rdev->open_count);
4100         unset_regulator_supplies(rdev);
4101         list_del(&rdev->list);
4102         regulator_ena_gpio_free(rdev);
4103         mutex_unlock(&regulator_list_mutex);
4104         device_unregister(&rdev->dev);
4105 }
4106 EXPORT_SYMBOL_GPL(regulator_unregister);
4107
4108 static int _regulator_suspend_prepare(struct device *dev, void *data)
4109 {
4110         struct regulator_dev *rdev = dev_to_rdev(dev);
4111         const suspend_state_t *state = data;
4112         int ret;
4113
4114         mutex_lock(&rdev->mutex);
4115         ret = suspend_prepare(rdev, *state);
4116         mutex_unlock(&rdev->mutex);
4117
4118         return ret;
4119 }
4120
4121 /**
4122  * regulator_suspend_prepare - prepare regulators for system wide suspend
4123  * @state: system suspend state
4124  *
4125  * Configure each regulator with it's suspend operating parameters for state.
4126  * This will usually be called by machine suspend code prior to supending.
4127  */
4128 int regulator_suspend_prepare(suspend_state_t state)
4129 {
4130         /* ON is handled by regulator active state */
4131         if (state == PM_SUSPEND_ON)
4132                 return -EINVAL;
4133
4134         return class_for_each_device(&regulator_class, NULL, &state,
4135                                      _regulator_suspend_prepare);
4136 }
4137 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4138
4139 static int _regulator_suspend_finish(struct device *dev, void *data)
4140 {
4141         struct regulator_dev *rdev = dev_to_rdev(dev);
4142         int ret;
4143
4144         mutex_lock(&rdev->mutex);
4145         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4146                 if (!_regulator_is_enabled(rdev)) {
4147                         ret = _regulator_do_enable(rdev);
4148                         if (ret)
4149                                 dev_err(dev,
4150                                         "Failed to resume regulator %d\n",
4151                                         ret);
4152                 }
4153         } else {
4154                 if (!have_full_constraints())
4155                         goto unlock;
4156                 if (!_regulator_is_enabled(rdev))
4157                         goto unlock;
4158
4159                 ret = _regulator_do_disable(rdev);
4160                 if (ret)
4161                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4162         }
4163 unlock:
4164         mutex_unlock(&rdev->mutex);
4165
4166         /* Keep processing regulators in spite of any errors */
4167         return 0;
4168 }
4169
4170 /**
4171  * regulator_suspend_finish - resume regulators from system wide suspend
4172  *
4173  * Turn on regulators that might be turned off by regulator_suspend_prepare
4174  * and that should be turned on according to the regulators properties.
4175  */
4176 int regulator_suspend_finish(void)
4177 {
4178         return class_for_each_device(&regulator_class, NULL, NULL,
4179                                      _regulator_suspend_finish);
4180 }
4181 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4182
4183 /**
4184  * regulator_has_full_constraints - the system has fully specified constraints
4185  *
4186  * Calling this function will cause the regulator API to disable all
4187  * regulators which have a zero use count and don't have an always_on
4188  * constraint in a late_initcall.
4189  *
4190  * The intention is that this will become the default behaviour in a
4191  * future kernel release so users are encouraged to use this facility
4192  * now.
4193  */
4194 void regulator_has_full_constraints(void)
4195 {
4196         has_full_constraints = 1;
4197 }
4198 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4199
4200 /**
4201  * rdev_get_drvdata - get rdev regulator driver data
4202  * @rdev: regulator
4203  *
4204  * Get rdev regulator driver private data. This call can be used in the
4205  * regulator driver context.
4206  */
4207 void *rdev_get_drvdata(struct regulator_dev *rdev)
4208 {
4209         return rdev->reg_data;
4210 }
4211 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4212
4213 /**
4214  * regulator_get_drvdata - get regulator driver data
4215  * @regulator: regulator
4216  *
4217  * Get regulator driver private data. This call can be used in the consumer
4218  * driver context when non API regulator specific functions need to be called.
4219  */
4220 void *regulator_get_drvdata(struct regulator *regulator)
4221 {
4222         return regulator->rdev->reg_data;
4223 }
4224 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4225
4226 /**
4227  * regulator_set_drvdata - set regulator driver data
4228  * @regulator: regulator
4229  * @data: data
4230  */
4231 void regulator_set_drvdata(struct regulator *regulator, void *data)
4232 {
4233         regulator->rdev->reg_data = data;
4234 }
4235 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4236
4237 /**
4238  * regulator_get_id - get regulator ID
4239  * @rdev: regulator
4240  */
4241 int rdev_get_id(struct regulator_dev *rdev)
4242 {
4243         return rdev->desc->id;
4244 }
4245 EXPORT_SYMBOL_GPL(rdev_get_id);
4246
4247 struct device *rdev_get_dev(struct regulator_dev *rdev)
4248 {
4249         return &rdev->dev;
4250 }
4251 EXPORT_SYMBOL_GPL(rdev_get_dev);
4252
4253 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4254 {
4255         return reg_init_data->driver_data;
4256 }
4257 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4258
4259 #ifdef CONFIG_DEBUG_FS
4260 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4261                                     size_t count, loff_t *ppos)
4262 {
4263         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4264         ssize_t len, ret = 0;
4265         struct regulator_map *map;
4266
4267         if (!buf)
4268                 return -ENOMEM;
4269
4270         list_for_each_entry(map, &regulator_map_list, list) {
4271                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4272                                "%s -> %s.%s\n",
4273                                rdev_get_name(map->regulator), map->dev_name,
4274                                map->supply);
4275                 if (len >= 0)
4276                         ret += len;
4277                 if (ret > PAGE_SIZE) {
4278                         ret = PAGE_SIZE;
4279                         break;
4280                 }
4281         }
4282
4283         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4284
4285         kfree(buf);
4286
4287         return ret;
4288 }
4289 #endif
4290
4291 static const struct file_operations supply_map_fops = {
4292 #ifdef CONFIG_DEBUG_FS
4293         .read = supply_map_read_file,
4294         .llseek = default_llseek,
4295 #endif
4296 };
4297
4298 #ifdef CONFIG_DEBUG_FS
4299 struct summary_data {
4300         struct seq_file *s;
4301         struct regulator_dev *parent;
4302         int level;
4303 };
4304
4305 static void regulator_summary_show_subtree(struct seq_file *s,
4306                                            struct regulator_dev *rdev,
4307                                            int level);
4308
4309 static int regulator_summary_show_children(struct device *dev, void *data)
4310 {
4311         struct regulator_dev *rdev = dev_to_rdev(dev);
4312         struct summary_data *summary_data = data;
4313
4314         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4315                 regulator_summary_show_subtree(summary_data->s, rdev,
4316                                                summary_data->level + 1);
4317
4318         return 0;
4319 }
4320
4321 static void regulator_summary_show_subtree(struct seq_file *s,
4322                                            struct regulator_dev *rdev,
4323                                            int level)
4324 {
4325         struct regulation_constraints *c;
4326         struct regulator *consumer;
4327         struct summary_data summary_data;
4328
4329         if (!rdev)
4330                 return;
4331
4332         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4333                    level * 3 + 1, "",
4334                    30 - level * 3, rdev_get_name(rdev),
4335                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4336
4337         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4338         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4339
4340         c = rdev->constraints;
4341         if (c) {
4342                 switch (rdev->desc->type) {
4343                 case REGULATOR_VOLTAGE:
4344                         seq_printf(s, "%5dmV %5dmV ",
4345                                    c->min_uV / 1000, c->max_uV / 1000);
4346                         break;
4347                 case REGULATOR_CURRENT:
4348                         seq_printf(s, "%5dmA %5dmA ",
4349                                    c->min_uA / 1000, c->max_uA / 1000);
4350                         break;
4351                 }
4352         }
4353
4354         seq_puts(s, "\n");
4355
4356         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4357                 if (consumer->dev && consumer->dev->class == &regulator_class)
4358                         continue;
4359
4360                 seq_printf(s, "%*s%-*s ",
4361                            (level + 1) * 3 + 1, "",
4362                            30 - (level + 1) * 3,
4363                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
4364
4365                 switch (rdev->desc->type) {
4366                 case REGULATOR_VOLTAGE:
4367                         seq_printf(s, "%37dmV %5dmV",
4368                                    consumer->min_uV / 1000,
4369                                    consumer->max_uV / 1000);
4370                         break;
4371                 case REGULATOR_CURRENT:
4372                         break;
4373                 }
4374
4375                 seq_puts(s, "\n");
4376         }
4377
4378         summary_data.s = s;
4379         summary_data.level = level;
4380         summary_data.parent = rdev;
4381
4382         class_for_each_device(&regulator_class, NULL, &summary_data,
4383                               regulator_summary_show_children);
4384 }
4385
4386 static int regulator_summary_show_roots(struct device *dev, void *data)
4387 {
4388         struct regulator_dev *rdev = dev_to_rdev(dev);
4389         struct seq_file *s = data;
4390
4391         if (!rdev->supply)
4392                 regulator_summary_show_subtree(s, rdev, 0);
4393
4394         return 0;
4395 }
4396
4397 static int regulator_summary_show(struct seq_file *s, void *data)
4398 {
4399         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4400         seq_puts(s, "-------------------------------------------------------------------------------\n");
4401
4402         class_for_each_device(&regulator_class, NULL, s,
4403                               regulator_summary_show_roots);
4404
4405         return 0;
4406 }
4407
4408 static int regulator_summary_open(struct inode *inode, struct file *file)
4409 {
4410         return single_open(file, regulator_summary_show, inode->i_private);
4411 }
4412 #endif
4413
4414 static const struct file_operations regulator_summary_fops = {
4415 #ifdef CONFIG_DEBUG_FS
4416         .open           = regulator_summary_open,
4417         .read           = seq_read,
4418         .llseek         = seq_lseek,
4419         .release        = single_release,
4420 #endif
4421 };
4422
4423 static int __init regulator_init(void)
4424 {
4425         int ret;
4426
4427         ret = class_register(&regulator_class);
4428
4429         debugfs_root = debugfs_create_dir("regulator", NULL);
4430         if (!debugfs_root)
4431                 pr_warn("regulator: Failed to create debugfs directory\n");
4432
4433         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4434                             &supply_map_fops);
4435
4436         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4437                             NULL, &regulator_summary_fops);
4438
4439         regulator_dummy_init();
4440
4441         return ret;
4442 }
4443
4444 /* init early to allow our consumers to complete system booting */
4445 core_initcall(regulator_init);
4446
4447 static int __init regulator_late_cleanup(struct device *dev, void *data)
4448 {
4449         struct regulator_dev *rdev = dev_to_rdev(dev);
4450         const struct regulator_ops *ops = rdev->desc->ops;
4451         struct regulation_constraints *c = rdev->constraints;
4452         int enabled, ret;
4453
4454         if (c && c->always_on)
4455                 return 0;
4456
4457         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4458                 return 0;
4459
4460         mutex_lock(&rdev->mutex);
4461
4462         if (rdev->use_count)
4463                 goto unlock;
4464
4465         /* If we can't read the status assume it's on. */
4466         if (ops->is_enabled)
4467                 enabled = ops->is_enabled(rdev);
4468         else
4469                 enabled = 1;
4470
4471         if (!enabled)
4472                 goto unlock;
4473
4474         if (have_full_constraints()) {
4475                 /* We log since this may kill the system if it goes
4476                  * wrong. */
4477                 rdev_info(rdev, "disabling\n");
4478                 ret = _regulator_do_disable(rdev);
4479                 if (ret != 0)
4480                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4481         } else {
4482                 /* The intention is that in future we will
4483                  * assume that full constraints are provided
4484                  * so warn even if we aren't going to do
4485                  * anything here.
4486                  */
4487                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4488         }
4489
4490 unlock:
4491         mutex_unlock(&rdev->mutex);
4492
4493         return 0;
4494 }
4495
4496 static int __init regulator_init_complete(void)
4497 {
4498         /*
4499          * Since DT doesn't provide an idiomatic mechanism for
4500          * enabling full constraints and since it's much more natural
4501          * with DT to provide them just assume that a DT enabled
4502          * system has full constraints.
4503          */
4504         if (of_have_populated_dt())
4505                 has_full_constraints = true;
4506
4507         /* If we have a full configuration then disable any regulators
4508          * we have permission to change the status for and which are
4509          * not in use or always_on.  This is effectively the default
4510          * for DT and ACPI as they have full constraints.
4511          */
4512         class_for_each_device(&regulator_class, NULL, NULL,
4513                               regulator_late_cleanup);
4514
4515         return 0;
4516 }
4517 late_initcall_sync(regulator_init_complete);