fd0e2a4644e74896e87c2947cc8d512939a83b27
[firefly-linux-kernel-4.4.55.git] / drivers / power / rk818_battery.c
1 /*
2  * rk818 battery driver
3  *
4  * Copyright (C) 2016 Rockchip Electronics Co., Ltd
5  * chenjh <chenjh@rock-chips.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  */
17
18 #include <linux/delay.h>
19 #include <linux/fb.h>
20 #include <linux/gpio.h>
21 #include <linux/iio/consumer.h>
22 #include <linux/iio/iio.h>
23 #include <linux/irq.h>
24 #include <linux/irqdomain.h>
25 #include <linux/jiffies.h>
26 #include <linux/mfd/rk808.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/of_gpio.h>
30 #include <linux/platform_device.h>
31 #include <linux/power_supply.h>
32 #include <linux/power/rk_usbbc.h>
33 #include <linux/regmap.h>
34 #include <linux/rtc.h>
35 #include <linux/timer.h>
36 #include <linux/wakelock.h>
37 #include <linux/workqueue.h>
38 #include "rk818_battery.h"
39
40 static int dbg_enable = 0;
41 module_param_named(dbg_level, dbg_enable, int, 0644);
42
43 #define DBG(args...) \
44         do { \
45                 if (dbg_enable) { \
46                         pr_info(args); \
47                 } \
48         } while (0)
49
50 #define BAT_INFO(fmt, args...) pr_info("rk818-bat: "fmt, ##args)
51
52 /* default param */
53 #define DEFAULT_BAT_RES                 135
54 #define DEFAULT_SLP_ENTER_CUR           300
55 #define DEFAULT_SLP_EXIT_CUR            300
56 #define DEFAULT_SLP_FILTER_CUR          100
57 #define DEFAULT_PWROFF_VOL_THRESD       3400
58 #define DEFAULT_MONITOR_SEC             5
59 #define DEFAULT_ALGR_VOL_THRESD1        3850
60 #define DEFAULT_ALGR_VOL_THRESD2        3950
61 #define DEFAULT_MAX_SOC_OFFSET          60
62 #define DEFAULT_FB_TEMP                 TEMP_105C
63 #define DEFAULT_ZERO_RESERVE_DSOC       10
64 #define DEFAULT_POFFSET                 42
65 #define DEFAULT_COFFSET                 0x832
66 #define DEFAULT_SAMPLE_RES              20
67 #define DEFAULT_ENERGY_MODE             0
68 #define INVALID_COFFSET_MIN             0x780
69 #define INVALID_COFFSET_MAX             0x980
70 #define INVALID_VOL_THRESD              2500
71
72 /* sample resistor and division */
73 #define SAMPLE_RES_10MR                 10
74 #define SAMPLE_RES_20MR                 20
75 #define SAMPLE_RES_DIV1                 1
76 #define SAMPLE_RES_DIV2                 2
77
78 /* virtual params */
79 #define VIRTUAL_CURRENT                 1000
80 #define VIRTUAL_VOLTAGE                 3888
81 #define VIRTUAL_SOC                     66
82 #define VIRTUAL_PRESET                  1
83 #define VIRTUAL_TEMPERATURE             188
84 #define VIRTUAL_STATUS                  POWER_SUPPLY_STATUS_CHARGING
85
86 /* charge */
87 #define FINISH_CHRG_CUR1                        1000
88 #define FINISH_CHRG_CUR2                1500
89 #define FINISH_MAX_SOC_DELAY            20
90 #define TERM_CHRG_DSOC                  88
91 #define TERM_CHRG_CURR                  600
92 #define TERM_CHRG_K                     650
93 #define SIMULATE_CHRG_INTV              8
94 #define SIMULATE_CHRG_CURR              400
95 #define SIMULATE_CHRG_K                 1500
96 #define FULL_CHRG_K                     400
97
98 /* zero algorithm */
99 #define PWROFF_THRESD                   3400
100 #define MIN_ZERO_DSOC_ACCURACY          10      /*0.01%*/
101 #define MIN_ZERO_OVERCNT                100
102 #define MIN_ACCURACY                    1
103 #define DEF_PWRPATH_RES                 50
104 #define WAIT_DSOC_DROP_SEC              15
105 #define WAIT_SHTD_DROP_SEC              30
106 #define ZERO_GAP_XSOC1                  10
107 #define ZERO_GAP_XSOC2                  5
108 #define ZERO_GAP_XSOC3                  3
109 #define ZERO_LOAD_LVL1                  1400
110 #define ZERO_LOAD_LVL2                  600
111 #define ZERO_GAP_CALIB                  5
112
113 #define ADC_CALIB_THRESHOLD             4
114 #define ADC_CALIB_LMT_MIN               3
115 #define ADC_CALIB_CNT                   5
116 #define NTC_CALC_FACTOR                 7
117
118 /* time */
119 #define POWER_ON_SEC_BASE               1
120 #define MINUTE(x)                       ((x) * 60)
121
122 /* sleep */
123 #define SLP_CURR_MAX                    40
124 #define SLP_CURR_MIN                    6
125 #define DISCHRG_TIME_STEP1              MINUTE(10)
126 #define DISCHRG_TIME_STEP2              MINUTE(60)
127 #define SLP_DSOC_VOL_THRESD             3600
128 #define REBOOT_PERIOD_SEC               180
129 #define REBOOT_MAX_CNT                  80
130
131 /* fcc */
132 #define MIN_FCC                         500
133
134 static const char *bat_status[] = {
135         "charge off", "dead charge", "trickle charge", "cc cv",
136         "finish", "usb over vol", "bat temp error", "timer error",
137 };
138
139 struct rk818_battery {
140         struct platform_device          *pdev;
141         struct rk808                    *rk818;
142         struct regmap                   *regmap;
143         struct device                   *dev;
144         struct power_supply             *bat;
145         struct battery_platform_data    *pdata;
146         struct workqueue_struct         *bat_monitor_wq;
147         struct delayed_work             bat_delay_work;
148         struct delayed_work             calib_delay_work;
149         struct wake_lock                wake_lock;
150         struct notifier_block           fb_nb;
151         struct timer_list               caltimer;
152         struct timeval                  rtc_base;
153         int                             bat_res;
154         int                             chrg_status;
155         bool                            is_initialized;
156         bool                            is_first_power_on;
157         u8                              res_div;
158         int                             current_avg;
159         int                             voltage_avg;
160         int                             voltage_ocv;
161         int                             voltage_relax;
162         int                             voltage_k;
163         int                             voltage_b;
164         int                             remain_cap;
165         int                             design_cap;
166         int                             nac;
167         int                             fcc;
168         int                             qmax;
169         int                             dsoc;
170         int                             rsoc;
171         int                             poffset;
172         int                             age_ocv_soc;
173         bool                            age_allow_update;
174         int                             age_level;
175         int                             age_ocv_cap;
176         int                             age_voltage;
177         int                             age_adjust_cap;
178         unsigned long                   age_keep_sec;
179         int                             zero_timeout_cnt;
180         int                             zero_remain_cap;
181         int                             zero_dsoc;
182         int                             zero_linek;
183         u64                             zero_drop_sec;
184         u64                             shtd_drop_sec;
185         int                             sm_remain_cap;
186         int                             sm_linek;
187         int                             sm_chrg_dsoc;
188         int                             sm_dischrg_dsoc;
189         int                             algo_rest_val;
190         int                             algo_rest_mode;
191         int                             sleep_sum_cap;
192         int                             sleep_remain_cap;
193         unsigned long                   sleep_dischrg_sec;
194         unsigned long                   sleep_sum_sec;
195         bool                            sleep_chrg_online;
196         u8                              sleep_chrg_status;
197         bool                            adc_allow_update;
198         int                             fb_blank;
199         bool                            s2r; /*suspend to resume*/
200         u32                             work_mode;
201         int                             temperature;
202         u32                             monitor_ms;
203         u32                             pwroff_min;
204         u32                             adc_calib_cnt;
205         unsigned long                   finish_base;
206         unsigned long                   boot_base;
207         unsigned long                   flat_match_sec;
208         unsigned long                   plug_in_base;
209         unsigned long                   plug_out_base;
210         u8                              halt_cnt;
211         bool                            is_halt;
212         bool                            is_max_soc_offset;
213         bool                            is_sw_reset;
214         bool                            is_ocv_calib;
215         bool                            is_first_on;
216         bool                            is_force_calib;
217         int                             last_dsoc;
218         int                             ocv_pre_dsoc;
219         int                             ocv_new_dsoc;
220         int                             max_pre_dsoc;
221         int                             max_new_dsoc;
222         int                             force_pre_dsoc;
223         int                             force_new_dsoc;
224         int                             dbg_cap_low0;
225         int                             dbg_pwr_dsoc;
226         int                             dbg_pwr_rsoc;
227         int                             dbg_pwr_vol;
228         int                             dbg_chrg_min[10];
229         int                             dbg_meet_soc;
230         int                             dbg_calc_dsoc;
231         int                             dbg_calc_rsoc;
232 };
233
234 #define DIV(x)  ((x) ? (x) : 1)
235
236 static u64 get_boot_sec(void)
237 {
238         struct timespec ts;
239
240         get_monotonic_boottime(&ts);
241
242         return ts.tv_sec;
243 }
244
245 static unsigned long base2sec(unsigned long x)
246 {
247         if (x)
248                 return (get_boot_sec() > x) ? (get_boot_sec() - x) : 0;
249         else
250                 return 0;
251 }
252
253 static unsigned long base2min(unsigned long x)
254 {
255         return base2sec(x) / 60;
256 }
257
258 static u32 interpolate(int value, u32 *table, int size)
259 {
260         u8 i;
261         u16 d;
262
263         for (i = 0; i < size; i++) {
264                 if (value < table[i])
265                         break;
266         }
267
268         if ((i > 0) && (i < size)) {
269                 d = (value - table[i - 1]) * (MAX_INTERPOLATE / (size - 1));
270                 d /= table[i] - table[i - 1];
271                 d = d + (i - 1) * (MAX_INTERPOLATE / (size - 1));
272         } else {
273                 d = i * ((MAX_INTERPOLATE + size / 2) / size);
274         }
275
276         if (d > 1000)
277                 d = 1000;
278
279         return d;
280 }
281
282 /* (a*b)/c */
283 static int32_t ab_div_c(u32 a, u32 b, u32 c)
284 {
285         bool sign;
286         u32 ans = MAX_INT;
287         int tmp;
288
289         sign = ((((a ^ b) ^ c) & 0x80000000) != 0);
290         if (c != 0) {
291                 if (sign)
292                         c = -c;
293                 tmp = (a * b + (c >> 1)) / c;
294                 if (tmp < MAX_INT)
295                         ans = tmp;
296         }
297
298         if (sign)
299                 ans = -ans;
300
301         return ans;
302 }
303
304 static int rk818_bat_read(struct rk818_battery *di, u8 reg)
305 {
306         int ret, val;
307
308         ret = regmap_read(di->regmap, reg, &val);
309         if (ret)
310                 dev_err(di->dev, "read reg:0x%x failed\n", reg);
311
312         return val;
313 }
314
315 static int rk818_bat_write(struct rk818_battery *di, u8 reg, u8 buf)
316 {
317         int ret;
318
319         ret = regmap_write(di->regmap, reg, buf);
320         if (ret)
321                 dev_err(di->dev, "i2c write reg: 0x%2x error\n", reg);
322
323         return ret;
324 }
325
326 static int rk818_bat_set_bits(struct rk818_battery *di, u8 reg, u8 mask, u8 buf)
327 {
328         int ret;
329
330         ret = regmap_update_bits(di->regmap, reg, mask, buf);
331         if (ret)
332                 dev_err(di->dev, "write reg:0x%x failed\n", reg);
333
334         return ret;
335 }
336
337 static int rk818_bat_clear_bits(struct rk818_battery *di, u8 reg, u8 mask)
338 {
339         int ret;
340
341         ret = regmap_update_bits(di->regmap, reg, mask, 0);
342         if (ret)
343                 dev_err(di->dev, "clr reg:0x%02x failed\n", reg);
344
345         return ret;
346 }
347
348 static void rk818_bat_dump_regs(struct rk818_battery *di, u8 start, u8 end)
349 {
350         int i;
351
352         if (!dbg_enable)
353                 return;
354
355         DBG("dump regs from: 0x%x-->0x%x\n", start, end);
356         for (i = start; i < end; i++)
357                 DBG("0x%x: 0x%0x\n", i, rk818_bat_read(di, i));
358 }
359
360 static bool rk818_bat_chrg_online(struct rk818_battery *di)
361 {
362         u8 buf;
363
364         buf = rk818_bat_read(di, RK818_VB_MON_REG);
365
366         return (buf & PLUG_IN_STS) ? true : false;
367 }
368
369 static int rk818_bat_get_coulomb_cap(struct rk818_battery *di)
370 {
371         int val = 0;
372
373         val |= rk818_bat_read(di, RK818_GASCNT3_REG) << 24;
374         val |= rk818_bat_read(di, RK818_GASCNT2_REG) << 16;
375         val |= rk818_bat_read(di, RK818_GASCNT1_REG) << 8;
376         val |= rk818_bat_read(di, RK818_GASCNT0_REG) << 0;
377
378         return (val / 2390) * di->res_div;
379 }
380
381 static int rk818_bat_get_rsoc(struct rk818_battery *di)
382 {
383         int remain_cap;
384
385         remain_cap = rk818_bat_get_coulomb_cap(di);
386         return (remain_cap + di->fcc / 200) * 100 / DIV(di->fcc);
387 }
388
389 static ssize_t bat_info_store(struct device *dev, struct device_attribute *attr,
390                               const char *buf, size_t count)
391 {
392         char cmd;
393         struct rk818_battery *di = dev_get_drvdata(dev);
394
395         sscanf(buf, "%c", &cmd);
396
397         if (cmd == 'n')
398                 rk818_bat_set_bits(di, RK818_MISC_MARK_REG,
399                                    FG_RESET_NOW, FG_RESET_NOW);
400         else if (cmd == 'm')
401                 rk818_bat_set_bits(di, RK818_MISC_MARK_REG,
402                                    FG_RESET_LATE, FG_RESET_LATE);
403         else if (cmd == 'c')
404                 rk818_bat_clear_bits(di, RK818_MISC_MARK_REG,
405                                      FG_RESET_LATE | FG_RESET_NOW);
406         else if (cmd == 'r')
407                 BAT_INFO("0x%2x\n", rk818_bat_read(di, RK818_MISC_MARK_REG));
408         else
409                 BAT_INFO("command error\n");
410
411         return count;
412 }
413
414 static struct device_attribute rk818_bat_attr[] = {
415         __ATTR(bat, 0664, NULL, bat_info_store),
416 };
417
418 static void rk818_bat_enable_gauge(struct rk818_battery *di)
419 {
420         u8 buf;
421
422         buf = rk818_bat_read(di, RK818_TS_CTRL_REG);
423         buf |= GG_EN;
424         rk818_bat_write(di, RK818_TS_CTRL_REG, buf);
425 }
426
427 static void rk818_bat_save_age_level(struct rk818_battery *di, u8 level)
428 {
429         rk818_bat_write(di, RK818_UPDAT_LEVE_REG, level);
430 }
431
432 static u8 rk818_bat_get_age_level(struct  rk818_battery *di)
433 {
434         return rk818_bat_read(di, RK818_UPDAT_LEVE_REG);
435 }
436
437 static int rk818_bat_get_vcalib0(struct rk818_battery *di)
438 {
439         int val = 0;
440
441         val |= rk818_bat_read(di, RK818_VCALIB0_REGL) << 0;
442         val |= rk818_bat_read(di, RK818_VCALIB0_REGH) << 8;
443
444         DBG("<%s>. voffset0: 0x%x\n", __func__, val);
445         return val;
446 }
447
448 static int rk818_bat_get_vcalib1(struct rk818_battery *di)
449 {
450         int val = 0;
451
452         val |= rk818_bat_read(di, RK818_VCALIB1_REGL) << 0;
453         val |= rk818_bat_read(di, RK818_VCALIB1_REGH) << 8;
454
455         DBG("<%s>. voffset1: 0x%x\n", __func__, val);
456         return val;
457 }
458
459 static int rk818_bat_get_ioffset(struct rk818_battery *di)
460 {
461         int val = 0;
462
463         val |= rk818_bat_read(di, RK818_IOFFSET_REGL) << 0;
464         val |= rk818_bat_read(di, RK818_IOFFSET_REGH) << 8;
465
466         DBG("<%s>. ioffset: 0x%x\n", __func__, val);
467         return val;
468 }
469
470 static int rk818_bat_get_coffset(struct rk818_battery *di)
471 {
472         int val = 0;
473
474         val |= rk818_bat_read(di, RK818_CAL_OFFSET_REGL) << 0;
475         val |= rk818_bat_read(di, RK818_CAL_OFFSET_REGH) << 8;
476
477         DBG("<%s>. coffset: 0x%x\n", __func__, val);
478         return val;
479 }
480
481 static void rk818_bat_set_coffset(struct rk818_battery *di, int val)
482 {
483         u8 buf;
484
485         if ((val < INVALID_COFFSET_MIN) || (val > INVALID_COFFSET_MAX)) {
486                 BAT_INFO("set invalid coffset=0x%x\n", val);
487                 return;
488         }
489
490         buf = (val >> 8) & 0xff;
491         rk818_bat_write(di, RK818_CAL_OFFSET_REGH, buf);
492         buf = (val >> 0) & 0xff;
493         rk818_bat_write(di, RK818_CAL_OFFSET_REGL, buf);
494         DBG("<%s>. coffset: 0x%x\n", __func__, val);
495 }
496
497 static void rk818_bat_init_voltage_kb(struct rk818_battery *di)
498 {
499         int vcalib0, vcalib1;
500
501         vcalib0 = rk818_bat_get_vcalib0(di);
502         vcalib1 = rk818_bat_get_vcalib1(di);
503         di->voltage_k = (4200 - 3000) * 1000 / DIV(vcalib1 - vcalib0);
504         di->voltage_b = 4200 - (di->voltage_k * vcalib1) / 1000;
505
506         DBG("voltage_k=%d(*1000),voltage_b=%d\n", di->voltage_k, di->voltage_b);
507 }
508
509 static int rk818_bat_get_ocv_voltage(struct rk818_battery *di)
510 {
511         int vol, val = 0;
512
513         val |= rk818_bat_read(di, RK818_BAT_OCV_REGL) << 0;
514         val |= rk818_bat_read(di, RK818_BAT_OCV_REGH) << 8;
515
516         vol = di->voltage_k * val / 1000 + di->voltage_b;
517
518         return vol;
519 }
520
521 static int rk818_bat_get_avg_voltage(struct rk818_battery *di)
522 {
523         int vol, val = 0;
524
525         val |= rk818_bat_read(di, RK818_BAT_VOL_REGL) << 0;
526         val |= rk818_bat_read(di, RK818_BAT_VOL_REGH) << 8;
527
528         vol = di->voltage_k * val / 1000 + di->voltage_b;
529
530         return vol;
531 }
532
533 static bool is_rk818_bat_relax_mode(struct rk818_battery *di)
534 {
535         u8 status;
536
537         status = rk818_bat_read(di, RK818_GGSTS_REG);
538         if (!(status & RELAX_VOL1_UPD) || !(status & RELAX_VOL2_UPD))
539                 return false;
540         else
541                 return true;
542 }
543
544 static u16 rk818_bat_get_relax_vol1(struct rk818_battery *di)
545 {
546         u16 vol, val = 0;
547
548         val |= rk818_bat_read(di, RK818_RELAX_VOL1_REGL) << 0;
549         val |= rk818_bat_read(di, RK818_RELAX_VOL1_REGH) << 8;
550         vol = di->voltage_k * val / 1000 + di->voltage_b;
551
552         return vol;
553 }
554
555 static u16 rk818_bat_get_relax_vol2(struct rk818_battery *di)
556 {
557         u16 vol, val = 0;
558
559         val |= rk818_bat_read(di, RK818_RELAX_VOL2_REGL) << 0;
560         val |= rk818_bat_read(di, RK818_RELAX_VOL2_REGH) << 8;
561         vol = di->voltage_k * val / 1000 + di->voltage_b;
562
563         return vol;
564 }
565
566 static u16 rk818_bat_get_relax_voltage(struct rk818_battery *di)
567 {
568         u16 relax_vol1, relax_vol2;
569
570         if (!is_rk818_bat_relax_mode(di))
571                 return 0;
572
573         relax_vol1 = rk818_bat_get_relax_vol1(di);
574         relax_vol2 = rk818_bat_get_relax_vol2(di);
575
576         return relax_vol1 > relax_vol2 ? relax_vol1 : relax_vol2;
577 }
578
579 static int rk818_bat_get_avg_current(struct rk818_battery *di)
580 {
581         int cur, val = 0;
582
583         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGL) << 0;
584         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGH) << 8;
585
586         if (val & 0x800)
587                 val -= 4096;
588         cur = val * di->res_div * 1506 / 1000;
589
590         return cur;
591 }
592
593 static int rk818_bat_vol_to_ocvsoc(struct rk818_battery *di, int voltage)
594 {
595         u32 *ocv_table, temp;
596         int ocv_size, ocv_soc;
597
598         ocv_table = di->pdata->ocv_table;
599         ocv_size = di->pdata->ocv_size;
600         temp = interpolate(voltage, ocv_table, ocv_size);
601         ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE);
602
603         return ocv_soc;
604 }
605
606 static int rk818_bat_vol_to_ocvcap(struct rk818_battery *di, int voltage)
607 {
608         u32 *ocv_table, temp;
609         int ocv_size, cap;
610
611         ocv_table = di->pdata->ocv_table;
612         ocv_size = di->pdata->ocv_size;
613         temp = interpolate(voltage, ocv_table, ocv_size);
614         cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE);
615
616         return cap;
617 }
618
619 static int rk818_bat_vol_to_zerosoc(struct rk818_battery *di, int voltage)
620 {
621         u32 *ocv_table, temp;
622         int ocv_size, ocv_soc;
623
624         ocv_table = di->pdata->zero_table;
625         ocv_size = di->pdata->ocv_size;
626         temp = interpolate(voltage, ocv_table, ocv_size);
627         ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE);
628
629         return ocv_soc;
630 }
631
632 static int rk818_bat_vol_to_zerocap(struct rk818_battery *di, int voltage)
633 {
634         u32 *ocv_table, temp;
635         int ocv_size, cap;
636
637         ocv_table = di->pdata->zero_table;
638         ocv_size = di->pdata->ocv_size;
639         temp = interpolate(voltage, ocv_table, ocv_size);
640         cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE);
641
642         return cap;
643 }
644
645 static int rk818_bat_get_iadc(struct rk818_battery *di)
646 {
647         int val = 0;
648
649         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGL) << 0;
650         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGH) << 8;
651         if (val > 2047)
652                 val -= 4096;
653
654         return val;
655 }
656
657 static bool rk818_bat_adc_calib(struct rk818_battery *di)
658 {
659         int i, ioffset, coffset, adc, save_coffset;
660
661         if ((di->chrg_status != CHARGE_FINISH) ||
662             (di->adc_calib_cnt > ADC_CALIB_CNT) ||
663             (base2min(di->boot_base) < ADC_CALIB_LMT_MIN) ||
664             (abs(di->current_avg) < ADC_CALIB_THRESHOLD))
665                 return false;
666
667         di->adc_calib_cnt++;
668         save_coffset = rk818_bat_get_coffset(di);
669         for (i = 0; i < 5; i++) {
670                 adc = rk818_bat_get_iadc(di);
671                 if (!rk818_bat_chrg_online(di)) {
672                         rk818_bat_set_coffset(di, save_coffset);
673                         BAT_INFO("quit, charger plugout when calib adc\n");
674                         return false;
675                 }
676                 coffset = rk818_bat_get_coffset(di);
677                 rk818_bat_set_coffset(di, coffset + adc);
678                 msleep(2000);
679                 adc = rk818_bat_get_iadc(di);
680                 if (abs(adc) < ADC_CALIB_THRESHOLD) {
681                         coffset = rk818_bat_get_coffset(di);
682                         ioffset = rk818_bat_get_ioffset(di);
683                         di->poffset = coffset - ioffset;
684                         rk818_bat_write(di, RK818_POFFSET_REG, di->poffset);
685                         BAT_INFO("new offset:c=0x%x, i=0x%x, p=0x%x\n",
686                                  coffset, ioffset, di->poffset);
687                         return true;
688                 } else {
689                         BAT_INFO("coffset calib again %d.., max_cnt=%d\n",
690                                  i, di->adc_calib_cnt);
691                         rk818_bat_set_coffset(di, coffset);
692                         msleep(2000);
693                 }
694         }
695
696         return false;
697 }
698
699 static void rk818_bat_set_ioffset_sample(struct rk818_battery *di)
700 {
701         u8 ggcon;
702
703         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
704         ggcon &= ~ADC_CAL_MIN_MSK;
705         ggcon |= ADC_CAL_8MIN;
706         rk818_bat_write(di, RK818_GGCON_REG, ggcon);
707 }
708
709 static void rk818_bat_set_ocv_sample(struct rk818_battery *di)
710 {
711         u8 ggcon;
712
713         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
714         ggcon &= ~OCV_SAMP_MIN_MSK;
715         ggcon |= OCV_SAMP_8MIN;
716         rk818_bat_write(di, RK818_GGCON_REG, ggcon);
717 }
718
719 static void rk818_bat_restart_relax(struct rk818_battery *di)
720 {
721         u8 ggsts;
722
723         ggsts = rk818_bat_read(di, RK818_GGSTS_REG);
724         ggsts &= ~RELAX_VOL12_UPD_MSK;
725         rk818_bat_write(di, RK818_GGSTS_REG, ggsts);
726 }
727
728 static void rk818_bat_set_relax_sample(struct rk818_battery *di)
729 {
730         u8 buf;
731         int enter_thres, exit_thres;
732         struct battery_platform_data *pdata = di->pdata;
733
734         enter_thres = pdata->sleep_enter_current * 1000 / 1506 / DIV(di->res_div);
735         exit_thres = pdata->sleep_exit_current * 1000 / 1506 / DIV(di->res_div);
736
737         /* set relax enter and exit threshold */
738         buf = enter_thres & 0xff;
739         rk818_bat_write(di, RK818_RELAX_ENTRY_THRES_REGL, buf);
740         buf = (enter_thres >> 8) & 0xff;
741         rk818_bat_write(di, RK818_RELAX_ENTRY_THRES_REGH, buf);
742
743         buf = exit_thres & 0xff;
744         rk818_bat_write(di, RK818_RELAX_EXIT_THRES_REGL, buf);
745         buf = (exit_thres >> 8) & 0xff;
746         rk818_bat_write(di, RK818_RELAX_EXIT_THRES_REGH, buf);
747
748         /* reset relax update state */
749         rk818_bat_restart_relax(di);
750         DBG("<%s>. sleep_enter_current = %d, sleep_exit_current = %d\n",
751             __func__, pdata->sleep_enter_current, pdata->sleep_exit_current);
752 }
753
754 static bool is_rk818_bat_exist(struct rk818_battery *di)
755 {
756         return (rk818_bat_read(di, RK818_SUP_STS_REG) & BAT_EXS) ? true : false;
757 }
758
759 static bool is_rk818_bat_first_pwron(struct rk818_battery *di)
760 {
761         u8 buf;
762
763         buf = rk818_bat_read(di, RK818_GGSTS_REG);
764         if (buf & BAT_CON) {
765                 buf &= ~BAT_CON;
766                 rk818_bat_write(di, RK818_GGSTS_REG, buf);
767                 return true;
768         }
769
770         return false;
771 }
772
773 static u8 rk818_bat_get_pwroff_min(struct rk818_battery *di)
774 {
775         u8 cur, last;
776
777         cur = rk818_bat_read(di, RK818_NON_ACT_TIMER_CNT_REG);
778         last = rk818_bat_read(di, RK818_NON_ACT_TIMER_CNT_SAVE_REG);
779         rk818_bat_write(di, RK818_NON_ACT_TIMER_CNT_SAVE_REG, cur);
780
781         return (cur != last) ? cur : 0;
782 }
783
784 static u8 is_rk818_bat_initialized(struct rk818_battery *di)
785 {
786         u8 val = rk818_bat_read(di, RK818_MISC_MARK_REG);
787
788         if (val & FG_INIT) {
789                 val &= ~FG_INIT;
790                 rk818_bat_write(di, RK818_MISC_MARK_REG, val);
791                 return true;
792         } else {
793                 return false;
794         }
795 }
796
797 static bool is_rk818_bat_ocv_valid(struct rk818_battery *di)
798 {
799         return (!di->is_initialized && di->pwroff_min >= 30) ? true : false;
800 }
801
802 static void rk818_bat_init_age_algorithm(struct rk818_battery *di)
803 {
804         int age_level, ocv_soc, ocv_cap, ocv_vol;
805
806         if (di->is_first_power_on || is_rk818_bat_ocv_valid(di)) {
807                 DBG("<%s> enter.\n", __func__);
808                 ocv_vol = rk818_bat_get_ocv_voltage(di);
809                 ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
810                 ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
811                 if (ocv_soc < 20) {
812                         di->age_voltage = ocv_vol;
813                         di->age_ocv_cap = ocv_cap;
814                         di->age_ocv_soc = ocv_soc;
815                         di->age_adjust_cap = 0;
816
817                         if (ocv_soc <= 0)
818                                 di->age_level = 100;
819                         else if (ocv_soc < 5)
820                                 di->age_level = 95;
821                         else if (ocv_soc < 10)
822                                 di->age_level = 90;
823                         else
824                                 di->age_level = 80;
825
826                         age_level = rk818_bat_get_age_level(di);
827                         if (age_level > di->age_level) {
828                                 di->age_allow_update = false;
829                                 age_level -= 5;
830                                 if (age_level <= 80)
831                                         age_level = 80;
832                                 rk818_bat_save_age_level(di, age_level);
833                         } else {
834                                 di->age_allow_update = true;
835                                 di->age_keep_sec = get_boot_sec();
836                         }
837
838                         BAT_INFO("init_age_algorithm: "
839                                  "age_vol:%d, age_ocv_cap:%d, "
840                                  "age_ocv_soc:%d, old_age_level:%d, "
841                                  "age_allow_update:%d, new_age_level:%d\n",
842                                  di->age_voltage, di->age_ocv_cap,
843                                  ocv_soc, age_level, di->age_allow_update,
844                                  di->age_level);
845                 }
846         }
847 }
848
849 static enum power_supply_property rk818_bat_props[] = {
850         POWER_SUPPLY_PROP_CURRENT_NOW,
851         POWER_SUPPLY_PROP_VOLTAGE_NOW,
852         POWER_SUPPLY_PROP_PRESENT,
853         POWER_SUPPLY_PROP_HEALTH,
854         POWER_SUPPLY_PROP_CAPACITY,
855         POWER_SUPPLY_PROP_TEMP,
856         POWER_SUPPLY_PROP_STATUS,
857 };
858
859 static int rk818_battery_get_property(struct power_supply *psy,
860                                       enum power_supply_property psp,
861                                       union power_supply_propval *val)
862 {
863         struct rk818_battery *di = power_supply_get_drvdata(psy);
864
865         switch (psp) {
866         case POWER_SUPPLY_PROP_CURRENT_NOW:
867                 val->intval = di->current_avg * 1000;/*uA*/
868                 if (di->pdata->bat_mode == MODE_VIRTUAL)
869                         val->intval = VIRTUAL_CURRENT * 1000;
870                 break;
871         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
872                 val->intval = di->voltage_avg * 1000;/*uV*/
873                 if (di->pdata->bat_mode == MODE_VIRTUAL)
874                         val->intval = VIRTUAL_VOLTAGE * 1000;
875                 break;
876         case POWER_SUPPLY_PROP_PRESENT:
877                 val->intval = is_rk818_bat_exist(di);
878                 if (di->pdata->bat_mode == MODE_VIRTUAL)
879                         val->intval = VIRTUAL_PRESET;
880                 break;
881         case POWER_SUPPLY_PROP_CAPACITY:
882                 val->intval = di->dsoc;
883                 if (di->pdata->bat_mode == MODE_VIRTUAL)
884                         val->intval = VIRTUAL_SOC;
885                 DBG("<%s>. report dsoc: %d\n", __func__, val->intval);
886                 break;
887         case POWER_SUPPLY_PROP_HEALTH:
888                 val->intval = POWER_SUPPLY_HEALTH_GOOD;
889                 break;
890         case POWER_SUPPLY_PROP_TEMP:
891                 val->intval = di->temperature;
892                 if (di->pdata->bat_mode == MODE_VIRTUAL)
893                         val->intval = VIRTUAL_TEMPERATURE;
894                 break;
895         case POWER_SUPPLY_PROP_STATUS:
896                 if (di->pdata->bat_mode == MODE_VIRTUAL)
897                         val->intval = VIRTUAL_STATUS;
898                 else if (di->dsoc == 100)
899                         val->intval = POWER_SUPPLY_STATUS_FULL;
900                 else if (rk818_bat_chrg_online(di))
901                         val->intval = POWER_SUPPLY_STATUS_CHARGING;
902                 else
903                         val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
904                 break;
905         default:
906                 return -EINVAL;
907         }
908
909         return 0;
910 }
911
912 static const struct power_supply_desc rk818_bat_desc = {
913         .name           = "battery",
914         .type           = POWER_SUPPLY_TYPE_BATTERY,
915         .properties     = rk818_bat_props,
916         .num_properties = ARRAY_SIZE(rk818_bat_props),
917         .get_property   = rk818_battery_get_property,
918 };
919
920 static int rk818_bat_init_power_supply(struct rk818_battery *di)
921 {
922         struct power_supply_config psy_cfg = { .drv_data = di, };
923
924         di->bat = devm_power_supply_register(di->dev, &rk818_bat_desc, &psy_cfg);
925         if (IS_ERR(di->bat)) {
926                 dev_err(di->dev, "register bat power supply fail\n");
927                 return PTR_ERR(di->bat);
928         }
929
930         return 0;
931 }
932
933 static void rk818_bat_save_cap(struct rk818_battery *di, int cap)
934 {
935         u8 buf;
936         static u32 old_cap;
937
938         if (cap >= di->qmax)
939                 cap = di->qmax;
940         if (cap <= 0)
941                 cap = 0;
942         if (old_cap == cap)
943                 return;
944
945         old_cap = cap;
946         buf = (cap >> 24) & 0xff;
947         rk818_bat_write(di, RK818_REMAIN_CAP_REG3, buf);
948         buf = (cap >> 16) & 0xff;
949         rk818_bat_write(di, RK818_REMAIN_CAP_REG2, buf);
950         buf = (cap >> 8) & 0xff;
951         rk818_bat_write(di, RK818_REMAIN_CAP_REG1, buf);
952         buf = (cap >> 0) & 0xff;
953         rk818_bat_write(di, RK818_REMAIN_CAP_REG0, buf);
954 }
955
956 static int rk818_bat_get_prev_cap(struct rk818_battery *di)
957 {
958         int val = 0;
959
960         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG3) << 24;
961         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG2) << 16;
962         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG1) << 8;
963         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG0) << 0;
964
965         return val;
966 }
967
968 static void rk818_bat_save_fcc(struct rk818_battery *di, u32 fcc)
969 {
970         u8 buf;
971
972         buf = (fcc >> 24) & 0xff;
973         rk818_bat_write(di, RK818_NEW_FCC_REG3, buf);
974         buf = (fcc >> 16) & 0xff;
975         rk818_bat_write(di, RK818_NEW_FCC_REG2, buf);
976         buf = (fcc >> 8) & 0xff;
977         rk818_bat_write(di, RK818_NEW_FCC_REG1, buf);
978         buf = (fcc >> 0) & 0xff;
979         rk818_bat_write(di, RK818_NEW_FCC_REG0, buf);
980
981         BAT_INFO("save fcc: %d\n", fcc);
982 }
983
984 static int rk818_bat_get_fcc(struct rk818_battery *di)
985 {
986         u32 fcc = 0;
987
988         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG3) << 24;
989         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG2) << 16;
990         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG1) << 8;
991         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG0) << 0;
992
993         if (fcc < MIN_FCC) {
994                 BAT_INFO("invalid fcc(%d), use design cap", fcc);
995                 fcc = di->pdata->design_capacity;
996                 rk818_bat_save_fcc(di, fcc);
997         } else if (fcc > di->pdata->design_qmax) {
998                 BAT_INFO("invalid fcc(%d), use qmax", fcc);
999                 fcc = di->pdata->design_qmax;
1000                 rk818_bat_save_fcc(di, fcc);
1001         }
1002
1003         return fcc;
1004 }
1005
1006 static void rk818_bat_init_coulomb_cap(struct rk818_battery *di, u32 capacity)
1007 {
1008         u8 buf;
1009         u32 cap;
1010
1011         cap = capacity * 2390 / DIV(di->res_div);
1012         buf = (cap >> 24) & 0xff;
1013         rk818_bat_write(di, RK818_GASCNT_CAL_REG3, buf);
1014         buf = (cap >> 16) & 0xff;
1015         rk818_bat_write(di, RK818_GASCNT_CAL_REG2, buf);
1016         buf = (cap >> 8) & 0xff;
1017         rk818_bat_write(di, RK818_GASCNT_CAL_REG1, buf);
1018         buf = ((cap >> 0) & 0xff);
1019         rk818_bat_write(di, RK818_GASCNT_CAL_REG0, buf);
1020
1021         DBG("<%s>. new coulomb cap = %d\n", __func__, capacity);
1022         di->remain_cap = capacity;
1023         di->rsoc = rk818_bat_get_rsoc(di);
1024 }
1025
1026 static void rk818_bat_save_dsoc(struct rk818_battery *di, u8 save_soc)
1027 {
1028         static int last_soc = -1;
1029
1030         if (last_soc != save_soc) {
1031                 rk818_bat_write(di, RK818_SOC_REG, save_soc);
1032                 last_soc = save_soc;
1033         }
1034 }
1035
1036 static int rk818_bat_get_prev_dsoc(struct rk818_battery *di)
1037 {
1038         return rk818_bat_read(di, RK818_SOC_REG);
1039 }
1040
1041 static void rk818_bat_save_reboot_cnt(struct rk818_battery *di, u8 save_cnt)
1042 {
1043         rk818_bat_write(di, RK818_REBOOT_CNT_REG, save_cnt);
1044 }
1045
1046 static int rk818_bat_fb_notifier(struct notifier_block *nb,
1047                                  unsigned long event, void *data)
1048 {
1049         struct rk818_battery *di;
1050         struct fb_event *evdata = data;
1051
1052         di = container_of(nb, struct rk818_battery, fb_nb);
1053         di->fb_blank = *(int *)evdata->data;
1054
1055         return 0;
1056 }
1057
1058 static int rk818_bat_register_fb_notify(struct rk818_battery *di)
1059 {
1060         memset(&di->fb_nb, 0, sizeof(di->fb_nb));
1061         di->fb_nb.notifier_call = rk818_bat_fb_notifier;
1062
1063         return fb_register_client(&di->fb_nb);
1064 }
1065
1066 static int rk818_bat_unregister_fb_notify(struct rk818_battery *di)
1067 {
1068         return fb_unregister_client(&di->fb_nb);
1069 }
1070
1071 static u8 rk818_bat_get_halt_cnt(struct rk818_battery *di)
1072 {
1073         return rk818_bat_read(di, RK818_HALT_CNT_REG);
1074 }
1075
1076 static void rk818_bat_inc_halt_cnt(struct rk818_battery *di)
1077 {
1078         u8 cnt;
1079
1080         cnt = rk818_bat_read(di, RK818_HALT_CNT_REG);
1081         rk818_bat_write(di, RK818_HALT_CNT_REG, ++cnt);
1082 }
1083
1084 static bool is_rk818_bat_last_halt(struct rk818_battery *di)
1085 {
1086         int pre_cap = rk818_bat_get_prev_cap(di);
1087         int now_cap = rk818_bat_get_coulomb_cap(di);
1088
1089         /* over 10%: system halt last time */
1090         if (abs(now_cap - pre_cap) > (di->fcc / 10)) {
1091                 rk818_bat_inc_halt_cnt(di);
1092                 return true;
1093         } else {
1094                 return false;
1095         }
1096 }
1097
1098 static void rk818_bat_first_pwron(struct rk818_battery *di)
1099 {
1100         int ocv_vol;
1101
1102         rk818_bat_save_fcc(di, di->design_cap);
1103         ocv_vol = rk818_bat_get_ocv_voltage(di);
1104         di->fcc = rk818_bat_get_fcc(di);
1105         di->nac = rk818_bat_vol_to_ocvcap(di, ocv_vol);
1106         di->rsoc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
1107         di->dsoc = di->rsoc;
1108         di->is_first_on = true;
1109
1110         BAT_INFO("first on: dsoc=%d, rsoc=%d cap=%d, fcc=%d, ov=%d\n",
1111                  di->dsoc, di->rsoc, di->nac, di->fcc, ocv_vol);
1112 }
1113
1114 static void rk818_bat_not_first_pwron(struct rk818_battery *di)
1115 {
1116         int now_cap, pre_soc, pre_cap, ocv_cap, ocv_soc, ocv_vol;
1117
1118         di->fcc = rk818_bat_get_fcc(di);
1119         pre_soc = rk818_bat_get_prev_dsoc(di);
1120         pre_cap = rk818_bat_get_prev_cap(di);
1121         now_cap = rk818_bat_get_coulomb_cap(di);
1122         di->is_halt = is_rk818_bat_last_halt(di);
1123         di->halt_cnt = rk818_bat_get_halt_cnt(di);
1124         di->is_initialized = is_rk818_bat_initialized(di);
1125         di->is_ocv_calib = is_rk818_bat_ocv_valid(di);
1126
1127         if (di->is_halt) {
1128                 BAT_INFO("system halt last time... cap: pre=%d, now=%d\n",
1129                          pre_cap, now_cap);
1130                 if (now_cap < 0)
1131                         now_cap = 0;
1132                 rk818_bat_init_coulomb_cap(di, now_cap);
1133                 pre_cap = now_cap;
1134                 pre_soc = di->rsoc;
1135                 goto finish;
1136         } else if (di->is_initialized) {
1137                 BAT_INFO("initialized yet..\n");
1138                 goto finish;
1139         } else if (di->is_ocv_calib) {
1140                 ocv_vol = rk818_bat_get_ocv_voltage(di);
1141                 ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
1142                 ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
1143                 pre_cap = ocv_cap;
1144                 di->ocv_pre_dsoc = pre_soc;
1145                 di->ocv_new_dsoc = ocv_soc;
1146                 if (abs(ocv_soc - pre_soc) >= di->pdata->max_soc_offset) {
1147                         di->ocv_pre_dsoc = pre_soc;
1148                         di->ocv_new_dsoc = ocv_soc;
1149                         di->is_max_soc_offset = true;
1150                         BAT_INFO("trigger max soc offset, dsoc: %d -> %d\n",
1151                                  pre_soc, ocv_soc);
1152                         pre_soc = ocv_soc;
1153                 }
1154                 BAT_INFO("OCV calib: cap=%d, rsoc=%d\n", ocv_cap, ocv_soc);
1155         } else if (di->pwroff_min > 0) {
1156                 ocv_vol = rk818_bat_get_ocv_voltage(di);
1157                 ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
1158                 ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
1159                 di->force_pre_dsoc = pre_soc;
1160                 di->force_new_dsoc = ocv_soc;
1161                 if (abs(ocv_soc - pre_soc) >= 80) {
1162                         di->is_force_calib = true;
1163                         BAT_INFO("dsoc force calib: %d -> %d\n",
1164                                  pre_soc, ocv_soc);
1165                         pre_soc = ocv_soc;
1166                         pre_cap = ocv_cap;
1167                 }
1168         }
1169
1170 finish:
1171         di->dsoc = pre_soc;
1172         di->nac = pre_cap;
1173         if (di->nac < 0)
1174                 di->nac = 0;
1175
1176         BAT_INFO("dsoc=%d cap=%d v=%d ov=%d rv=%d min=%d psoc=%d pcap=%d\n",
1177                  di->dsoc, di->nac, rk818_bat_get_avg_voltage(di),
1178                  rk818_bat_get_ocv_voltage(di), rk818_bat_get_relax_voltage(di),
1179                  di->pwroff_min, rk818_bat_get_prev_dsoc(di),
1180                  rk818_bat_get_prev_cap(di));
1181 }
1182
1183 static bool rk818_bat_ocv_sw_reset(struct rk818_battery *di)
1184 {
1185         u8 buf;
1186
1187         buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
1188         if (((buf & FG_RESET_LATE) && di->pwroff_min >= 30) ||
1189             (buf & FG_RESET_NOW)) {
1190                 buf &= ~FG_RESET_LATE;
1191                 buf &= ~FG_RESET_NOW;
1192                 rk818_bat_write(di, RK818_MISC_MARK_REG, buf);
1193                 BAT_INFO("manual reset fuel gauge\n");
1194                 return true;
1195         } else {
1196                 return false;
1197         }
1198 }
1199
1200 static void rk818_bat_init_rsoc(struct rk818_battery *di)
1201 {
1202         di->is_first_power_on = is_rk818_bat_first_pwron(di);
1203         di->is_sw_reset = rk818_bat_ocv_sw_reset(di);
1204         di->pwroff_min = rk818_bat_get_pwroff_min(di);
1205
1206         if (di->is_first_power_on || di->is_sw_reset)
1207                 rk818_bat_first_pwron(di);
1208         else
1209                 rk818_bat_not_first_pwron(di);
1210 }
1211
1212 static u8 rk818_bat_get_chrg_status(struct rk818_battery *di)
1213 {
1214         u8 status;
1215
1216         status = rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK;
1217         switch (status) {
1218         case CHARGE_OFF:
1219                 DBG("CHARGE-OFF ...\n");
1220                 break;
1221         case DEAD_CHARGE:
1222                 BAT_INFO("DEAD CHARGE...\n");
1223                 break;
1224         case TRICKLE_CHARGE:
1225                 BAT_INFO("TRICKLE CHARGE...\n ");
1226                 break;
1227         case CC_OR_CV:
1228                 DBG("CC or CV...\n");
1229                 break;
1230         case CHARGE_FINISH:
1231                 DBG("CHARGE FINISH...\n");
1232                 break;
1233         case USB_OVER_VOL:
1234                 BAT_INFO("USB OVER VOL...\n");
1235                 break;
1236         case BAT_TMP_ERR:
1237                 BAT_INFO("BAT TMP ERROR...\n");
1238                 break;
1239         case TIMER_ERR:
1240                 BAT_INFO("TIMER ERROR...\n");
1241                 break;
1242         case USB_EXIST:
1243                 BAT_INFO("USB EXIST...\n");
1244                 break;
1245         case USB_EFF:
1246                 BAT_INFO("USB EFF...\n");
1247                 break;
1248         default:
1249                 return -EINVAL;
1250         }
1251
1252         return status;
1253 }
1254
1255 static u8 rk818_bat_parse_fb_temperature(struct rk818_battery *di)
1256 {
1257         u8 reg;
1258         int index, fb_temp;
1259
1260         reg = DEFAULT_FB_TEMP;
1261         fb_temp = di->pdata->fb_temp;
1262         for (index = 0; index < ARRAY_SIZE(feedback_temp_array); index++) {
1263                 if (fb_temp < feedback_temp_array[index])
1264                         break;
1265                 reg = (index << FB_TEMP_SHIFT);
1266         }
1267
1268         return reg;
1269 }
1270
1271 static u8 rk818_bat_parse_finish_ma(struct rk818_battery *di, int fcc)
1272 {
1273         u8 ma;
1274
1275         if (di->pdata->sample_res == SAMPLE_RES_10MR)
1276                 ma = FINISH_100MA;
1277         else if (fcc > 5000)
1278                 ma = FINISH_250MA;
1279         else if (fcc >= 4000)
1280                 ma = FINISH_200MA;
1281         else if (fcc >= 3000)
1282                 ma = FINISH_150MA;
1283         else
1284                 ma = FINISH_100MA;
1285
1286         return ma;
1287 }
1288
1289 static void rk818_bat_init_chrg_config(struct rk818_battery *di)
1290 {
1291         u8 usb_ctrl, chrg_ctrl2, chrg_ctrl3;
1292         u8 thermal, ggcon, finish_ma, fb_temp;
1293
1294         finish_ma = rk818_bat_parse_finish_ma(di, di->fcc);
1295         fb_temp = rk818_bat_parse_fb_temperature(di);
1296
1297         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
1298         thermal = rk818_bat_read(di, RK818_THERMAL_REG);
1299         usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG);
1300         chrg_ctrl2 = rk818_bat_read(di, RK818_CHRG_CTRL_REG2);
1301         chrg_ctrl3 = rk818_bat_read(di, RK818_CHRG_CTRL_REG3);
1302
1303         /* set charge finish current */
1304         chrg_ctrl3 |= CHRG_TERM_DIG_SIGNAL;
1305         chrg_ctrl2 &= ~FINISH_CUR_MSK;
1306         chrg_ctrl2 |= finish_ma;
1307
1308         /* disable cccv mode */
1309         chrg_ctrl3 &= ~CHRG_TIMER_CCCV_EN;
1310
1311         /* set feed back temperature */
1312         if (di->pdata->fb_temp)
1313                 usb_ctrl |= CHRG_CT_EN;
1314         else
1315                 usb_ctrl &= ~CHRG_CT_EN;
1316         thermal &= ~FB_TEMP_MSK;
1317         thermal |= fb_temp;
1318
1319         /* adc current mode */
1320         ggcon |= ADC_CUR_MODE;
1321
1322         rk818_bat_write(di, RK818_GGCON_REG, ggcon);
1323         rk818_bat_write(di, RK818_THERMAL_REG, thermal);
1324         rk818_bat_write(di, RK818_USB_CTRL_REG, usb_ctrl);
1325         rk818_bat_write(di, RK818_CHRG_CTRL_REG2, chrg_ctrl2);
1326         rk818_bat_write(di, RK818_CHRG_CTRL_REG3, chrg_ctrl3);
1327 }
1328
1329 static void rk818_bat_init_coffset(struct rk818_battery *di)
1330 {
1331         int coffset, ioffset;
1332
1333         ioffset = rk818_bat_get_ioffset(di);
1334         di->poffset = rk818_bat_read(di, RK818_POFFSET_REG);
1335         if (!di->poffset)
1336                 di->poffset = DEFAULT_POFFSET;
1337
1338         coffset = di->poffset + ioffset;
1339         if (coffset < INVALID_COFFSET_MIN || coffset > INVALID_COFFSET_MAX)
1340                 coffset = DEFAULT_COFFSET;
1341
1342         rk818_bat_set_coffset(di, coffset);
1343
1344         DBG("<%s>. offset: p=0x%x, i=0x%x, c=0x%x\n",
1345             __func__, di->poffset, ioffset, rk818_bat_get_coffset(di));
1346 }
1347
1348 static void rk818_bat_caltimer_isr(unsigned long data)
1349 {
1350         struct rk818_battery *di = (struct rk818_battery *)data;
1351
1352         mod_timer(&di->caltimer, jiffies + MINUTE(8) * HZ);
1353         queue_delayed_work(di->bat_monitor_wq, &di->calib_delay_work,
1354                            msecs_to_jiffies(10));
1355 }
1356
1357 static void rk818_bat_internal_calib(struct work_struct *work)
1358 {
1359         int ioffset, poffset;
1360         struct rk818_battery *di = container_of(work,
1361                         struct rk818_battery, calib_delay_work.work);
1362
1363         /* calib coffset */
1364         poffset = rk818_bat_read(di, RK818_POFFSET_REG);
1365         if (poffset)
1366                 di->poffset = poffset;
1367         else
1368                 di->poffset = DEFAULT_POFFSET;
1369
1370         ioffset = rk818_bat_get_ioffset(di);
1371         rk818_bat_set_coffset(di, ioffset + di->poffset);
1372
1373         /* calib voltage kb */
1374         rk818_bat_init_voltage_kb(di);
1375         BAT_INFO("caltimer: ioffset=0x%x, coffset=0x%x, poffset=%d\n",
1376                  ioffset, rk818_bat_get_coffset(di), di->poffset);
1377 }
1378
1379 static void rk818_bat_init_caltimer(struct rk818_battery *di)
1380 {
1381         setup_timer(&di->caltimer, rk818_bat_caltimer_isr, (unsigned long)di);
1382         di->caltimer.expires = jiffies + MINUTE(8) * HZ;
1383         add_timer(&di->caltimer);
1384         INIT_DELAYED_WORK(&di->calib_delay_work, rk818_bat_internal_calib);
1385 }
1386
1387 static void rk818_bat_init_zero_table(struct rk818_battery *di)
1388 {
1389         int i, diff, min, max;
1390         size_t ocv_size, length;
1391
1392         ocv_size = di->pdata->ocv_size;
1393         length = sizeof(di->pdata->zero_table) * ocv_size;
1394         di->pdata->zero_table =
1395                         devm_kzalloc(di->dev, length, GFP_KERNEL);
1396         if (!di->pdata->zero_table) {
1397                 di->pdata->zero_table = di->pdata->ocv_table;
1398                 dev_err(di->dev, "malloc zero table fail\n");
1399                 return;
1400         }
1401
1402         min = di->pdata->pwroff_vol,
1403         max = di->pdata->ocv_table[ocv_size - 4];
1404         diff = (max - min) / DIV(ocv_size - 1);
1405         for (i = 0; i < ocv_size; i++)
1406                 di->pdata->zero_table[i] = min + (i * diff);
1407
1408         for (i = 0; i < ocv_size; i++)
1409                 DBG("zero[%d] = %d\n", i, di->pdata->zero_table[i]);
1410
1411         for (i = 0; i < ocv_size; i++)
1412                 DBG("ocv[%d] = %d\n", i, di->pdata->ocv_table[i]);
1413 }
1414
1415 static void rk818_bat_calc_sm_linek(struct rk818_battery *di)
1416 {
1417         int linek, current_avg;
1418         u8 diff, delta;
1419
1420         delta = abs(di->dsoc - di->rsoc);
1421         diff = delta * 3;/* speed:3/4 */
1422         current_avg = rk818_bat_get_avg_current(di);
1423         if (current_avg >= 0) {
1424                 if (di->dsoc < di->rsoc)
1425                         linek = 1000 * (delta + diff) / DIV(diff);
1426                 else if (di->dsoc > di->rsoc)
1427                         linek = 1000 * diff / DIV(delta + diff);
1428                 else
1429                         linek = 1000;
1430                 di->dbg_meet_soc = (di->dsoc >= di->rsoc) ?
1431                                    (di->dsoc + diff) : (di->rsoc + diff);
1432         } else {
1433                 if (di->dsoc < di->rsoc)
1434                         linek = -1000 * diff / DIV(delta + diff);
1435                 else if (di->dsoc > di->rsoc)
1436                         linek = -1000 * (delta + diff) / DIV(diff);
1437                 else
1438                         linek = -1000;
1439                 di->dbg_meet_soc = (di->dsoc >= di->rsoc) ?
1440                                    (di->dsoc - diff) : (di->rsoc - diff);
1441         }
1442
1443         di->sm_linek = linek;
1444         di->sm_remain_cap = di->remain_cap;
1445         di->dbg_calc_dsoc = di->dsoc;
1446         di->dbg_calc_rsoc = di->rsoc;
1447
1448         DBG("<%s>.diff=%d, k=%d, cur=%d\n", __func__, diff, linek, current_avg);
1449 }
1450
1451 static void rk818_bat_calc_zero_linek(struct rk818_battery *di)
1452 {
1453         int dead_voltage, ocv_voltage;
1454         int voltage_avg, current_avg, vsys;
1455         int ocv_cap, dead_cap, xsoc;
1456         int ocv_soc, dead_soc;
1457         int pwroff_vol;
1458         int i, cnt, vol_old, vol_now;
1459         int org_linek = 0, min_gap_xsoc;
1460
1461         if ((abs(di->current_avg) < 500) && (di->dsoc > 10))
1462                 pwroff_vol = di->pdata->pwroff_vol + 50;
1463         else
1464                 pwroff_vol = di->pdata->pwroff_vol;
1465
1466         do {
1467                 vol_old = rk818_bat_get_avg_voltage(di);
1468                 msleep(100);
1469                 vol_now = rk818_bat_get_avg_voltage(di);
1470                 cnt++;
1471         } while ((vol_old == vol_now) && (cnt < 11));
1472
1473         voltage_avg = 0;
1474         for (i = 0; i < 10; i++) {
1475                 voltage_avg += rk818_bat_get_avg_voltage(di);
1476                 msleep(100);
1477         }
1478
1479         /* calc estimate ocv voltage */
1480         voltage_avg /= 10;
1481         current_avg = rk818_bat_get_avg_current(di);
1482         vsys = voltage_avg + (current_avg * DEF_PWRPATH_RES) / 1000;
1483
1484         DBG("ZERO0: shtd_vol: org = %d, now = %d, zero_reserve_dsoc = %d\n",
1485             di->pdata->pwroff_vol, pwroff_vol, di->pdata->zero_reserve_dsoc);
1486
1487         dead_voltage = pwroff_vol - current_avg *
1488                                 (di->bat_res + DEF_PWRPATH_RES) / 1000;
1489         ocv_voltage = voltage_avg - (current_avg * di->bat_res) / 1000;
1490         DBG("ZERO0: dead_voltage(shtd) = %d, ocv_voltage(now) = %d\n",
1491             dead_voltage, ocv_voltage);
1492
1493         /* calc estimate soc and cap */
1494         dead_soc = rk818_bat_vol_to_zerosoc(di, dead_voltage);
1495         dead_cap = rk818_bat_vol_to_zerocap(di, dead_voltage);
1496         DBG("ZERO0: dead_soc = %d, dead_cap = %d\n",
1497             dead_soc, dead_cap);
1498
1499         ocv_soc = rk818_bat_vol_to_zerosoc(di, ocv_voltage);
1500         ocv_cap = rk818_bat_vol_to_zerocap(di, ocv_voltage);
1501         DBG("ZERO0: ocv_soc = %d, ocv_cap = %d\n",
1502             ocv_soc, ocv_cap);
1503
1504         /* xsoc: available rsoc */
1505         xsoc = ocv_soc - dead_soc;
1506
1507         /* min_gap_xsoc: reserve xsoc */
1508         if (abs(current_avg) > ZERO_LOAD_LVL1)
1509                 min_gap_xsoc = ZERO_GAP_XSOC3;
1510         else if (abs(current_avg) > ZERO_LOAD_LVL2)
1511                 min_gap_xsoc = ZERO_GAP_XSOC2;
1512         else
1513                 min_gap_xsoc = ZERO_GAP_XSOC1;
1514
1515         if ((xsoc <= 30) && (di->dsoc >= di->pdata->zero_reserve_dsoc))
1516                 min_gap_xsoc = min_gap_xsoc + ZERO_GAP_CALIB;
1517
1518         di->zero_remain_cap = di->remain_cap;
1519         di->zero_timeout_cnt = 0;
1520         if ((di->dsoc <= 1) && (xsoc > 0)) {
1521                 di->zero_linek = 400;
1522                 di->zero_drop_sec = 0;
1523         } else if (xsoc >= 0) {
1524                 di->zero_drop_sec = 0;
1525                 di->zero_linek = (di->zero_dsoc + xsoc / 2) / DIV(xsoc);
1526                 org_linek = di->zero_linek;
1527                 /* battery energy mode to use up voltage */
1528                 if ((di->pdata->energy_mode) &&
1529                     (xsoc - di->dsoc >= ZERO_GAP_XSOC3) &&
1530                     (di->dsoc <= 10) && (di->zero_linek < 300)) {
1531                         di->zero_linek = 300;
1532                         DBG("ZERO-new: zero_linek adjust step0...\n");
1533                 /* reserve enough power yet, slow down any way */
1534                 } else if ((xsoc - di->dsoc >= min_gap_xsoc) ||
1535                            ((xsoc - di->dsoc >= ZERO_GAP_XSOC2) &&
1536                             (di->dsoc <= 10) && (xsoc > 15))) {
1537                         if (xsoc <= 20 &&
1538                             di->dsoc >= di->pdata->zero_reserve_dsoc)
1539                                 di->zero_linek = 1200;
1540                         else if (xsoc - di->dsoc >= 2 * min_gap_xsoc)
1541                                 di->zero_linek = 400;
1542                         else if (xsoc - di->dsoc >= 3 + min_gap_xsoc)
1543                                 di->zero_linek = 600;
1544                         else
1545                                 di->zero_linek = 800;
1546                         DBG("ZERO-new: zero_linek adjust step1...\n");
1547                 /* control zero mode beginning enter */
1548                 } else if ((di->zero_linek > 1800) && (di->dsoc > 70)) {
1549                         di->zero_linek = 1800;
1550                         DBG("ZERO-new: zero_linek adjust step2...\n");
1551                 /* dsoc close to xsoc: it must reserve power */
1552                 } else if ((di->zero_linek > 1000) && (di->zero_linek < 1200)) {
1553                         di->zero_linek = 1200;
1554                         DBG("ZERO-new: zero_linek adjust step3...\n");
1555                 /* dsoc[5~15], dsoc < xsoc */
1556                 } else if ((di->dsoc <= 15 && di->dsoc > 5) &&
1557                            (di->zero_linek <= 1200)) {
1558                         /* slow down */
1559                         if (xsoc - di->dsoc >= min_gap_xsoc)
1560                                 di->zero_linek = 800;
1561                         /* reserve power */
1562                         else
1563                                 di->zero_linek = 1200;
1564                         DBG("ZERO-new: zero_linek adjust step4...\n");
1565                 /* dsoc[5, 100], dsoc < xsoc */
1566                 } else if ((di->zero_linek < 1000) && (di->dsoc >= 5)) {
1567                         if ((xsoc - di->dsoc) < min_gap_xsoc) {
1568                                 /* reserve power */
1569                                 di->zero_linek = 1200;
1570                         } else {
1571                                 if (abs(di->current_avg) > 500)/* heavy */
1572                                         di->zero_linek = 900;
1573                                 else
1574                                         di->zero_linek = 1000;
1575                         }
1576                         DBG("ZERO-new: zero_linek adjust step5...\n");
1577                 /* dsoc[0~5], dsoc < xsoc */
1578                 } else if ((di->zero_linek < 1000) && (di->dsoc <= 5)) {
1579                         if ((xsoc - di->dsoc) <= 3)
1580                                 di->zero_linek = 1200;
1581                         else
1582                                 di->zero_linek = 800;
1583                                 DBG("ZERO-new: zero_linek adjust step6...\n");
1584                 }
1585         } else {
1586                 /* xsoc < 0 */
1587                 di->zero_linek = 1000;
1588                 if (!di->zero_drop_sec)
1589                         di->zero_drop_sec = get_boot_sec();
1590                 if (base2sec(di->zero_drop_sec) >= WAIT_DSOC_DROP_SEC) {
1591                         DBG("ZERO0: t=%lu\n", base2sec(di->zero_drop_sec));
1592                         di->zero_drop_sec = 0;
1593                         di->dsoc--;
1594                         di->zero_dsoc = (di->dsoc + 1) * 1000 -
1595                                                 MIN_ACCURACY;
1596                 }
1597         }
1598
1599         if (voltage_avg < pwroff_vol - 70) {
1600                 if (!di->shtd_drop_sec)
1601                         di->shtd_drop_sec = get_boot_sec();
1602                 if (base2sec(di->shtd_drop_sec) > WAIT_SHTD_DROP_SEC) {
1603                         BAT_INFO("voltage extreme low...soc:%d->0\n", di->dsoc);
1604                         di->shtd_drop_sec = 0;
1605                         di->dsoc = 0;
1606                 }
1607         } else {
1608                 di->shtd_drop_sec = 0;
1609         }
1610
1611         DBG("ZERO-new: org_linek=%d, zero_linek=%d, dsoc=%d, Xsoc=%d, "
1612             "rsoc=%d, gap=%d, v=%d, vsys=%d\n"
1613             "ZERO-new: di->zero_dsoc=%d, zero_remain_cap=%d, zero_drop=%ld, "
1614             "sht_drop=%ld\n\n",
1615             org_linek, di->zero_linek, di->dsoc, xsoc, di->rsoc,
1616             min_gap_xsoc, voltage_avg, vsys, di->zero_dsoc, di->zero_remain_cap,
1617             base2sec(di->zero_drop_sec), base2sec(di->shtd_drop_sec));
1618 }
1619
1620 static void rk818_bat_finish_algo_prepare(struct rk818_battery *di)
1621 {
1622         di->finish_base = get_boot_sec();
1623         if (!di->finish_base)
1624                 di->finish_base = 1;
1625 }
1626
1627 static void rk818_bat_smooth_algo_prepare(struct rk818_battery *di)
1628 {
1629         int tmp_soc;
1630
1631         tmp_soc = di->sm_chrg_dsoc / 1000;
1632         if (tmp_soc != di->dsoc)
1633                 di->sm_chrg_dsoc = di->dsoc * 1000;
1634
1635         tmp_soc = di->sm_dischrg_dsoc / 1000;
1636         if (tmp_soc != di->dsoc)
1637                 di->sm_dischrg_dsoc =
1638                 (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1639
1640         DBG("<%s>. tmp_soc=%d, dsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d\n",
1641             __func__, tmp_soc, di->dsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1642
1643         rk818_bat_calc_sm_linek(di);
1644 }
1645
1646 static void rk818_bat_zero_algo_prepare(struct rk818_battery *di)
1647 {
1648         int tmp_dsoc;
1649
1650         di->zero_timeout_cnt = 0;
1651         tmp_dsoc = di->zero_dsoc / 1000;
1652         if (tmp_dsoc != di->dsoc)
1653                 di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1654
1655         DBG("<%s>. first calc, reinit linek\n", __func__);
1656
1657         rk818_bat_calc_zero_linek(di);
1658 }
1659
1660 static void rk818_bat_calc_zero_algorithm(struct rk818_battery *di)
1661 {
1662         int tmp_soc = 0, sm_delta_dsoc = 0;
1663
1664         tmp_soc = di->zero_dsoc / 1000;
1665         if (tmp_soc == di->dsoc)
1666                 goto out;
1667
1668         DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
1669         /* when discharge slow down, take sm chrg into calc */
1670         if (di->dsoc < di->rsoc) {
1671                 /* take sm charge rest into calc */
1672                 tmp_soc = di->sm_chrg_dsoc / 1000;
1673                 if (tmp_soc == di->dsoc) {
1674                         sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000;
1675                         di->sm_chrg_dsoc = di->dsoc * 1000;
1676                         di->zero_dsoc += sm_delta_dsoc;
1677                         DBG("ZERO1: take sm chrg,delta=%d\n", sm_delta_dsoc);
1678                 }
1679         }
1680
1681         /* when discharge speed up, take sm dischrg into calc */
1682         if (di->dsoc > di->rsoc) {
1683                 /* take sm discharge rest into calc */
1684                 tmp_soc = di->sm_dischrg_dsoc / 1000;
1685                 if (tmp_soc == di->dsoc) {
1686                         sm_delta_dsoc = di->sm_dischrg_dsoc -
1687                                 ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
1688                         di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 -
1689                                                                 MIN_ACCURACY;
1690                         di->zero_dsoc += sm_delta_dsoc;
1691                         DBG("ZERO1: take sm dischrg,delta=%d\n", sm_delta_dsoc);
1692                 }
1693         }
1694
1695         /* check overflow */
1696         if (di->zero_dsoc > (di->dsoc + 1) * 1000 - MIN_ACCURACY) {
1697                 DBG("ZERO1: zero dsoc overflow: %d\n", di->zero_dsoc);
1698                 di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1699         }
1700
1701         /* check new dsoc */
1702         tmp_soc = di->zero_dsoc / 1000;
1703         if (tmp_soc != di->dsoc) {
1704                 /* avoid dsoc jump when heavy load */
1705                 if ((di->dsoc - tmp_soc) > 1) {
1706                         di->dsoc--;
1707                         di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1708                         DBG("ZERO1: heavy load...\n");
1709                 } else {
1710                         di->dsoc = tmp_soc;
1711                 }
1712                 di->zero_drop_sec = 0;
1713         }
1714
1715 out:
1716         DBG("ZERO1: zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d, tmp_soc=%d\n",
1717             di->zero_dsoc, di->dsoc, di->rsoc, tmp_soc);
1718         DBG("ZERO1: sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n",
1719             di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1720 }
1721
1722 static void rk818_bat_zero_algorithm(struct rk818_battery *di)
1723 {
1724         int delta_cap = 0, delta_soc = 0;
1725
1726         di->zero_timeout_cnt++;
1727         delta_cap = di->zero_remain_cap - di->remain_cap;
1728         delta_soc = di->zero_linek * (delta_cap * 100) / DIV(di->fcc);
1729
1730         DBG("ZERO1: zero_linek=%d, zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d\n"
1731             "ZERO1: delta_soc(X0)=%d, delta_cap=%d, zero_remain_cap = %d\n"
1732             "ZERO1: timeout_cnt=%d, sm_dischrg=%d, sm_chrg=%d\n\n",
1733             di->zero_linek, di->zero_dsoc, di->dsoc, di->rsoc,
1734             delta_soc, delta_cap, di->zero_remain_cap,
1735             di->zero_timeout_cnt, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1736
1737         if ((delta_soc >= MIN_ZERO_DSOC_ACCURACY) ||
1738             (di->zero_timeout_cnt > MIN_ZERO_OVERCNT) ||
1739             (di->zero_linek == 0)) {
1740                 DBG("ZERO1:--------- enter calc -----------\n");
1741                 di->zero_timeout_cnt = 0;
1742                 di->zero_dsoc -= delta_soc;
1743                 rk818_bat_calc_zero_algorithm(di);
1744                 rk818_bat_calc_zero_linek(di);
1745         }
1746 }
1747
1748 static void rk818_bat_dump_time_table(struct rk818_battery *di)
1749 {
1750         u8 i;
1751         static int old_index;
1752         static int old_min;
1753         int mod = di->dsoc % 10;
1754         int index = di->dsoc / 10;
1755         u32 time;
1756
1757         if (rk818_bat_chrg_online(di))
1758                 time = base2min(di->plug_in_base);
1759         else
1760                 time = base2min(di->plug_out_base);
1761
1762         if ((mod == 0) && (index > 0) && (old_index != index)) {
1763                 di->dbg_chrg_min[index - 1] = time - old_min;
1764                 old_min = time;
1765                 old_index = index;
1766         }
1767
1768         for (i = 1; i < 11; i++)
1769                 DBG("Time[%d]=%d, ", (i * 10), di->dbg_chrg_min[i - 1]);
1770         DBG("\n");
1771 }
1772
1773 static void rk818_bat_debug_info(struct rk818_battery *di)
1774 {
1775         u8 sup_tst, ggcon, ggsts, vb_mod, ts_ctrl, reboot_cnt;
1776         u8 usb_ctrl, chrg_ctrl1, thermal;
1777         u8 int_sts1, int_sts2;
1778         u8 int_msk1, int_msk2;
1779         u8 chrg_ctrl2, chrg_ctrl3, rtc, misc, dcdc_en;
1780         char *work_mode[] = {"ZERO", "FINISH", "UN", "UN", "SMOOTH"};
1781         char *bat_mode[] = {"BAT", "VIRTUAL"};
1782
1783         if (rk818_bat_chrg_online(di))
1784                 di->plug_out_base = get_boot_sec();
1785         else
1786                 di->plug_in_base = get_boot_sec();
1787
1788         rk818_bat_dump_time_table(di);
1789
1790         if (!dbg_enable)
1791                 return;
1792
1793         ts_ctrl = rk818_bat_read(di, RK818_TS_CTRL_REG);
1794         misc = rk818_bat_read(di, RK818_MISC_MARK_REG);
1795         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
1796         ggsts = rk818_bat_read(di, RK818_GGSTS_REG);
1797         sup_tst = rk818_bat_read(di, RK818_SUP_STS_REG);
1798         vb_mod = rk818_bat_read(di, RK818_VB_MON_REG);
1799         usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG);
1800         chrg_ctrl1 = rk818_bat_read(di, RK818_CHRG_CTRL_REG1);
1801         chrg_ctrl2 = rk818_bat_read(di, RK818_CHRG_CTRL_REG2);
1802         chrg_ctrl3 = rk818_bat_read(di, RK818_CHRG_CTRL_REG3);
1803         rtc = rk818_bat_read(di, 0);
1804         thermal = rk818_bat_read(di, RK818_THERMAL_REG);
1805         int_sts1 = rk818_bat_read(di, RK818_INT_STS_REG1);
1806         int_sts2 = rk818_bat_read(di, RK818_INT_STS_REG2);
1807         int_msk1 = rk818_bat_read(di, RK818_INT_STS_MSK_REG1);
1808         int_msk2 = rk818_bat_read(di, RK818_INT_STS_MSK_REG2);
1809         dcdc_en = rk818_bat_read(di, RK818_DCDC_EN_REG);
1810         reboot_cnt = rk818_bat_read(di, RK818_REBOOT_CNT_REG);
1811
1812         DBG("\n------- DEBUG REGS, [Ver: %s] -------------------\n"
1813             "GGCON=0x%2x, GGSTS=0x%2x, RTC=0x%2x, DCDC_EN2=0x%2x\n"
1814             "SUP_STS= 0x%2x, VB_MOD=0x%2x, USB_CTRL=0x%2x\n"
1815             "THERMAL=0x%2x, MISC_MARK=0x%2x, TS_CTRL=0x%2x\n"
1816             "CHRG_CTRL:REG1=0x%2x, REG2=0x%2x, REG3=0x%2x\n"
1817             "INT_STS:  REG1=0x%2x, REG2=0x%2x\n"
1818             "INT_MSK:  REG1=0x%2x, REG2=0x%2x\n",
1819             DRIVER_VERSION, ggcon, ggsts, rtc, dcdc_en,
1820             sup_tst, vb_mod, usb_ctrl,
1821             thermal, misc, ts_ctrl,
1822             chrg_ctrl1, chrg_ctrl2, chrg_ctrl3,
1823             int_sts1, int_sts2, int_msk1, int_msk2
1824            );
1825
1826         DBG("###############################################################\n"
1827             "Dsoc=%d, Rsoc=%d, Vavg=%d, Iavg=%d, Cap=%d, Fcc=%d, d=%d\n"
1828             "K=%d, Mode=%s, Oldcap=%d, Is=%d, Ip=%d, Vs=%d\n"
1829             "fb_temp=%d, bat_temp=%d, sample_res=%d\n"
1830             "off:i=0x%x, c=0x%x, p=%d, Rbat=%d, age_ocv_cap=%d, fb=%d\n"
1831             "adp:finish=%lu, boot_min=%lu, sleep_min=%lu, adc=%d, Vsys=%d\n"
1832             "bat:%s, meet: soc=%d, calc: dsoc=%d, rsoc=%d, Vocv=%d\n"
1833             "pwr: dsoc=%d, rsoc=%d, vol=%d, halt: st=%d, cnt=%d, reboot=%d\n"
1834             "ocv_c=%d: %d -> %d; max_c=%d: %d -> %d; force_c=%d: %d -> %d\n"
1835             "min=%d, init=%d, sw=%d, below0=%d, first=%d, changed=%d\n"
1836             "###############################################################\n",
1837             di->dsoc, di->rsoc, di->voltage_avg, di->current_avg,
1838             di->remain_cap, di->fcc, di->rsoc - di->dsoc,
1839             di->sm_linek, work_mode[di->work_mode], di->sm_remain_cap,
1840             di->res_div * chrg_cur_sel_array[chrg_ctrl1 & 0x0f],
1841             chrg_cur_input_array[usb_ctrl & 0x0f],
1842             chrg_vol_sel_array[(chrg_ctrl1 & 0x70) >> 4],
1843             feedback_temp_array[(thermal & 0x0c) >> 2], di->temperature,
1844             di->pdata->sample_res, rk818_bat_get_ioffset(di),
1845             rk818_bat_get_coffset(di), di->poffset, di->bat_res,
1846             di->age_adjust_cap, di->fb_blank, base2min(di->finish_base),
1847             base2min(di->boot_base), di->sleep_sum_sec / 60,
1848             di->adc_allow_update,
1849             di->voltage_avg + di->current_avg * DEF_PWRPATH_RES / 1000,
1850             bat_mode[di->pdata->bat_mode], di->dbg_meet_soc, di->dbg_calc_dsoc,
1851             di->dbg_calc_rsoc, di->voltage_ocv, di->dbg_pwr_dsoc,
1852             di->dbg_pwr_rsoc, di->dbg_pwr_vol, di->is_halt, di->halt_cnt,
1853             reboot_cnt, di->is_ocv_calib, di->ocv_pre_dsoc, di->ocv_new_dsoc,
1854             di->is_max_soc_offset, di->max_pre_dsoc, di->max_new_dsoc,
1855             di->is_force_calib, di->force_pre_dsoc, di->force_new_dsoc,
1856             di->pwroff_min, di->is_initialized, di->is_sw_reset,
1857             di->dbg_cap_low0, di->is_first_on, di->last_dsoc
1858            );
1859 }
1860
1861 static void rk818_bat_init_capacity(struct rk818_battery *di, u32 cap)
1862 {
1863         int delta_cap;
1864
1865         delta_cap = cap - di->remain_cap;
1866         if (!delta_cap)
1867                 return;
1868
1869         di->age_adjust_cap += delta_cap;
1870         rk818_bat_init_coulomb_cap(di, cap);
1871         rk818_bat_smooth_algo_prepare(di);
1872         rk818_bat_zero_algo_prepare(di);
1873 }
1874
1875 static void rk818_bat_update_age_fcc(struct rk818_battery *di)
1876 {
1877         int fcc, remain_cap, age_keep_min, lock_fcc;
1878
1879         lock_fcc = rk818_bat_get_coulomb_cap(di);
1880         remain_cap = lock_fcc - di->age_ocv_cap - di->age_adjust_cap;
1881         age_keep_min = base2min(di->age_keep_sec);
1882
1883         DBG("%s: lock_fcc=%d, age_ocv_cap=%d, age_adjust_cap=%d, remain_cap=%d,"
1884             "age_allow_update=%d, age_keep_min=%d\n",
1885             __func__, lock_fcc, di->age_ocv_cap, di->age_adjust_cap, remain_cap,
1886             di->age_allow_update, age_keep_min);
1887
1888         if ((di->chrg_status == CHARGE_FINISH) && (di->age_allow_update) &&
1889             (age_keep_min < 1200)) {
1890                 di->age_allow_update = false;
1891                 fcc = remain_cap * 100 / DIV(100 - di->age_ocv_soc);
1892                 BAT_INFO("lock_fcc=%d, calc_cap=%d, age: soc=%d, cap=%d, "
1893                          "level=%d, fcc:%d->%d?\n",
1894                          lock_fcc, remain_cap, di->age_ocv_soc,
1895                          di->age_ocv_cap, di->age_level, di->fcc, fcc);
1896
1897                 if ((fcc < di->qmax) && (fcc > MIN_FCC)) {
1898                         BAT_INFO("fcc:%d->%d!\n", di->fcc, fcc);
1899                         di->fcc = fcc;
1900                         rk818_bat_init_capacity(di, di->fcc);
1901                         rk818_bat_save_fcc(di, di->fcc);
1902                         rk818_bat_save_age_level(di, di->age_level);
1903                 }
1904         }
1905 }
1906
1907 static void rk818_bat_wait_finish_sig(struct rk818_battery *di)
1908 {
1909         int chrg_finish_vol = di->pdata->max_chrg_voltage;
1910
1911         if (!rk818_bat_chrg_online(di))
1912                 return;
1913
1914         if ((di->chrg_status == CHARGE_FINISH) && (di->adc_allow_update) &&
1915             (di->voltage_avg > chrg_finish_vol - 150)) {
1916                 rk818_bat_update_age_fcc(di);
1917                 if (rk818_bat_adc_calib(di))
1918                         di->adc_allow_update = false;
1919         }
1920 }
1921
1922 static void rk818_bat_finish_algorithm(struct rk818_battery *di)
1923 {
1924         unsigned long finish_sec, soc_sec;
1925         int plus_soc, finish_current, rest = 0;
1926
1927         /* rsoc */
1928         if ((di->remain_cap != di->fcc) &&
1929             (rk818_bat_get_chrg_status(di) == CHARGE_FINISH)) {
1930                 di->age_adjust_cap += (di->fcc - di->remain_cap);
1931                 rk818_bat_init_coulomb_cap(di, di->fcc);
1932         }
1933
1934         /* dsoc */
1935         if (di->dsoc < 100) {
1936                 if (!di->finish_base)
1937                         di->finish_base = get_boot_sec();
1938                 finish_current = (di->rsoc - di->dsoc) >  FINISH_MAX_SOC_DELAY ?
1939                                         FINISH_CHRG_CUR2 : FINISH_CHRG_CUR1;
1940                 finish_sec = base2sec(di->finish_base);
1941                 soc_sec = di->fcc * 3600 / 100 / DIV(finish_current);
1942                 plus_soc = finish_sec / DIV(soc_sec);
1943                 if (finish_sec > soc_sec) {
1944                         rest = finish_sec % soc_sec;
1945                         di->dsoc += plus_soc;
1946                         di->finish_base = get_boot_sec();
1947                         if (di->finish_base > rest)
1948                                 di->finish_base = get_boot_sec() - rest;
1949                 }
1950                 DBG("<%s>.CHARGE_FINISH:dsoc<100,dsoc=%d\n"
1951                     "soc_time=%lu, sec_finish=%lu, plus_soc=%d, rest=%d\n",
1952                     __func__, di->dsoc, soc_sec, finish_sec, plus_soc, rest);
1953         }
1954 }
1955
1956 static void rk818_bat_calc_smooth_dischrg(struct rk818_battery *di)
1957 {
1958         int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0;
1959
1960         tmp_soc = di->sm_dischrg_dsoc / 1000;
1961         if (tmp_soc == di->dsoc)
1962                 goto out;
1963
1964         DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
1965         /* when dischrge slow down, take sm charge rest into calc */
1966         if (di->dsoc < di->rsoc) {
1967                 tmp_soc = di->sm_chrg_dsoc / 1000;
1968                 if (tmp_soc == di->dsoc) {
1969                         sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000;
1970                         di->sm_chrg_dsoc = di->dsoc * 1000;
1971                         di->sm_dischrg_dsoc += sm_delta_dsoc;
1972                         DBG("<%s>. take sm dischrg, delta=%d\n",
1973                             __func__, sm_delta_dsoc);
1974                 }
1975         }
1976
1977         /* when discharge speed up, take zero discharge rest into calc */
1978         if (di->dsoc > di->rsoc) {
1979                 tmp_soc = di->zero_dsoc / 1000;
1980                 if (tmp_soc == di->dsoc) {
1981                         zero_delta_dsoc = di->zero_dsoc - ((di->dsoc + 1) *
1982                                                 1000 - MIN_ACCURACY);
1983                         di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1984                         di->sm_dischrg_dsoc += zero_delta_dsoc;
1985                         DBG("<%s>. take zero schrg, delta=%d\n",
1986                             __func__, zero_delta_dsoc);
1987                 }
1988         }
1989
1990         /* check up overflow */
1991         if ((di->sm_dischrg_dsoc) > ((di->dsoc + 1) * 1000 - MIN_ACCURACY)) {
1992                 DBG("<%s>. dischrg_dsoc up overflow\n", __func__);
1993                 di->sm_dischrg_dsoc = (di->dsoc + 1) *
1994                                         1000 - MIN_ACCURACY;
1995         }
1996
1997         /* check new dsoc */
1998         tmp_soc = di->sm_dischrg_dsoc / 1000;
1999         if (tmp_soc != di->dsoc) {
2000                 di->dsoc = tmp_soc;
2001                 di->sm_chrg_dsoc = di->dsoc * 1000;
2002         }
2003 out:
2004         DBG("<%s>. dsoc=%d, rsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d, zero=%d\n",
2005             __func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc,
2006             di->zero_dsoc);
2007
2008 }
2009
2010 static void rk818_bat_calc_smooth_chrg(struct rk818_battery *di)
2011 {
2012         int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0;
2013
2014         tmp_soc = di->sm_chrg_dsoc / 1000;
2015         if (tmp_soc == di->dsoc)
2016                 goto out;
2017
2018         DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
2019         /* when charge slow down, take zero & sm dischrg into calc */
2020         if (di->dsoc > di->rsoc) {
2021                 /* take sm discharge rest into calc */
2022                 tmp_soc = di->sm_dischrg_dsoc / 1000;
2023                 if (tmp_soc == di->dsoc) {
2024                         sm_delta_dsoc = di->sm_dischrg_dsoc -
2025                                         ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
2026                         di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 -
2027                                                         MIN_ACCURACY;
2028                         di->sm_chrg_dsoc += sm_delta_dsoc;
2029                         DBG("<%s>. take sm dischrg, delta=%d\n",
2030                            __func__, sm_delta_dsoc);
2031                 }
2032
2033                 /* take zero discharge rest into calc */
2034                 tmp_soc = di->zero_dsoc / 1000;
2035                 if (tmp_soc == di->dsoc) {
2036                         zero_delta_dsoc = di->zero_dsoc -
2037                         ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
2038                         di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2039                         di->sm_chrg_dsoc += zero_delta_dsoc;
2040                         DBG("<%s>. take zero dischrg, delta=%d\n",
2041                             __func__, zero_delta_dsoc);
2042                 }
2043         }
2044
2045         /* check down overflow */
2046         if (di->sm_chrg_dsoc < di->dsoc * 1000) {
2047                 DBG("<%s>. chrg_dsoc down overflow\n", __func__);
2048                 di->sm_chrg_dsoc = di->dsoc * 1000;
2049         }
2050
2051         /* check new dsoc */
2052         tmp_soc = di->sm_chrg_dsoc / 1000;
2053         if (tmp_soc != di->dsoc) {
2054                 di->dsoc = tmp_soc;
2055                 di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2056         }
2057 out:
2058         DBG("<%s>.dsoc=%d, rsoc=%d, dsoc: sm_dischrg=%d, sm_chrg=%d, zero=%d\n",
2059             __func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc,
2060             di->zero_dsoc);
2061 }
2062
2063 static void rk818_bat_smooth_algorithm(struct rk818_battery *di)
2064 {
2065         int ydsoc = 0, delta_cap = 0, old_cap = 0;
2066         unsigned long tgt_sec = 0;
2067
2068         di->remain_cap = rk818_bat_get_coulomb_cap(di);
2069
2070         /* full charge: slow down */
2071         if ((di->dsoc == 99) && (di->chrg_status == CC_OR_CV)) {
2072                 di->sm_linek = FULL_CHRG_K;
2073         /* terminal charge, slow down */
2074         } else if ((di->current_avg >= TERM_CHRG_CURR) &&
2075             (di->chrg_status == CC_OR_CV) && (di->dsoc >= TERM_CHRG_DSOC)) {
2076                 di->sm_linek = TERM_CHRG_K;
2077                 DBG("<%s>. terminal mode..\n", __func__);
2078         /* simulate charge, speed up */
2079         } else if ((di->current_avg <= SIMULATE_CHRG_CURR) &&
2080                    (di->current_avg > 0) && (di->chrg_status == CC_OR_CV) &&
2081                    (di->dsoc < TERM_CHRG_DSOC) &&
2082                    ((di->rsoc - di->dsoc) >= SIMULATE_CHRG_INTV)) {
2083                 di->sm_linek = SIMULATE_CHRG_K;
2084                 DBG("<%s>. simulate mode..\n", __func__);
2085         } else {
2086                 /* charge and discharge switch */
2087                 if ((di->sm_linek * di->current_avg <= 0) ||
2088                     (di->sm_linek == TERM_CHRG_K) ||
2089                     (di->sm_linek == FULL_CHRG_K) ||
2090                     (di->sm_linek == SIMULATE_CHRG_K)) {
2091                         DBG("<%s>. linek mode, retinit sm linek..\n", __func__);
2092                         rk818_bat_calc_sm_linek(di);
2093                 }
2094         }
2095
2096         old_cap = di->sm_remain_cap;
2097         /*
2098          * when dsoc equal rsoc(not include full, term, simulate case),
2099          * sm_linek should change to -1000/1000 smoothly to avoid dsoc+1/-1
2100          * right away, so change it after flat seconds
2101          */
2102         if ((di->dsoc == di->rsoc) && (abs(di->sm_linek) != 1000) &&
2103             (di->sm_linek != FULL_CHRG_K && di->sm_linek != TERM_CHRG_K &&
2104              di->sm_linek != SIMULATE_CHRG_K)) {
2105                 if (!di->flat_match_sec)
2106                         di->flat_match_sec = get_boot_sec();
2107                 tgt_sec = di->fcc * 3600 / 100 / DIV(abs(di->current_avg)) / 3;
2108                 if (base2sec(di->flat_match_sec) >= tgt_sec) {
2109                         di->flat_match_sec = 0;
2110                         di->sm_linek = (di->current_avg >= 0) ? 1000 : -1000;
2111                 }
2112                 DBG("<%s>. flat_sec=%ld, tgt_sec=%ld, sm_k=%d\n", __func__,
2113                     base2sec(di->flat_match_sec), tgt_sec, di->sm_linek);
2114         } else {
2115                 di->flat_match_sec = 0;
2116         }
2117
2118         /* abs(k)=1000 or dsoc=100, stop calc */
2119         if ((abs(di->sm_linek) == 1000) || (di->current_avg >= 0 &&
2120              di->chrg_status == CC_OR_CV && di->dsoc >= 100)) {
2121                 DBG("<%s>. sm_linek=%d\n", __func__, di->sm_linek);
2122                 if (abs(di->sm_linek) == 1000) {
2123                         di->dsoc = di->rsoc;
2124                         di->sm_linek = (di->sm_linek > 0) ? 1000 : -1000;
2125                         DBG("<%s>. dsoc == rsoc, sm_linek=%d\n",
2126                             __func__, di->sm_linek);
2127                 }
2128                 di->sm_remain_cap = di->remain_cap;
2129                 di->sm_chrg_dsoc = di->dsoc * 1000;
2130                 di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2131                 DBG("<%s>. sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n",
2132                     __func__, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
2133         } else {
2134                 delta_cap = di->remain_cap - di->sm_remain_cap;
2135                 if (delta_cap == 0) {
2136                         DBG("<%s>. delta_cap = 0\n", __func__);
2137                         return;
2138                 }
2139                 ydsoc = di->sm_linek * abs(delta_cap) * 100 / DIV(di->fcc);
2140                 if (ydsoc == 0) {
2141                         DBG("<%s>. ydsoc = 0\n", __func__);
2142                         return;
2143                 }
2144                 di->sm_remain_cap = di->remain_cap;
2145
2146                 DBG("<%s>. k=%d, ydsoc=%d; cap:old=%d, new:%d; delta_cap=%d\n",
2147                     __func__, di->sm_linek, ydsoc, old_cap,
2148                     di->sm_remain_cap, delta_cap);
2149
2150                 /* discharge mode */
2151                 if (ydsoc < 0) {
2152                         di->sm_dischrg_dsoc += ydsoc;
2153                         rk818_bat_calc_smooth_dischrg(di);
2154                 /* charge mode */
2155                 } else {
2156                         di->sm_chrg_dsoc += ydsoc;
2157                         rk818_bat_calc_smooth_chrg(di);
2158                 }
2159
2160                 if (di->s2r) {
2161                         di->s2r = false;
2162                         rk818_bat_calc_sm_linek(di);
2163                 }
2164         }
2165 }
2166
2167 /*
2168  * cccv and finish switch all the time will cause dsoc freeze,
2169  * if so, do finish chrg, 100ma is less than min finish_ma.
2170  */
2171 static bool rk818_bat_fake_finish_mode(struct rk818_battery *di)
2172 {
2173         if ((di->rsoc == 100) && (rk818_bat_get_chrg_status(di) == CC_OR_CV) &&
2174             (abs(di->current_avg) <= 100))
2175                 return true;
2176         else
2177                 return false;
2178 }
2179
2180 static void rk818_bat_display_smooth(struct rk818_battery *di)
2181 {
2182         /* discharge: reinit "zero & smooth" algorithm to avoid handling dsoc */
2183         if (di->s2r && !di->sleep_chrg_online) {
2184                 DBG("s2r: discharge, reset algorithm...\n");
2185                 di->s2r = false;
2186                 rk818_bat_zero_algo_prepare(di);
2187                 rk818_bat_smooth_algo_prepare(di);
2188                 return;
2189         }
2190
2191         if (di->work_mode == MODE_FINISH) {
2192                 DBG("step1: charge finish...\n");
2193                 rk818_bat_finish_algorithm(di);
2194                 if ((rk818_bat_get_chrg_status(di) != CHARGE_FINISH) &&
2195                     !rk818_bat_fake_finish_mode(di)) {
2196                         if ((di->current_avg < 0) &&
2197                             (di->voltage_avg < di->pdata->zero_algorithm_vol)) {
2198                                 DBG("step1: change to zero mode...\n");
2199                                 rk818_bat_zero_algo_prepare(di);
2200                                 di->work_mode = MODE_ZERO;
2201                         } else {
2202                                 DBG("step1: change to smooth mode...\n");
2203                                 rk818_bat_smooth_algo_prepare(di);
2204                                 di->work_mode = MODE_SMOOTH;
2205                         }
2206                 }
2207         } else if (di->work_mode == MODE_ZERO) {
2208                 DBG("step2: zero algorithm...\n");
2209                 rk818_bat_zero_algorithm(di);
2210                 if ((di->voltage_avg >= di->pdata->zero_algorithm_vol + 50) ||
2211                     (di->current_avg >= 0)) {
2212                         DBG("step2: change to smooth mode...\n");
2213                         rk818_bat_smooth_algo_prepare(di);
2214                         di->work_mode = MODE_SMOOTH;
2215                 } else if ((rk818_bat_get_chrg_status(di) == CHARGE_FINISH) ||
2216                            rk818_bat_fake_finish_mode(di)) {
2217                         DBG("step2: change to finish mode...\n");
2218                         rk818_bat_finish_algo_prepare(di);
2219                         di->work_mode = MODE_FINISH;
2220                 }
2221         } else {
2222                 DBG("step3: smooth algorithm...\n");
2223                 rk818_bat_smooth_algorithm(di);
2224                 if ((di->current_avg < 0) &&
2225                     (di->voltage_avg < di->pdata->zero_algorithm_vol)) {
2226                         DBG("step3: change to zero mode...\n");
2227                         rk818_bat_zero_algo_prepare(di);
2228                         di->work_mode = MODE_ZERO;
2229                 } else if ((rk818_bat_get_chrg_status(di) == CHARGE_FINISH) ||
2230                            rk818_bat_fake_finish_mode(di)) {
2231                         DBG("step3: change to finish mode...\n");
2232                         rk818_bat_finish_algo_prepare(di);
2233                         di->work_mode = MODE_FINISH;
2234                 }
2235         }
2236 }
2237
2238 static void rk818_bat_relax_vol_calib(struct rk818_battery *di)
2239 {
2240         int soc, cap, vol;
2241
2242         vol = di->voltage_relax;
2243         soc = rk818_bat_vol_to_ocvsoc(di, vol);
2244         cap = rk818_bat_vol_to_ocvcap(di, vol);
2245         rk818_bat_init_capacity(di, cap);
2246         BAT_INFO("sleep ocv calib: rsoc=%d, cap=%d\n", soc, cap);
2247 }
2248
2249 static void rk818_bat_relife_age_flag(struct rk818_battery *di)
2250 {
2251         u8 ocv_soc, ocv_cap, soc_level;
2252
2253         if (di->voltage_relax <= 0)
2254                 return;
2255
2256         ocv_soc = rk818_bat_vol_to_ocvsoc(di, di->voltage_relax);
2257         ocv_cap = rk818_bat_vol_to_ocvcap(di, di->voltage_relax);
2258         DBG("<%s>. ocv_soc=%d, min=%lu, vol=%d\n", __func__,
2259             ocv_soc, di->sleep_dischrg_sec / 60, di->voltage_relax);
2260
2261         /* sleep enough time and ocv_soc enough low */
2262         if (!di->age_allow_update && ocv_soc <= 10) {
2263                 di->age_voltage = di->voltage_relax;
2264                 di->age_ocv_cap = ocv_cap;
2265                 di->age_ocv_soc = ocv_soc;
2266                 di->age_adjust_cap = 0;
2267
2268                 if (ocv_soc <= 1)
2269                         di->age_level = 100;
2270                 else if (ocv_soc < 5)
2271                         di->age_level = 90;
2272                 else
2273                         di->age_level = 80;
2274
2275                 soc_level = rk818_bat_get_age_level(di);
2276                 if (soc_level > di->age_level) {
2277                         di->age_allow_update = false;
2278                 } else {
2279                         di->age_allow_update = true;
2280                         di->age_keep_sec = get_boot_sec();
2281                 }
2282
2283                 BAT_INFO("resume: age_vol:%d, age_ocv_cap:%d, age_ocv_soc:%d, "
2284                          "soc_level:%d, age_allow_update:%d, "
2285                          "age_level:%d\n",
2286                          di->age_voltage, di->age_ocv_cap, ocv_soc, soc_level,
2287                          di->age_allow_update, di->age_level);
2288         }
2289 }
2290
2291 static int rk818_bat_sleep_dischrg(struct rk818_battery *di)
2292 {
2293         bool ocv_soc_updated = false;
2294         int tgt_dsoc, gap_soc, sleep_soc = 0;
2295         int pwroff_vol = di->pdata->pwroff_vol;
2296         unsigned long sleep_sec = di->sleep_dischrg_sec;
2297
2298         DBG("<%s>. enter: dsoc=%d, rsoc=%d, rv=%d, v=%d, sleep_min=%lu\n",
2299             __func__, di->dsoc, di->rsoc, di->voltage_relax,
2300             di->voltage_avg, sleep_sec / 60);
2301
2302         if (di->voltage_relax >= di->voltage_avg) {
2303                 rk818_bat_relax_vol_calib(di);
2304                 rk818_bat_restart_relax(di);
2305                 rk818_bat_relife_age_flag(di);
2306                 ocv_soc_updated = true;
2307         }
2308
2309         /* handle dsoc */
2310         if (di->dsoc <= di->rsoc) {
2311                 di->sleep_sum_cap = (SLP_CURR_MIN * sleep_sec / 3600);
2312                 sleep_soc = di->sleep_sum_cap * 100 / DIV(di->fcc);
2313                 tgt_dsoc = di->dsoc - sleep_soc;
2314                 if (sleep_soc > 0) {
2315                         BAT_INFO("calib0: rl=%d, dl=%d, intval=%d\n",
2316                                  di->rsoc, di->dsoc, sleep_soc);
2317                         if (di->dsoc < 5) {
2318                                 di->dsoc--;
2319                         } else if ((tgt_dsoc < 5) && (di->dsoc >= 5)) {
2320                                 if (di->dsoc == 5)
2321                                         di->dsoc--;
2322                                 else
2323                                         di->dsoc = 5;
2324                         } else if (tgt_dsoc > 5) {
2325                                 di->dsoc = tgt_dsoc;
2326                         }
2327                 }
2328
2329                 DBG("%s: dsoc<=rsoc, sum_cap=%d==>sleep_soc=%d, tgt_dsoc=%d\n",
2330                     __func__, di->sleep_sum_cap, sleep_soc, tgt_dsoc);
2331         } else {
2332                 /* di->dsoc > di->rsoc */
2333                 di->sleep_sum_cap = (SLP_CURR_MAX * sleep_sec / 3600);
2334                 sleep_soc = di->sleep_sum_cap / DIV(di->fcc / 100);
2335                 gap_soc = di->dsoc - di->rsoc;
2336
2337                 BAT_INFO("calib1: rsoc=%d, dsoc=%d, intval=%d\n",
2338                          di->rsoc, di->dsoc, sleep_soc);
2339                 if (gap_soc > sleep_soc) {
2340                         if ((gap_soc - 5) > (sleep_soc * 2))
2341                                 di->dsoc -= (sleep_soc * 2);
2342                         else
2343                                 di->dsoc -= sleep_soc;
2344                 } else {
2345                         di->dsoc = di->rsoc;
2346                 }
2347
2348                 DBG("%s: dsoc>rsoc, sum_cap=%d=>sleep_soc=%d, gap_soc=%d\n",
2349                     __func__, di->sleep_sum_cap, sleep_soc, gap_soc);
2350         }
2351
2352         if (di->voltage_avg <= pwroff_vol - 70) {
2353                 di->dsoc = 0;
2354                 rk_send_wakeup_key();
2355                 BAT_INFO("low power sleeping, shutdown... %d\n", di->dsoc);
2356         }
2357
2358         if (ocv_soc_updated && sleep_soc && (di->rsoc - di->dsoc) < 5 &&
2359             di->dsoc < 40) {
2360                 di->dsoc--;
2361                 BAT_INFO("low power sleeping, reserved... %d\n", di->dsoc);
2362         }
2363
2364         if (di->dsoc <= 0) {
2365                 di->dsoc = 0;
2366                 rk_send_wakeup_key();
2367                 BAT_INFO("sleep dsoc is %d...\n", di->dsoc);
2368         }
2369
2370         DBG("<%s>. out: dsoc=%d, rsoc=%d, sum_cap=%d\n",
2371             __func__, di->dsoc, di->rsoc, di->sleep_sum_cap);
2372
2373         return sleep_soc;
2374 }
2375
2376 static void rk818_bat_power_supply_changed(struct rk818_battery *di)
2377 {
2378         u8 status;
2379         static int old_soc = -1;
2380
2381         if (di->dsoc > 100)
2382                 di->dsoc = 100;
2383         else if (di->dsoc < 0)
2384                 di->dsoc = 0;
2385
2386         if (di->dsoc == old_soc)
2387                 return;
2388
2389         status = rk818_bat_read(di, RK818_SUP_STS_REG);
2390         status = (status & CHRG_STATUS_MSK) >> 4;
2391         old_soc = di->dsoc;
2392         di->last_dsoc = di->dsoc;
2393         power_supply_changed(di->bat);
2394         BAT_INFO("changed: dsoc=%d, rsoc=%d, v=%d, ov=%d c=%d, "
2395                  "cap=%d, f=%d, st=%s\n",
2396                  di->dsoc, di->rsoc, di->voltage_avg, di->voltage_ocv,
2397                  di->current_avg, di->remain_cap, di->fcc, bat_status[status]);
2398
2399         BAT_INFO("dl=%d, rl=%d, v=%d, halt=%d, halt_n=%d, max=%d, "
2400                  "init=%d, sw=%d, calib=%d, below0=%d, force=%d\n",
2401                  di->dbg_pwr_dsoc, di->dbg_pwr_rsoc, di->dbg_pwr_vol,
2402                  di->is_halt, di->halt_cnt, di->is_max_soc_offset,
2403                  di->is_initialized, di->is_sw_reset, di->is_ocv_calib,
2404                  di->dbg_cap_low0, di->is_force_calib);
2405 }
2406
2407 static u8 rk818_bat_check_reboot(struct rk818_battery *di)
2408 {
2409         u8 cnt;
2410
2411         cnt = rk818_bat_read(di, RK818_REBOOT_CNT_REG);
2412         cnt++;
2413
2414         if (cnt >= REBOOT_MAX_CNT) {
2415                 BAT_INFO("reboot: %d --> %d\n", di->dsoc, di->rsoc);
2416                 di->dsoc = di->rsoc;
2417                 if (di->dsoc > 100)
2418                         di->dsoc = 100;
2419                 else if (di->dsoc < 0)
2420                         di->dsoc = 0;
2421                 rk818_bat_save_dsoc(di, di->dsoc);
2422                 cnt = REBOOT_MAX_CNT;
2423         }
2424
2425         rk818_bat_save_reboot_cnt(di, cnt);
2426         DBG("reboot cnt: %d\n", cnt);
2427
2428         return cnt;
2429 }
2430
2431 static void rk818_bat_rsoc_daemon(struct rk818_battery *di)
2432 {
2433         int est_vol, remain_cap;
2434         static unsigned long sec;
2435
2436         if ((di->remain_cap < 0) && (di->fb_blank != 0)) {
2437                 if (!sec)
2438                         sec = get_boot_sec();
2439                 wake_lock_timeout(&di->wake_lock,
2440                                   (di->pdata->monitor_sec + 1) * HZ);
2441
2442                 DBG("sec=%ld, hold_sec=%ld\n", sec, base2sec(sec));
2443                 if (base2sec(sec) >= 60) {
2444                         sec = 0;
2445                         di->dbg_cap_low0++;
2446                         est_vol = di->voltage_avg -
2447                                         (di->bat_res * di->current_avg) / 1000;
2448                         remain_cap = rk818_bat_vol_to_ocvcap(di, est_vol);
2449                         rk818_bat_init_capacity(di, remain_cap);
2450                         BAT_INFO("adjust cap below 0 --> %d, rsoc=%d\n",
2451                                  di->remain_cap, di->rsoc);
2452                         wake_unlock(&di->wake_lock);
2453                 }
2454         } else {
2455                 sec = 0;
2456         }
2457 }
2458
2459 static void rk818_bat_update_info(struct rk818_battery *di)
2460 {
2461         di->voltage_avg = rk818_bat_get_avg_voltage(di);
2462         di->current_avg = rk818_bat_get_avg_current(di);
2463         di->voltage_relax = rk818_bat_get_relax_voltage(di);
2464         di->rsoc = rk818_bat_get_rsoc(di);
2465         di->remain_cap = rk818_bat_get_coulomb_cap(di);
2466         di->chrg_status = rk818_bat_get_chrg_status(di);
2467
2468         /* smooth charge */
2469         if (di->remain_cap > di->fcc) {
2470                 di->sm_remain_cap -= (di->remain_cap - di->fcc);
2471                 DBG("<%s>. cap: remain=%d, sm_remain=%d\n",
2472                     __func__, di->remain_cap, di->sm_remain_cap);
2473                 rk818_bat_init_coulomb_cap(di, di->fcc);
2474         }
2475
2476         if (di->chrg_status != CHARGE_FINISH)
2477                 di->finish_base = get_boot_sec();
2478
2479         /*
2480          * we need update fcc in continuous charging state, if discharge state
2481          * keep at least 2 hour, we decide not to update fcc, so clear the
2482          * fcc update flag: age_allow_update.
2483          */
2484         if (base2min(di->plug_out_base) > 120)
2485                 di->age_allow_update = false;
2486
2487         /* do adc calib: status must from cccv mode to finish mode */
2488         if (di->chrg_status == CC_OR_CV) {
2489                 di->adc_allow_update = true;
2490                 di->adc_calib_cnt = 0;
2491         }
2492 }
2493
2494 /* get ntc resistance */
2495 static int rk818_bat_get_ntc_res(struct rk818_battery *di)
2496 {
2497         int val = 0;
2498
2499         val |= rk818_bat_read(di, RK818_TS1_ADC_REGL) << 0;
2500         val |= rk818_bat_read(di, RK818_TS1_ADC_REGH) << 8;
2501
2502         val = val * NTC_CALC_FACTOR; /*reference voltage 2.2V,current 80ua*/
2503         DBG("<%s>. ntc_res=%d\n", __func__, val);
2504
2505         return val;
2506 }
2507
2508 static void rk818_bat_update_temperature(struct rk818_battery *di)
2509 {
2510         u32 ntc_size, *ntc_table;
2511         int i, res;
2512
2513         ntc_table = di->pdata->ntc_table;
2514         ntc_size = di->pdata->ntc_size;
2515         di->temperature = VIRTUAL_TEMPERATURE;
2516
2517         if (ntc_size) {
2518                 res = rk818_bat_get_ntc_res(di);
2519                 if (res < ntc_table[ntc_size - 1]) {
2520                         BAT_INFO("bat ntc upper max degree: R=%d\n", res);
2521                 } else if (res > ntc_table[0]) {
2522                         BAT_INFO("bat ntc lower min degree: R=%d\n", res);
2523                 } else {
2524                         for (i = 0; i < ntc_size; i++) {
2525                                 if (res >= ntc_table[i])
2526                                         break;
2527                         }
2528                         di->temperature = (i + di->pdata->ntc_degree_from) * 10;
2529                 }
2530         }
2531 }
2532
2533 static void rk818_bat_init_dsoc_algorithm(struct rk818_battery *di)
2534 {
2535         u8 buf;
2536         int16_t rest = 0;
2537         unsigned long soc_sec;
2538         const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH",
2539                 "MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", };
2540
2541         /* get rest */
2542         rest |= rk818_bat_read(di, RK818_CALC_REST_REGH) << 8;
2543         rest |= rk818_bat_read(di, RK818_CALC_REST_REGL) << 0;
2544
2545         /* get mode */
2546         buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
2547         di->algo_rest_mode = (buf & ALGO_REST_MODE_MSK) >> ALGO_REST_MODE_SHIFT;
2548
2549         if (rk818_bat_get_chrg_status(di) == CHARGE_FINISH) {
2550                 if (di->algo_rest_mode == MODE_FINISH) {
2551                         soc_sec = di->fcc * 3600 / 100 / FINISH_CHRG_CUR1;
2552                         if ((rest / DIV(soc_sec)) > 0) {
2553                                 if (di->dsoc < 100) {
2554                                         di->dsoc++;
2555                                         di->algo_rest_val = rest % soc_sec;
2556                                         BAT_INFO("algorithm rest(%d) dsoc "
2557                                                  "inc: %d\n",
2558                                                  rest, di->dsoc);
2559                                 } else {
2560                                         di->algo_rest_val = 0;
2561                                 }
2562                         } else {
2563                                 di->algo_rest_val = rest;
2564                         }
2565                 } else {
2566                         di->algo_rest_val = rest;
2567                 }
2568         } else {
2569                 /* charge speed up */
2570                 if ((rest / 1000) > 0 && rk818_bat_chrg_online(di)) {
2571                         if (di->dsoc < di->rsoc) {
2572                                 di->dsoc++;
2573                                 di->algo_rest_val = rest % 1000;
2574                                 BAT_INFO("algorithm rest(%d) dsoc inc: %d\n",
2575                                          rest, di->dsoc);
2576                         } else {
2577                                 di->algo_rest_val = 0;
2578                         }
2579                 /* discharge speed up */
2580                 } else if (((rest / 1000) < 0) && !rk818_bat_chrg_online(di)) {
2581                         if (di->dsoc > di->rsoc) {
2582                                 di->dsoc--;
2583                                 di->algo_rest_val = rest % 1000;
2584                                 BAT_INFO("algorithm rest(%d) dsoc sub: %d\n",
2585                                          rest, di->dsoc);
2586                         } else {
2587                                 di->algo_rest_val = 0;
2588                         }
2589                 } else {
2590                         di->algo_rest_val = rest;
2591                 }
2592         }
2593
2594         if (di->dsoc >= 100)
2595                 di->dsoc = 100;
2596         else if (di->dsoc <= 0)
2597                 di->dsoc = 0;
2598
2599         /* init current mode */
2600         di->voltage_avg = rk818_bat_get_avg_voltage(di);
2601         di->current_avg = rk818_bat_get_avg_current(di);
2602         if (rk818_bat_get_chrg_status(di) == CHARGE_FINISH) {
2603                 rk818_bat_finish_algo_prepare(di);
2604                 di->work_mode = MODE_FINISH;
2605         } else {
2606                 rk818_bat_smooth_algo_prepare(di);
2607                 di->work_mode = MODE_SMOOTH;
2608         }
2609
2610         DBG("<%s>. init: org_rest=%d, rest=%d, mode=%s; "
2611             "doc(x1000): zero=%d, chrg=%d, dischrg=%d, finish=%lu\n",
2612             __func__, rest, di->algo_rest_val, mode_name[di->algo_rest_mode],
2613             di->zero_dsoc, di->sm_chrg_dsoc, di->sm_dischrg_dsoc,
2614             di->finish_base);
2615 }
2616
2617 static void rk818_bat_save_algo_rest(struct rk818_battery *di)
2618 {
2619         u8 buf, mode;
2620         int16_t algo_rest = 0;
2621         int tmp_soc;
2622         int zero_rest = 0, sm_chrg_rest = 0;
2623         int sm_dischrg_rest = 0, finish_rest = 0;
2624         const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH",
2625                 "MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", };
2626
2627         /* zero dischrg */
2628         tmp_soc = (di->zero_dsoc) / 1000;
2629         if (tmp_soc == di->dsoc)
2630                 zero_rest = di->zero_dsoc - ((di->dsoc + 1) * 1000 -
2631                                 MIN_ACCURACY);
2632
2633         /* sm chrg */
2634         tmp_soc = di->sm_chrg_dsoc / 1000;
2635         if (tmp_soc == di->dsoc)
2636                 sm_chrg_rest = di->sm_chrg_dsoc - di->dsoc * 1000;
2637
2638         /* sm dischrg */
2639         tmp_soc = (di->sm_dischrg_dsoc) / 1000;
2640         if (tmp_soc == di->dsoc)
2641                 sm_dischrg_rest = di->sm_dischrg_dsoc - ((di->dsoc + 1) * 1000 -
2642                                 MIN_ACCURACY);
2643
2644         /* last time is also finish chrg, then add last rest */
2645         if (di->algo_rest_mode == MODE_FINISH && di->algo_rest_val)
2646                 finish_rest = base2sec(di->finish_base) + di->algo_rest_val;
2647         else
2648                 finish_rest = base2sec(di->finish_base);
2649
2650         /* total calc */
2651         if ((rk818_bat_chrg_online(di) && (di->dsoc > di->rsoc)) ||
2652             (!rk818_bat_chrg_online(di) && (di->dsoc < di->rsoc)) ||
2653             (di->dsoc == di->rsoc)) {
2654                 di->algo_rest_val = 0;
2655                 algo_rest = 0;
2656                 DBG("<%s>. step1..\n", __func__);
2657         } else if (di->work_mode == MODE_FINISH) {
2658                 algo_rest = finish_rest;
2659                 DBG("<%s>. step2..\n", __func__);
2660         } else if (di->algo_rest_mode == MODE_FINISH) {
2661                 algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest;
2662                 DBG("<%s>. step3..\n", __func__);
2663         } else {
2664                 if (rk818_bat_chrg_online(di) && (di->dsoc < di->rsoc))
2665                         algo_rest = sm_chrg_rest + di->algo_rest_val;
2666                 else if (!rk818_bat_chrg_online(di) && (di->dsoc > di->rsoc))
2667                         algo_rest = zero_rest + sm_dischrg_rest +
2668                                     di->algo_rest_val;
2669                 else
2670                         algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest +
2671                                     di->algo_rest_val;
2672                 DBG("<%s>. step4..\n", __func__);
2673         }
2674
2675         /* check mode */
2676         if ((di->work_mode == MODE_FINISH) || (di->work_mode == MODE_ZERO)) {
2677                 mode = di->work_mode;
2678         } else {/* MODE_SMOOTH */
2679                 if (di->sm_linek > 0)
2680                         mode = MODE_SMOOTH_CHRG;
2681                 else
2682                         mode = MODE_SMOOTH_DISCHRG;
2683         }
2684
2685         /* save mode */
2686         buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
2687         buf &= ~ALGO_REST_MODE_MSK;
2688         buf |= (mode << ALGO_REST_MODE_SHIFT);
2689         rk818_bat_write(di, RK818_MISC_MARK_REG, buf);
2690
2691         /* save rest */
2692         buf = (algo_rest >> 8) & 0xff;
2693         rk818_bat_write(di, RK818_CALC_REST_REGH, buf);
2694         buf = (algo_rest >> 0) & 0xff;
2695         rk818_bat_write(di, RK818_CALC_REST_REGL, buf);
2696
2697         DBG("<%s>. rest: algo=%d, mode=%s, last_rest=%d; zero=%d, "
2698             "chrg=%d, dischrg=%d, finish=%lu\n",
2699             __func__, algo_rest, mode_name[mode], di->algo_rest_val, zero_rest,
2700             sm_chrg_rest, sm_dischrg_rest, base2sec(di->finish_base));
2701 }
2702
2703 static void rk818_bat_save_data(struct rk818_battery *di)
2704 {
2705         rk818_bat_save_dsoc(di, di->dsoc);
2706         rk818_bat_save_cap(di, di->remain_cap);
2707         rk818_bat_save_algo_rest(di);
2708 }
2709
2710 static void rk818_battery_work(struct work_struct *work)
2711 {
2712         struct rk818_battery *di =
2713                 container_of(work, struct rk818_battery, bat_delay_work.work);
2714
2715         rk818_bat_update_info(di);
2716         rk818_bat_wait_finish_sig(di);
2717         rk818_bat_rsoc_daemon(di);
2718         rk818_bat_update_temperature(di);
2719         rk818_bat_display_smooth(di);
2720         rk818_bat_power_supply_changed(di);
2721         rk818_bat_save_data(di);
2722         rk818_bat_debug_info(di);
2723
2724         queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
2725                            msecs_to_jiffies(di->monitor_ms));
2726 }
2727
2728 static irqreturn_t rk818_vb_low_irq(int irq, void *bat)
2729 {
2730         struct rk818_battery *di = (struct rk818_battery *)bat;
2731
2732         di->dsoc = 0;
2733         rk_send_wakeup_key();
2734         BAT_INFO("lower power yet, power off system! v=%d, c=%d, dsoc=%d\n",
2735                  di->voltage_avg, di->current_avg, di->dsoc);
2736
2737         return IRQ_HANDLED;
2738 }
2739
2740 static void rk818_bat_init_sysfs(struct rk818_battery *di)
2741 {
2742         int i, ret;
2743
2744         for (i = 0; i < ARRAY_SIZE(rk818_bat_attr); i++) {
2745                 ret = sysfs_create_file(&di->dev->kobj,
2746                                         &rk818_bat_attr[i].attr);
2747                 if (ret)
2748                         dev_err(di->dev, "create bat node(%s) error\n",
2749                                 rk818_bat_attr[i].attr.name);
2750         }
2751 }
2752
2753 static int rk818_bat_init_irqs(struct rk818_battery *di)
2754 {
2755         struct rk808 *rk818 = di->rk818;
2756         struct platform_device *pdev = di->pdev;
2757         int ret, vb_lo_irq;
2758
2759         vb_lo_irq = regmap_irq_get_virq(rk818->irq_data, RK818_IRQ_VB_LO);
2760         if (vb_lo_irq < 0) {
2761                 dev_err(di->dev, "vb_lo_irq request failed!\n");
2762                 return vb_lo_irq;
2763         }
2764
2765         ret = devm_request_threaded_irq(di->dev, vb_lo_irq, NULL,
2766                                         rk818_vb_low_irq, IRQF_TRIGGER_HIGH,
2767                                         "rk818_vb_low", di);
2768         if (ret) {
2769                 dev_err(&pdev->dev, "vb_lo_irq request failed!\n");
2770                 return ret;
2771         }
2772         enable_irq_wake(vb_lo_irq);
2773
2774         return 0;
2775 }
2776
2777 static void rk818_bat_init_info(struct rk818_battery *di)
2778 {
2779         di->design_cap = di->pdata->design_capacity;
2780         di->qmax = di->pdata->design_qmax;
2781         di->bat_res = di->pdata->bat_res;
2782         di->monitor_ms = di->pdata->monitor_sec * TIMER_MS_COUNTS;
2783         di->boot_base = POWER_ON_SEC_BASE;
2784         di->res_div = (di->pdata->sample_res == SAMPLE_RES_20MR) ?
2785                        SAMPLE_RES_DIV1 : SAMPLE_RES_DIV2;
2786 }
2787
2788 static int rk818_bat_rtc_sleep_sec(struct rk818_battery *di)
2789 {
2790         int err;
2791         int interval_sec = 0;
2792         struct rtc_time tm;
2793         struct timespec tv = { .tv_nsec = NSEC_PER_SEC >> 1, };
2794         struct rtc_device *rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
2795
2796         err = rtc_read_time(rtc, &tm);
2797         if (err) {
2798                 dev_err(rtc->dev.parent, "hctosys: read hardware clk failed\n");
2799                 return 0;
2800         }
2801
2802         err = rtc_valid_tm(&tm);
2803         if (err) {
2804                 dev_err(rtc->dev.parent, "hctosys: invalid date time\n");
2805                 return 0;
2806         }
2807
2808         rtc_tm_to_time(&tm, &tv.tv_sec);
2809         interval_sec = tv.tv_sec - di->rtc_base.tv_sec;
2810
2811         return (interval_sec > 0) ? interval_sec : 0;
2812 }
2813
2814 static void rk818_bat_init_ts1_detect(struct rk818_battery *di)
2815 {
2816         u8 buf;
2817
2818         if (!di->pdata->ntc_size)
2819                 return;
2820
2821         /* ADC_TS1_EN */
2822         buf = rk818_bat_read(di, RK818_ADC_CTRL_REG);
2823         buf |= ADC_TS1_EN;
2824         rk818_bat_write(di, RK818_ADC_CTRL_REG, buf);
2825 }
2826
2827 static void rk818_bat_set_shtd_vol(struct rk818_battery *di)
2828 {
2829         u8 val;
2830
2831         /* set vbat lowest 3.0v shutdown */
2832         val = rk818_bat_read(di, RK818_VB_MON_REG);
2833         val &= ~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK);
2834         val |= (RK818_VBAT_LOW_3V0 | EN_VABT_LOW_SHUT_DOWN);
2835         rk818_bat_write(di, RK818_VB_MON_REG, val);
2836
2837         /* disable low irq */
2838         rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1,
2839                            VB_LOW_INT_EN, VB_LOW_INT_EN);
2840 }
2841
2842 static void rk818_bat_init_fg(struct rk818_battery *di)
2843 {
2844         rk818_bat_enable_gauge(di);
2845         rk818_bat_init_voltage_kb(di);
2846         rk818_bat_init_coffset(di);
2847         rk818_bat_set_relax_sample(di);
2848         rk818_bat_set_ioffset_sample(di);
2849         rk818_bat_set_ocv_sample(di);
2850         rk818_bat_init_ts1_detect(di);
2851         rk818_bat_init_rsoc(di);
2852         rk818_bat_init_coulomb_cap(di, di->nac);
2853         rk818_bat_init_age_algorithm(di);
2854         rk818_bat_init_chrg_config(di);
2855         rk818_bat_set_shtd_vol(di);
2856         rk818_bat_init_zero_table(di);
2857         rk818_bat_init_caltimer(di);
2858         rk818_bat_init_dsoc_algorithm(di);
2859
2860         di->voltage_avg = rk818_bat_get_avg_voltage(di);
2861         di->voltage_ocv = rk818_bat_get_ocv_voltage(di);
2862         di->voltage_relax = rk818_bat_get_relax_voltage(di);
2863         di->current_avg = rk818_bat_get_avg_current(di);
2864         di->remain_cap = rk818_bat_get_coulomb_cap(di);
2865         di->dbg_pwr_dsoc = di->dsoc;
2866         di->dbg_pwr_rsoc = di->rsoc;
2867         di->dbg_pwr_vol = di->voltage_avg;
2868
2869         rk818_bat_dump_regs(di, 0x99, 0xee);
2870         DBG("nac=%d cap=%d ov=%d v=%d rv=%d dl=%d rl=%d c=%d\n",
2871             di->nac, di->remain_cap, di->voltage_ocv, di->voltage_avg,
2872             di->voltage_relax, di->dsoc, di->rsoc, di->current_avg);
2873 }
2874
2875 #ifdef CONFIG_OF
2876 static int rk818_bat_parse_dt(struct rk818_battery *di)
2877 {
2878         u32 out_value;
2879         int length, ret;
2880         size_t size;
2881         struct device_node *np = di->dev->of_node;
2882         struct battery_platform_data *pdata;
2883         struct device *dev = di->dev;
2884
2885         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2886         if (!pdata)
2887                 return -ENOMEM;
2888
2889         di->pdata = pdata;
2890         /* init default param */
2891         pdata->bat_res = DEFAULT_BAT_RES;
2892         pdata->monitor_sec = DEFAULT_MONITOR_SEC;
2893         pdata->pwroff_vol = DEFAULT_PWROFF_VOL_THRESD;
2894         pdata->sleep_exit_current = DEFAULT_SLP_EXIT_CUR;
2895         pdata->sleep_enter_current = DEFAULT_SLP_ENTER_CUR;
2896         pdata->bat_mode = MODE_BATTARY;
2897         pdata->max_soc_offset = DEFAULT_MAX_SOC_OFFSET;
2898         pdata->sample_res = DEFAULT_SAMPLE_RES;
2899         pdata->energy_mode = DEFAULT_ENERGY_MODE;
2900         pdata->fb_temp = DEFAULT_FB_TEMP;
2901         pdata->zero_reserve_dsoc = DEFAULT_ZERO_RESERVE_DSOC;
2902
2903         /* parse necessary param */
2904         if (!of_find_property(np, "ocv_table", &length)) {
2905                 dev_err(dev, "ocv_table not found!\n");
2906                 return -EINVAL;
2907         }
2908
2909         pdata->ocv_size = length / sizeof(u32);
2910         if (pdata->ocv_size <= 0) {
2911                 dev_err(dev, "invalid ocv table\n");
2912                 return -EINVAL;
2913         }
2914
2915         size = sizeof(*pdata->ocv_table) * pdata->ocv_size;
2916         pdata->ocv_table = devm_kzalloc(di->dev, size, GFP_KERNEL);
2917         if (!pdata->ocv_table)
2918                 return -ENOMEM;
2919
2920         ret = of_property_read_u32_array(np, "ocv_table",
2921                                          pdata->ocv_table,
2922                                          pdata->ocv_size);
2923         if (ret < 0)
2924                 return ret;
2925
2926         ret = of_property_read_u32(np, "design_capacity", &out_value);
2927         if (ret < 0) {
2928                 dev_err(dev, "design_capacity not found!\n");
2929                 return ret;
2930         }
2931         pdata->design_capacity = out_value;
2932
2933         ret = of_property_read_u32(np, "design_qmax", &out_value);
2934         if (ret < 0) {
2935                 dev_err(dev, "design_qmax not found!\n");
2936                 return ret;
2937         }
2938         pdata->design_qmax = out_value;
2939         ret = of_property_read_u32(np, "max_chrg_voltage", &out_value);
2940         if (ret < 0) {
2941                 dev_err(dev, "max_chrg_voltage missing!\n");
2942                 return ret;
2943         }
2944         pdata->max_chrg_voltage = out_value;
2945         if (out_value >= 4300)
2946                 pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD2;
2947         else
2948                 pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD1;
2949
2950         ret = of_property_read_u32(np, "fb_temperature", &pdata->fb_temp);
2951         if (ret < 0)
2952                 dev_err(dev, "fb_temperature missing!\n");
2953
2954         ret = of_property_read_u32(np, "sample_res", &pdata->sample_res);
2955         if (ret < 0)
2956                 dev_err(dev, "sample_res missing!\n");
2957
2958         ret = of_property_read_u32(np, "energy_mode", &pdata->energy_mode);
2959         if (ret < 0)
2960                 dev_err(dev, "energy_mode missing!\n");
2961
2962         ret = of_property_read_u32(np, "max_soc_offset",
2963                                    &pdata->max_soc_offset);
2964         if (ret < 0)
2965                 dev_err(dev, "max_soc_offset missing!\n");
2966
2967         ret = of_property_read_u32(np, "monitor_sec", &pdata->monitor_sec);
2968         if (ret < 0)
2969                 dev_err(dev, "monitor_sec missing!\n");
2970
2971         ret = of_property_read_u32(np, "zero_algorithm_vol",
2972                                    &pdata->zero_algorithm_vol);
2973         if (ret < 0)
2974                 dev_err(dev, "zero_algorithm_vol missing!\n");
2975
2976         ret = of_property_read_u32(np, "zero_reserve_dsoc",
2977                                   &pdata->zero_reserve_dsoc);
2978
2979         ret = of_property_read_u32(np, "virtual_power", &pdata->bat_mode);
2980         if (ret < 0)
2981                 dev_err(dev, "virtual_power missing!\n");
2982
2983         ret = of_property_read_u32(np, "bat_res", &pdata->bat_res);
2984         if (ret < 0)
2985                 dev_err(dev, "bat_res missing!\n");
2986
2987         ret = of_property_read_u32(np, "sleep_enter_current",
2988                                    &pdata->sleep_enter_current);
2989         if (ret < 0)
2990                 dev_err(dev, "sleep_enter_current missing!\n");
2991
2992         ret = of_property_read_u32(np, "sleep_exit_current",
2993                                    &pdata->sleep_exit_current);
2994         if (ret < 0)
2995                 dev_err(dev, "sleep_exit_current missing!\n");
2996
2997         ret = of_property_read_u32(np, "power_off_thresd", &pdata->pwroff_vol);
2998         if (ret < 0)
2999                 dev_err(dev, "power_off_thresd missing!\n");
3000
3001         if (!of_find_property(np, "ntc_table", &length)) {
3002                 pdata->ntc_size = 0;
3003         } else {
3004                 /* get ntc degree base value */
3005                 ret = of_property_read_u32_index(np, "ntc_degree_from", 1,
3006                                                  &pdata->ntc_degree_from);
3007                 if (ret) {
3008                         dev_err(dev, "invalid ntc_degree_from\n");
3009                         return -EINVAL;
3010                 }
3011
3012                 of_property_read_u32_index(np, "ntc_degree_from", 0,
3013                                            &out_value);
3014                 if (out_value)
3015                         pdata->ntc_degree_from = -pdata->ntc_degree_from;
3016
3017                 pdata->ntc_size = length / sizeof(u32);
3018         }
3019
3020         if (pdata->ntc_size) {
3021                 size = sizeof(*pdata->ntc_table) * pdata->ntc_size;
3022                 pdata->ntc_table = devm_kzalloc(di->dev, size, GFP_KERNEL);
3023                 if (!pdata->ntc_table)
3024                         return -ENOMEM;
3025
3026                 ret = of_property_read_u32_array(np, "ntc_table",
3027                                                  pdata->ntc_table,
3028                                                  pdata->ntc_size);
3029                 if (ret < 0)
3030                         return ret;
3031         }
3032
3033         DBG("the battery dts info dump:\n"
3034             "bat_res:%d\n"
3035             "design_capacity:%d\n"
3036             "design_qmax :%d\n"
3037             "sleep_enter_current:%d\n"
3038             "sleep_exit_current:%d\n"
3039             "zero_algorithm_vol:%d\n"
3040             "zero_reserve_dsoc:%d\n"
3041             "monitor_sec:%d\n"
3042             "max_soc_offset:%d\n"
3043             "virtual_power:%d\n"
3044             "pwroff_vol:%d\n"
3045             "sample_res:%d\n"
3046             "ntc_size=%d\n"
3047             "ntc_degree_from:%d\n"
3048             "ntc_degree_to:%d\n",
3049             pdata->bat_res, pdata->design_capacity, pdata->design_qmax,
3050             pdata->sleep_enter_current, pdata->sleep_exit_current,
3051             pdata->zero_algorithm_vol, pdata->zero_reserve_dsoc,
3052             pdata->monitor_sec,
3053             pdata->max_soc_offset, pdata->bat_mode, pdata->pwroff_vol,
3054             pdata->sample_res, pdata->ntc_size, pdata->ntc_degree_from,
3055             pdata->ntc_degree_from + pdata->ntc_size - 1
3056             );
3057
3058         return 0;
3059 }
3060 #else
3061 static int rk818_bat_parse_dt(struct rk818_battery *di)
3062 {
3063         return -ENODEV;
3064 }
3065 #endif
3066
3067 static const struct of_device_id rk818_battery_of_match[] = {
3068         {.compatible = "rk818-battery",},
3069         { },
3070 };
3071
3072 static int rk818_battery_probe(struct platform_device *pdev)
3073 {
3074         const struct of_device_id *of_id =
3075                         of_match_device(rk818_battery_of_match, &pdev->dev);
3076         struct rk818_battery *di;
3077         struct rk808 *rk818 = dev_get_drvdata(pdev->dev.parent);
3078         int ret;
3079
3080         if (!of_id) {
3081                 dev_err(&pdev->dev, "Failed to find matching dt id\n");
3082                 return -ENODEV;
3083         }
3084
3085         di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
3086         if (!di)
3087                 return -ENOMEM;
3088
3089         di->rk818 = rk818;
3090         di->pdev = pdev;
3091         di->dev = &pdev->dev;
3092         di->regmap = rk818->regmap;
3093         platform_set_drvdata(pdev, di);
3094
3095         ret = rk818_bat_parse_dt(di);
3096         if (ret < 0) {
3097                 dev_err(di->dev, "rk818 battery parse dt failed!\n");
3098                 return ret;
3099         }
3100
3101         if (!is_rk818_bat_exist(di)) {
3102                 di->pdata->bat_mode = MODE_VIRTUAL;
3103                 dev_err(di->dev, "no battery, virtual power mode\n");
3104         }
3105
3106         ret = rk818_bat_init_irqs(di);
3107         if (ret != 0) {
3108                 dev_err(di->dev, "rk818 bat init irqs failed!\n");
3109                 return ret;
3110         }
3111
3112         ret = rk818_bat_init_power_supply(di);
3113         if (ret) {
3114                 dev_err(di->dev, "rk818 power supply register failed!\n");
3115                 return ret;
3116         }
3117
3118         rk818_bat_init_info(di);
3119         rk818_bat_init_fg(di);
3120         rk818_bat_init_sysfs(di);
3121         rk818_bat_register_fb_notify(di);
3122         wake_lock_init(&di->wake_lock, WAKE_LOCK_SUSPEND, "rk818_bat_lock");
3123         di->bat_monitor_wq = alloc_ordered_workqueue("%s",
3124                         WQ_MEM_RECLAIM | WQ_FREEZABLE, "rk818-bat-monitor-wq");
3125         INIT_DELAYED_WORK(&di->bat_delay_work, rk818_battery_work);
3126         queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
3127                            msecs_to_jiffies(TIMER_MS_COUNTS * 5));
3128
3129         BAT_INFO("driver version %s\n", DRIVER_VERSION);
3130
3131         return ret;
3132 }
3133
3134 static int rk818_battery_suspend(struct platform_device *dev,
3135                                  pm_message_t state)
3136 {
3137         struct rk818_battery *di = platform_get_drvdata(dev);
3138         u8 val, st;
3139
3140         cancel_delayed_work_sync(&di->bat_delay_work);
3141
3142         di->s2r = false;
3143         di->sleep_chrg_online = rk818_bat_chrg_online(di);
3144         di->sleep_chrg_status = rk818_bat_get_chrg_status(di);
3145         di->current_avg = rk818_bat_get_avg_current(di);
3146         di->remain_cap = rk818_bat_get_coulomb_cap(di);
3147         di->rsoc = rk818_bat_get_rsoc(di);
3148         do_gettimeofday(&di->rtc_base);
3149         rk818_bat_save_data(di);
3150         st = (rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK) >> 4;
3151
3152         /* if not CHARGE_FINISH, reinit finish_base.
3153          * avoid sleep loop between suspend and resume
3154          */
3155         if (di->sleep_chrg_status != CHARGE_FINISH)
3156                 di->finish_base = get_boot_sec();
3157
3158         /* avoid: enter suspend from MODE_ZERO: load from heavy to light */
3159         if ((di->work_mode == MODE_ZERO) &&
3160             (di->sleep_chrg_online) && (di->current_avg >= 0)) {
3161                 DBG("suspend: MODE_ZERO exit...\n");
3162                 /* it need't do prepare for mode finish and smooth, it will
3163                  * be done in display_smooth
3164                  */
3165                 if (di->sleep_chrg_status == CHARGE_FINISH) {
3166                         di->work_mode = MODE_FINISH;
3167                         di->finish_base = get_boot_sec();
3168                 } else {
3169                         di->work_mode = MODE_SMOOTH;
3170                         rk818_bat_smooth_algo_prepare(di);
3171                 }
3172         }
3173
3174         /* set vbat low than 3.4v to generate a wakeup irq */
3175         val = rk818_bat_read(di, RK818_VB_MON_REG);
3176         val &= (~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK));
3177         val |= (RK818_VBAT_LOW_3V4 | EN_VBAT_LOW_IRQ);
3178         rk818_bat_write(di, RK818_VB_MON_REG, val);
3179         rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1, VB_LOW_INT_EN, 0);
3180
3181         BAT_INFO("suspend: dl=%d rl=%d c=%d v=%d cap=%d at=%ld ch=%d st=%s\n",
3182                  di->dsoc, di->rsoc, di->current_avg,
3183                  rk818_bat_get_avg_voltage(di), rk818_bat_get_coulomb_cap(di),
3184                  di->sleep_dischrg_sec, di->sleep_chrg_online, bat_status[st]);
3185
3186         return 0;
3187 }
3188
3189 static int rk818_battery_resume(struct platform_device *dev)
3190 {
3191         struct rk818_battery *di = platform_get_drvdata(dev);
3192         int interval_sec, time_step, pwroff_vol;
3193         u8 val, st;
3194
3195         di->s2r = true;
3196         di->current_avg = rk818_bat_get_avg_current(di);
3197         di->voltage_relax = rk818_bat_get_relax_voltage(di);
3198         di->voltage_avg = rk818_bat_get_avg_voltage(di);
3199         di->remain_cap = rk818_bat_get_coulomb_cap(di);
3200         di->rsoc = rk818_bat_get_rsoc(di);
3201         interval_sec = rk818_bat_rtc_sleep_sec(di);
3202         di->sleep_sum_sec += interval_sec;
3203         pwroff_vol = di->pdata->pwroff_vol;
3204         st = (rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK) >> 4;
3205
3206         if (!di->sleep_chrg_online) {
3207                 /* only add up discharge sleep seconds */
3208                 di->sleep_dischrg_sec += interval_sec;
3209                 if (di->voltage_avg <= pwroff_vol + 50)
3210                         time_step = DISCHRG_TIME_STEP1;
3211                 else
3212                         time_step = DISCHRG_TIME_STEP2;
3213         }
3214
3215         BAT_INFO("resume: dl=%d rl=%d c=%d v=%d rv=%d "
3216                  "cap=%d dt=%d at=%ld ch=%d st=%s\n",
3217                  di->dsoc, di->rsoc, di->current_avg, di->voltage_avg,
3218                  di->voltage_relax, rk818_bat_get_coulomb_cap(di), interval_sec,
3219                  di->sleep_dischrg_sec, di->sleep_chrg_online, bat_status[st]);
3220
3221         /* sleep: enough time and discharge */
3222         if ((di->sleep_dischrg_sec > time_step) && (!di->sleep_chrg_online)) {
3223                 if (rk818_bat_sleep_dischrg(di))
3224                         di->sleep_dischrg_sec = 0;
3225         }
3226
3227         rk818_bat_save_data(di);
3228
3229         /* set vbat lowest 3.0v shutdown */
3230         val = rk818_bat_read(di, RK818_VB_MON_REG);
3231         val &= ~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK);
3232         val |= (RK818_VBAT_LOW_3V0 | EN_VABT_LOW_SHUT_DOWN);
3233         rk818_bat_write(di, RK818_VB_MON_REG, val);
3234         rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1,
3235                            VB_LOW_INT_EN, VB_LOW_INT_EN);
3236
3237         /* charge/lowpower lock: for battery work to update dsoc and rsoc */
3238         if ((di->sleep_chrg_online) ||
3239             (!di->sleep_chrg_online && di->voltage_avg < di->pdata->pwroff_vol))
3240                 wake_lock_timeout(&di->wake_lock, msecs_to_jiffies(2000));
3241
3242         queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
3243                            msecs_to_jiffies(1000));
3244
3245         return 0;
3246 }
3247
3248 static void rk818_battery_shutdown(struct platform_device *dev)
3249 {
3250         u8 cnt = 0;
3251         struct rk818_battery *di = platform_get_drvdata(dev);
3252
3253         cancel_delayed_work_sync(&di->bat_delay_work);
3254         cancel_delayed_work_sync(&di->calib_delay_work);
3255         rk818_bat_unregister_fb_notify(di);
3256         del_timer(&di->caltimer);
3257         if (base2sec(di->boot_base) < REBOOT_PERIOD_SEC)
3258                 cnt = rk818_bat_check_reboot(di);
3259         else
3260                 rk818_bat_save_reboot_cnt(di, 0);
3261
3262         BAT_INFO("shutdown: dl=%d rl=%d c=%d v=%d cap=%d f=%d ch=%d n=%d "
3263                  "mode=%d rest=%d\n",
3264                  di->dsoc, di->rsoc, di->current_avg, di->voltage_avg,
3265                  di->remain_cap, di->fcc, rk818_bat_chrg_online(di), cnt,
3266                  di->algo_rest_mode, di->algo_rest_val);
3267 }
3268
3269 static struct platform_driver rk818_battery_driver = {
3270         .probe = rk818_battery_probe,
3271         .suspend = rk818_battery_suspend,
3272         .resume = rk818_battery_resume,
3273         .shutdown = rk818_battery_shutdown,
3274         .driver = {
3275                 .name = "rk818-battery",
3276                 .of_match_table = rk818_battery_of_match,
3277         },
3278 };
3279
3280 static int __init battery_init(void)
3281 {
3282         return platform_driver_register(&rk818_battery_driver);
3283 }
3284 fs_initcall_sync(battery_init);
3285
3286 static void __exit battery_exit(void)
3287 {
3288         platform_driver_unregister(&rk818_battery_driver);
3289 }
3290 module_exit(battery_exit);
3291
3292 MODULE_LICENSE("GPL");
3293 MODULE_ALIAS("platform:rk818-battery");
3294 MODULE_AUTHOR("chenjh<chenjh@rock-chips.com>");