fbdev/fb_notify: fix blank_mode pointer crash
[firefly-linux-kernel-4.4.55.git] / drivers / power / rk818_battery.c
1 /*
2  * rk818 battery driver
3  *
4  * Copyright (C) 2016 Rockchip Electronics Co., Ltd
5  * chenjh <chenjh@rock-chips.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  */
17
18 #include <linux/delay.h>
19 #include <linux/fb.h>
20 #include <linux/gpio.h>
21 #include <linux/iio/consumer.h>
22 #include <linux/iio/iio.h>
23 #include <linux/irq.h>
24 #include <linux/irqdomain.h>
25 #include <linux/jiffies.h>
26 #include <linux/mfd/rk808.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/of_gpio.h>
30 #include <linux/platform_device.h>
31 #include <linux/power_supply.h>
32 #include <linux/power/rk_usbbc.h>
33 #include <linux/regmap.h>
34 #include <linux/rtc.h>
35 #include <linux/timer.h>
36 #include <linux/wakelock.h>
37 #include <linux/workqueue.h>
38 #include "rk818_battery.h"
39
40 static int dbg_enable = 0;
41 module_param_named(dbg_level, dbg_enable, int, 0644);
42
43 #define DBG(args...) \
44         do { \
45                 if (dbg_enable) { \
46                         pr_info(args); \
47                 } \
48         } while (0)
49
50 #define BAT_INFO(fmt, args...) pr_info("rk818-bat: "fmt, ##args)
51
52 /* default param */
53 #define DEFAULT_BAT_RES                 135
54 #define DEFAULT_SLP_ENTER_CUR           300
55 #define DEFAULT_SLP_EXIT_CUR            300
56 #define DEFAULT_SLP_FILTER_CUR          100
57 #define DEFAULT_PWROFF_VOL_THRESD       3400
58 #define DEFAULT_MONITOR_SEC             5
59 #define DEFAULT_ALGR_VOL_THRESD1        3850
60 #define DEFAULT_ALGR_VOL_THRESD2        3950
61 #define DEFAULT_MAX_SOC_OFFSET          60
62 #define DEFAULT_FB_TEMP                 TEMP_105C
63 #define DEFAULT_ZERO_RESERVE_DSOC       10
64 #define DEFAULT_POFFSET                 42
65 #define DEFAULT_COFFSET                 0x832
66 #define DEFAULT_SAMPLE_RES              20
67 #define DEFAULT_ENERGY_MODE             0
68 #define INVALID_COFFSET_MIN             0x780
69 #define INVALID_COFFSET_MAX             0x980
70 #define INVALID_VOL_THRESD              2500
71
72 /* sample resistor and division */
73 #define SAMPLE_RES_10MR                 10
74 #define SAMPLE_RES_20MR                 20
75 #define SAMPLE_RES_DIV1                 1
76 #define SAMPLE_RES_DIV2                 2
77
78 /* virtual params */
79 #define VIRTUAL_CURRENT                 1000
80 #define VIRTUAL_VOLTAGE                 3888
81 #define VIRTUAL_SOC                     66
82 #define VIRTUAL_PRESET                  1
83 #define VIRTUAL_TEMPERATURE             188
84 #define VIRTUAL_STATUS                  POWER_SUPPLY_STATUS_CHARGING
85
86 /* charge */
87 #define FINISH_CHRG_CUR1                        1000
88 #define FINISH_CHRG_CUR2                1500
89 #define FINISH_MAX_SOC_DELAY            20
90 #define TERM_CHRG_DSOC                  88
91 #define TERM_CHRG_CURR                  600
92 #define TERM_CHRG_K                     650
93 #define SIMULATE_CHRG_INTV              8
94 #define SIMULATE_CHRG_CURR              400
95 #define SIMULATE_CHRG_K                 1500
96 #define FULL_CHRG_K                     400
97
98 /* zero algorithm */
99 #define PWROFF_THRESD                   3400
100 #define MIN_ZERO_DSOC_ACCURACY          10      /*0.01%*/
101 #define MIN_ZERO_OVERCNT                100
102 #define MIN_ACCURACY                    1
103 #define DEF_PWRPATH_RES                 50
104 #define WAIT_DSOC_DROP_SEC              15
105 #define WAIT_SHTD_DROP_SEC              30
106 #define ZERO_GAP_XSOC1                  10
107 #define ZERO_GAP_XSOC2                  5
108 #define ZERO_GAP_XSOC3                  3
109 #define ZERO_LOAD_LVL1                  1400
110 #define ZERO_LOAD_LVL2                  600
111 #define ZERO_GAP_CALIB                  5
112
113 #define ADC_CALIB_THRESHOLD             4
114 #define ADC_CALIB_LMT_MIN               3
115 #define ADC_CALIB_CNT                   5
116 #define NTC_CALC_FACTOR                 7
117
118 /* time */
119 #define POWER_ON_SEC_BASE               1
120 #define MINUTE(x)                       ((x) * 60)
121
122 /* sleep */
123 #define SLP_CURR_MAX                    40
124 #define SLP_CURR_MIN                    6
125 #define DISCHRG_TIME_STEP1              MINUTE(10)
126 #define DISCHRG_TIME_STEP2              MINUTE(60)
127 #define SLP_DSOC_VOL_THRESD             3600
128 #define REBOOT_PERIOD_SEC               180
129 #define REBOOT_MAX_CNT                  80
130
131 /* fcc */
132 #define MIN_FCC                         500
133
134 static const char *bat_status[] = {
135         "charge off", "dead charge", "trickle charge", "cc cv",
136         "finish", "usb over vol", "bat temp error", "timer error",
137 };
138
139 struct rk818_battery {
140         struct platform_device          *pdev;
141         struct rk808                    *rk818;
142         struct regmap                   *regmap;
143         struct device                   *dev;
144         struct power_supply             *bat;
145         struct battery_platform_data    *pdata;
146         struct workqueue_struct         *bat_monitor_wq;
147         struct delayed_work             bat_delay_work;
148         struct delayed_work             calib_delay_work;
149         struct wake_lock                wake_lock;
150         struct notifier_block           fb_nb;
151         struct timer_list               caltimer;
152         struct timeval                  rtc_base;
153         int                             bat_res;
154         int                             chrg_status;
155         bool                            is_initialized;
156         bool                            is_first_power_on;
157         u8                              res_div;
158         int                             current_avg;
159         int                             voltage_avg;
160         int                             voltage_ocv;
161         int                             voltage_relax;
162         int                             voltage_k;
163         int                             voltage_b;
164         int                             remain_cap;
165         int                             design_cap;
166         int                             nac;
167         int                             fcc;
168         int                             qmax;
169         int                             dsoc;
170         int                             rsoc;
171         int                             poffset;
172         int                             age_ocv_soc;
173         bool                            age_allow_update;
174         int                             age_level;
175         int                             age_ocv_cap;
176         int                             age_voltage;
177         int                             age_adjust_cap;
178         unsigned long                   age_keep_sec;
179         int                             zero_timeout_cnt;
180         int                             zero_remain_cap;
181         int                             zero_dsoc;
182         int                             zero_linek;
183         u64                             zero_drop_sec;
184         u64                             shtd_drop_sec;
185         int                             sm_remain_cap;
186         int                             sm_linek;
187         int                             sm_chrg_dsoc;
188         int                             sm_dischrg_dsoc;
189         int                             algo_rest_val;
190         int                             algo_rest_mode;
191         int                             sleep_sum_cap;
192         int                             sleep_remain_cap;
193         unsigned long                   sleep_dischrg_sec;
194         unsigned long                   sleep_sum_sec;
195         bool                            sleep_chrg_online;
196         u8                              sleep_chrg_status;
197         bool                            adc_allow_update;
198         int                             fb_blank;
199         bool                            s2r; /*suspend to resume*/
200         u32                             work_mode;
201         int                             temperature;
202         u32                             monitor_ms;
203         u32                             pwroff_min;
204         u32                             adc_calib_cnt;
205         unsigned long                   finish_base;
206         unsigned long                   boot_base;
207         unsigned long                   flat_match_sec;
208         unsigned long                   plug_in_base;
209         unsigned long                   plug_out_base;
210         u8                              halt_cnt;
211         bool                            is_halt;
212         bool                            is_max_soc_offset;
213         bool                            is_sw_reset;
214         bool                            is_ocv_calib;
215         bool                            is_first_on;
216         bool                            is_force_calib;
217         int                             last_dsoc;
218         int                             ocv_pre_dsoc;
219         int                             ocv_new_dsoc;
220         int                             max_pre_dsoc;
221         int                             max_new_dsoc;
222         int                             force_pre_dsoc;
223         int                             force_new_dsoc;
224         int                             dbg_cap_low0;
225         int                             dbg_pwr_dsoc;
226         int                             dbg_pwr_rsoc;
227         int                             dbg_pwr_vol;
228         int                             dbg_chrg_min[10];
229         int                             dbg_meet_soc;
230         int                             dbg_calc_dsoc;
231         int                             dbg_calc_rsoc;
232 };
233
234 #define DIV(x)  ((x) ? (x) : 1)
235
236 static u64 get_boot_sec(void)
237 {
238         struct timespec ts;
239
240         get_monotonic_boottime(&ts);
241
242         return ts.tv_sec;
243 }
244
245 static unsigned long base2sec(unsigned long x)
246 {
247         if (x)
248                 return (get_boot_sec() > x) ? (get_boot_sec() - x) : 0;
249         else
250                 return 0;
251 }
252
253 static unsigned long base2min(unsigned long x)
254 {
255         return base2sec(x) / 60;
256 }
257
258 static u32 interpolate(int value, u32 *table, int size)
259 {
260         u8 i;
261         u16 d;
262
263         for (i = 0; i < size; i++) {
264                 if (value < table[i])
265                         break;
266         }
267
268         if ((i > 0) && (i < size)) {
269                 d = (value - table[i - 1]) * (MAX_INTERPOLATE / (size - 1));
270                 d /= table[i] - table[i - 1];
271                 d = d + (i - 1) * (MAX_INTERPOLATE / (size - 1));
272         } else {
273                 d = i * ((MAX_INTERPOLATE + size / 2) / size);
274         }
275
276         if (d > 1000)
277                 d = 1000;
278
279         return d;
280 }
281
282 /* (a*b)/c */
283 static int32_t ab_div_c(u32 a, u32 b, u32 c)
284 {
285         bool sign;
286         u32 ans = MAX_INT;
287         int tmp;
288
289         sign = ((((a ^ b) ^ c) & 0x80000000) != 0);
290         if (c != 0) {
291                 if (sign)
292                         c = -c;
293                 tmp = (a * b + (c >> 1)) / c;
294                 if (tmp < MAX_INT)
295                         ans = tmp;
296         }
297
298         if (sign)
299                 ans = -ans;
300
301         return ans;
302 }
303
304 static int rk818_bat_read(struct rk818_battery *di, u8 reg)
305 {
306         int ret, val;
307
308         ret = regmap_read(di->regmap, reg, &val);
309         if (ret)
310                 dev_err(di->dev, "read reg:0x%x failed\n", reg);
311
312         return val;
313 }
314
315 static int rk818_bat_write(struct rk818_battery *di, u8 reg, u8 buf)
316 {
317         int ret;
318
319         ret = regmap_write(di->regmap, reg, buf);
320         if (ret)
321                 dev_err(di->dev, "i2c write reg: 0x%2x error\n", reg);
322
323         return ret;
324 }
325
326 static int rk818_bat_set_bits(struct rk818_battery *di, u8 reg, u8 mask, u8 buf)
327 {
328         int ret;
329
330         ret = regmap_update_bits(di->regmap, reg, mask, buf);
331         if (ret)
332                 dev_err(di->dev, "write reg:0x%x failed\n", reg);
333
334         return ret;
335 }
336
337 static int rk818_bat_clear_bits(struct rk818_battery *di, u8 reg, u8 mask)
338 {
339         int ret;
340
341         ret = regmap_update_bits(di->regmap, reg, mask, 0);
342         if (ret)
343                 dev_err(di->dev, "clr reg:0x%02x failed\n", reg);
344
345         return ret;
346 }
347
348 static void rk818_bat_dump_regs(struct rk818_battery *di, u8 start, u8 end)
349 {
350         int i;
351
352         if (!dbg_enable)
353                 return;
354
355         DBG("dump regs from: 0x%x-->0x%x\n", start, end);
356         for (i = start; i < end; i++)
357                 DBG("0x%x: 0x%0x\n", i, rk818_bat_read(di, i));
358 }
359
360 static bool rk818_bat_chrg_online(struct rk818_battery *di)
361 {
362         u8 buf;
363
364         buf = rk818_bat_read(di, RK818_VB_MON_REG);
365
366         return (buf & PLUG_IN_STS) ? true : false;
367 }
368
369 static int rk818_bat_get_coulomb_cap(struct rk818_battery *di)
370 {
371         int val = 0;
372
373         val |= rk818_bat_read(di, RK818_GASCNT3_REG) << 24;
374         val |= rk818_bat_read(di, RK818_GASCNT2_REG) << 16;
375         val |= rk818_bat_read(di, RK818_GASCNT1_REG) << 8;
376         val |= rk818_bat_read(di, RK818_GASCNT0_REG) << 0;
377
378         return (val / 2390) * di->res_div;
379 }
380
381 static int rk818_bat_get_rsoc(struct rk818_battery *di)
382 {
383         int remain_cap;
384
385         remain_cap = rk818_bat_get_coulomb_cap(di);
386         return (remain_cap + di->fcc / 200) * 100 / DIV(di->fcc);
387 }
388
389 static ssize_t bat_info_store(struct device *dev, struct device_attribute *attr,
390                               const char *buf, size_t count)
391 {
392         char cmd;
393         struct rk818_battery *di = dev_get_drvdata(dev);
394
395         sscanf(buf, "%c", &cmd);
396
397         if (cmd == 'n')
398                 rk818_bat_set_bits(di, RK818_MISC_MARK_REG,
399                                    FG_RESET_NOW, FG_RESET_NOW);
400         else if (cmd == 'm')
401                 rk818_bat_set_bits(di, RK818_MISC_MARK_REG,
402                                    FG_RESET_LATE, FG_RESET_LATE);
403         else if (cmd == 'c')
404                 rk818_bat_clear_bits(di, RK818_MISC_MARK_REG,
405                                      FG_RESET_LATE | FG_RESET_NOW);
406         else if (cmd == 'r')
407                 BAT_INFO("0x%2x\n", rk818_bat_read(di, RK818_MISC_MARK_REG));
408         else
409                 BAT_INFO("command error\n");
410
411         return count;
412 }
413
414 static struct device_attribute rk818_bat_attr[] = {
415         __ATTR(bat, 0664, NULL, bat_info_store),
416 };
417
418 static void rk818_bat_enable_gauge(struct rk818_battery *di)
419 {
420         u8 buf;
421
422         buf = rk818_bat_read(di, RK818_TS_CTRL_REG);
423         buf |= GG_EN;
424         rk818_bat_write(di, RK818_TS_CTRL_REG, buf);
425 }
426
427 static void rk818_bat_save_age_level(struct rk818_battery *di, u8 level)
428 {
429         rk818_bat_write(di, RK818_UPDAT_LEVE_REG, level);
430 }
431
432 static u8 rk818_bat_get_age_level(struct  rk818_battery *di)
433 {
434         return rk818_bat_read(di, RK818_UPDAT_LEVE_REG);
435 }
436
437 static int rk818_bat_get_vcalib0(struct rk818_battery *di)
438 {
439         int val = 0;
440
441         val |= rk818_bat_read(di, RK818_VCALIB0_REGL) << 0;
442         val |= rk818_bat_read(di, RK818_VCALIB0_REGH) << 8;
443
444         DBG("<%s>. voffset0: 0x%x\n", __func__, val);
445         return val;
446 }
447
448 static int rk818_bat_get_vcalib1(struct rk818_battery *di)
449 {
450         int val = 0;
451
452         val |= rk818_bat_read(di, RK818_VCALIB1_REGL) << 0;
453         val |= rk818_bat_read(di, RK818_VCALIB1_REGH) << 8;
454
455         DBG("<%s>. voffset1: 0x%x\n", __func__, val);
456         return val;
457 }
458
459 static int rk818_bat_get_ioffset(struct rk818_battery *di)
460 {
461         int val = 0;
462
463         val |= rk818_bat_read(di, RK818_IOFFSET_REGL) << 0;
464         val |= rk818_bat_read(di, RK818_IOFFSET_REGH) << 8;
465
466         DBG("<%s>. ioffset: 0x%x\n", __func__, val);
467         return val;
468 }
469
470 static int rk818_bat_get_coffset(struct rk818_battery *di)
471 {
472         int val = 0;
473
474         val |= rk818_bat_read(di, RK818_CAL_OFFSET_REGL) << 0;
475         val |= rk818_bat_read(di, RK818_CAL_OFFSET_REGH) << 8;
476
477         DBG("<%s>. coffset: 0x%x\n", __func__, val);
478         return val;
479 }
480
481 static void rk818_bat_set_coffset(struct rk818_battery *di, int val)
482 {
483         u8 buf;
484
485         if ((val < INVALID_COFFSET_MIN) || (val > INVALID_COFFSET_MAX)) {
486                 BAT_INFO("set invalid coffset=0x%x\n", val);
487                 return;
488         }
489
490         buf = (val >> 8) & 0xff;
491         rk818_bat_write(di, RK818_CAL_OFFSET_REGH, buf);
492         buf = (val >> 0) & 0xff;
493         rk818_bat_write(di, RK818_CAL_OFFSET_REGL, buf);
494         DBG("<%s>. coffset: 0x%x\n", __func__, val);
495 }
496
497 static void rk818_bat_init_voltage_kb(struct rk818_battery *di)
498 {
499         int vcalib0, vcalib1;
500
501         vcalib0 = rk818_bat_get_vcalib0(di);
502         vcalib1 = rk818_bat_get_vcalib1(di);
503         di->voltage_k = (4200 - 3000) * 1000 / DIV(vcalib1 - vcalib0);
504         di->voltage_b = 4200 - (di->voltage_k * vcalib1) / 1000;
505
506         DBG("voltage_k=%d(*1000),voltage_b=%d\n", di->voltage_k, di->voltage_b);
507 }
508
509 static int rk818_bat_get_ocv_voltage(struct rk818_battery *di)
510 {
511         int vol, val = 0;
512
513         val |= rk818_bat_read(di, RK818_BAT_OCV_REGL) << 0;
514         val |= rk818_bat_read(di, RK818_BAT_OCV_REGH) << 8;
515
516         vol = di->voltage_k * val / 1000 + di->voltage_b;
517
518         return vol;
519 }
520
521 static int rk818_bat_get_avg_voltage(struct rk818_battery *di)
522 {
523         int vol, val = 0;
524
525         val |= rk818_bat_read(di, RK818_BAT_VOL_REGL) << 0;
526         val |= rk818_bat_read(di, RK818_BAT_VOL_REGH) << 8;
527
528         vol = di->voltage_k * val / 1000 + di->voltage_b;
529
530         return vol;
531 }
532
533 static bool is_rk818_bat_relax_mode(struct rk818_battery *di)
534 {
535         u8 status;
536
537         status = rk818_bat_read(di, RK818_GGSTS_REG);
538         if (!(status & RELAX_VOL1_UPD) || !(status & RELAX_VOL2_UPD))
539                 return false;
540         else
541                 return true;
542 }
543
544 static u16 rk818_bat_get_relax_vol1(struct rk818_battery *di)
545 {
546         u16 vol, val = 0;
547
548         val |= rk818_bat_read(di, RK818_RELAX_VOL1_REGL) << 0;
549         val |= rk818_bat_read(di, RK818_RELAX_VOL1_REGH) << 8;
550         vol = di->voltage_k * val / 1000 + di->voltage_b;
551
552         return vol;
553 }
554
555 static u16 rk818_bat_get_relax_vol2(struct rk818_battery *di)
556 {
557         u16 vol, val = 0;
558
559         val |= rk818_bat_read(di, RK818_RELAX_VOL2_REGL) << 0;
560         val |= rk818_bat_read(di, RK818_RELAX_VOL2_REGH) << 8;
561         vol = di->voltage_k * val / 1000 + di->voltage_b;
562
563         return vol;
564 }
565
566 static u16 rk818_bat_get_relax_voltage(struct rk818_battery *di)
567 {
568         u16 relax_vol1, relax_vol2;
569
570         if (!is_rk818_bat_relax_mode(di))
571                 return 0;
572
573         relax_vol1 = rk818_bat_get_relax_vol1(di);
574         relax_vol2 = rk818_bat_get_relax_vol2(di);
575
576         return relax_vol1 > relax_vol2 ? relax_vol1 : relax_vol2;
577 }
578
579 static int rk818_bat_get_avg_current(struct rk818_battery *di)
580 {
581         int cur, val = 0;
582
583         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGL) << 0;
584         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGH) << 8;
585
586         if (val & 0x800)
587                 val -= 4096;
588         cur = val * di->res_div * 1506 / 1000;
589
590         return cur;
591 }
592
593 static int rk818_bat_vol_to_ocvsoc(struct rk818_battery *di, int voltage)
594 {
595         u32 *ocv_table, temp;
596         int ocv_size, ocv_soc;
597
598         ocv_table = di->pdata->ocv_table;
599         ocv_size = di->pdata->ocv_size;
600         temp = interpolate(voltage, ocv_table, ocv_size);
601         ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE);
602
603         return ocv_soc;
604 }
605
606 static int rk818_bat_vol_to_ocvcap(struct rk818_battery *di, int voltage)
607 {
608         u32 *ocv_table, temp;
609         int ocv_size, cap;
610
611         ocv_table = di->pdata->ocv_table;
612         ocv_size = di->pdata->ocv_size;
613         temp = interpolate(voltage, ocv_table, ocv_size);
614         cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE);
615
616         return cap;
617 }
618
619 static int rk818_bat_vol_to_zerosoc(struct rk818_battery *di, int voltage)
620 {
621         u32 *ocv_table, temp;
622         int ocv_size, ocv_soc;
623
624         ocv_table = di->pdata->zero_table;
625         ocv_size = di->pdata->ocv_size;
626         temp = interpolate(voltage, ocv_table, ocv_size);
627         ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE);
628
629         return ocv_soc;
630 }
631
632 static int rk818_bat_vol_to_zerocap(struct rk818_battery *di, int voltage)
633 {
634         u32 *ocv_table, temp;
635         int ocv_size, cap;
636
637         ocv_table = di->pdata->zero_table;
638         ocv_size = di->pdata->ocv_size;
639         temp = interpolate(voltage, ocv_table, ocv_size);
640         cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE);
641
642         return cap;
643 }
644
645 static int rk818_bat_get_iadc(struct rk818_battery *di)
646 {
647         int val = 0;
648
649         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGL) << 0;
650         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGH) << 8;
651         if (val > 2047)
652                 val -= 4096;
653
654         return val;
655 }
656
657 static bool rk818_bat_adc_calib(struct rk818_battery *di)
658 {
659         int i, ioffset, coffset, adc, save_coffset;
660
661         if ((di->chrg_status != CHARGE_FINISH) ||
662             (di->adc_calib_cnt > ADC_CALIB_CNT) ||
663             (base2min(di->boot_base) < ADC_CALIB_LMT_MIN) ||
664             (abs(di->current_avg) < ADC_CALIB_THRESHOLD))
665                 return false;
666
667         di->adc_calib_cnt++;
668         save_coffset = rk818_bat_get_coffset(di);
669         for (i = 0; i < 5; i++) {
670                 adc = rk818_bat_get_iadc(di);
671                 if (!rk818_bat_chrg_online(di)) {
672                         rk818_bat_set_coffset(di, save_coffset);
673                         BAT_INFO("quit, charger plugout when calib adc\n");
674                         return false;
675                 }
676                 coffset = rk818_bat_get_coffset(di);
677                 rk818_bat_set_coffset(di, coffset + adc);
678                 msleep(2000);
679                 adc = rk818_bat_get_iadc(di);
680                 if (abs(adc) < ADC_CALIB_THRESHOLD) {
681                         coffset = rk818_bat_get_coffset(di);
682                         ioffset = rk818_bat_get_ioffset(di);
683                         di->poffset = coffset - ioffset;
684                         rk818_bat_write(di, RK818_POFFSET_REG, di->poffset);
685                         BAT_INFO("new offset:c=0x%x, i=0x%x, p=0x%x\n",
686                                  coffset, ioffset, di->poffset);
687                         return true;
688                 } else {
689                         BAT_INFO("coffset calib again %d.., max_cnt=%d\n",
690                                  i, di->adc_calib_cnt);
691                         rk818_bat_set_coffset(di, coffset);
692                         msleep(2000);
693                 }
694         }
695
696         rk818_bat_set_coffset(di, save_coffset);
697
698         return false;
699 }
700
701 static void rk818_bat_set_ioffset_sample(struct rk818_battery *di)
702 {
703         u8 ggcon;
704
705         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
706         ggcon &= ~ADC_CAL_MIN_MSK;
707         ggcon |= ADC_CAL_8MIN;
708         rk818_bat_write(di, RK818_GGCON_REG, ggcon);
709 }
710
711 static void rk818_bat_set_ocv_sample(struct rk818_battery *di)
712 {
713         u8 ggcon;
714
715         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
716         ggcon &= ~OCV_SAMP_MIN_MSK;
717         ggcon |= OCV_SAMP_8MIN;
718         rk818_bat_write(di, RK818_GGCON_REG, ggcon);
719 }
720
721 static void rk818_bat_restart_relax(struct rk818_battery *di)
722 {
723         u8 ggsts;
724
725         ggsts = rk818_bat_read(di, RK818_GGSTS_REG);
726         ggsts &= ~RELAX_VOL12_UPD_MSK;
727         rk818_bat_write(di, RK818_GGSTS_REG, ggsts);
728 }
729
730 static void rk818_bat_set_relax_sample(struct rk818_battery *di)
731 {
732         u8 buf;
733         int enter_thres, exit_thres;
734         struct battery_platform_data *pdata = di->pdata;
735
736         enter_thres = pdata->sleep_enter_current * 1000 / 1506 / DIV(di->res_div);
737         exit_thres = pdata->sleep_exit_current * 1000 / 1506 / DIV(di->res_div);
738
739         /* set relax enter and exit threshold */
740         buf = enter_thres & 0xff;
741         rk818_bat_write(di, RK818_RELAX_ENTRY_THRES_REGL, buf);
742         buf = (enter_thres >> 8) & 0xff;
743         rk818_bat_write(di, RK818_RELAX_ENTRY_THRES_REGH, buf);
744
745         buf = exit_thres & 0xff;
746         rk818_bat_write(di, RK818_RELAX_EXIT_THRES_REGL, buf);
747         buf = (exit_thres >> 8) & 0xff;
748         rk818_bat_write(di, RK818_RELAX_EXIT_THRES_REGH, buf);
749
750         /* reset relax update state */
751         rk818_bat_restart_relax(di);
752         DBG("<%s>. sleep_enter_current = %d, sleep_exit_current = %d\n",
753             __func__, pdata->sleep_enter_current, pdata->sleep_exit_current);
754 }
755
756 static bool is_rk818_bat_exist(struct rk818_battery *di)
757 {
758         return (rk818_bat_read(di, RK818_SUP_STS_REG) & BAT_EXS) ? true : false;
759 }
760
761 static bool is_rk818_bat_first_pwron(struct rk818_battery *di)
762 {
763         u8 buf;
764
765         buf = rk818_bat_read(di, RK818_GGSTS_REG);
766         if (buf & BAT_CON) {
767                 buf &= ~BAT_CON;
768                 rk818_bat_write(di, RK818_GGSTS_REG, buf);
769                 return true;
770         }
771
772         return false;
773 }
774
775 static u8 rk818_bat_get_pwroff_min(struct rk818_battery *di)
776 {
777         u8 cur, last;
778
779         cur = rk818_bat_read(di, RK818_NON_ACT_TIMER_CNT_REG);
780         last = rk818_bat_read(di, RK818_NON_ACT_TIMER_CNT_SAVE_REG);
781         rk818_bat_write(di, RK818_NON_ACT_TIMER_CNT_SAVE_REG, cur);
782
783         return (cur != last) ? cur : 0;
784 }
785
786 static u8 is_rk818_bat_initialized(struct rk818_battery *di)
787 {
788         u8 val = rk818_bat_read(di, RK818_MISC_MARK_REG);
789
790         if (val & FG_INIT) {
791                 val &= ~FG_INIT;
792                 rk818_bat_write(di, RK818_MISC_MARK_REG, val);
793                 return true;
794         } else {
795                 return false;
796         }
797 }
798
799 static bool is_rk818_bat_ocv_valid(struct rk818_battery *di)
800 {
801         return (!di->is_initialized && di->pwroff_min >= 30) ? true : false;
802 }
803
804 static void rk818_bat_init_age_algorithm(struct rk818_battery *di)
805 {
806         int age_level, ocv_soc, ocv_cap, ocv_vol;
807
808         if (di->is_first_power_on || is_rk818_bat_ocv_valid(di)) {
809                 DBG("<%s> enter.\n", __func__);
810                 ocv_vol = rk818_bat_get_ocv_voltage(di);
811                 ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
812                 ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
813                 if (ocv_soc < 20) {
814                         di->age_voltage = ocv_vol;
815                         di->age_ocv_cap = ocv_cap;
816                         di->age_ocv_soc = ocv_soc;
817                         di->age_adjust_cap = 0;
818
819                         if (ocv_soc <= 0)
820                                 di->age_level = 100;
821                         else if (ocv_soc < 5)
822                                 di->age_level = 95;
823                         else if (ocv_soc < 10)
824                                 di->age_level = 90;
825                         else
826                                 di->age_level = 80;
827
828                         age_level = rk818_bat_get_age_level(di);
829                         if (age_level > di->age_level) {
830                                 di->age_allow_update = false;
831                                 age_level -= 5;
832                                 if (age_level <= 80)
833                                         age_level = 80;
834                                 rk818_bat_save_age_level(di, age_level);
835                         } else {
836                                 di->age_allow_update = true;
837                                 di->age_keep_sec = get_boot_sec();
838                         }
839
840                         BAT_INFO("init_age_algorithm: "
841                                  "age_vol:%d, age_ocv_cap:%d, "
842                                  "age_ocv_soc:%d, old_age_level:%d, "
843                                  "age_allow_update:%d, new_age_level:%d\n",
844                                  di->age_voltage, di->age_ocv_cap,
845                                  ocv_soc, age_level, di->age_allow_update,
846                                  di->age_level);
847                 }
848         }
849 }
850
851 static enum power_supply_property rk818_bat_props[] = {
852         POWER_SUPPLY_PROP_CURRENT_NOW,
853         POWER_SUPPLY_PROP_VOLTAGE_NOW,
854         POWER_SUPPLY_PROP_PRESENT,
855         POWER_SUPPLY_PROP_HEALTH,
856         POWER_SUPPLY_PROP_CAPACITY,
857         POWER_SUPPLY_PROP_TEMP,
858         POWER_SUPPLY_PROP_STATUS,
859 };
860
861 static int rk818_battery_get_property(struct power_supply *psy,
862                                       enum power_supply_property psp,
863                                       union power_supply_propval *val)
864 {
865         struct rk818_battery *di = power_supply_get_drvdata(psy);
866
867         switch (psp) {
868         case POWER_SUPPLY_PROP_CURRENT_NOW:
869                 val->intval = di->current_avg * 1000;/*uA*/
870                 if (di->pdata->bat_mode == MODE_VIRTUAL)
871                         val->intval = VIRTUAL_CURRENT * 1000;
872                 break;
873         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
874                 val->intval = di->voltage_avg * 1000;/*uV*/
875                 if (di->pdata->bat_mode == MODE_VIRTUAL)
876                         val->intval = VIRTUAL_VOLTAGE * 1000;
877                 break;
878         case POWER_SUPPLY_PROP_PRESENT:
879                 val->intval = is_rk818_bat_exist(di);
880                 if (di->pdata->bat_mode == MODE_VIRTUAL)
881                         val->intval = VIRTUAL_PRESET;
882                 break;
883         case POWER_SUPPLY_PROP_CAPACITY:
884                 val->intval = di->dsoc;
885                 if (di->pdata->bat_mode == MODE_VIRTUAL)
886                         val->intval = VIRTUAL_SOC;
887                 DBG("<%s>. report dsoc: %d\n", __func__, val->intval);
888                 break;
889         case POWER_SUPPLY_PROP_HEALTH:
890                 val->intval = POWER_SUPPLY_HEALTH_GOOD;
891                 break;
892         case POWER_SUPPLY_PROP_TEMP:
893                 val->intval = di->temperature;
894                 if (di->pdata->bat_mode == MODE_VIRTUAL)
895                         val->intval = VIRTUAL_TEMPERATURE;
896                 break;
897         case POWER_SUPPLY_PROP_STATUS:
898                 if (di->pdata->bat_mode == MODE_VIRTUAL)
899                         val->intval = VIRTUAL_STATUS;
900                 else if (di->dsoc == 100)
901                         val->intval = POWER_SUPPLY_STATUS_FULL;
902                 else if (rk818_bat_chrg_online(di))
903                         val->intval = POWER_SUPPLY_STATUS_CHARGING;
904                 else
905                         val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
906                 break;
907         default:
908                 return -EINVAL;
909         }
910
911         return 0;
912 }
913
914 static const struct power_supply_desc rk818_bat_desc = {
915         .name           = "battery",
916         .type           = POWER_SUPPLY_TYPE_BATTERY,
917         .properties     = rk818_bat_props,
918         .num_properties = ARRAY_SIZE(rk818_bat_props),
919         .get_property   = rk818_battery_get_property,
920 };
921
922 static int rk818_bat_init_power_supply(struct rk818_battery *di)
923 {
924         struct power_supply_config psy_cfg = { .drv_data = di, };
925
926         di->bat = devm_power_supply_register(di->dev, &rk818_bat_desc, &psy_cfg);
927         if (IS_ERR(di->bat)) {
928                 dev_err(di->dev, "register bat power supply fail\n");
929                 return PTR_ERR(di->bat);
930         }
931
932         return 0;
933 }
934
935 static void rk818_bat_save_cap(struct rk818_battery *di, int cap)
936 {
937         u8 buf;
938         static u32 old_cap;
939
940         if (cap >= di->qmax)
941                 cap = di->qmax;
942         if (cap <= 0)
943                 cap = 0;
944         if (old_cap == cap)
945                 return;
946
947         old_cap = cap;
948         buf = (cap >> 24) & 0xff;
949         rk818_bat_write(di, RK818_REMAIN_CAP_REG3, buf);
950         buf = (cap >> 16) & 0xff;
951         rk818_bat_write(di, RK818_REMAIN_CAP_REG2, buf);
952         buf = (cap >> 8) & 0xff;
953         rk818_bat_write(di, RK818_REMAIN_CAP_REG1, buf);
954         buf = (cap >> 0) & 0xff;
955         rk818_bat_write(di, RK818_REMAIN_CAP_REG0, buf);
956 }
957
958 static int rk818_bat_get_prev_cap(struct rk818_battery *di)
959 {
960         int val = 0;
961
962         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG3) << 24;
963         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG2) << 16;
964         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG1) << 8;
965         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG0) << 0;
966
967         return val;
968 }
969
970 static void rk818_bat_save_fcc(struct rk818_battery *di, u32 fcc)
971 {
972         u8 buf;
973
974         buf = (fcc >> 24) & 0xff;
975         rk818_bat_write(di, RK818_NEW_FCC_REG3, buf);
976         buf = (fcc >> 16) & 0xff;
977         rk818_bat_write(di, RK818_NEW_FCC_REG2, buf);
978         buf = (fcc >> 8) & 0xff;
979         rk818_bat_write(di, RK818_NEW_FCC_REG1, buf);
980         buf = (fcc >> 0) & 0xff;
981         rk818_bat_write(di, RK818_NEW_FCC_REG0, buf);
982
983         BAT_INFO("save fcc: %d\n", fcc);
984 }
985
986 static int rk818_bat_get_fcc(struct rk818_battery *di)
987 {
988         u32 fcc = 0;
989
990         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG3) << 24;
991         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG2) << 16;
992         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG1) << 8;
993         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG0) << 0;
994
995         if (fcc < MIN_FCC) {
996                 BAT_INFO("invalid fcc(%d), use design cap", fcc);
997                 fcc = di->pdata->design_capacity;
998                 rk818_bat_save_fcc(di, fcc);
999         } else if (fcc > di->pdata->design_qmax) {
1000                 BAT_INFO("invalid fcc(%d), use qmax", fcc);
1001                 fcc = di->pdata->design_qmax;
1002                 rk818_bat_save_fcc(di, fcc);
1003         }
1004
1005         return fcc;
1006 }
1007
1008 static void rk818_bat_init_coulomb_cap(struct rk818_battery *di, u32 capacity)
1009 {
1010         u8 buf;
1011         u32 cap;
1012
1013         cap = capacity * 2390 / DIV(di->res_div);
1014         buf = (cap >> 24) & 0xff;
1015         rk818_bat_write(di, RK818_GASCNT_CAL_REG3, buf);
1016         buf = (cap >> 16) & 0xff;
1017         rk818_bat_write(di, RK818_GASCNT_CAL_REG2, buf);
1018         buf = (cap >> 8) & 0xff;
1019         rk818_bat_write(di, RK818_GASCNT_CAL_REG1, buf);
1020         buf = ((cap >> 0) & 0xff);
1021         rk818_bat_write(di, RK818_GASCNT_CAL_REG0, buf);
1022
1023         DBG("<%s>. new coulomb cap = %d\n", __func__, capacity);
1024         di->remain_cap = capacity;
1025         di->rsoc = rk818_bat_get_rsoc(di);
1026 }
1027
1028 static void rk818_bat_save_dsoc(struct rk818_battery *di, u8 save_soc)
1029 {
1030         static int last_soc = -1;
1031
1032         if (last_soc != save_soc) {
1033                 rk818_bat_write(di, RK818_SOC_REG, save_soc);
1034                 last_soc = save_soc;
1035         }
1036 }
1037
1038 static int rk818_bat_get_prev_dsoc(struct rk818_battery *di)
1039 {
1040         return rk818_bat_read(di, RK818_SOC_REG);
1041 }
1042
1043 static void rk818_bat_save_reboot_cnt(struct rk818_battery *di, u8 save_cnt)
1044 {
1045         rk818_bat_write(di, RK818_REBOOT_CNT_REG, save_cnt);
1046 }
1047
1048 static int rk818_bat_fb_notifier(struct notifier_block *nb,
1049                                  unsigned long event, void *data)
1050 {
1051         struct rk818_battery *di;
1052         struct fb_event *evdata = data;
1053
1054         if (event != FB_EARLY_EVENT_BLANK && event != FB_EVENT_BLANK)
1055                 return NOTIFY_OK;
1056
1057         di = container_of(nb, struct rk818_battery, fb_nb);
1058         di->fb_blank = *(int *)evdata->data;
1059
1060         return 0;
1061 }
1062
1063 static int rk818_bat_register_fb_notify(struct rk818_battery *di)
1064 {
1065         memset(&di->fb_nb, 0, sizeof(di->fb_nb));
1066         di->fb_nb.notifier_call = rk818_bat_fb_notifier;
1067
1068         return fb_register_client(&di->fb_nb);
1069 }
1070
1071 static int rk818_bat_unregister_fb_notify(struct rk818_battery *di)
1072 {
1073         return fb_unregister_client(&di->fb_nb);
1074 }
1075
1076 static u8 rk818_bat_get_halt_cnt(struct rk818_battery *di)
1077 {
1078         return rk818_bat_read(di, RK818_HALT_CNT_REG);
1079 }
1080
1081 static void rk818_bat_inc_halt_cnt(struct rk818_battery *di)
1082 {
1083         u8 cnt;
1084
1085         cnt = rk818_bat_read(di, RK818_HALT_CNT_REG);
1086         rk818_bat_write(di, RK818_HALT_CNT_REG, ++cnt);
1087 }
1088
1089 static bool is_rk818_bat_last_halt(struct rk818_battery *di)
1090 {
1091         int pre_cap = rk818_bat_get_prev_cap(di);
1092         int now_cap = rk818_bat_get_coulomb_cap(di);
1093
1094         /* over 10%: system halt last time */
1095         if (abs(now_cap - pre_cap) > (di->fcc / 10)) {
1096                 rk818_bat_inc_halt_cnt(di);
1097                 return true;
1098         } else {
1099                 return false;
1100         }
1101 }
1102
1103 static void rk818_bat_first_pwron(struct rk818_battery *di)
1104 {
1105         int ocv_vol;
1106
1107         rk818_bat_save_fcc(di, di->design_cap);
1108         ocv_vol = rk818_bat_get_ocv_voltage(di);
1109         di->fcc = rk818_bat_get_fcc(di);
1110         di->nac = rk818_bat_vol_to_ocvcap(di, ocv_vol);
1111         di->rsoc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
1112         di->dsoc = di->rsoc;
1113         di->is_first_on = true;
1114
1115         BAT_INFO("first on: dsoc=%d, rsoc=%d cap=%d, fcc=%d, ov=%d\n",
1116                  di->dsoc, di->rsoc, di->nac, di->fcc, ocv_vol);
1117 }
1118
1119 static void rk818_bat_not_first_pwron(struct rk818_battery *di)
1120 {
1121         int now_cap, pre_soc, pre_cap, ocv_cap, ocv_soc, ocv_vol;
1122
1123         di->fcc = rk818_bat_get_fcc(di);
1124         pre_soc = rk818_bat_get_prev_dsoc(di);
1125         pre_cap = rk818_bat_get_prev_cap(di);
1126         now_cap = rk818_bat_get_coulomb_cap(di);
1127         di->is_halt = is_rk818_bat_last_halt(di);
1128         di->halt_cnt = rk818_bat_get_halt_cnt(di);
1129         di->is_initialized = is_rk818_bat_initialized(di);
1130         di->is_ocv_calib = is_rk818_bat_ocv_valid(di);
1131
1132         if (di->is_halt) {
1133                 BAT_INFO("system halt last time... cap: pre=%d, now=%d\n",
1134                          pre_cap, now_cap);
1135                 if (now_cap < 0)
1136                         now_cap = 0;
1137                 rk818_bat_init_coulomb_cap(di, now_cap);
1138                 pre_cap = now_cap;
1139                 pre_soc = di->rsoc;
1140                 goto finish;
1141         } else if (di->is_initialized) {
1142                 BAT_INFO("initialized yet..\n");
1143                 goto finish;
1144         } else if (di->is_ocv_calib) {
1145                 ocv_vol = rk818_bat_get_ocv_voltage(di);
1146                 ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
1147                 ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
1148                 pre_cap = ocv_cap;
1149                 di->ocv_pre_dsoc = pre_soc;
1150                 di->ocv_new_dsoc = ocv_soc;
1151                 if (abs(ocv_soc - pre_soc) >= di->pdata->max_soc_offset) {
1152                         di->ocv_pre_dsoc = pre_soc;
1153                         di->ocv_new_dsoc = ocv_soc;
1154                         di->is_max_soc_offset = true;
1155                         BAT_INFO("trigger max soc offset, dsoc: %d -> %d\n",
1156                                  pre_soc, ocv_soc);
1157                         pre_soc = ocv_soc;
1158                 }
1159                 BAT_INFO("OCV calib: cap=%d, rsoc=%d\n", ocv_cap, ocv_soc);
1160         } else if (di->pwroff_min > 0) {
1161                 ocv_vol = rk818_bat_get_ocv_voltage(di);
1162                 ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
1163                 ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
1164                 di->force_pre_dsoc = pre_soc;
1165                 di->force_new_dsoc = ocv_soc;
1166                 if (abs(ocv_soc - pre_soc) >= 80) {
1167                         di->is_force_calib = true;
1168                         BAT_INFO("dsoc force calib: %d -> %d\n",
1169                                  pre_soc, ocv_soc);
1170                         pre_soc = ocv_soc;
1171                         pre_cap = ocv_cap;
1172                 }
1173         }
1174
1175 finish:
1176         di->dsoc = pre_soc;
1177         di->nac = pre_cap;
1178         if (di->nac < 0)
1179                 di->nac = 0;
1180
1181         BAT_INFO("dsoc=%d cap=%d v=%d ov=%d rv=%d min=%d psoc=%d pcap=%d\n",
1182                  di->dsoc, di->nac, rk818_bat_get_avg_voltage(di),
1183                  rk818_bat_get_ocv_voltage(di), rk818_bat_get_relax_voltage(di),
1184                  di->pwroff_min, rk818_bat_get_prev_dsoc(di),
1185                  rk818_bat_get_prev_cap(di));
1186 }
1187
1188 static bool rk818_bat_ocv_sw_reset(struct rk818_battery *di)
1189 {
1190         u8 buf;
1191
1192         buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
1193         if (((buf & FG_RESET_LATE) && di->pwroff_min >= 30) ||
1194             (buf & FG_RESET_NOW)) {
1195                 buf &= ~FG_RESET_LATE;
1196                 buf &= ~FG_RESET_NOW;
1197                 rk818_bat_write(di, RK818_MISC_MARK_REG, buf);
1198                 BAT_INFO("manual reset fuel gauge\n");
1199                 return true;
1200         } else {
1201                 return false;
1202         }
1203 }
1204
1205 static void rk818_bat_init_rsoc(struct rk818_battery *di)
1206 {
1207         di->is_first_power_on = is_rk818_bat_first_pwron(di);
1208         di->is_sw_reset = rk818_bat_ocv_sw_reset(di);
1209         di->pwroff_min = rk818_bat_get_pwroff_min(di);
1210
1211         if (di->is_first_power_on || di->is_sw_reset)
1212                 rk818_bat_first_pwron(di);
1213         else
1214                 rk818_bat_not_first_pwron(di);
1215 }
1216
1217 static u8 rk818_bat_get_chrg_status(struct rk818_battery *di)
1218 {
1219         u8 status;
1220
1221         status = rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK;
1222         switch (status) {
1223         case CHARGE_OFF:
1224                 DBG("CHARGE-OFF ...\n");
1225                 break;
1226         case DEAD_CHARGE:
1227                 BAT_INFO("DEAD CHARGE...\n");
1228                 break;
1229         case TRICKLE_CHARGE:
1230                 BAT_INFO("TRICKLE CHARGE...\n ");
1231                 break;
1232         case CC_OR_CV:
1233                 DBG("CC or CV...\n");
1234                 break;
1235         case CHARGE_FINISH:
1236                 DBG("CHARGE FINISH...\n");
1237                 break;
1238         case USB_OVER_VOL:
1239                 BAT_INFO("USB OVER VOL...\n");
1240                 break;
1241         case BAT_TMP_ERR:
1242                 BAT_INFO("BAT TMP ERROR...\n");
1243                 break;
1244         case TIMER_ERR:
1245                 BAT_INFO("TIMER ERROR...\n");
1246                 break;
1247         case USB_EXIST:
1248                 BAT_INFO("USB EXIST...\n");
1249                 break;
1250         case USB_EFF:
1251                 BAT_INFO("USB EFF...\n");
1252                 break;
1253         default:
1254                 return -EINVAL;
1255         }
1256
1257         return status;
1258 }
1259
1260 static u8 rk818_bat_parse_fb_temperature(struct rk818_battery *di)
1261 {
1262         u8 reg;
1263         int index, fb_temp;
1264
1265         reg = DEFAULT_FB_TEMP;
1266         fb_temp = di->pdata->fb_temp;
1267         for (index = 0; index < ARRAY_SIZE(feedback_temp_array); index++) {
1268                 if (fb_temp < feedback_temp_array[index])
1269                         break;
1270                 reg = (index << FB_TEMP_SHIFT);
1271         }
1272
1273         return reg;
1274 }
1275
1276 static u8 rk818_bat_parse_finish_ma(struct rk818_battery *di, int fcc)
1277 {
1278         u8 ma;
1279
1280         if (di->pdata->sample_res == SAMPLE_RES_10MR)
1281                 ma = FINISH_100MA;
1282         else if (fcc > 5000)
1283                 ma = FINISH_250MA;
1284         else if (fcc >= 4000)
1285                 ma = FINISH_200MA;
1286         else if (fcc >= 3000)
1287                 ma = FINISH_150MA;
1288         else
1289                 ma = FINISH_100MA;
1290
1291         return ma;
1292 }
1293
1294 static void rk818_bat_init_chrg_config(struct rk818_battery *di)
1295 {
1296         u8 usb_ctrl, chrg_ctrl2, chrg_ctrl3;
1297         u8 thermal, ggcon, finish_ma, fb_temp;
1298
1299         finish_ma = rk818_bat_parse_finish_ma(di, di->fcc);
1300         fb_temp = rk818_bat_parse_fb_temperature(di);
1301
1302         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
1303         thermal = rk818_bat_read(di, RK818_THERMAL_REG);
1304         usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG);
1305         chrg_ctrl2 = rk818_bat_read(di, RK818_CHRG_CTRL_REG2);
1306         chrg_ctrl3 = rk818_bat_read(di, RK818_CHRG_CTRL_REG3);
1307
1308         /* set charge finish current */
1309         chrg_ctrl3 |= CHRG_TERM_DIG_SIGNAL;
1310         chrg_ctrl2 &= ~FINISH_CUR_MSK;
1311         chrg_ctrl2 |= finish_ma;
1312
1313         /* disable cccv mode */
1314         chrg_ctrl3 &= ~CHRG_TIMER_CCCV_EN;
1315
1316         /* set feed back temperature */
1317         if (di->pdata->fb_temp)
1318                 usb_ctrl |= CHRG_CT_EN;
1319         else
1320                 usb_ctrl &= ~CHRG_CT_EN;
1321         thermal &= ~FB_TEMP_MSK;
1322         thermal |= fb_temp;
1323
1324         /* adc current mode */
1325         ggcon |= ADC_CUR_MODE;
1326
1327         rk818_bat_write(di, RK818_GGCON_REG, ggcon);
1328         rk818_bat_write(di, RK818_THERMAL_REG, thermal);
1329         rk818_bat_write(di, RK818_USB_CTRL_REG, usb_ctrl);
1330         rk818_bat_write(di, RK818_CHRG_CTRL_REG2, chrg_ctrl2);
1331         rk818_bat_write(di, RK818_CHRG_CTRL_REG3, chrg_ctrl3);
1332 }
1333
1334 static void rk818_bat_init_coffset(struct rk818_battery *di)
1335 {
1336         int coffset, ioffset;
1337
1338         ioffset = rk818_bat_get_ioffset(di);
1339         di->poffset = rk818_bat_read(di, RK818_POFFSET_REG);
1340         if (!di->poffset)
1341                 di->poffset = DEFAULT_POFFSET;
1342
1343         coffset = di->poffset + ioffset;
1344         if (coffset < INVALID_COFFSET_MIN || coffset > INVALID_COFFSET_MAX)
1345                 coffset = DEFAULT_COFFSET;
1346
1347         rk818_bat_set_coffset(di, coffset);
1348
1349         DBG("<%s>. offset: p=0x%x, i=0x%x, c=0x%x\n",
1350             __func__, di->poffset, ioffset, rk818_bat_get_coffset(di));
1351 }
1352
1353 static void rk818_bat_caltimer_isr(unsigned long data)
1354 {
1355         struct rk818_battery *di = (struct rk818_battery *)data;
1356
1357         mod_timer(&di->caltimer, jiffies + MINUTE(8) * HZ);
1358         queue_delayed_work(di->bat_monitor_wq, &di->calib_delay_work,
1359                            msecs_to_jiffies(10));
1360 }
1361
1362 static void rk818_bat_internal_calib(struct work_struct *work)
1363 {
1364         int ioffset, poffset;
1365         struct rk818_battery *di = container_of(work,
1366                         struct rk818_battery, calib_delay_work.work);
1367
1368         /* calib coffset */
1369         poffset = rk818_bat_read(di, RK818_POFFSET_REG);
1370         if (poffset)
1371                 di->poffset = poffset;
1372         else
1373                 di->poffset = DEFAULT_POFFSET;
1374
1375         ioffset = rk818_bat_get_ioffset(di);
1376         rk818_bat_set_coffset(di, ioffset + di->poffset);
1377
1378         /* calib voltage kb */
1379         rk818_bat_init_voltage_kb(di);
1380         BAT_INFO("caltimer: ioffset=0x%x, coffset=0x%x, poffset=%d\n",
1381                  ioffset, rk818_bat_get_coffset(di), di->poffset);
1382 }
1383
1384 static void rk818_bat_init_caltimer(struct rk818_battery *di)
1385 {
1386         setup_timer(&di->caltimer, rk818_bat_caltimer_isr, (unsigned long)di);
1387         di->caltimer.expires = jiffies + MINUTE(8) * HZ;
1388         add_timer(&di->caltimer);
1389         INIT_DELAYED_WORK(&di->calib_delay_work, rk818_bat_internal_calib);
1390 }
1391
1392 static void rk818_bat_init_zero_table(struct rk818_battery *di)
1393 {
1394         int i, diff, min, max;
1395         size_t ocv_size, length;
1396
1397         ocv_size = di->pdata->ocv_size;
1398         length = sizeof(di->pdata->zero_table) * ocv_size;
1399         di->pdata->zero_table =
1400                         devm_kzalloc(di->dev, length, GFP_KERNEL);
1401         if (!di->pdata->zero_table) {
1402                 di->pdata->zero_table = di->pdata->ocv_table;
1403                 dev_err(di->dev, "malloc zero table fail\n");
1404                 return;
1405         }
1406
1407         min = di->pdata->pwroff_vol,
1408         max = di->pdata->ocv_table[ocv_size - 4];
1409         diff = (max - min) / DIV(ocv_size - 1);
1410         for (i = 0; i < ocv_size; i++)
1411                 di->pdata->zero_table[i] = min + (i * diff);
1412
1413         for (i = 0; i < ocv_size; i++)
1414                 DBG("zero[%d] = %d\n", i, di->pdata->zero_table[i]);
1415
1416         for (i = 0; i < ocv_size; i++)
1417                 DBG("ocv[%d] = %d\n", i, di->pdata->ocv_table[i]);
1418 }
1419
1420 static void rk818_bat_calc_sm_linek(struct rk818_battery *di)
1421 {
1422         int linek, current_avg;
1423         u8 diff, delta;
1424
1425         delta = abs(di->dsoc - di->rsoc);
1426         diff = delta * 3;/* speed:3/4 */
1427         current_avg = rk818_bat_get_avg_current(di);
1428         if (current_avg >= 0) {
1429                 if (di->dsoc < di->rsoc)
1430                         linek = 1000 * (delta + diff) / DIV(diff);
1431                 else if (di->dsoc > di->rsoc)
1432                         linek = 1000 * diff / DIV(delta + diff);
1433                 else
1434                         linek = 1000;
1435                 di->dbg_meet_soc = (di->dsoc >= di->rsoc) ?
1436                                    (di->dsoc + diff) : (di->rsoc + diff);
1437         } else {
1438                 if (di->dsoc < di->rsoc)
1439                         linek = -1000 * diff / DIV(delta + diff);
1440                 else if (di->dsoc > di->rsoc)
1441                         linek = -1000 * (delta + diff) / DIV(diff);
1442                 else
1443                         linek = -1000;
1444                 di->dbg_meet_soc = (di->dsoc >= di->rsoc) ?
1445                                    (di->dsoc - diff) : (di->rsoc - diff);
1446         }
1447
1448         di->sm_linek = linek;
1449         di->sm_remain_cap = di->remain_cap;
1450         di->dbg_calc_dsoc = di->dsoc;
1451         di->dbg_calc_rsoc = di->rsoc;
1452
1453         DBG("<%s>.diff=%d, k=%d, cur=%d\n", __func__, diff, linek, current_avg);
1454 }
1455
1456 static void rk818_bat_calc_zero_linek(struct rk818_battery *di)
1457 {
1458         int dead_voltage, ocv_voltage;
1459         int voltage_avg, current_avg, vsys;
1460         int ocv_cap, dead_cap, xsoc;
1461         int ocv_soc, dead_soc;
1462         int pwroff_vol;
1463         int i, cnt, vol_old, vol_now;
1464         int org_linek = 0, min_gap_xsoc;
1465
1466         if ((abs(di->current_avg) < 500) && (di->dsoc > 10))
1467                 pwroff_vol = di->pdata->pwroff_vol + 50;
1468         else
1469                 pwroff_vol = di->pdata->pwroff_vol;
1470
1471         do {
1472                 vol_old = rk818_bat_get_avg_voltage(di);
1473                 msleep(100);
1474                 vol_now = rk818_bat_get_avg_voltage(di);
1475                 cnt++;
1476         } while ((vol_old == vol_now) && (cnt < 11));
1477
1478         voltage_avg = 0;
1479         for (i = 0; i < 10; i++) {
1480                 voltage_avg += rk818_bat_get_avg_voltage(di);
1481                 msleep(100);
1482         }
1483
1484         /* calc estimate ocv voltage */
1485         voltage_avg /= 10;
1486         current_avg = rk818_bat_get_avg_current(di);
1487         vsys = voltage_avg + (current_avg * DEF_PWRPATH_RES) / 1000;
1488
1489         DBG("ZERO0: shtd_vol: org = %d, now = %d, zero_reserve_dsoc = %d\n",
1490             di->pdata->pwroff_vol, pwroff_vol, di->pdata->zero_reserve_dsoc);
1491
1492         dead_voltage = pwroff_vol - current_avg *
1493                                 (di->bat_res + DEF_PWRPATH_RES) / 1000;
1494         ocv_voltage = voltage_avg - (current_avg * di->bat_res) / 1000;
1495         DBG("ZERO0: dead_voltage(shtd) = %d, ocv_voltage(now) = %d\n",
1496             dead_voltage, ocv_voltage);
1497
1498         /* calc estimate soc and cap */
1499         dead_soc = rk818_bat_vol_to_zerosoc(di, dead_voltage);
1500         dead_cap = rk818_bat_vol_to_zerocap(di, dead_voltage);
1501         DBG("ZERO0: dead_soc = %d, dead_cap = %d\n",
1502             dead_soc, dead_cap);
1503
1504         ocv_soc = rk818_bat_vol_to_zerosoc(di, ocv_voltage);
1505         ocv_cap = rk818_bat_vol_to_zerocap(di, ocv_voltage);
1506         DBG("ZERO0: ocv_soc = %d, ocv_cap = %d\n",
1507             ocv_soc, ocv_cap);
1508
1509         /* xsoc: available rsoc */
1510         xsoc = ocv_soc - dead_soc;
1511
1512         /* min_gap_xsoc: reserve xsoc */
1513         if (abs(current_avg) > ZERO_LOAD_LVL1)
1514                 min_gap_xsoc = ZERO_GAP_XSOC3;
1515         else if (abs(current_avg) > ZERO_LOAD_LVL2)
1516                 min_gap_xsoc = ZERO_GAP_XSOC2;
1517         else
1518                 min_gap_xsoc = ZERO_GAP_XSOC1;
1519
1520         if ((xsoc <= 30) && (di->dsoc >= di->pdata->zero_reserve_dsoc))
1521                 min_gap_xsoc = min_gap_xsoc + ZERO_GAP_CALIB;
1522
1523         di->zero_remain_cap = di->remain_cap;
1524         di->zero_timeout_cnt = 0;
1525         if ((di->dsoc <= 1) && (xsoc > 0)) {
1526                 di->zero_linek = 400;
1527                 di->zero_drop_sec = 0;
1528         } else if (xsoc >= 0) {
1529                 di->zero_drop_sec = 0;
1530                 di->zero_linek = (di->zero_dsoc + xsoc / 2) / DIV(xsoc);
1531                 org_linek = di->zero_linek;
1532                 /* battery energy mode to use up voltage */
1533                 if ((di->pdata->energy_mode) &&
1534                     (xsoc - di->dsoc >= ZERO_GAP_XSOC3) &&
1535                     (di->dsoc <= 10) && (di->zero_linek < 300)) {
1536                         di->zero_linek = 300;
1537                         DBG("ZERO-new: zero_linek adjust step0...\n");
1538                 /* reserve enough power yet, slow down any way */
1539                 } else if ((xsoc - di->dsoc >= min_gap_xsoc) ||
1540                            ((xsoc - di->dsoc >= ZERO_GAP_XSOC2) &&
1541                             (di->dsoc <= 10) && (xsoc > 15))) {
1542                         if (xsoc <= 20 &&
1543                             di->dsoc >= di->pdata->zero_reserve_dsoc)
1544                                 di->zero_linek = 1200;
1545                         else if (xsoc - di->dsoc >= 2 * min_gap_xsoc)
1546                                 di->zero_linek = 400;
1547                         else if (xsoc - di->dsoc >= 3 + min_gap_xsoc)
1548                                 di->zero_linek = 600;
1549                         else
1550                                 di->zero_linek = 800;
1551                         DBG("ZERO-new: zero_linek adjust step1...\n");
1552                 /* control zero mode beginning enter */
1553                 } else if ((di->zero_linek > 1800) && (di->dsoc > 70)) {
1554                         di->zero_linek = 1800;
1555                         DBG("ZERO-new: zero_linek adjust step2...\n");
1556                 /* dsoc close to xsoc: it must reserve power */
1557                 } else if ((di->zero_linek > 1000) && (di->zero_linek < 1200)) {
1558                         di->zero_linek = 1200;
1559                         DBG("ZERO-new: zero_linek adjust step3...\n");
1560                 /* dsoc[5~15], dsoc < xsoc */
1561                 } else if ((di->dsoc <= 15 && di->dsoc > 5) &&
1562                            (di->zero_linek <= 1200)) {
1563                         /* slow down */
1564                         if (xsoc - di->dsoc >= min_gap_xsoc)
1565                                 di->zero_linek = 800;
1566                         /* reserve power */
1567                         else
1568                                 di->zero_linek = 1200;
1569                         DBG("ZERO-new: zero_linek adjust step4...\n");
1570                 /* dsoc[5, 100], dsoc < xsoc */
1571                 } else if ((di->zero_linek < 1000) && (di->dsoc >= 5)) {
1572                         if ((xsoc - di->dsoc) < min_gap_xsoc) {
1573                                 /* reserve power */
1574                                 di->zero_linek = 1200;
1575                         } else {
1576                                 if (abs(di->current_avg) > 500)/* heavy */
1577                                         di->zero_linek = 900;
1578                                 else
1579                                         di->zero_linek = 1000;
1580                         }
1581                         DBG("ZERO-new: zero_linek adjust step5...\n");
1582                 /* dsoc[0~5], dsoc < xsoc */
1583                 } else if ((di->zero_linek < 1000) && (di->dsoc <= 5)) {
1584                         if ((xsoc - di->dsoc) <= 3)
1585                                 di->zero_linek = 1200;
1586                         else
1587                                 di->zero_linek = 800;
1588                                 DBG("ZERO-new: zero_linek adjust step6...\n");
1589                 }
1590         } else {
1591                 /* xsoc < 0 */
1592                 di->zero_linek = 1000;
1593                 if (!di->zero_drop_sec)
1594                         di->zero_drop_sec = get_boot_sec();
1595                 if (base2sec(di->zero_drop_sec) >= WAIT_DSOC_DROP_SEC) {
1596                         DBG("ZERO0: t=%lu\n", base2sec(di->zero_drop_sec));
1597                         di->zero_drop_sec = 0;
1598                         di->dsoc--;
1599                         di->zero_dsoc = (di->dsoc + 1) * 1000 -
1600                                                 MIN_ACCURACY;
1601                 }
1602         }
1603
1604         if (voltage_avg < pwroff_vol - 70) {
1605                 if (!di->shtd_drop_sec)
1606                         di->shtd_drop_sec = get_boot_sec();
1607                 if (base2sec(di->shtd_drop_sec) > WAIT_SHTD_DROP_SEC) {
1608                         BAT_INFO("voltage extreme low...soc:%d->0\n", di->dsoc);
1609                         di->shtd_drop_sec = 0;
1610                         di->dsoc = 0;
1611                 }
1612         } else {
1613                 di->shtd_drop_sec = 0;
1614         }
1615
1616         DBG("ZERO-new: org_linek=%d, zero_linek=%d, dsoc=%d, Xsoc=%d, "
1617             "rsoc=%d, gap=%d, v=%d, vsys=%d\n"
1618             "ZERO-new: di->zero_dsoc=%d, zero_remain_cap=%d, zero_drop=%ld, "
1619             "sht_drop=%ld\n\n",
1620             org_linek, di->zero_linek, di->dsoc, xsoc, di->rsoc,
1621             min_gap_xsoc, voltage_avg, vsys, di->zero_dsoc, di->zero_remain_cap,
1622             base2sec(di->zero_drop_sec), base2sec(di->shtd_drop_sec));
1623 }
1624
1625 static void rk818_bat_finish_algo_prepare(struct rk818_battery *di)
1626 {
1627         di->finish_base = get_boot_sec();
1628         if (!di->finish_base)
1629                 di->finish_base = 1;
1630 }
1631
1632 static void rk818_bat_smooth_algo_prepare(struct rk818_battery *di)
1633 {
1634         int tmp_soc;
1635
1636         tmp_soc = di->sm_chrg_dsoc / 1000;
1637         if (tmp_soc != di->dsoc)
1638                 di->sm_chrg_dsoc = di->dsoc * 1000;
1639
1640         tmp_soc = di->sm_dischrg_dsoc / 1000;
1641         if (tmp_soc != di->dsoc)
1642                 di->sm_dischrg_dsoc =
1643                 (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1644
1645         DBG("<%s>. tmp_soc=%d, dsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d\n",
1646             __func__, tmp_soc, di->dsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1647
1648         rk818_bat_calc_sm_linek(di);
1649 }
1650
1651 static void rk818_bat_zero_algo_prepare(struct rk818_battery *di)
1652 {
1653         int tmp_dsoc;
1654
1655         di->zero_timeout_cnt = 0;
1656         tmp_dsoc = di->zero_dsoc / 1000;
1657         if (tmp_dsoc != di->dsoc)
1658                 di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1659
1660         DBG("<%s>. first calc, reinit linek\n", __func__);
1661
1662         rk818_bat_calc_zero_linek(di);
1663 }
1664
1665 static void rk818_bat_calc_zero_algorithm(struct rk818_battery *di)
1666 {
1667         int tmp_soc = 0, sm_delta_dsoc = 0;
1668
1669         tmp_soc = di->zero_dsoc / 1000;
1670         if (tmp_soc == di->dsoc)
1671                 goto out;
1672
1673         DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
1674         /* when discharge slow down, take sm chrg into calc */
1675         if (di->dsoc < di->rsoc) {
1676                 /* take sm charge rest into calc */
1677                 tmp_soc = di->sm_chrg_dsoc / 1000;
1678                 if (tmp_soc == di->dsoc) {
1679                         sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000;
1680                         di->sm_chrg_dsoc = di->dsoc * 1000;
1681                         di->zero_dsoc += sm_delta_dsoc;
1682                         DBG("ZERO1: take sm chrg,delta=%d\n", sm_delta_dsoc);
1683                 }
1684         }
1685
1686         /* when discharge speed up, take sm dischrg into calc */
1687         if (di->dsoc > di->rsoc) {
1688                 /* take sm discharge rest into calc */
1689                 tmp_soc = di->sm_dischrg_dsoc / 1000;
1690                 if (tmp_soc == di->dsoc) {
1691                         sm_delta_dsoc = di->sm_dischrg_dsoc -
1692                                 ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
1693                         di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 -
1694                                                                 MIN_ACCURACY;
1695                         di->zero_dsoc += sm_delta_dsoc;
1696                         DBG("ZERO1: take sm dischrg,delta=%d\n", sm_delta_dsoc);
1697                 }
1698         }
1699
1700         /* check overflow */
1701         if (di->zero_dsoc > (di->dsoc + 1) * 1000 - MIN_ACCURACY) {
1702                 DBG("ZERO1: zero dsoc overflow: %d\n", di->zero_dsoc);
1703                 di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1704         }
1705
1706         /* check new dsoc */
1707         tmp_soc = di->zero_dsoc / 1000;
1708         if (tmp_soc != di->dsoc) {
1709                 /* avoid dsoc jump when heavy load */
1710                 if ((di->dsoc - tmp_soc) > 1) {
1711                         di->dsoc--;
1712                         di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1713                         DBG("ZERO1: heavy load...\n");
1714                 } else {
1715                         di->dsoc = tmp_soc;
1716                 }
1717                 di->zero_drop_sec = 0;
1718         }
1719
1720 out:
1721         DBG("ZERO1: zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d, tmp_soc=%d\n",
1722             di->zero_dsoc, di->dsoc, di->rsoc, tmp_soc);
1723         DBG("ZERO1: sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n",
1724             di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1725 }
1726
1727 static void rk818_bat_zero_algorithm(struct rk818_battery *di)
1728 {
1729         int delta_cap = 0, delta_soc = 0;
1730
1731         di->zero_timeout_cnt++;
1732         delta_cap = di->zero_remain_cap - di->remain_cap;
1733         delta_soc = di->zero_linek * (delta_cap * 100) / DIV(di->fcc);
1734
1735         DBG("ZERO1: zero_linek=%d, zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d\n"
1736             "ZERO1: delta_soc(X0)=%d, delta_cap=%d, zero_remain_cap = %d\n"
1737             "ZERO1: timeout_cnt=%d, sm_dischrg=%d, sm_chrg=%d\n\n",
1738             di->zero_linek, di->zero_dsoc, di->dsoc, di->rsoc,
1739             delta_soc, delta_cap, di->zero_remain_cap,
1740             di->zero_timeout_cnt, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1741
1742         if ((delta_soc >= MIN_ZERO_DSOC_ACCURACY) ||
1743             (di->zero_timeout_cnt > MIN_ZERO_OVERCNT) ||
1744             (di->zero_linek == 0)) {
1745                 DBG("ZERO1:--------- enter calc -----------\n");
1746                 di->zero_timeout_cnt = 0;
1747                 di->zero_dsoc -= delta_soc;
1748                 rk818_bat_calc_zero_algorithm(di);
1749                 rk818_bat_calc_zero_linek(di);
1750         }
1751 }
1752
1753 static void rk818_bat_dump_time_table(struct rk818_battery *di)
1754 {
1755         u8 i;
1756         static int old_index;
1757         static int old_min;
1758         int mod = di->dsoc % 10;
1759         int index = di->dsoc / 10;
1760         u32 time;
1761
1762         if (rk818_bat_chrg_online(di))
1763                 time = base2min(di->plug_in_base);
1764         else
1765                 time = base2min(di->plug_out_base);
1766
1767         if ((mod == 0) && (index > 0) && (old_index != index)) {
1768                 di->dbg_chrg_min[index - 1] = time - old_min;
1769                 old_min = time;
1770                 old_index = index;
1771         }
1772
1773         for (i = 1; i < 11; i++)
1774                 DBG("Time[%d]=%d, ", (i * 10), di->dbg_chrg_min[i - 1]);
1775         DBG("\n");
1776 }
1777
1778 static void rk818_bat_debug_info(struct rk818_battery *di)
1779 {
1780         u8 sup_tst, ggcon, ggsts, vb_mod, ts_ctrl, reboot_cnt;
1781         u8 usb_ctrl, chrg_ctrl1, thermal;
1782         u8 int_sts1, int_sts2;
1783         u8 int_msk1, int_msk2;
1784         u8 chrg_ctrl2, chrg_ctrl3, rtc, misc, dcdc_en;
1785         char *work_mode[] = {"ZERO", "FINISH", "UN", "UN", "SMOOTH"};
1786         char *bat_mode[] = {"BAT", "VIRTUAL"};
1787
1788         if (rk818_bat_chrg_online(di))
1789                 di->plug_out_base = get_boot_sec();
1790         else
1791                 di->plug_in_base = get_boot_sec();
1792
1793         rk818_bat_dump_time_table(di);
1794
1795         if (!dbg_enable)
1796                 return;
1797
1798         ts_ctrl = rk818_bat_read(di, RK818_TS_CTRL_REG);
1799         misc = rk818_bat_read(di, RK818_MISC_MARK_REG);
1800         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
1801         ggsts = rk818_bat_read(di, RK818_GGSTS_REG);
1802         sup_tst = rk818_bat_read(di, RK818_SUP_STS_REG);
1803         vb_mod = rk818_bat_read(di, RK818_VB_MON_REG);
1804         usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG);
1805         chrg_ctrl1 = rk818_bat_read(di, RK818_CHRG_CTRL_REG1);
1806         chrg_ctrl2 = rk818_bat_read(di, RK818_CHRG_CTRL_REG2);
1807         chrg_ctrl3 = rk818_bat_read(di, RK818_CHRG_CTRL_REG3);
1808         rtc = rk818_bat_read(di, 0);
1809         thermal = rk818_bat_read(di, RK818_THERMAL_REG);
1810         int_sts1 = rk818_bat_read(di, RK818_INT_STS_REG1);
1811         int_sts2 = rk818_bat_read(di, RK818_INT_STS_REG2);
1812         int_msk1 = rk818_bat_read(di, RK818_INT_STS_MSK_REG1);
1813         int_msk2 = rk818_bat_read(di, RK818_INT_STS_MSK_REG2);
1814         dcdc_en = rk818_bat_read(di, RK818_DCDC_EN_REG);
1815         reboot_cnt = rk818_bat_read(di, RK818_REBOOT_CNT_REG);
1816
1817         DBG("\n------- DEBUG REGS, [Ver: %s] -------------------\n"
1818             "GGCON=0x%2x, GGSTS=0x%2x, RTC=0x%2x, DCDC_EN2=0x%2x\n"
1819             "SUP_STS= 0x%2x, VB_MOD=0x%2x, USB_CTRL=0x%2x\n"
1820             "THERMAL=0x%2x, MISC_MARK=0x%2x, TS_CTRL=0x%2x\n"
1821             "CHRG_CTRL:REG1=0x%2x, REG2=0x%2x, REG3=0x%2x\n"
1822             "INT_STS:  REG1=0x%2x, REG2=0x%2x\n"
1823             "INT_MSK:  REG1=0x%2x, REG2=0x%2x\n",
1824             DRIVER_VERSION, ggcon, ggsts, rtc, dcdc_en,
1825             sup_tst, vb_mod, usb_ctrl,
1826             thermal, misc, ts_ctrl,
1827             chrg_ctrl1, chrg_ctrl2, chrg_ctrl3,
1828             int_sts1, int_sts2, int_msk1, int_msk2
1829            );
1830
1831         DBG("###############################################################\n"
1832             "Dsoc=%d, Rsoc=%d, Vavg=%d, Iavg=%d, Cap=%d, Fcc=%d, d=%d\n"
1833             "K=%d, Mode=%s, Oldcap=%d, Is=%d, Ip=%d, Vs=%d\n"
1834             "fb_temp=%d, bat_temp=%d, sample_res=%d\n"
1835             "off:i=0x%x, c=0x%x, p=%d, Rbat=%d, age_ocv_cap=%d, fb=%d\n"
1836             "adp:finish=%lu, boot_min=%lu, sleep_min=%lu, adc=%d, Vsys=%d\n"
1837             "bat:%s, meet: soc=%d, calc: dsoc=%d, rsoc=%d, Vocv=%d\n"
1838             "pwr: dsoc=%d, rsoc=%d, vol=%d, halt: st=%d, cnt=%d, reboot=%d\n"
1839             "ocv_c=%d: %d -> %d; max_c=%d: %d -> %d; force_c=%d: %d -> %d\n"
1840             "min=%d, init=%d, sw=%d, below0=%d, first=%d, changed=%d\n"
1841             "###############################################################\n",
1842             di->dsoc, di->rsoc, di->voltage_avg, di->current_avg,
1843             di->remain_cap, di->fcc, di->rsoc - di->dsoc,
1844             di->sm_linek, work_mode[di->work_mode], di->sm_remain_cap,
1845             di->res_div * chrg_cur_sel_array[chrg_ctrl1 & 0x0f],
1846             chrg_cur_input_array[usb_ctrl & 0x0f],
1847             chrg_vol_sel_array[(chrg_ctrl1 & 0x70) >> 4],
1848             feedback_temp_array[(thermal & 0x0c) >> 2], di->temperature,
1849             di->pdata->sample_res, rk818_bat_get_ioffset(di),
1850             rk818_bat_get_coffset(di), di->poffset, di->bat_res,
1851             di->age_adjust_cap, di->fb_blank, base2min(di->finish_base),
1852             base2min(di->boot_base), di->sleep_sum_sec / 60,
1853             di->adc_allow_update,
1854             di->voltage_avg + di->current_avg * DEF_PWRPATH_RES / 1000,
1855             bat_mode[di->pdata->bat_mode], di->dbg_meet_soc, di->dbg_calc_dsoc,
1856             di->dbg_calc_rsoc, di->voltage_ocv, di->dbg_pwr_dsoc,
1857             di->dbg_pwr_rsoc, di->dbg_pwr_vol, di->is_halt, di->halt_cnt,
1858             reboot_cnt, di->is_ocv_calib, di->ocv_pre_dsoc, di->ocv_new_dsoc,
1859             di->is_max_soc_offset, di->max_pre_dsoc, di->max_new_dsoc,
1860             di->is_force_calib, di->force_pre_dsoc, di->force_new_dsoc,
1861             di->pwroff_min, di->is_initialized, di->is_sw_reset,
1862             di->dbg_cap_low0, di->is_first_on, di->last_dsoc
1863            );
1864 }
1865
1866 static void rk818_bat_init_capacity(struct rk818_battery *di, u32 cap)
1867 {
1868         int delta_cap;
1869
1870         delta_cap = cap - di->remain_cap;
1871         if (!delta_cap)
1872                 return;
1873
1874         di->age_adjust_cap += delta_cap;
1875         rk818_bat_init_coulomb_cap(di, cap);
1876         rk818_bat_smooth_algo_prepare(di);
1877         rk818_bat_zero_algo_prepare(di);
1878 }
1879
1880 static void rk818_bat_update_age_fcc(struct rk818_battery *di)
1881 {
1882         int fcc, remain_cap, age_keep_min, lock_fcc;
1883
1884         lock_fcc = rk818_bat_get_coulomb_cap(di);
1885         remain_cap = lock_fcc - di->age_ocv_cap - di->age_adjust_cap;
1886         age_keep_min = base2min(di->age_keep_sec);
1887
1888         DBG("%s: lock_fcc=%d, age_ocv_cap=%d, age_adjust_cap=%d, remain_cap=%d,"
1889             "age_allow_update=%d, age_keep_min=%d\n",
1890             __func__, lock_fcc, di->age_ocv_cap, di->age_adjust_cap, remain_cap,
1891             di->age_allow_update, age_keep_min);
1892
1893         if ((di->chrg_status == CHARGE_FINISH) && (di->age_allow_update) &&
1894             (age_keep_min < 1200)) {
1895                 di->age_allow_update = false;
1896                 fcc = remain_cap * 100 / DIV(100 - di->age_ocv_soc);
1897                 BAT_INFO("lock_fcc=%d, calc_cap=%d, age: soc=%d, cap=%d, "
1898                          "level=%d, fcc:%d->%d?\n",
1899                          lock_fcc, remain_cap, di->age_ocv_soc,
1900                          di->age_ocv_cap, di->age_level, di->fcc, fcc);
1901
1902                 if ((fcc < di->qmax) && (fcc > MIN_FCC)) {
1903                         BAT_INFO("fcc:%d->%d!\n", di->fcc, fcc);
1904                         di->fcc = fcc;
1905                         rk818_bat_init_capacity(di, di->fcc);
1906                         rk818_bat_save_fcc(di, di->fcc);
1907                         rk818_bat_save_age_level(di, di->age_level);
1908                 }
1909         }
1910 }
1911
1912 static void rk818_bat_wait_finish_sig(struct rk818_battery *di)
1913 {
1914         int chrg_finish_vol = di->pdata->max_chrg_voltage;
1915
1916         if (!rk818_bat_chrg_online(di))
1917                 return;
1918
1919         if ((di->chrg_status == CHARGE_FINISH) && (di->adc_allow_update) &&
1920             (di->voltage_avg > chrg_finish_vol - 150)) {
1921                 rk818_bat_update_age_fcc(di);
1922                 if (rk818_bat_adc_calib(di))
1923                         di->adc_allow_update = false;
1924         }
1925 }
1926
1927 static void rk818_bat_finish_algorithm(struct rk818_battery *di)
1928 {
1929         unsigned long finish_sec, soc_sec;
1930         int plus_soc, finish_current, rest = 0;
1931
1932         /* rsoc */
1933         if ((di->remain_cap != di->fcc) &&
1934             (rk818_bat_get_chrg_status(di) == CHARGE_FINISH)) {
1935                 di->age_adjust_cap += (di->fcc - di->remain_cap);
1936                 rk818_bat_init_coulomb_cap(di, di->fcc);
1937         }
1938
1939         /* dsoc */
1940         if (di->dsoc < 100) {
1941                 if (!di->finish_base)
1942                         di->finish_base = get_boot_sec();
1943                 finish_current = (di->rsoc - di->dsoc) >  FINISH_MAX_SOC_DELAY ?
1944                                         FINISH_CHRG_CUR2 : FINISH_CHRG_CUR1;
1945                 finish_sec = base2sec(di->finish_base);
1946                 soc_sec = di->fcc * 3600 / 100 / DIV(finish_current);
1947                 plus_soc = finish_sec / DIV(soc_sec);
1948                 if (finish_sec > soc_sec) {
1949                         rest = finish_sec % soc_sec;
1950                         di->dsoc += plus_soc;
1951                         di->finish_base = get_boot_sec();
1952                         if (di->finish_base > rest)
1953                                 di->finish_base = get_boot_sec() - rest;
1954                 }
1955                 DBG("<%s>.CHARGE_FINISH:dsoc<100,dsoc=%d\n"
1956                     "soc_time=%lu, sec_finish=%lu, plus_soc=%d, rest=%d\n",
1957                     __func__, di->dsoc, soc_sec, finish_sec, plus_soc, rest);
1958         }
1959 }
1960
1961 static void rk818_bat_calc_smooth_dischrg(struct rk818_battery *di)
1962 {
1963         int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0;
1964
1965         tmp_soc = di->sm_dischrg_dsoc / 1000;
1966         if (tmp_soc == di->dsoc)
1967                 goto out;
1968
1969         DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
1970         /* when dischrge slow down, take sm charge rest into calc */
1971         if (di->dsoc < di->rsoc) {
1972                 tmp_soc = di->sm_chrg_dsoc / 1000;
1973                 if (tmp_soc == di->dsoc) {
1974                         sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000;
1975                         di->sm_chrg_dsoc = di->dsoc * 1000;
1976                         di->sm_dischrg_dsoc += sm_delta_dsoc;
1977                         DBG("<%s>. take sm dischrg, delta=%d\n",
1978                             __func__, sm_delta_dsoc);
1979                 }
1980         }
1981
1982         /* when discharge speed up, take zero discharge rest into calc */
1983         if (di->dsoc > di->rsoc) {
1984                 tmp_soc = di->zero_dsoc / 1000;
1985                 if (tmp_soc == di->dsoc) {
1986                         zero_delta_dsoc = di->zero_dsoc - ((di->dsoc + 1) *
1987                                                 1000 - MIN_ACCURACY);
1988                         di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1989                         di->sm_dischrg_dsoc += zero_delta_dsoc;
1990                         DBG("<%s>. take zero schrg, delta=%d\n",
1991                             __func__, zero_delta_dsoc);
1992                 }
1993         }
1994
1995         /* check up overflow */
1996         if ((di->sm_dischrg_dsoc) > ((di->dsoc + 1) * 1000 - MIN_ACCURACY)) {
1997                 DBG("<%s>. dischrg_dsoc up overflow\n", __func__);
1998                 di->sm_dischrg_dsoc = (di->dsoc + 1) *
1999                                         1000 - MIN_ACCURACY;
2000         }
2001
2002         /* check new dsoc */
2003         tmp_soc = di->sm_dischrg_dsoc / 1000;
2004         if (tmp_soc != di->dsoc) {
2005                 di->dsoc = tmp_soc;
2006                 di->sm_chrg_dsoc = di->dsoc * 1000;
2007         }
2008 out:
2009         DBG("<%s>. dsoc=%d, rsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d, zero=%d\n",
2010             __func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc,
2011             di->zero_dsoc);
2012
2013 }
2014
2015 static void rk818_bat_calc_smooth_chrg(struct rk818_battery *di)
2016 {
2017         int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0;
2018
2019         tmp_soc = di->sm_chrg_dsoc / 1000;
2020         if (tmp_soc == di->dsoc)
2021                 goto out;
2022
2023         DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
2024         /* when charge slow down, take zero & sm dischrg into calc */
2025         if (di->dsoc > di->rsoc) {
2026                 /* take sm discharge rest into calc */
2027                 tmp_soc = di->sm_dischrg_dsoc / 1000;
2028                 if (tmp_soc == di->dsoc) {
2029                         sm_delta_dsoc = di->sm_dischrg_dsoc -
2030                                         ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
2031                         di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 -
2032                                                         MIN_ACCURACY;
2033                         di->sm_chrg_dsoc += sm_delta_dsoc;
2034                         DBG("<%s>. take sm dischrg, delta=%d\n",
2035                            __func__, sm_delta_dsoc);
2036                 }
2037
2038                 /* take zero discharge rest into calc */
2039                 tmp_soc = di->zero_dsoc / 1000;
2040                 if (tmp_soc == di->dsoc) {
2041                         zero_delta_dsoc = di->zero_dsoc -
2042                         ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
2043                         di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2044                         di->sm_chrg_dsoc += zero_delta_dsoc;
2045                         DBG("<%s>. take zero dischrg, delta=%d\n",
2046                             __func__, zero_delta_dsoc);
2047                 }
2048         }
2049
2050         /* check down overflow */
2051         if (di->sm_chrg_dsoc < di->dsoc * 1000) {
2052                 DBG("<%s>. chrg_dsoc down overflow\n", __func__);
2053                 di->sm_chrg_dsoc = di->dsoc * 1000;
2054         }
2055
2056         /* check new dsoc */
2057         tmp_soc = di->sm_chrg_dsoc / 1000;
2058         if (tmp_soc != di->dsoc) {
2059                 di->dsoc = tmp_soc;
2060                 di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2061         }
2062 out:
2063         DBG("<%s>.dsoc=%d, rsoc=%d, dsoc: sm_dischrg=%d, sm_chrg=%d, zero=%d\n",
2064             __func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc,
2065             di->zero_dsoc);
2066 }
2067
2068 static void rk818_bat_smooth_algorithm(struct rk818_battery *di)
2069 {
2070         int ydsoc = 0, delta_cap = 0, old_cap = 0;
2071         unsigned long tgt_sec = 0;
2072
2073         di->remain_cap = rk818_bat_get_coulomb_cap(di);
2074
2075         /* full charge: slow down */
2076         if ((di->dsoc == 99) && (di->chrg_status == CC_OR_CV)) {
2077                 di->sm_linek = FULL_CHRG_K;
2078         /* terminal charge, slow down */
2079         } else if ((di->current_avg >= TERM_CHRG_CURR) &&
2080             (di->chrg_status == CC_OR_CV) && (di->dsoc >= TERM_CHRG_DSOC)) {
2081                 di->sm_linek = TERM_CHRG_K;
2082                 DBG("<%s>. terminal mode..\n", __func__);
2083         /* simulate charge, speed up */
2084         } else if ((di->current_avg <= SIMULATE_CHRG_CURR) &&
2085                    (di->current_avg > 0) && (di->chrg_status == CC_OR_CV) &&
2086                    (di->dsoc < TERM_CHRG_DSOC) &&
2087                    ((di->rsoc - di->dsoc) >= SIMULATE_CHRG_INTV)) {
2088                 di->sm_linek = SIMULATE_CHRG_K;
2089                 DBG("<%s>. simulate mode..\n", __func__);
2090         } else {
2091                 /* charge and discharge switch */
2092                 if ((di->sm_linek * di->current_avg <= 0) ||
2093                     (di->sm_linek == TERM_CHRG_K) ||
2094                     (di->sm_linek == FULL_CHRG_K) ||
2095                     (di->sm_linek == SIMULATE_CHRG_K)) {
2096                         DBG("<%s>. linek mode, retinit sm linek..\n", __func__);
2097                         rk818_bat_calc_sm_linek(di);
2098                 }
2099         }
2100
2101         old_cap = di->sm_remain_cap;
2102         /*
2103          * when dsoc equal rsoc(not include full, term, simulate case),
2104          * sm_linek should change to -1000/1000 smoothly to avoid dsoc+1/-1
2105          * right away, so change it after flat seconds
2106          */
2107         if ((di->dsoc == di->rsoc) && (abs(di->sm_linek) != 1000) &&
2108             (di->sm_linek != FULL_CHRG_K && di->sm_linek != TERM_CHRG_K &&
2109              di->sm_linek != SIMULATE_CHRG_K)) {
2110                 if (!di->flat_match_sec)
2111                         di->flat_match_sec = get_boot_sec();
2112                 tgt_sec = di->fcc * 3600 / 100 / DIV(abs(di->current_avg)) / 3;
2113                 if (base2sec(di->flat_match_sec) >= tgt_sec) {
2114                         di->flat_match_sec = 0;
2115                         di->sm_linek = (di->current_avg >= 0) ? 1000 : -1000;
2116                 }
2117                 DBG("<%s>. flat_sec=%ld, tgt_sec=%ld, sm_k=%d\n", __func__,
2118                     base2sec(di->flat_match_sec), tgt_sec, di->sm_linek);
2119         } else {
2120                 di->flat_match_sec = 0;
2121         }
2122
2123         /* abs(k)=1000 or dsoc=100, stop calc */
2124         if ((abs(di->sm_linek) == 1000) || (di->current_avg >= 0 &&
2125              di->chrg_status == CC_OR_CV && di->dsoc >= 100)) {
2126                 DBG("<%s>. sm_linek=%d\n", __func__, di->sm_linek);
2127                 if (abs(di->sm_linek) == 1000) {
2128                         di->dsoc = di->rsoc;
2129                         di->sm_linek = (di->sm_linek > 0) ? 1000 : -1000;
2130                         DBG("<%s>. dsoc == rsoc, sm_linek=%d\n",
2131                             __func__, di->sm_linek);
2132                 }
2133                 di->sm_remain_cap = di->remain_cap;
2134                 di->sm_chrg_dsoc = di->dsoc * 1000;
2135                 di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2136                 DBG("<%s>. sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n",
2137                     __func__, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
2138         } else {
2139                 delta_cap = di->remain_cap - di->sm_remain_cap;
2140                 if (delta_cap == 0) {
2141                         DBG("<%s>. delta_cap = 0\n", __func__);
2142                         return;
2143                 }
2144                 ydsoc = di->sm_linek * abs(delta_cap) * 100 / DIV(di->fcc);
2145                 if (ydsoc == 0) {
2146                         DBG("<%s>. ydsoc = 0\n", __func__);
2147                         return;
2148                 }
2149                 di->sm_remain_cap = di->remain_cap;
2150
2151                 DBG("<%s>. k=%d, ydsoc=%d; cap:old=%d, new:%d; delta_cap=%d\n",
2152                     __func__, di->sm_linek, ydsoc, old_cap,
2153                     di->sm_remain_cap, delta_cap);
2154
2155                 /* discharge mode */
2156                 if (ydsoc < 0) {
2157                         di->sm_dischrg_dsoc += ydsoc;
2158                         rk818_bat_calc_smooth_dischrg(di);
2159                 /* charge mode */
2160                 } else {
2161                         di->sm_chrg_dsoc += ydsoc;
2162                         rk818_bat_calc_smooth_chrg(di);
2163                 }
2164
2165                 if (di->s2r) {
2166                         di->s2r = false;
2167                         rk818_bat_calc_sm_linek(di);
2168                 }
2169         }
2170 }
2171
2172 /*
2173  * cccv and finish switch all the time will cause dsoc freeze,
2174  * if so, do finish chrg, 100ma is less than min finish_ma.
2175  */
2176 static bool rk818_bat_fake_finish_mode(struct rk818_battery *di)
2177 {
2178         if ((di->rsoc == 100) && (rk818_bat_get_chrg_status(di) == CC_OR_CV) &&
2179             (abs(di->current_avg) <= 100))
2180                 return true;
2181         else
2182                 return false;
2183 }
2184
2185 static void rk818_bat_display_smooth(struct rk818_battery *di)
2186 {
2187         /* discharge: reinit "zero & smooth" algorithm to avoid handling dsoc */
2188         if (di->s2r && !di->sleep_chrg_online) {
2189                 DBG("s2r: discharge, reset algorithm...\n");
2190                 di->s2r = false;
2191                 rk818_bat_zero_algo_prepare(di);
2192                 rk818_bat_smooth_algo_prepare(di);
2193                 return;
2194         }
2195
2196         if (di->work_mode == MODE_FINISH) {
2197                 DBG("step1: charge finish...\n");
2198                 rk818_bat_finish_algorithm(di);
2199                 if ((rk818_bat_get_chrg_status(di) != CHARGE_FINISH) &&
2200                     !rk818_bat_fake_finish_mode(di)) {
2201                         if ((di->current_avg < 0) &&
2202                             (di->voltage_avg < di->pdata->zero_algorithm_vol)) {
2203                                 DBG("step1: change to zero mode...\n");
2204                                 rk818_bat_zero_algo_prepare(di);
2205                                 di->work_mode = MODE_ZERO;
2206                         } else {
2207                                 DBG("step1: change to smooth mode...\n");
2208                                 rk818_bat_smooth_algo_prepare(di);
2209                                 di->work_mode = MODE_SMOOTH;
2210                         }
2211                 }
2212         } else if (di->work_mode == MODE_ZERO) {
2213                 DBG("step2: zero algorithm...\n");
2214                 rk818_bat_zero_algorithm(di);
2215                 if ((di->voltage_avg >= di->pdata->zero_algorithm_vol + 50) ||
2216                     (di->current_avg >= 0)) {
2217                         DBG("step2: change to smooth mode...\n");
2218                         rk818_bat_smooth_algo_prepare(di);
2219                         di->work_mode = MODE_SMOOTH;
2220                 } else if ((rk818_bat_get_chrg_status(di) == CHARGE_FINISH) ||
2221                            rk818_bat_fake_finish_mode(di)) {
2222                         DBG("step2: change to finish mode...\n");
2223                         rk818_bat_finish_algo_prepare(di);
2224                         di->work_mode = MODE_FINISH;
2225                 }
2226         } else {
2227                 DBG("step3: smooth algorithm...\n");
2228                 rk818_bat_smooth_algorithm(di);
2229                 if ((di->current_avg < 0) &&
2230                     (di->voltage_avg < di->pdata->zero_algorithm_vol)) {
2231                         DBG("step3: change to zero mode...\n");
2232                         rk818_bat_zero_algo_prepare(di);
2233                         di->work_mode = MODE_ZERO;
2234                 } else if ((rk818_bat_get_chrg_status(di) == CHARGE_FINISH) ||
2235                            rk818_bat_fake_finish_mode(di)) {
2236                         DBG("step3: change to finish mode...\n");
2237                         rk818_bat_finish_algo_prepare(di);
2238                         di->work_mode = MODE_FINISH;
2239                 }
2240         }
2241 }
2242
2243 static void rk818_bat_relax_vol_calib(struct rk818_battery *di)
2244 {
2245         int soc, cap, vol;
2246
2247         vol = di->voltage_relax;
2248         soc = rk818_bat_vol_to_ocvsoc(di, vol);
2249         cap = rk818_bat_vol_to_ocvcap(di, vol);
2250         rk818_bat_init_capacity(di, cap);
2251         BAT_INFO("sleep ocv calib: rsoc=%d, cap=%d\n", soc, cap);
2252 }
2253
2254 static void rk818_bat_relife_age_flag(struct rk818_battery *di)
2255 {
2256         u8 ocv_soc, ocv_cap, soc_level;
2257
2258         if (di->voltage_relax <= 0)
2259                 return;
2260
2261         ocv_soc = rk818_bat_vol_to_ocvsoc(di, di->voltage_relax);
2262         ocv_cap = rk818_bat_vol_to_ocvcap(di, di->voltage_relax);
2263         DBG("<%s>. ocv_soc=%d, min=%lu, vol=%d\n", __func__,
2264             ocv_soc, di->sleep_dischrg_sec / 60, di->voltage_relax);
2265
2266         /* sleep enough time and ocv_soc enough low */
2267         if (!di->age_allow_update && ocv_soc <= 10) {
2268                 di->age_voltage = di->voltage_relax;
2269                 di->age_ocv_cap = ocv_cap;
2270                 di->age_ocv_soc = ocv_soc;
2271                 di->age_adjust_cap = 0;
2272
2273                 if (ocv_soc <= 1)
2274                         di->age_level = 100;
2275                 else if (ocv_soc < 5)
2276                         di->age_level = 90;
2277                 else
2278                         di->age_level = 80;
2279
2280                 soc_level = rk818_bat_get_age_level(di);
2281                 if (soc_level > di->age_level) {
2282                         di->age_allow_update = false;
2283                 } else {
2284                         di->age_allow_update = true;
2285                         di->age_keep_sec = get_boot_sec();
2286                 }
2287
2288                 BAT_INFO("resume: age_vol:%d, age_ocv_cap:%d, age_ocv_soc:%d, "
2289                          "soc_level:%d, age_allow_update:%d, "
2290                          "age_level:%d\n",
2291                          di->age_voltage, di->age_ocv_cap, ocv_soc, soc_level,
2292                          di->age_allow_update, di->age_level);
2293         }
2294 }
2295
2296 static int rk818_bat_sleep_dischrg(struct rk818_battery *di)
2297 {
2298         bool ocv_soc_updated = false;
2299         int tgt_dsoc, gap_soc, sleep_soc = 0;
2300         int pwroff_vol = di->pdata->pwroff_vol;
2301         unsigned long sleep_sec = di->sleep_dischrg_sec;
2302
2303         DBG("<%s>. enter: dsoc=%d, rsoc=%d, rv=%d, v=%d, sleep_min=%lu\n",
2304             __func__, di->dsoc, di->rsoc, di->voltage_relax,
2305             di->voltage_avg, sleep_sec / 60);
2306
2307         if (di->voltage_relax >= di->voltage_avg) {
2308                 rk818_bat_relax_vol_calib(di);
2309                 rk818_bat_restart_relax(di);
2310                 rk818_bat_relife_age_flag(di);
2311                 ocv_soc_updated = true;
2312         }
2313
2314         /* handle dsoc */
2315         if (di->dsoc <= di->rsoc) {
2316                 di->sleep_sum_cap = (SLP_CURR_MIN * sleep_sec / 3600);
2317                 sleep_soc = di->sleep_sum_cap * 100 / DIV(di->fcc);
2318                 tgt_dsoc = di->dsoc - sleep_soc;
2319                 if (sleep_soc > 0) {
2320                         BAT_INFO("calib0: rl=%d, dl=%d, intval=%d\n",
2321                                  di->rsoc, di->dsoc, sleep_soc);
2322                         if (di->dsoc < 5) {
2323                                 di->dsoc--;
2324                         } else if ((tgt_dsoc < 5) && (di->dsoc >= 5)) {
2325                                 if (di->dsoc == 5)
2326                                         di->dsoc--;
2327                                 else
2328                                         di->dsoc = 5;
2329                         } else if (tgt_dsoc > 5) {
2330                                 di->dsoc = tgt_dsoc;
2331                         }
2332                 }
2333
2334                 DBG("%s: dsoc<=rsoc, sum_cap=%d==>sleep_soc=%d, tgt_dsoc=%d\n",
2335                     __func__, di->sleep_sum_cap, sleep_soc, tgt_dsoc);
2336         } else {
2337                 /* di->dsoc > di->rsoc */
2338                 di->sleep_sum_cap = (SLP_CURR_MAX * sleep_sec / 3600);
2339                 sleep_soc = di->sleep_sum_cap / DIV(di->fcc / 100);
2340                 gap_soc = di->dsoc - di->rsoc;
2341
2342                 BAT_INFO("calib1: rsoc=%d, dsoc=%d, intval=%d\n",
2343                          di->rsoc, di->dsoc, sleep_soc);
2344                 if (gap_soc > sleep_soc) {
2345                         if ((gap_soc - 5) > (sleep_soc * 2))
2346                                 di->dsoc -= (sleep_soc * 2);
2347                         else
2348                                 di->dsoc -= sleep_soc;
2349                 } else {
2350                         di->dsoc = di->rsoc;
2351                 }
2352
2353                 DBG("%s: dsoc>rsoc, sum_cap=%d=>sleep_soc=%d, gap_soc=%d\n",
2354                     __func__, di->sleep_sum_cap, sleep_soc, gap_soc);
2355         }
2356
2357         if (di->voltage_avg <= pwroff_vol - 70) {
2358                 di->dsoc = 0;
2359                 rk_send_wakeup_key();
2360                 BAT_INFO("low power sleeping, shutdown... %d\n", di->dsoc);
2361         }
2362
2363         if (ocv_soc_updated && sleep_soc && (di->rsoc - di->dsoc) < 5 &&
2364             di->dsoc < 40) {
2365                 di->dsoc--;
2366                 BAT_INFO("low power sleeping, reserved... %d\n", di->dsoc);
2367         }
2368
2369         if (di->dsoc <= 0) {
2370                 di->dsoc = 0;
2371                 rk_send_wakeup_key();
2372                 BAT_INFO("sleep dsoc is %d...\n", di->dsoc);
2373         }
2374
2375         DBG("<%s>. out: dsoc=%d, rsoc=%d, sum_cap=%d\n",
2376             __func__, di->dsoc, di->rsoc, di->sleep_sum_cap);
2377
2378         return sleep_soc;
2379 }
2380
2381 static void rk818_bat_power_supply_changed(struct rk818_battery *di)
2382 {
2383         u8 status;
2384         static int old_soc = -1;
2385
2386         if (di->dsoc > 100)
2387                 di->dsoc = 100;
2388         else if (di->dsoc < 0)
2389                 di->dsoc = 0;
2390
2391         if (di->dsoc == old_soc)
2392                 return;
2393
2394         status = rk818_bat_read(di, RK818_SUP_STS_REG);
2395         status = (status & CHRG_STATUS_MSK) >> 4;
2396         old_soc = di->dsoc;
2397         di->last_dsoc = di->dsoc;
2398         power_supply_changed(di->bat);
2399         BAT_INFO("changed: dsoc=%d, rsoc=%d, v=%d, ov=%d c=%d, "
2400                  "cap=%d, f=%d, st=%s\n",
2401                  di->dsoc, di->rsoc, di->voltage_avg, di->voltage_ocv,
2402                  di->current_avg, di->remain_cap, di->fcc, bat_status[status]);
2403
2404         BAT_INFO("dl=%d, rl=%d, v=%d, halt=%d, halt_n=%d, max=%d, "
2405                  "init=%d, sw=%d, calib=%d, below0=%d, force=%d\n",
2406                  di->dbg_pwr_dsoc, di->dbg_pwr_rsoc, di->dbg_pwr_vol,
2407                  di->is_halt, di->halt_cnt, di->is_max_soc_offset,
2408                  di->is_initialized, di->is_sw_reset, di->is_ocv_calib,
2409                  di->dbg_cap_low0, di->is_force_calib);
2410 }
2411
2412 static u8 rk818_bat_check_reboot(struct rk818_battery *di)
2413 {
2414         u8 cnt;
2415
2416         cnt = rk818_bat_read(di, RK818_REBOOT_CNT_REG);
2417         cnt++;
2418
2419         if (cnt >= REBOOT_MAX_CNT) {
2420                 BAT_INFO("reboot: %d --> %d\n", di->dsoc, di->rsoc);
2421                 di->dsoc = di->rsoc;
2422                 if (di->dsoc > 100)
2423                         di->dsoc = 100;
2424                 else if (di->dsoc < 0)
2425                         di->dsoc = 0;
2426                 rk818_bat_save_dsoc(di, di->dsoc);
2427                 cnt = REBOOT_MAX_CNT;
2428         }
2429
2430         rk818_bat_save_reboot_cnt(di, cnt);
2431         DBG("reboot cnt: %d\n", cnt);
2432
2433         return cnt;
2434 }
2435
2436 static void rk818_bat_rsoc_daemon(struct rk818_battery *di)
2437 {
2438         int est_vol, remain_cap;
2439         static unsigned long sec;
2440
2441         if ((di->remain_cap < 0) && (di->fb_blank != 0)) {
2442                 if (!sec)
2443                         sec = get_boot_sec();
2444                 wake_lock_timeout(&di->wake_lock,
2445                                   (di->pdata->monitor_sec + 1) * HZ);
2446
2447                 DBG("sec=%ld, hold_sec=%ld\n", sec, base2sec(sec));
2448                 if (base2sec(sec) >= 60) {
2449                         sec = 0;
2450                         di->dbg_cap_low0++;
2451                         est_vol = di->voltage_avg -
2452                                         (di->bat_res * di->current_avg) / 1000;
2453                         remain_cap = rk818_bat_vol_to_ocvcap(di, est_vol);
2454                         rk818_bat_init_capacity(di, remain_cap);
2455                         BAT_INFO("adjust cap below 0 --> %d, rsoc=%d\n",
2456                                  di->remain_cap, di->rsoc);
2457                         wake_unlock(&di->wake_lock);
2458                 }
2459         } else {
2460                 sec = 0;
2461         }
2462 }
2463
2464 static void rk818_bat_update_info(struct rk818_battery *di)
2465 {
2466         di->voltage_avg = rk818_bat_get_avg_voltage(di);
2467         di->current_avg = rk818_bat_get_avg_current(di);
2468         di->voltage_relax = rk818_bat_get_relax_voltage(di);
2469         di->rsoc = rk818_bat_get_rsoc(di);
2470         di->remain_cap = rk818_bat_get_coulomb_cap(di);
2471         di->chrg_status = rk818_bat_get_chrg_status(di);
2472
2473         /* smooth charge */
2474         if (di->remain_cap > di->fcc) {
2475                 di->sm_remain_cap -= (di->remain_cap - di->fcc);
2476                 DBG("<%s>. cap: remain=%d, sm_remain=%d\n",
2477                     __func__, di->remain_cap, di->sm_remain_cap);
2478                 rk818_bat_init_coulomb_cap(di, di->fcc);
2479         }
2480
2481         if (di->chrg_status != CHARGE_FINISH)
2482                 di->finish_base = get_boot_sec();
2483
2484         /*
2485          * we need update fcc in continuous charging state, if discharge state
2486          * keep at least 2 hour, we decide not to update fcc, so clear the
2487          * fcc update flag: age_allow_update.
2488          */
2489         if (base2min(di->plug_out_base) > 120)
2490                 di->age_allow_update = false;
2491
2492         /* do adc calib: status must from cccv mode to finish mode */
2493         if (di->chrg_status == CC_OR_CV) {
2494                 di->adc_allow_update = true;
2495                 di->adc_calib_cnt = 0;
2496         }
2497 }
2498
2499 /* get ntc resistance */
2500 static int rk818_bat_get_ntc_res(struct rk818_battery *di)
2501 {
2502         int val = 0;
2503
2504         val |= rk818_bat_read(di, RK818_TS1_ADC_REGL) << 0;
2505         val |= rk818_bat_read(di, RK818_TS1_ADC_REGH) << 8;
2506
2507         val = val * NTC_CALC_FACTOR; /*reference voltage 2.2V,current 80ua*/
2508         DBG("<%s>. ntc_res=%d\n", __func__, val);
2509
2510         return val;
2511 }
2512
2513 static void rk818_bat_update_temperature(struct rk818_battery *di)
2514 {
2515         u32 ntc_size, *ntc_table;
2516         int i, res;
2517
2518         ntc_table = di->pdata->ntc_table;
2519         ntc_size = di->pdata->ntc_size;
2520         di->temperature = VIRTUAL_TEMPERATURE;
2521
2522         if (ntc_size) {
2523                 res = rk818_bat_get_ntc_res(di);
2524                 if (res < ntc_table[ntc_size - 1]) {
2525                         BAT_INFO("bat ntc upper max degree: R=%d\n", res);
2526                 } else if (res > ntc_table[0]) {
2527                         BAT_INFO("bat ntc lower min degree: R=%d\n", res);
2528                 } else {
2529                         for (i = 0; i < ntc_size; i++) {
2530                                 if (res >= ntc_table[i])
2531                                         break;
2532                         }
2533                         di->temperature = (i + di->pdata->ntc_degree_from) * 10;
2534                 }
2535         }
2536 }
2537
2538 static void rk818_bat_init_dsoc_algorithm(struct rk818_battery *di)
2539 {
2540         u8 buf;
2541         int16_t rest = 0;
2542         unsigned long soc_sec;
2543         const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH",
2544                 "MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", };
2545
2546         /* get rest */
2547         rest |= rk818_bat_read(di, RK818_CALC_REST_REGH) << 8;
2548         rest |= rk818_bat_read(di, RK818_CALC_REST_REGL) << 0;
2549
2550         /* get mode */
2551         buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
2552         di->algo_rest_mode = (buf & ALGO_REST_MODE_MSK) >> ALGO_REST_MODE_SHIFT;
2553
2554         if (rk818_bat_get_chrg_status(di) == CHARGE_FINISH) {
2555                 if (di->algo_rest_mode == MODE_FINISH) {
2556                         soc_sec = di->fcc * 3600 / 100 / FINISH_CHRG_CUR1;
2557                         if ((rest / DIV(soc_sec)) > 0) {
2558                                 if (di->dsoc < 100) {
2559                                         di->dsoc++;
2560                                         di->algo_rest_val = rest % soc_sec;
2561                                         BAT_INFO("algorithm rest(%d) dsoc "
2562                                                  "inc: %d\n",
2563                                                  rest, di->dsoc);
2564                                 } else {
2565                                         di->algo_rest_val = 0;
2566                                 }
2567                         } else {
2568                                 di->algo_rest_val = rest;
2569                         }
2570                 } else {
2571                         di->algo_rest_val = rest;
2572                 }
2573         } else {
2574                 /* charge speed up */
2575                 if ((rest / 1000) > 0 && rk818_bat_chrg_online(di)) {
2576                         if (di->dsoc < di->rsoc) {
2577                                 di->dsoc++;
2578                                 di->algo_rest_val = rest % 1000;
2579                                 BAT_INFO("algorithm rest(%d) dsoc inc: %d\n",
2580                                          rest, di->dsoc);
2581                         } else {
2582                                 di->algo_rest_val = 0;
2583                         }
2584                 /* discharge speed up */
2585                 } else if (((rest / 1000) < 0) && !rk818_bat_chrg_online(di)) {
2586                         if (di->dsoc > di->rsoc) {
2587                                 di->dsoc--;
2588                                 di->algo_rest_val = rest % 1000;
2589                                 BAT_INFO("algorithm rest(%d) dsoc sub: %d\n",
2590                                          rest, di->dsoc);
2591                         } else {
2592                                 di->algo_rest_val = 0;
2593                         }
2594                 } else {
2595                         di->algo_rest_val = rest;
2596                 }
2597         }
2598
2599         if (di->dsoc >= 100)
2600                 di->dsoc = 100;
2601         else if (di->dsoc <= 0)
2602                 di->dsoc = 0;
2603
2604         /* init current mode */
2605         di->voltage_avg = rk818_bat_get_avg_voltage(di);
2606         di->current_avg = rk818_bat_get_avg_current(di);
2607         if (rk818_bat_get_chrg_status(di) == CHARGE_FINISH) {
2608                 rk818_bat_finish_algo_prepare(di);
2609                 di->work_mode = MODE_FINISH;
2610         } else {
2611                 rk818_bat_smooth_algo_prepare(di);
2612                 di->work_mode = MODE_SMOOTH;
2613         }
2614
2615         DBG("<%s>. init: org_rest=%d, rest=%d, mode=%s; "
2616             "doc(x1000): zero=%d, chrg=%d, dischrg=%d, finish=%lu\n",
2617             __func__, rest, di->algo_rest_val, mode_name[di->algo_rest_mode],
2618             di->zero_dsoc, di->sm_chrg_dsoc, di->sm_dischrg_dsoc,
2619             di->finish_base);
2620 }
2621
2622 static void rk818_bat_save_algo_rest(struct rk818_battery *di)
2623 {
2624         u8 buf, mode;
2625         int16_t algo_rest = 0;
2626         int tmp_soc;
2627         int zero_rest = 0, sm_chrg_rest = 0;
2628         int sm_dischrg_rest = 0, finish_rest = 0;
2629         const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH",
2630                 "MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", };
2631
2632         /* zero dischrg */
2633         tmp_soc = (di->zero_dsoc) / 1000;
2634         if (tmp_soc == di->dsoc)
2635                 zero_rest = di->zero_dsoc - ((di->dsoc + 1) * 1000 -
2636                                 MIN_ACCURACY);
2637
2638         /* sm chrg */
2639         tmp_soc = di->sm_chrg_dsoc / 1000;
2640         if (tmp_soc == di->dsoc)
2641                 sm_chrg_rest = di->sm_chrg_dsoc - di->dsoc * 1000;
2642
2643         /* sm dischrg */
2644         tmp_soc = (di->sm_dischrg_dsoc) / 1000;
2645         if (tmp_soc == di->dsoc)
2646                 sm_dischrg_rest = di->sm_dischrg_dsoc - ((di->dsoc + 1) * 1000 -
2647                                 MIN_ACCURACY);
2648
2649         /* last time is also finish chrg, then add last rest */
2650         if (di->algo_rest_mode == MODE_FINISH && di->algo_rest_val)
2651                 finish_rest = base2sec(di->finish_base) + di->algo_rest_val;
2652         else
2653                 finish_rest = base2sec(di->finish_base);
2654
2655         /* total calc */
2656         if ((rk818_bat_chrg_online(di) && (di->dsoc > di->rsoc)) ||
2657             (!rk818_bat_chrg_online(di) && (di->dsoc < di->rsoc)) ||
2658             (di->dsoc == di->rsoc)) {
2659                 di->algo_rest_val = 0;
2660                 algo_rest = 0;
2661                 DBG("<%s>. step1..\n", __func__);
2662         } else if (di->work_mode == MODE_FINISH) {
2663                 algo_rest = finish_rest;
2664                 DBG("<%s>. step2..\n", __func__);
2665         } else if (di->algo_rest_mode == MODE_FINISH) {
2666                 algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest;
2667                 DBG("<%s>. step3..\n", __func__);
2668         } else {
2669                 if (rk818_bat_chrg_online(di) && (di->dsoc < di->rsoc))
2670                         algo_rest = sm_chrg_rest + di->algo_rest_val;
2671                 else if (!rk818_bat_chrg_online(di) && (di->dsoc > di->rsoc))
2672                         algo_rest = zero_rest + sm_dischrg_rest +
2673                                     di->algo_rest_val;
2674                 else
2675                         algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest +
2676                                     di->algo_rest_val;
2677                 DBG("<%s>. step4..\n", __func__);
2678         }
2679
2680         /* check mode */
2681         if ((di->work_mode == MODE_FINISH) || (di->work_mode == MODE_ZERO)) {
2682                 mode = di->work_mode;
2683         } else {/* MODE_SMOOTH */
2684                 if (di->sm_linek > 0)
2685                         mode = MODE_SMOOTH_CHRG;
2686                 else
2687                         mode = MODE_SMOOTH_DISCHRG;
2688         }
2689
2690         /* save mode */
2691         buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
2692         buf &= ~ALGO_REST_MODE_MSK;
2693         buf |= (mode << ALGO_REST_MODE_SHIFT);
2694         rk818_bat_write(di, RK818_MISC_MARK_REG, buf);
2695
2696         /* save rest */
2697         buf = (algo_rest >> 8) & 0xff;
2698         rk818_bat_write(di, RK818_CALC_REST_REGH, buf);
2699         buf = (algo_rest >> 0) & 0xff;
2700         rk818_bat_write(di, RK818_CALC_REST_REGL, buf);
2701
2702         DBG("<%s>. rest: algo=%d, mode=%s, last_rest=%d; zero=%d, "
2703             "chrg=%d, dischrg=%d, finish=%lu\n",
2704             __func__, algo_rest, mode_name[mode], di->algo_rest_val, zero_rest,
2705             sm_chrg_rest, sm_dischrg_rest, base2sec(di->finish_base));
2706 }
2707
2708 static void rk818_bat_save_data(struct rk818_battery *di)
2709 {
2710         rk818_bat_save_dsoc(di, di->dsoc);
2711         rk818_bat_save_cap(di, di->remain_cap);
2712         rk818_bat_save_algo_rest(di);
2713 }
2714
2715 static void rk818_battery_work(struct work_struct *work)
2716 {
2717         struct rk818_battery *di =
2718                 container_of(work, struct rk818_battery, bat_delay_work.work);
2719
2720         rk818_bat_update_info(di);
2721         rk818_bat_wait_finish_sig(di);
2722         rk818_bat_rsoc_daemon(di);
2723         rk818_bat_update_temperature(di);
2724         rk818_bat_display_smooth(di);
2725         rk818_bat_power_supply_changed(di);
2726         rk818_bat_save_data(di);
2727         rk818_bat_debug_info(di);
2728
2729         queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
2730                            msecs_to_jiffies(di->monitor_ms));
2731 }
2732
2733 static irqreturn_t rk818_vb_low_irq(int irq, void *bat)
2734 {
2735         struct rk818_battery *di = (struct rk818_battery *)bat;
2736
2737         di->dsoc = 0;
2738         rk_send_wakeup_key();
2739         BAT_INFO("lower power yet, power off system! v=%d, c=%d, dsoc=%d\n",
2740                  di->voltage_avg, di->current_avg, di->dsoc);
2741
2742         return IRQ_HANDLED;
2743 }
2744
2745 static void rk818_bat_init_sysfs(struct rk818_battery *di)
2746 {
2747         int i, ret;
2748
2749         for (i = 0; i < ARRAY_SIZE(rk818_bat_attr); i++) {
2750                 ret = sysfs_create_file(&di->dev->kobj,
2751                                         &rk818_bat_attr[i].attr);
2752                 if (ret)
2753                         dev_err(di->dev, "create bat node(%s) error\n",
2754                                 rk818_bat_attr[i].attr.name);
2755         }
2756 }
2757
2758 static int rk818_bat_init_irqs(struct rk818_battery *di)
2759 {
2760         struct rk808 *rk818 = di->rk818;
2761         struct platform_device *pdev = di->pdev;
2762         int ret, vb_lo_irq;
2763
2764         vb_lo_irq = regmap_irq_get_virq(rk818->irq_data, RK818_IRQ_VB_LO);
2765         if (vb_lo_irq < 0) {
2766                 dev_err(di->dev, "vb_lo_irq request failed!\n");
2767                 return vb_lo_irq;
2768         }
2769
2770         ret = devm_request_threaded_irq(di->dev, vb_lo_irq, NULL,
2771                                         rk818_vb_low_irq, IRQF_TRIGGER_HIGH,
2772                                         "rk818_vb_low", di);
2773         if (ret) {
2774                 dev_err(&pdev->dev, "vb_lo_irq request failed!\n");
2775                 return ret;
2776         }
2777         enable_irq_wake(vb_lo_irq);
2778
2779         return 0;
2780 }
2781
2782 static void rk818_bat_init_info(struct rk818_battery *di)
2783 {
2784         di->design_cap = di->pdata->design_capacity;
2785         di->qmax = di->pdata->design_qmax;
2786         di->bat_res = di->pdata->bat_res;
2787         di->monitor_ms = di->pdata->monitor_sec * TIMER_MS_COUNTS;
2788         di->boot_base = POWER_ON_SEC_BASE;
2789         di->res_div = (di->pdata->sample_res == SAMPLE_RES_20MR) ?
2790                        SAMPLE_RES_DIV1 : SAMPLE_RES_DIV2;
2791 }
2792
2793 static int rk818_bat_rtc_sleep_sec(struct rk818_battery *di)
2794 {
2795         int err;
2796         int interval_sec = 0;
2797         struct rtc_time tm;
2798         struct timespec tv = { .tv_nsec = NSEC_PER_SEC >> 1, };
2799         struct rtc_device *rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
2800
2801         err = rtc_read_time(rtc, &tm);
2802         if (err) {
2803                 dev_err(rtc->dev.parent, "hctosys: read hardware clk failed\n");
2804                 return 0;
2805         }
2806
2807         err = rtc_valid_tm(&tm);
2808         if (err) {
2809                 dev_err(rtc->dev.parent, "hctosys: invalid date time\n");
2810                 return 0;
2811         }
2812
2813         rtc_tm_to_time(&tm, &tv.tv_sec);
2814         interval_sec = tv.tv_sec - di->rtc_base.tv_sec;
2815
2816         return (interval_sec > 0) ? interval_sec : 0;
2817 }
2818
2819 static void rk818_bat_init_ts1_detect(struct rk818_battery *di)
2820 {
2821         u8 buf;
2822
2823         if (!di->pdata->ntc_size)
2824                 return;
2825
2826         /* ADC_TS1_EN */
2827         buf = rk818_bat_read(di, RK818_ADC_CTRL_REG);
2828         buf |= ADC_TS1_EN;
2829         rk818_bat_write(di, RK818_ADC_CTRL_REG, buf);
2830 }
2831
2832 static void rk818_bat_set_shtd_vol(struct rk818_battery *di)
2833 {
2834         u8 val;
2835
2836         /* set vbat lowest 3.0v shutdown */
2837         val = rk818_bat_read(di, RK818_VB_MON_REG);
2838         val &= ~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK);
2839         val |= (RK818_VBAT_LOW_3V0 | EN_VABT_LOW_SHUT_DOWN);
2840         rk818_bat_write(di, RK818_VB_MON_REG, val);
2841
2842         /* disable low irq */
2843         rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1,
2844                            VB_LOW_INT_EN, VB_LOW_INT_EN);
2845 }
2846
2847 static void rk818_bat_init_fg(struct rk818_battery *di)
2848 {
2849         rk818_bat_enable_gauge(di);
2850         rk818_bat_init_voltage_kb(di);
2851         rk818_bat_init_coffset(di);
2852         rk818_bat_set_relax_sample(di);
2853         rk818_bat_set_ioffset_sample(di);
2854         rk818_bat_set_ocv_sample(di);
2855         rk818_bat_init_ts1_detect(di);
2856         rk818_bat_init_rsoc(di);
2857         rk818_bat_init_coulomb_cap(di, di->nac);
2858         rk818_bat_init_age_algorithm(di);
2859         rk818_bat_init_chrg_config(di);
2860         rk818_bat_set_shtd_vol(di);
2861         rk818_bat_init_zero_table(di);
2862         rk818_bat_init_caltimer(di);
2863         rk818_bat_init_dsoc_algorithm(di);
2864
2865         di->voltage_avg = rk818_bat_get_avg_voltage(di);
2866         di->voltage_ocv = rk818_bat_get_ocv_voltage(di);
2867         di->voltage_relax = rk818_bat_get_relax_voltage(di);
2868         di->current_avg = rk818_bat_get_avg_current(di);
2869         di->remain_cap = rk818_bat_get_coulomb_cap(di);
2870         di->dbg_pwr_dsoc = di->dsoc;
2871         di->dbg_pwr_rsoc = di->rsoc;
2872         di->dbg_pwr_vol = di->voltage_avg;
2873
2874         rk818_bat_dump_regs(di, 0x99, 0xee);
2875         DBG("nac=%d cap=%d ov=%d v=%d rv=%d dl=%d rl=%d c=%d\n",
2876             di->nac, di->remain_cap, di->voltage_ocv, di->voltage_avg,
2877             di->voltage_relax, di->dsoc, di->rsoc, di->current_avg);
2878 }
2879
2880 #ifdef CONFIG_OF
2881 static int rk818_bat_parse_dt(struct rk818_battery *di)
2882 {
2883         u32 out_value;
2884         int length, ret;
2885         size_t size;
2886         struct device_node *np = di->dev->of_node;
2887         struct battery_platform_data *pdata;
2888         struct device *dev = di->dev;
2889
2890         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2891         if (!pdata)
2892                 return -ENOMEM;
2893
2894         di->pdata = pdata;
2895         /* init default param */
2896         pdata->bat_res = DEFAULT_BAT_RES;
2897         pdata->monitor_sec = DEFAULT_MONITOR_SEC;
2898         pdata->pwroff_vol = DEFAULT_PWROFF_VOL_THRESD;
2899         pdata->sleep_exit_current = DEFAULT_SLP_EXIT_CUR;
2900         pdata->sleep_enter_current = DEFAULT_SLP_ENTER_CUR;
2901         pdata->bat_mode = MODE_BATTARY;
2902         pdata->max_soc_offset = DEFAULT_MAX_SOC_OFFSET;
2903         pdata->sample_res = DEFAULT_SAMPLE_RES;
2904         pdata->energy_mode = DEFAULT_ENERGY_MODE;
2905         pdata->fb_temp = DEFAULT_FB_TEMP;
2906         pdata->zero_reserve_dsoc = DEFAULT_ZERO_RESERVE_DSOC;
2907
2908         /* parse necessary param */
2909         if (!of_find_property(np, "ocv_table", &length)) {
2910                 dev_err(dev, "ocv_table not found!\n");
2911                 return -EINVAL;
2912         }
2913
2914         pdata->ocv_size = length / sizeof(u32);
2915         if (pdata->ocv_size <= 0) {
2916                 dev_err(dev, "invalid ocv table\n");
2917                 return -EINVAL;
2918         }
2919
2920         size = sizeof(*pdata->ocv_table) * pdata->ocv_size;
2921         pdata->ocv_table = devm_kzalloc(di->dev, size, GFP_KERNEL);
2922         if (!pdata->ocv_table)
2923                 return -ENOMEM;
2924
2925         ret = of_property_read_u32_array(np, "ocv_table",
2926                                          pdata->ocv_table,
2927                                          pdata->ocv_size);
2928         if (ret < 0)
2929                 return ret;
2930
2931         ret = of_property_read_u32(np, "design_capacity", &out_value);
2932         if (ret < 0) {
2933                 dev_err(dev, "design_capacity not found!\n");
2934                 return ret;
2935         }
2936         pdata->design_capacity = out_value;
2937
2938         ret = of_property_read_u32(np, "design_qmax", &out_value);
2939         if (ret < 0) {
2940                 dev_err(dev, "design_qmax not found!\n");
2941                 return ret;
2942         }
2943         pdata->design_qmax = out_value;
2944         ret = of_property_read_u32(np, "max_chrg_voltage", &out_value);
2945         if (ret < 0) {
2946                 dev_err(dev, "max_chrg_voltage missing!\n");
2947                 return ret;
2948         }
2949         pdata->max_chrg_voltage = out_value;
2950         if (out_value >= 4300)
2951                 pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD2;
2952         else
2953                 pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD1;
2954
2955         ret = of_property_read_u32(np, "fb_temperature", &pdata->fb_temp);
2956         if (ret < 0)
2957                 dev_err(dev, "fb_temperature missing!\n");
2958
2959         ret = of_property_read_u32(np, "sample_res", &pdata->sample_res);
2960         if (ret < 0)
2961                 dev_err(dev, "sample_res missing!\n");
2962
2963         ret = of_property_read_u32(np, "energy_mode", &pdata->energy_mode);
2964         if (ret < 0)
2965                 dev_err(dev, "energy_mode missing!\n");
2966
2967         ret = of_property_read_u32(np, "max_soc_offset",
2968                                    &pdata->max_soc_offset);
2969         if (ret < 0)
2970                 dev_err(dev, "max_soc_offset missing!\n");
2971
2972         ret = of_property_read_u32(np, "monitor_sec", &pdata->monitor_sec);
2973         if (ret < 0)
2974                 dev_err(dev, "monitor_sec missing!\n");
2975
2976         ret = of_property_read_u32(np, "zero_algorithm_vol",
2977                                    &pdata->zero_algorithm_vol);
2978         if (ret < 0)
2979                 dev_err(dev, "zero_algorithm_vol missing!\n");
2980
2981         ret = of_property_read_u32(np, "zero_reserve_dsoc",
2982                                   &pdata->zero_reserve_dsoc);
2983
2984         ret = of_property_read_u32(np, "virtual_power", &pdata->bat_mode);
2985         if (ret < 0)
2986                 dev_err(dev, "virtual_power missing!\n");
2987
2988         ret = of_property_read_u32(np, "bat_res", &pdata->bat_res);
2989         if (ret < 0)
2990                 dev_err(dev, "bat_res missing!\n");
2991
2992         ret = of_property_read_u32(np, "sleep_enter_current",
2993                                    &pdata->sleep_enter_current);
2994         if (ret < 0)
2995                 dev_err(dev, "sleep_enter_current missing!\n");
2996
2997         ret = of_property_read_u32(np, "sleep_exit_current",
2998                                    &pdata->sleep_exit_current);
2999         if (ret < 0)
3000                 dev_err(dev, "sleep_exit_current missing!\n");
3001
3002         ret = of_property_read_u32(np, "power_off_thresd", &pdata->pwroff_vol);
3003         if (ret < 0)
3004                 dev_err(dev, "power_off_thresd missing!\n");
3005
3006         if (!of_find_property(np, "ntc_table", &length)) {
3007                 pdata->ntc_size = 0;
3008         } else {
3009                 /* get ntc degree base value */
3010                 ret = of_property_read_u32_index(np, "ntc_degree_from", 1,
3011                                                  &pdata->ntc_degree_from);
3012                 if (ret) {
3013                         dev_err(dev, "invalid ntc_degree_from\n");
3014                         return -EINVAL;
3015                 }
3016
3017                 of_property_read_u32_index(np, "ntc_degree_from", 0,
3018                                            &out_value);
3019                 if (out_value)
3020                         pdata->ntc_degree_from = -pdata->ntc_degree_from;
3021
3022                 pdata->ntc_size = length / sizeof(u32);
3023         }
3024
3025         if (pdata->ntc_size) {
3026                 size = sizeof(*pdata->ntc_table) * pdata->ntc_size;
3027                 pdata->ntc_table = devm_kzalloc(di->dev, size, GFP_KERNEL);
3028                 if (!pdata->ntc_table)
3029                         return -ENOMEM;
3030
3031                 ret = of_property_read_u32_array(np, "ntc_table",
3032                                                  pdata->ntc_table,
3033                                                  pdata->ntc_size);
3034                 if (ret < 0)
3035                         return ret;
3036         }
3037
3038         DBG("the battery dts info dump:\n"
3039             "bat_res:%d\n"
3040             "design_capacity:%d\n"
3041             "design_qmax :%d\n"
3042             "sleep_enter_current:%d\n"
3043             "sleep_exit_current:%d\n"
3044             "zero_algorithm_vol:%d\n"
3045             "zero_reserve_dsoc:%d\n"
3046             "monitor_sec:%d\n"
3047             "max_soc_offset:%d\n"
3048             "virtual_power:%d\n"
3049             "pwroff_vol:%d\n"
3050             "sample_res:%d\n"
3051             "ntc_size=%d\n"
3052             "ntc_degree_from:%d\n"
3053             "ntc_degree_to:%d\n",
3054             pdata->bat_res, pdata->design_capacity, pdata->design_qmax,
3055             pdata->sleep_enter_current, pdata->sleep_exit_current,
3056             pdata->zero_algorithm_vol, pdata->zero_reserve_dsoc,
3057             pdata->monitor_sec,
3058             pdata->max_soc_offset, pdata->bat_mode, pdata->pwroff_vol,
3059             pdata->sample_res, pdata->ntc_size, pdata->ntc_degree_from,
3060             pdata->ntc_degree_from + pdata->ntc_size - 1
3061             );
3062
3063         return 0;
3064 }
3065 #else
3066 static int rk818_bat_parse_dt(struct rk818_battery *di)
3067 {
3068         return -ENODEV;
3069 }
3070 #endif
3071
3072 static const struct of_device_id rk818_battery_of_match[] = {
3073         {.compatible = "rk818-battery",},
3074         { },
3075 };
3076
3077 static int rk818_battery_probe(struct platform_device *pdev)
3078 {
3079         const struct of_device_id *of_id =
3080                         of_match_device(rk818_battery_of_match, &pdev->dev);
3081         struct rk818_battery *di;
3082         struct rk808 *rk818 = dev_get_drvdata(pdev->dev.parent);
3083         int ret;
3084
3085         if (!of_id) {
3086                 dev_err(&pdev->dev, "Failed to find matching dt id\n");
3087                 return -ENODEV;
3088         }
3089
3090         di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
3091         if (!di)
3092                 return -ENOMEM;
3093
3094         di->rk818 = rk818;
3095         di->pdev = pdev;
3096         di->dev = &pdev->dev;
3097         di->regmap = rk818->regmap;
3098         platform_set_drvdata(pdev, di);
3099
3100         ret = rk818_bat_parse_dt(di);
3101         if (ret < 0) {
3102                 dev_err(di->dev, "rk818 battery parse dt failed!\n");
3103                 return ret;
3104         }
3105
3106         if (!is_rk818_bat_exist(di)) {
3107                 di->pdata->bat_mode = MODE_VIRTUAL;
3108                 dev_err(di->dev, "no battery, virtual power mode\n");
3109         }
3110
3111         ret = rk818_bat_init_irqs(di);
3112         if (ret != 0) {
3113                 dev_err(di->dev, "rk818 bat init irqs failed!\n");
3114                 return ret;
3115         }
3116
3117         ret = rk818_bat_init_power_supply(di);
3118         if (ret) {
3119                 dev_err(di->dev, "rk818 power supply register failed!\n");
3120                 return ret;
3121         }
3122
3123         rk818_bat_init_info(di);
3124         rk818_bat_init_fg(di);
3125         rk818_bat_init_sysfs(di);
3126         rk818_bat_register_fb_notify(di);
3127         wake_lock_init(&di->wake_lock, WAKE_LOCK_SUSPEND, "rk818_bat_lock");
3128         di->bat_monitor_wq = alloc_ordered_workqueue("%s",
3129                         WQ_MEM_RECLAIM | WQ_FREEZABLE, "rk818-bat-monitor-wq");
3130         INIT_DELAYED_WORK(&di->bat_delay_work, rk818_battery_work);
3131         queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
3132                            msecs_to_jiffies(TIMER_MS_COUNTS * 5));
3133
3134         BAT_INFO("driver version %s\n", DRIVER_VERSION);
3135
3136         return ret;
3137 }
3138
3139 static int rk818_battery_suspend(struct platform_device *dev,
3140                                  pm_message_t state)
3141 {
3142         struct rk818_battery *di = platform_get_drvdata(dev);
3143         u8 val, st;
3144
3145         cancel_delayed_work_sync(&di->bat_delay_work);
3146
3147         di->s2r = false;
3148         di->sleep_chrg_online = rk818_bat_chrg_online(di);
3149         di->sleep_chrg_status = rk818_bat_get_chrg_status(di);
3150         di->current_avg = rk818_bat_get_avg_current(di);
3151         di->remain_cap = rk818_bat_get_coulomb_cap(di);
3152         di->rsoc = rk818_bat_get_rsoc(di);
3153         do_gettimeofday(&di->rtc_base);
3154         rk818_bat_save_data(di);
3155         st = (rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK) >> 4;
3156
3157         /* if not CHARGE_FINISH, reinit finish_base.
3158          * avoid sleep loop between suspend and resume
3159          */
3160         if (di->sleep_chrg_status != CHARGE_FINISH)
3161                 di->finish_base = get_boot_sec();
3162
3163         /* avoid: enter suspend from MODE_ZERO: load from heavy to light */
3164         if ((di->work_mode == MODE_ZERO) &&
3165             (di->sleep_chrg_online) && (di->current_avg >= 0)) {
3166                 DBG("suspend: MODE_ZERO exit...\n");
3167                 /* it need't do prepare for mode finish and smooth, it will
3168                  * be done in display_smooth
3169                  */
3170                 if (di->sleep_chrg_status == CHARGE_FINISH) {
3171                         di->work_mode = MODE_FINISH;
3172                         di->finish_base = get_boot_sec();
3173                 } else {
3174                         di->work_mode = MODE_SMOOTH;
3175                         rk818_bat_smooth_algo_prepare(di);
3176                 }
3177         }
3178
3179         /* set vbat low than 3.4v to generate a wakeup irq */
3180         val = rk818_bat_read(di, RK818_VB_MON_REG);
3181         val &= (~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK));
3182         val |= (RK818_VBAT_LOW_3V4 | EN_VBAT_LOW_IRQ);
3183         rk818_bat_write(di, RK818_VB_MON_REG, val);
3184         rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1, VB_LOW_INT_EN, 0);
3185
3186         BAT_INFO("suspend: dl=%d rl=%d c=%d v=%d cap=%d at=%ld ch=%d st=%s\n",
3187                  di->dsoc, di->rsoc, di->current_avg,
3188                  rk818_bat_get_avg_voltage(di), rk818_bat_get_coulomb_cap(di),
3189                  di->sleep_dischrg_sec, di->sleep_chrg_online, bat_status[st]);
3190
3191         return 0;
3192 }
3193
3194 static int rk818_battery_resume(struct platform_device *dev)
3195 {
3196         struct rk818_battery *di = platform_get_drvdata(dev);
3197         int interval_sec, time_step, pwroff_vol;
3198         u8 val, st;
3199
3200         di->s2r = true;
3201         di->current_avg = rk818_bat_get_avg_current(di);
3202         di->voltage_relax = rk818_bat_get_relax_voltage(di);
3203         di->voltage_avg = rk818_bat_get_avg_voltage(di);
3204         di->remain_cap = rk818_bat_get_coulomb_cap(di);
3205         di->rsoc = rk818_bat_get_rsoc(di);
3206         interval_sec = rk818_bat_rtc_sleep_sec(di);
3207         di->sleep_sum_sec += interval_sec;
3208         pwroff_vol = di->pdata->pwroff_vol;
3209         st = (rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK) >> 4;
3210
3211         if (!di->sleep_chrg_online) {
3212                 /* only add up discharge sleep seconds */
3213                 di->sleep_dischrg_sec += interval_sec;
3214                 if (di->voltage_avg <= pwroff_vol + 50)
3215                         time_step = DISCHRG_TIME_STEP1;
3216                 else
3217                         time_step = DISCHRG_TIME_STEP2;
3218         }
3219
3220         BAT_INFO("resume: dl=%d rl=%d c=%d v=%d rv=%d "
3221                  "cap=%d dt=%d at=%ld ch=%d st=%s\n",
3222                  di->dsoc, di->rsoc, di->current_avg, di->voltage_avg,
3223                  di->voltage_relax, rk818_bat_get_coulomb_cap(di), interval_sec,
3224                  di->sleep_dischrg_sec, di->sleep_chrg_online, bat_status[st]);
3225
3226         /* sleep: enough time and discharge */
3227         if ((di->sleep_dischrg_sec > time_step) && (!di->sleep_chrg_online)) {
3228                 if (rk818_bat_sleep_dischrg(di))
3229                         di->sleep_dischrg_sec = 0;
3230         }
3231
3232         rk818_bat_save_data(di);
3233
3234         /* set vbat lowest 3.0v shutdown */
3235         val = rk818_bat_read(di, RK818_VB_MON_REG);
3236         val &= ~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK);
3237         val |= (RK818_VBAT_LOW_3V0 | EN_VABT_LOW_SHUT_DOWN);
3238         rk818_bat_write(di, RK818_VB_MON_REG, val);
3239         rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1,
3240                            VB_LOW_INT_EN, VB_LOW_INT_EN);
3241
3242         /* charge/lowpower lock: for battery work to update dsoc and rsoc */
3243         if ((di->sleep_chrg_online) ||
3244             (!di->sleep_chrg_online && di->voltage_avg < di->pdata->pwroff_vol))
3245                 wake_lock_timeout(&di->wake_lock, msecs_to_jiffies(2000));
3246
3247         queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
3248                            msecs_to_jiffies(1000));
3249
3250         return 0;
3251 }
3252
3253 static void rk818_battery_shutdown(struct platform_device *dev)
3254 {
3255         u8 cnt = 0;
3256         struct rk818_battery *di = platform_get_drvdata(dev);
3257
3258         cancel_delayed_work_sync(&di->bat_delay_work);
3259         cancel_delayed_work_sync(&di->calib_delay_work);
3260         rk818_bat_unregister_fb_notify(di);
3261         del_timer(&di->caltimer);
3262         if (base2sec(di->boot_base) < REBOOT_PERIOD_SEC)
3263                 cnt = rk818_bat_check_reboot(di);
3264         else
3265                 rk818_bat_save_reboot_cnt(di, 0);
3266
3267         BAT_INFO("shutdown: dl=%d rl=%d c=%d v=%d cap=%d f=%d ch=%d n=%d "
3268                  "mode=%d rest=%d\n",
3269                  di->dsoc, di->rsoc, di->current_avg, di->voltage_avg,
3270                  di->remain_cap, di->fcc, rk818_bat_chrg_online(di), cnt,
3271                  di->algo_rest_mode, di->algo_rest_val);
3272 }
3273
3274 static struct platform_driver rk818_battery_driver = {
3275         .probe = rk818_battery_probe,
3276         .suspend = rk818_battery_suspend,
3277         .resume = rk818_battery_resume,
3278         .shutdown = rk818_battery_shutdown,
3279         .driver = {
3280                 .name = "rk818-battery",
3281                 .of_match_table = rk818_battery_of_match,
3282         },
3283 };
3284
3285 static int __init battery_init(void)
3286 {
3287         return platform_driver_register(&rk818_battery_driver);
3288 }
3289 fs_initcall_sync(battery_init);
3290
3291 static void __exit battery_exit(void)
3292 {
3293         platform_driver_unregister(&rk818_battery_driver);
3294 }
3295 module_exit(battery_exit);
3296
3297 MODULE_LICENSE("GPL");
3298 MODULE_ALIAS("platform:rk818-battery");
3299 MODULE_AUTHOR("chenjh<chenjh@rock-chips.com>");