power: rk818-battery: add POWER_SUPPLY_PROP_STATUS report property
[firefly-linux-kernel-4.4.55.git] / drivers / power / rk818_battery.c
1 /*
2  * rk818 battery driver
3  *
4  * Copyright (C) 2016 Rockchip Electronics Co., Ltd
5  * chenjh <chenjh@rock-chips.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  */
17
18 #include <linux/delay.h>
19 #include <linux/fb.h>
20 #include <linux/gpio.h>
21 #include <linux/iio/consumer.h>
22 #include <linux/iio/iio.h>
23 #include <linux/irq.h>
24 #include <linux/irqdomain.h>
25 #include <linux/jiffies.h>
26 #include <linux/mfd/rk808.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/of_gpio.h>
30 #include <linux/platform_device.h>
31 #include <linux/power_supply.h>
32 #include <linux/power/rk_usbbc.h>
33 #include <linux/regmap.h>
34 #include <linux/rtc.h>
35 #include <linux/timer.h>
36 #include <linux/wakelock.h>
37 #include <linux/workqueue.h>
38 #include "rk818_battery.h"
39
40 static int dbg_enable = 0;
41 module_param_named(dbg_level, dbg_enable, int, 0644);
42
43 #define DBG(args...) \
44         do { \
45                 if (dbg_enable) { \
46                         pr_info(args); \
47                 } \
48         } while (0)
49
50 #define BAT_INFO(fmt, args...) pr_info("rk818-bat: "fmt, ##args)
51
52 /* default param */
53 #define DEFAULT_BAT_RES                 135
54 #define DEFAULT_SLP_ENTER_CUR           300
55 #define DEFAULT_SLP_EXIT_CUR            300
56 #define DEFAULT_SLP_FILTER_CUR          100
57 #define DEFAULT_PWROFF_VOL_THRESD       3400
58 #define DEFAULT_MONITOR_SEC             5
59 #define DEFAULT_ALGR_VOL_THRESD1        3850
60 #define DEFAULT_ALGR_VOL_THRESD2        3950
61 #define DEFAULT_MAX_SOC_OFFSET          60
62 #define DEFAULT_FB_TEMP                 TEMP_105C
63 #define DEFAULT_POFFSET                 42
64 #define DEFAULT_COFFSET                 0x832
65 #define DEFAULT_SAMPLE_RES              20
66 #define DEFAULT_ENERGY_MODE             0
67 #define INVALID_COFFSET_MIN             0x780
68 #define INVALID_COFFSET_MAX             0x980
69 #define INVALID_VOL_THRESD              2500
70
71 /* sample resistor and division */
72 #define SAMPLE_RES_10MR                 10
73 #define SAMPLE_RES_20MR                 20
74 #define SAMPLE_RES_DIV1                 1
75 #define SAMPLE_RES_DIV2                 2
76
77 /* virtual params */
78 #define VIRTUAL_CURRENT                 1000
79 #define VIRTUAL_VOLTAGE                 3888
80 #define VIRTUAL_SOC                     66
81 #define VIRTUAL_PRESET                  1
82 #define VIRTUAL_TEMPERATURE             188
83 #define VIRTUAL_STATUS                  POWER_SUPPLY_STATUS_CHARGING
84
85 /* charge */
86 #define FINISH_CHRG_CUR                 1000
87 #define TERM_CHRG_DSOC                  88
88 #define TERM_CHRG_CURR                  600
89 #define TERM_CHRG_K                     650
90 #define SIMULATE_CHRG_INTV              8
91 #define SIMULATE_CHRG_CURR              400
92 #define SIMULATE_CHRG_K                 1500
93 #define FULL_CHRG_K                     400
94
95 /* zero algorithm */
96 #define PWROFF_THRESD                   3400
97 #define MIN_ZERO_DSOC_ACCURACY          10      /*0.01%*/
98 #define MIN_ZERO_OVERCNT                100
99 #define MIN_ACCURACY                    1
100 #define DEF_PWRPATH_RES                 50
101 #define WAIT_DSOC_DROP_SEC              15
102 #define WAIT_SHTD_DROP_SEC              30
103 #define ZERO_GAP_XSOC1                  10
104 #define ZERO_GAP_XSOC2                  5
105 #define ZERO_GAP_XSOC3                  3
106 #define ZERO_LOAD_LVL1                  1400
107 #define ZERO_LOAD_LVL2                  600
108
109 #define ADC_CALIB_THRESHOLD             4
110 #define ADC_CALIB_LMT_MIN               3
111 #define NTC_CALC_FACTOR                 7
112
113 /* time */
114 #define POWER_ON_SEC_BASE               1
115 #define MINUTE(x)                       ((x) * 60)
116
117 /* sleep */
118 #define SLP_CURR_MAX                    40
119 #define SLP_CURR_MIN                    6
120 #define DISCHRG_TIME_STEP1              MINUTE(10)
121 #define DISCHRG_TIME_STEP2              MINUTE(60)
122 #define SLP_DSOC_VOL_THRESD             3600
123 #define REBOOT_PERIOD_SEC               180
124 #define REBOOT_MAX_CNT                  80
125
126 /* fcc */
127 #define MIN_FCC                         500
128
129 struct rk818_battery {
130         struct platform_device          *pdev;
131         struct rk808                    *rk818;
132         struct regmap                   *regmap;
133         struct device                   *dev;
134         struct power_supply             *bat;
135         struct battery_platform_data    *pdata;
136         struct workqueue_struct         *bat_monitor_wq;
137         struct delayed_work             bat_delay_work;
138         struct delayed_work             calib_delay_work;
139         struct wake_lock                wake_lock;
140         struct notifier_block           fb_nb;
141         struct timer_list               caltimer;
142         struct timeval                  rtc_base;
143         int                             bat_res;
144         int                             chrg_status;
145         bool                            is_initialized;
146         bool                            is_first_power_on;
147         u8                              res_div;
148         int                             current_avg;
149         int                             voltage_avg;
150         int                             voltage_ocv;
151         int                             voltage_relax;
152         int                             voltage_k;
153         int                             voltage_b;
154         int                             remain_cap;
155         int                             design_cap;
156         int                             nac;
157         int                             fcc;
158         int                             qmax;
159         int                             dsoc;
160         int                             rsoc;
161         int                             poffset;
162         int                             age_ocv_soc;
163         bool                            age_allow_update;
164         int                             age_level;
165         int                             age_ocv_cap;
166         int                             age_voltage;
167         int                             age_adjust_cap;
168         unsigned long                   age_keep_sec;
169         int                             zero_timeout_cnt;
170         int                             zero_remain_cap;
171         int                             zero_dsoc;
172         int                             zero_linek;
173         u64                             zero_drop_sec;
174         u64                             shtd_drop_sec;
175         int                             sm_remain_cap;
176         int                             sm_linek;
177         int                             sm_chrg_dsoc;
178         int                             sm_dischrg_dsoc;
179         int                             algo_rest_val;
180         int                             algo_rest_mode;
181         int                             sleep_sum_cap;
182         int                             sleep_remain_cap;
183         unsigned long                   sleep_dischrg_sec;
184         unsigned long                   sleep_sum_sec;
185         bool                            sleep_chrg_online;
186         u8                              sleep_chrg_status;
187         bool                            adc_allow_update;
188         int                             fb_blank;
189         bool                            s2r; /*suspend to resume*/
190         u32                             work_mode;
191         int                             temperature;
192         u32                             monitor_ms;
193         u32                             pwroff_min;
194         unsigned long                   finish_base;
195         unsigned long                   boot_base;
196         unsigned long                   flat_match_sec;
197         unsigned long                   plug_in_base;
198         unsigned long                   plug_out_base;
199         u8                              halt_cnt;
200         bool                            is_halt;
201         bool                            is_max_soc_offset;
202         bool                            is_sw_reset;
203         bool                            is_ocv_calib;
204         int                             last_dsoc;
205         int                             dbg_cap_low0;
206         int                             dbg_pwr_dsoc;
207         int                             dbg_pwr_rsoc;
208         int                             dbg_pwr_vol;
209         int                             dbg_chrg_min[10];
210         int                             dbg_meet_soc;
211         int                             dbg_calc_dsoc;
212         int                             dbg_calc_rsoc;
213 };
214
215 #define DIV(x)  ((x) ? (x) : 1)
216
217 static u64 get_boot_sec(void)
218 {
219         struct timespec ts;
220
221         get_monotonic_boottime(&ts);
222
223         return ts.tv_sec;
224 }
225
226 static unsigned long base2sec(unsigned long x)
227 {
228         if (x)
229                 return (get_boot_sec() > x) ? (get_boot_sec() - x) : 0;
230         else
231                 return 0;
232 }
233
234 static unsigned long base2min(unsigned long x)
235 {
236         return base2sec(x) / 60;
237 }
238
239 static u32 interpolate(int value, u32 *table, int size)
240 {
241         u8 i;
242         u16 d;
243
244         for (i = 0; i < size; i++) {
245                 if (value < table[i])
246                         break;
247         }
248
249         if ((i > 0) && (i < size)) {
250                 d = (value - table[i - 1]) * (MAX_INTERPOLATE / (size - 1));
251                 d /= table[i] - table[i - 1];
252                 d = d + (i - 1) * (MAX_INTERPOLATE / (size - 1));
253         } else {
254                 d = i * ((MAX_INTERPOLATE + size / 2) / size);
255         }
256
257         if (d > 1000)
258                 d = 1000;
259
260         return d;
261 }
262
263 /* (a*b)/c */
264 static int32_t ab_div_c(u32 a, u32 b, u32 c)
265 {
266         bool sign;
267         u32 ans = MAX_INT;
268         int tmp;
269
270         sign = ((((a ^ b) ^ c) & 0x80000000) != 0);
271         if (c != 0) {
272                 if (sign)
273                         c = -c;
274                 tmp = (a * b + (c >> 1)) / c;
275                 if (tmp < MAX_INT)
276                         ans = tmp;
277         }
278
279         if (sign)
280                 ans = -ans;
281
282         return ans;
283 }
284
285 static int rk818_bat_read(struct rk818_battery *di, u8 reg)
286 {
287         int ret, val;
288
289         ret = regmap_read(di->regmap, reg, &val);
290         if (ret)
291                 dev_err(di->dev, "read reg:0x%x failed\n", reg);
292
293         return val;
294 }
295
296 static int rk818_bat_write(struct rk818_battery *di, u8 reg, u8 buf)
297 {
298         int ret;
299
300         ret = regmap_write(di->regmap, reg, buf);
301         if (ret)
302                 dev_err(di->dev, "i2c write reg: 0x%2x error\n", reg);
303
304         return ret;
305 }
306
307 static int rk818_bat_set_bits(struct rk818_battery *di, u8 reg, u8 mask, u8 buf)
308 {
309         int ret;
310
311         ret = regmap_update_bits(di->regmap, reg, mask, buf);
312         if (ret)
313                 dev_err(di->dev, "write reg:0x%x failed\n", reg);
314
315         return ret;
316 }
317
318 static int rk818_bat_clear_bits(struct rk818_battery *di, u8 reg, u8 mask)
319 {
320         int ret;
321
322         ret = regmap_update_bits(di->regmap, reg, mask, 0);
323         if (ret)
324                 dev_err(di->dev, "clr reg:0x%02x failed\n", reg);
325
326         return ret;
327 }
328
329 static void rk818_bat_dump_regs(struct rk818_battery *di, u8 start, u8 end)
330 {
331         int i;
332
333         if (!dbg_enable)
334                 return;
335
336         DBG("dump regs from: 0x%x-->0x%x\n", start, end);
337         for (i = start; i < end; i++)
338                 DBG("0x%x: 0x%0x\n", i, rk818_bat_read(di, i));
339 }
340
341 static bool rk818_bat_chrg_online(struct rk818_battery *di)
342 {
343         u8 buf;
344
345         buf = rk818_bat_read(di, RK818_VB_MON_REG);
346
347         return (buf & PLUG_IN_STS) ? true : false;
348 }
349
350 static int rk818_bat_get_coulomb_cap(struct rk818_battery *di)
351 {
352         int val = 0;
353
354         val |= rk818_bat_read(di, RK818_GASCNT3_REG) << 24;
355         val |= rk818_bat_read(di, RK818_GASCNT2_REG) << 16;
356         val |= rk818_bat_read(di, RK818_GASCNT1_REG) << 8;
357         val |= rk818_bat_read(di, RK818_GASCNT0_REG) << 0;
358
359         return (val / 2390) * di->res_div;
360 }
361
362 static int rk818_bat_get_rsoc(struct rk818_battery *di)
363 {
364         int remain_cap;
365
366         remain_cap = rk818_bat_get_coulomb_cap(di);
367         return (remain_cap + di->fcc / 200) * 100 / DIV(di->fcc);
368 }
369
370 static ssize_t bat_info_store(struct device *dev, struct device_attribute *attr,
371                               const char *buf, size_t count)
372 {
373         char cmd;
374         struct rk818_battery *di = dev_get_drvdata(dev);
375
376         sscanf(buf, "%c", &cmd);
377
378         if (cmd == 'n')
379                 rk818_bat_set_bits(di, RK818_MISC_MARK_REG,
380                                    FG_RESET_NOW, FG_RESET_NOW);
381         else if (cmd == 'm')
382                 rk818_bat_set_bits(di, RK818_MISC_MARK_REG,
383                                    FG_RESET_LATE, FG_RESET_LATE);
384         else if (cmd == 'c')
385                 rk818_bat_clear_bits(di, RK818_MISC_MARK_REG,
386                                      FG_RESET_LATE | FG_RESET_NOW);
387         else if (cmd == 'r')
388                 BAT_INFO("0x%2x\n", rk818_bat_read(di, RK818_MISC_MARK_REG));
389         else
390                 BAT_INFO("command error\n");
391
392         return count;
393 }
394
395 static struct device_attribute rk818_bat_attr[] = {
396         __ATTR(bat, 0664, NULL, bat_info_store),
397 };
398
399 static void rk818_bat_enable_gauge(struct rk818_battery *di)
400 {
401         u8 buf;
402
403         buf = rk818_bat_read(di, RK818_TS_CTRL_REG);
404         buf |= GG_EN;
405         rk818_bat_write(di, RK818_TS_CTRL_REG, buf);
406 }
407
408 static void rk818_bat_save_age_level(struct rk818_battery *di, u8 level)
409 {
410         rk818_bat_write(di, RK818_UPDAT_LEVE_REG, level);
411 }
412
413 static u8 rk818_bat_get_age_level(struct  rk818_battery *di)
414 {
415         return rk818_bat_read(di, RK818_UPDAT_LEVE_REG);
416 }
417
418 static int rk818_bat_get_vcalib0(struct rk818_battery *di)
419 {
420         int val = 0;
421
422         val |= rk818_bat_read(di, RK818_VCALIB0_REGL) << 0;
423         val |= rk818_bat_read(di, RK818_VCALIB0_REGH) << 8;
424
425         DBG("<%s>. voffset0: 0x%x\n", __func__, val);
426         return val;
427 }
428
429 static int rk818_bat_get_vcalib1(struct rk818_battery *di)
430 {
431         int val = 0;
432
433         val |= rk818_bat_read(di, RK818_VCALIB1_REGL) << 0;
434         val |= rk818_bat_read(di, RK818_VCALIB1_REGH) << 8;
435
436         DBG("<%s>. voffset1: 0x%x\n", __func__, val);
437         return val;
438 }
439
440 static int rk818_bat_get_ioffset(struct rk818_battery *di)
441 {
442         int val = 0;
443
444         val |= rk818_bat_read(di, RK818_IOFFSET_REGL) << 0;
445         val |= rk818_bat_read(di, RK818_IOFFSET_REGH) << 8;
446
447         DBG("<%s>. ioffset: 0x%x\n", __func__, val);
448         return val;
449 }
450
451 static int rk818_bat_get_coffset(struct rk818_battery *di)
452 {
453         int val = 0;
454
455         val |= rk818_bat_read(di, RK818_CAL_OFFSET_REGL) << 0;
456         val |= rk818_bat_read(di, RK818_CAL_OFFSET_REGH) << 8;
457
458         DBG("<%s>. coffset: 0x%x\n", __func__, val);
459         return val;
460 }
461
462 static void rk818_bat_set_coffset(struct rk818_battery *di, int val)
463 {
464         u8 buf;
465
466         if ((val < INVALID_COFFSET_MIN) || (val > INVALID_COFFSET_MAX)) {
467                 BAT_INFO("set invalid coffset=0x%x\n", val);
468                 return;
469         }
470
471         buf = (val >> 8) & 0xff;
472         rk818_bat_write(di, RK818_CAL_OFFSET_REGH, buf);
473         buf = (val >> 0) & 0xff;
474         rk818_bat_write(di, RK818_CAL_OFFSET_REGL, buf);
475         DBG("<%s>. coffset: 0x%x\n", __func__, val);
476 }
477
478 static void rk818_bat_init_voltage_kb(struct rk818_battery *di)
479 {
480         int vcalib0, vcalib1;
481
482         vcalib0 = rk818_bat_get_vcalib0(di);
483         vcalib1 = rk818_bat_get_vcalib1(di);
484         di->voltage_k = (4200 - 3000) * 1000 / DIV(vcalib1 - vcalib0);
485         di->voltage_b = 4200 - (di->voltage_k * vcalib1) / 1000;
486
487         DBG("voltage_k=%d(*1000),voltage_b=%d\n", di->voltage_k, di->voltage_b);
488 }
489
490 static int rk818_bat_get_ocv_voltage(struct rk818_battery *di)
491 {
492         int vol, val = 0;
493
494         val |= rk818_bat_read(di, RK818_BAT_OCV_REGL) << 0;
495         val |= rk818_bat_read(di, RK818_BAT_OCV_REGH) << 8;
496
497         vol = di->voltage_k * val / 1000 + di->voltage_b;
498
499         return vol;
500 }
501
502 static int rk818_bat_get_avg_voltage(struct rk818_battery *di)
503 {
504         int vol, val = 0;
505
506         val |= rk818_bat_read(di, RK818_BAT_VOL_REGL) << 0;
507         val |= rk818_bat_read(di, RK818_BAT_VOL_REGH) << 8;
508
509         vol = di->voltage_k * val / 1000 + di->voltage_b;
510
511         return vol;
512 }
513
514 static bool is_rk818_bat_relax_mode(struct rk818_battery *di)
515 {
516         u8 status;
517
518         status = rk818_bat_read(di, RK818_GGSTS_REG);
519         if (!(status & RELAX_VOL1_UPD) || !(status & RELAX_VOL2_UPD))
520                 return false;
521         else
522                 return true;
523 }
524
525 static u16 rk818_bat_get_relax_vol1(struct rk818_battery *di)
526 {
527         u16 vol, val = 0;
528
529         val |= rk818_bat_read(di, RK818_RELAX_VOL1_REGL) << 0;
530         val |= rk818_bat_read(di, RK818_RELAX_VOL1_REGH) << 8;
531         vol = di->voltage_k * val / 1000 + di->voltage_b;
532
533         return vol;
534 }
535
536 static u16 rk818_bat_get_relax_vol2(struct rk818_battery *di)
537 {
538         u16 vol, val = 0;
539
540         val |= rk818_bat_read(di, RK818_RELAX_VOL2_REGL) << 0;
541         val |= rk818_bat_read(di, RK818_RELAX_VOL2_REGH) << 8;
542         vol = di->voltage_k * val / 1000 + di->voltage_b;
543
544         return vol;
545 }
546
547 static u16 rk818_bat_get_relax_voltage(struct rk818_battery *di)
548 {
549         u16 relax_vol1, relax_vol2;
550
551         if (!is_rk818_bat_relax_mode(di))
552                 return 0;
553
554         relax_vol1 = rk818_bat_get_relax_vol1(di);
555         relax_vol2 = rk818_bat_get_relax_vol2(di);
556
557         return relax_vol1 > relax_vol2 ? relax_vol1 : relax_vol2;
558 }
559
560 static int rk818_bat_get_avg_current(struct rk818_battery *di)
561 {
562         int cur, val = 0;
563
564         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGL) << 0;
565         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGH) << 8;
566
567         if (val & 0x800)
568                 val -= 4096;
569         cur = val * di->res_div * 1506 / 1000;
570
571         return cur;
572 }
573
574 static int rk818_bat_vol_to_ocvsoc(struct rk818_battery *di, int voltage)
575 {
576         u32 *ocv_table, temp;
577         int ocv_size, ocv_soc;
578
579         ocv_table = di->pdata->ocv_table;
580         ocv_size = di->pdata->ocv_size;
581         temp = interpolate(voltage, ocv_table, ocv_size);
582         ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE);
583
584         return ocv_soc;
585 }
586
587 static int rk818_bat_vol_to_ocvcap(struct rk818_battery *di, int voltage)
588 {
589         u32 *ocv_table, temp;
590         int ocv_size, cap;
591
592         ocv_table = di->pdata->ocv_table;
593         ocv_size = di->pdata->ocv_size;
594         temp = interpolate(voltage, ocv_table, ocv_size);
595         cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE);
596
597         return cap;
598 }
599
600 static int rk818_bat_vol_to_zerosoc(struct rk818_battery *di, int voltage)
601 {
602         u32 *ocv_table, temp;
603         int ocv_size, ocv_soc;
604
605         ocv_table = di->pdata->zero_table;
606         ocv_size = di->pdata->ocv_size;
607         temp = interpolate(voltage, ocv_table, ocv_size);
608         ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE);
609
610         return ocv_soc;
611 }
612
613 static int rk818_bat_vol_to_zerocap(struct rk818_battery *di, int voltage)
614 {
615         u32 *ocv_table, temp;
616         int ocv_size, cap;
617
618         ocv_table = di->pdata->zero_table;
619         ocv_size = di->pdata->ocv_size;
620         temp = interpolate(voltage, ocv_table, ocv_size);
621         cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE);
622
623         return cap;
624 }
625
626 static int rk818_bat_get_iadc(struct rk818_battery *di)
627 {
628         int val = 0;
629
630         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGL) << 0;
631         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGH) << 8;
632         if (val > 2047)
633                 val -= 4096;
634
635         return val;
636 }
637
638 static bool rk818_bat_adc_calib(struct rk818_battery *di)
639 {
640         int i, ioffset, coffset, adc, save_coffset;
641
642         if ((di->chrg_status != CHARGE_FINISH) ||
643             (base2min(di->boot_base) < ADC_CALIB_LMT_MIN) ||
644             (abs(di->current_avg) < ADC_CALIB_THRESHOLD))
645                 return false;
646
647         save_coffset = rk818_bat_get_coffset(di);
648         for (i = 0; i < 5; i++) {
649                 adc = rk818_bat_get_iadc(di);
650                 if (!rk818_bat_chrg_online(di)) {
651                         rk818_bat_set_coffset(di, save_coffset);
652                         BAT_INFO("quit, charger plugout when calib adc\n");
653                         return false;
654                 }
655                 coffset = rk818_bat_get_coffset(di);
656                 rk818_bat_set_coffset(di, coffset + adc);
657                 msleep(2000);
658                 adc = rk818_bat_get_iadc(di);
659                 if (abs(adc) < ADC_CALIB_THRESHOLD) {
660                         coffset = rk818_bat_get_coffset(di);
661                         ioffset = rk818_bat_get_ioffset(di);
662                         di->poffset = coffset - ioffset;
663                         rk818_bat_write(di, RK818_POFFSET_REG, di->poffset);
664                         BAT_INFO("new offset:c=0x%x, i=0x%x, p=0x%x\n",
665                                  coffset, ioffset, di->poffset);
666                         return true;
667                 } else {
668                         BAT_INFO("coffset calib again %d..\n", i);
669                         rk818_bat_set_coffset(di, coffset);
670                         msleep(2000);
671                 }
672         }
673
674         return false;
675 }
676
677 static void rk818_bat_set_ioffset_sample(struct rk818_battery *di)
678 {
679         u8 ggcon;
680
681         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
682         ggcon &= ~ADC_CAL_MIN_MSK;
683         ggcon |= ADC_CAL_8MIN;
684         rk818_bat_write(di, RK818_GGCON_REG, ggcon);
685 }
686
687 static void rk818_bat_set_ocv_sample(struct rk818_battery *di)
688 {
689         u8 ggcon;
690
691         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
692         ggcon &= ~OCV_SAMP_MIN_MSK;
693         ggcon |= OCV_SAMP_8MIN;
694         rk818_bat_write(di, RK818_GGCON_REG, ggcon);
695 }
696
697 static void rk818_bat_restart_relax(struct rk818_battery *di)
698 {
699         u8 ggsts;
700
701         ggsts = rk818_bat_read(di, RK818_GGSTS_REG);
702         ggsts &= ~RELAX_VOL12_UPD_MSK;
703         rk818_bat_write(di, RK818_GGSTS_REG, ggsts);
704 }
705
706 static void rk818_bat_set_relax_sample(struct rk818_battery *di)
707 {
708         u8 buf;
709         int enter_thres, exit_thres;
710         struct battery_platform_data *pdata = di->pdata;
711
712         enter_thres = pdata->sleep_enter_current * 1000 / 1506 / di->res_div;
713         exit_thres = pdata->sleep_exit_current * 1000 / 1506 / di->res_div;
714
715         /* set relax enter and exit threshold */
716         buf = enter_thres & 0xff;
717         rk818_bat_write(di, RK818_RELAX_ENTRY_THRES_REGL, buf);
718         buf = (enter_thres >> 8) & 0xff;
719         rk818_bat_write(di, RK818_RELAX_ENTRY_THRES_REGH, buf);
720
721         buf = exit_thres & 0xff;
722         rk818_bat_write(di, RK818_RELAX_EXIT_THRES_REGL, buf);
723         buf = (exit_thres >> 8) & 0xff;
724         rk818_bat_write(di, RK818_RELAX_EXIT_THRES_REGH, buf);
725
726         /* reset relax update state */
727         rk818_bat_restart_relax(di);
728         DBG("<%s>. sleep_enter_current = %d, sleep_exit_current = %d\n",
729             __func__, pdata->sleep_enter_current, pdata->sleep_exit_current);
730 }
731
732 static bool is_rk818_bat_exist(struct rk818_battery *di)
733 {
734         return (rk818_bat_read(di, RK818_SUP_STS_REG) & BAT_EXS) ? true : false;
735 }
736
737 static bool is_rk818_bat_first_pwron(struct rk818_battery *di)
738 {
739         u8 buf;
740
741         buf = rk818_bat_read(di, RK818_GGSTS_REG);
742         if (buf & BAT_CON) {
743                 buf &= ~BAT_CON;
744                 rk818_bat_write(di, RK818_GGSTS_REG, buf);
745                 return true;
746         }
747
748         return false;
749 }
750
751 static u8 rk818_bat_get_pwroff_min(struct rk818_battery *di)
752 {
753         u8 cur, last;
754
755         cur = rk818_bat_read(di, RK818_NON_ACT_TIMER_CNT_REG);
756         last = rk818_bat_read(di, RK818_NON_ACT_TIMER_CNT_SAVE_REG);
757         rk818_bat_write(di, RK818_NON_ACT_TIMER_CNT_SAVE_REG, cur);
758
759         return (cur != last) ? cur : 0;
760 }
761
762 static u8 is_rk818_bat_initialized(struct rk818_battery *di)
763 {
764         u8 val = rk818_bat_read(di, RK818_MISC_MARK_REG);
765
766         if (val & FG_INIT) {
767                 val &= ~FG_INIT;
768                 rk818_bat_write(di, RK818_MISC_MARK_REG, val);
769                 return true;
770         } else {
771                 return false;
772         }
773 }
774
775 static bool is_rk818_bat_ocv_valid(struct rk818_battery *di)
776 {
777         return (!di->is_initialized && di->pwroff_min >= 30) ? true : false;
778 }
779
780 static void rk818_bat_init_age_algorithm(struct rk818_battery *di)
781 {
782         int age_level, ocv_soc, ocv_cap, ocv_vol;
783
784         if (di->is_first_power_on || is_rk818_bat_ocv_valid(di)) {
785                 DBG("<%s> enter.\n", __func__);
786                 ocv_vol = rk818_bat_get_ocv_voltage(di);
787                 ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
788                 ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
789                 if (ocv_soc < 20) {
790                         di->age_voltage = ocv_vol;
791                         di->age_ocv_cap = ocv_cap;
792                         di->age_ocv_soc = ocv_soc;
793                         di->age_adjust_cap = 0;
794
795                         if (ocv_soc <= 0)
796                                 di->age_level = 100;
797                         else if (ocv_soc < 5)
798                                 di->age_level = 95;
799                         else if (ocv_soc < 10)
800                                 di->age_level = 90;
801                         else
802                                 di->age_level = 80;
803
804                         age_level = rk818_bat_get_age_level(di);
805                         if (age_level > di->age_level) {
806                                 di->age_allow_update = false;
807                                 age_level -= 5;
808                                 if (age_level <= 80)
809                                         age_level = 80;
810                                 rk818_bat_save_age_level(di, age_level);
811                         } else {
812                                 di->age_allow_update = true;
813                                 di->age_keep_sec = get_boot_sec();
814                         }
815
816                         BAT_INFO("init_age_algorithm: "
817                                  "age_vol:%d, age_ocv_cap:%d, "
818                                  "age_ocv_soc:%d, old_age_level:%d, "
819                                  "age_allow_update:%d, new_age_level:%d\n",
820                                  di->age_voltage, di->age_ocv_cap,
821                                  ocv_soc, age_level, di->age_allow_update,
822                                  di->age_level);
823                 }
824         }
825 }
826
827 static enum power_supply_property rk818_bat_props[] = {
828         POWER_SUPPLY_PROP_CURRENT_NOW,
829         POWER_SUPPLY_PROP_VOLTAGE_NOW,
830         POWER_SUPPLY_PROP_PRESENT,
831         POWER_SUPPLY_PROP_HEALTH,
832         POWER_SUPPLY_PROP_CAPACITY,
833         POWER_SUPPLY_PROP_TEMP,
834         POWER_SUPPLY_PROP_STATUS,
835 };
836
837 static int rk818_battery_get_property(struct power_supply *psy,
838                                       enum power_supply_property psp,
839                                       union power_supply_propval *val)
840 {
841         struct rk818_battery *di = power_supply_get_drvdata(psy);
842
843         switch (psp) {
844         case POWER_SUPPLY_PROP_CURRENT_NOW:
845                 val->intval = di->current_avg * 1000;/*uA*/
846                 if (di->pdata->bat_mode == MODE_VIRTUAL)
847                         val->intval = VIRTUAL_CURRENT * 1000;
848                 break;
849         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
850                 val->intval = di->voltage_avg * 1000;/*uV*/
851                 if (di->pdata->bat_mode == MODE_VIRTUAL)
852                         val->intval = VIRTUAL_VOLTAGE * 1000;
853                 break;
854         case POWER_SUPPLY_PROP_PRESENT:
855                 val->intval = is_rk818_bat_exist(di);
856                 if (di->pdata->bat_mode == MODE_VIRTUAL)
857                         val->intval = VIRTUAL_PRESET;
858                 break;
859         case POWER_SUPPLY_PROP_CAPACITY:
860                 val->intval = di->dsoc;
861                 if (di->pdata->bat_mode == MODE_VIRTUAL)
862                         val->intval = VIRTUAL_SOC;
863                 DBG("<%s>. report dsoc: %d\n", __func__, val->intval);
864                 break;
865         case POWER_SUPPLY_PROP_HEALTH:
866                 val->intval = POWER_SUPPLY_HEALTH_GOOD;
867                 break;
868         case POWER_SUPPLY_PROP_TEMP:
869                 val->intval = di->temperature;
870                 if (di->pdata->bat_mode == MODE_VIRTUAL)
871                         val->intval = VIRTUAL_TEMPERATURE;
872                 break;
873         case POWER_SUPPLY_PROP_STATUS:
874                 if (di->pdata->bat_mode == MODE_VIRTUAL)
875                         val->intval = VIRTUAL_STATUS;
876                 else if (di->dsoc == 100)
877                         val->intval = POWER_SUPPLY_STATUS_FULL;
878                 else if (rk818_bat_chrg_online(di))
879                         val->intval = POWER_SUPPLY_STATUS_CHARGING;
880                 else
881                         val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
882                 break;
883         default:
884                 return -EINVAL;
885         }
886
887         return 0;
888 }
889
890 static const struct power_supply_desc rk818_bat_desc = {
891         .name           = "battery",
892         .type           = POWER_SUPPLY_TYPE_BATTERY,
893         .properties     = rk818_bat_props,
894         .num_properties = ARRAY_SIZE(rk818_bat_props),
895         .get_property   = rk818_battery_get_property,
896 };
897
898 static int rk818_bat_init_power_supply(struct rk818_battery *di)
899 {
900         struct power_supply_config psy_cfg = { .drv_data = di, };
901
902         di->bat = devm_power_supply_register(di->dev, &rk818_bat_desc, &psy_cfg);
903         if (IS_ERR(di->bat)) {
904                 dev_err(di->dev, "register bat power supply fail\n");
905                 return PTR_ERR(di->bat);
906         }
907
908         return 0;
909 }
910
911 static void rk818_bat_save_cap(struct rk818_battery *di, int cap)
912 {
913         u8 buf;
914         static u32 old_cap;
915
916         if (cap >= di->qmax)
917                 cap = di->qmax;
918         if (cap <= 0)
919                 cap = 0;
920         if (old_cap == cap)
921                 return;
922
923         old_cap = cap;
924         buf = (cap >> 24) & 0xff;
925         rk818_bat_write(di, RK818_REMAIN_CAP_REG3, buf);
926         buf = (cap >> 16) & 0xff;
927         rk818_bat_write(di, RK818_REMAIN_CAP_REG2, buf);
928         buf = (cap >> 8) & 0xff;
929         rk818_bat_write(di, RK818_REMAIN_CAP_REG1, buf);
930         buf = (cap >> 0) & 0xff;
931         rk818_bat_write(di, RK818_REMAIN_CAP_REG0, buf);
932 }
933
934 static int rk818_bat_get_prev_cap(struct rk818_battery *di)
935 {
936         int val = 0;
937
938         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG3) << 24;
939         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG2) << 16;
940         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG1) << 8;
941         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG0) << 0;
942
943         return val;
944 }
945
946 static void rk818_bat_save_fcc(struct rk818_battery *di, u32 fcc)
947 {
948         u8 buf;
949
950         buf = (fcc >> 24) & 0xff;
951         rk818_bat_write(di, RK818_NEW_FCC_REG3, buf);
952         buf = (fcc >> 16) & 0xff;
953         rk818_bat_write(di, RK818_NEW_FCC_REG2, buf);
954         buf = (fcc >> 8) & 0xff;
955         rk818_bat_write(di, RK818_NEW_FCC_REG1, buf);
956         buf = (fcc >> 0) & 0xff;
957         rk818_bat_write(di, RK818_NEW_FCC_REG0, buf);
958
959         BAT_INFO("save fcc: %d\n", fcc);
960 }
961
962 static int rk818_bat_get_fcc(struct rk818_battery *di)
963 {
964         u32 fcc = 0;
965
966         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG3) << 24;
967         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG2) << 16;
968         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG1) << 8;
969         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG0) << 0;
970
971         if (fcc < MIN_FCC) {
972                 BAT_INFO("invalid fcc(%d), use design cap", fcc);
973                 fcc = di->pdata->design_capacity;
974                 rk818_bat_save_fcc(di, fcc);
975         } else if (fcc > di->pdata->design_qmax) {
976                 BAT_INFO("invalid fcc(%d), use qmax", fcc);
977                 fcc = di->pdata->design_qmax;
978                 rk818_bat_save_fcc(di, fcc);
979         }
980
981         return fcc;
982 }
983
984 static void rk818_bat_init_coulomb_cap(struct rk818_battery *di, u32 capacity)
985 {
986         u8 buf;
987         u32 cap;
988
989         cap = capacity * 2390 / di->res_div;
990         buf = (cap >> 24) & 0xff;
991         rk818_bat_write(di, RK818_GASCNT_CAL_REG3, buf);
992         buf = (cap >> 16) & 0xff;
993         rk818_bat_write(di, RK818_GASCNT_CAL_REG2, buf);
994         buf = (cap >> 8) & 0xff;
995         rk818_bat_write(di, RK818_GASCNT_CAL_REG1, buf);
996         buf = ((cap >> 0) & 0xff);
997         rk818_bat_write(di, RK818_GASCNT_CAL_REG0, buf);
998
999         DBG("<%s>. new coulomb cap = %d\n", __func__, capacity);
1000         di->remain_cap = capacity;
1001         di->rsoc = rk818_bat_get_rsoc(di);
1002 }
1003
1004 static void rk818_bat_save_dsoc(struct rk818_battery *di, u8 save_soc)
1005 {
1006         static int last_soc = -1;
1007
1008         if (last_soc != save_soc) {
1009                 rk818_bat_write(di, RK818_SOC_REG, save_soc);
1010                 last_soc = save_soc;
1011         }
1012 }
1013
1014 static int rk818_bat_get_prev_dsoc(struct rk818_battery *di)
1015 {
1016         return rk818_bat_read(di, RK818_SOC_REG);
1017 }
1018
1019 static void rk818_bat_save_reboot_cnt(struct rk818_battery *di, u8 save_cnt)
1020 {
1021         rk818_bat_write(di, RK818_REBOOT_CNT_REG, save_cnt);
1022 }
1023
1024 static int rk818_bat_fb_notifier(struct notifier_block *nb,
1025                                  unsigned long event, void *data)
1026 {
1027         struct rk818_battery *di;
1028         struct fb_event *evdata = data;
1029
1030         di = container_of(nb, struct rk818_battery, fb_nb);
1031         di->fb_blank = *(int *)evdata->data;
1032
1033         return 0;
1034 }
1035
1036 static int rk818_bat_register_fb_notify(struct rk818_battery *di)
1037 {
1038         memset(&di->fb_nb, 0, sizeof(di->fb_nb));
1039         di->fb_nb.notifier_call = rk818_bat_fb_notifier;
1040
1041         return fb_register_client(&di->fb_nb);
1042 }
1043
1044 static int rk818_bat_unregister_fb_notify(struct rk818_battery *di)
1045 {
1046         return fb_unregister_client(&di->fb_nb);
1047 }
1048
1049 static u8 rk818_bat_get_halt_cnt(struct rk818_battery *di)
1050 {
1051         return rk818_bat_read(di, RK818_HALT_CNT_REG);
1052 }
1053
1054 static void rk818_bat_inc_halt_cnt(struct rk818_battery *di)
1055 {
1056         u8 cnt;
1057
1058         cnt = rk818_bat_read(di, RK818_HALT_CNT_REG);
1059         rk818_bat_write(di, RK818_HALT_CNT_REG, ++cnt);
1060 }
1061
1062 static bool is_rk818_bat_last_halt(struct rk818_battery *di)
1063 {
1064         int pre_cap = rk818_bat_get_prev_cap(di);
1065         int now_cap = rk818_bat_get_coulomb_cap(di);
1066
1067         /* over 10%: system halt last time */
1068         if (abs(now_cap - pre_cap) > (di->fcc / 10)) {
1069                 rk818_bat_inc_halt_cnt(di);
1070                 return true;
1071         } else {
1072                 return false;
1073         }
1074 }
1075
1076 static void rk818_bat_first_pwron(struct rk818_battery *di)
1077 {
1078         int ocv_vol;
1079
1080         rk818_bat_save_fcc(di, di->design_cap);
1081         ocv_vol = rk818_bat_get_ocv_voltage(di);
1082         di->fcc = rk818_bat_get_fcc(di);
1083         di->nac = rk818_bat_vol_to_ocvcap(di, ocv_vol);
1084         di->rsoc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
1085         di->dsoc = di->rsoc;
1086
1087         BAT_INFO("first on: dsoc=%d, rsoc=%d cap=%d, fcc=%d, ov=%d\n",
1088                  di->dsoc, di->rsoc, di->nac, di->fcc, ocv_vol);
1089 }
1090
1091 static void rk818_bat_not_first_pwron(struct rk818_battery *di)
1092 {
1093         int now_cap, pre_soc, pre_cap, ocv_cap, ocv_soc, ocv_vol;
1094
1095         di->fcc = rk818_bat_get_fcc(di);
1096         pre_soc = rk818_bat_get_prev_dsoc(di);
1097         pre_cap = rk818_bat_get_prev_cap(di);
1098         now_cap = rk818_bat_get_coulomb_cap(di);
1099         di->is_halt = is_rk818_bat_last_halt(di);
1100         di->halt_cnt = rk818_bat_get_halt_cnt(di);
1101         di->is_initialized = is_rk818_bat_initialized(di);
1102         di->is_ocv_calib = is_rk818_bat_ocv_valid(di);
1103
1104         if (di->is_halt) {
1105                 BAT_INFO("system halt last time... cap: pre=%d, now=%d\n",
1106                          pre_cap, now_cap);
1107                 if (now_cap < 0)
1108                         now_cap = 0;
1109                 rk818_bat_init_coulomb_cap(di, now_cap);
1110                 pre_cap = now_cap;
1111                 pre_soc = di->rsoc;
1112                 goto finish;
1113         } else if (di->is_initialized) {
1114                 BAT_INFO("initialized yet..\n");
1115                 goto finish;
1116         } else if (di->is_ocv_calib) {
1117                 ocv_vol = rk818_bat_get_ocv_voltage(di);
1118                 ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
1119                 ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
1120                 pre_cap = ocv_cap;
1121                 if (abs(ocv_soc - pre_soc) >= di->pdata->max_soc_offset) {
1122                         BAT_INFO("trigger max soc offset, dsoc: %d -> %d\n",
1123                                  pre_soc, ocv_soc);
1124                         pre_soc = ocv_soc;
1125                         di->is_max_soc_offset = true;
1126                 }
1127                 BAT_INFO("OCV calib: cap=%d, rsoc=%d\n", ocv_cap, ocv_soc);
1128         }
1129
1130 finish:
1131         di->dsoc = pre_soc;
1132         di->nac = pre_cap;
1133         if (di->nac < 0)
1134                 di->nac = 0;
1135
1136         BAT_INFO("dsoc=%d cap=%d v=%d ov=%d rv=%d min=%d psoc=%d pcap=%d\n",
1137                  di->dsoc, di->nac, rk818_bat_get_avg_voltage(di),
1138                  rk818_bat_get_ocv_voltage(di), rk818_bat_get_relax_voltage(di),
1139                  di->pwroff_min, rk818_bat_get_prev_dsoc(di),
1140                  rk818_bat_get_prev_cap(di));
1141 }
1142
1143 static bool rk818_bat_ocv_sw_reset(struct rk818_battery *di)
1144 {
1145         u8 buf;
1146
1147         buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
1148         if (((buf & FG_RESET_LATE) && di->pwroff_min >= 30) ||
1149             (buf & FG_RESET_NOW)) {
1150                 buf &= ~FG_RESET_LATE;
1151                 buf &= ~FG_RESET_NOW;
1152                 rk818_bat_write(di, RK818_MISC_MARK_REG, buf);
1153                 BAT_INFO("manual reset fuel gauge\n");
1154                 return true;
1155         } else {
1156                 return false;
1157         }
1158 }
1159
1160 static void rk818_bat_init_rsoc(struct rk818_battery *di)
1161 {
1162         di->is_first_power_on = is_rk818_bat_first_pwron(di);
1163         di->is_sw_reset = rk818_bat_ocv_sw_reset(di);
1164         di->pwroff_min = rk818_bat_get_pwroff_min(di);
1165
1166         if (di->is_first_power_on || di->is_sw_reset)
1167                 rk818_bat_first_pwron(di);
1168         else
1169                 rk818_bat_not_first_pwron(di);
1170 }
1171
1172 static u8 rk818_bat_get_chrg_status(struct rk818_battery *di)
1173 {
1174         u8 status;
1175
1176         status = rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK;
1177         switch (status) {
1178         case CHARGE_OFF:
1179                 DBG("CHARGE-OFF ...\n");
1180                 break;
1181         case DEAD_CHARGE:
1182                 BAT_INFO("DEAD CHARGE...\n");
1183                 break;
1184         case TRICKLE_CHARGE:
1185                 BAT_INFO("TRICKLE CHARGE...\n ");
1186                 break;
1187         case CC_OR_CV:
1188                 DBG("CC or CV...\n");
1189                 break;
1190         case CHARGE_FINISH:
1191                 DBG("CHARGE FINISH...\n");
1192                 break;
1193         case USB_OVER_VOL:
1194                 BAT_INFO("USB OVER VOL...\n");
1195                 break;
1196         case BAT_TMP_ERR:
1197                 BAT_INFO("BAT TMP ERROR...\n");
1198                 break;
1199         case TIMER_ERR:
1200                 BAT_INFO("TIMER ERROR...\n");
1201                 break;
1202         case USB_EXIST:
1203                 BAT_INFO("USB EXIST...\n");
1204                 break;
1205         case USB_EFF:
1206                 BAT_INFO("USB EFF...\n");
1207                 break;
1208         default:
1209                 return -EINVAL;
1210         }
1211
1212         return status;
1213 }
1214
1215 static u8 rk818_bat_parse_fb_temperature(struct rk818_battery *di)
1216 {
1217         u8 reg;
1218         int index, fb_temp;
1219
1220         reg = DEFAULT_FB_TEMP;
1221         fb_temp = di->pdata->fb_temp;
1222         for (index = 0; index < ARRAY_SIZE(feedback_temp_array); index++) {
1223                 if (fb_temp < feedback_temp_array[index])
1224                         break;
1225                 reg = (index << FB_TEMP_SHIFT);
1226         }
1227
1228         return reg;
1229 }
1230
1231 static u8 rk818_bat_parse_finish_ma(struct rk818_battery *di, int fcc)
1232 {
1233         u8 ma;
1234
1235         if (di->pdata->sample_res == SAMPLE_RES_10MR)
1236                 ma = FINISH_100MA;
1237         else if (fcc > 5000)
1238                 ma = FINISH_250MA;
1239         else if (fcc >= 4000)
1240                 ma = FINISH_200MA;
1241         else if (fcc >= 3000)
1242                 ma = FINISH_150MA;
1243         else
1244                 ma = FINISH_100MA;
1245
1246         return ma;
1247 }
1248
1249 static void rk818_bat_init_chrg_config(struct rk818_battery *di)
1250 {
1251         u8 usb_ctrl, chrg_ctrl2, chrg_ctrl3;
1252         u8 thermal, ggcon, finish_ma, fb_temp;
1253
1254         finish_ma = rk818_bat_parse_finish_ma(di, di->fcc);
1255         fb_temp = rk818_bat_parse_fb_temperature(di);
1256
1257         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
1258         thermal = rk818_bat_read(di, RK818_THERMAL_REG);
1259         usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG);
1260         chrg_ctrl2 = rk818_bat_read(di, RK818_CHRG_CTRL_REG2);
1261         chrg_ctrl3 = rk818_bat_read(di, RK818_CHRG_CTRL_REG3);
1262
1263         /* set charge finish current */
1264         chrg_ctrl3 |= CHRG_TERM_DIG_SIGNAL;
1265         chrg_ctrl2 &= ~FINISH_CUR_MSK;
1266         chrg_ctrl2 |= finish_ma;
1267
1268         /* disable cccv mode */
1269         chrg_ctrl3 &= ~CHRG_TIMER_CCCV_EN;
1270
1271         /* set feed back temperature */
1272         if (di->pdata->fb_temp)
1273                 usb_ctrl |= CHRG_CT_EN;
1274         else
1275                 usb_ctrl &= ~CHRG_CT_EN;
1276         thermal &= ~FB_TEMP_MSK;
1277         thermal |= fb_temp;
1278
1279         /* adc current mode */
1280         ggcon |= ADC_CUR_MODE;
1281
1282         rk818_bat_write(di, RK818_GGCON_REG, ggcon);
1283         rk818_bat_write(di, RK818_THERMAL_REG, thermal);
1284         rk818_bat_write(di, RK818_USB_CTRL_REG, usb_ctrl);
1285         rk818_bat_write(di, RK818_CHRG_CTRL_REG2, chrg_ctrl2);
1286         rk818_bat_write(di, RK818_CHRG_CTRL_REG3, chrg_ctrl3);
1287 }
1288
1289 static void rk818_bat_init_coffset(struct rk818_battery *di)
1290 {
1291         int coffset, ioffset;
1292
1293         ioffset = rk818_bat_get_ioffset(di);
1294         di->poffset = rk818_bat_read(di, RK818_POFFSET_REG);
1295         if (!di->poffset)
1296                 di->poffset = DEFAULT_POFFSET;
1297
1298         coffset = di->poffset + ioffset;
1299         if (coffset < INVALID_COFFSET_MIN || coffset > INVALID_COFFSET_MAX)
1300                 coffset = DEFAULT_COFFSET;
1301
1302         rk818_bat_set_coffset(di, coffset);
1303
1304         DBG("<%s>. offset: p=0x%x, i=0x%x, c=0x%x\n",
1305             __func__, di->poffset, ioffset, rk818_bat_get_coffset(di));
1306 }
1307
1308 static void rk818_bat_caltimer_isr(unsigned long data)
1309 {
1310         struct rk818_battery *di = (struct rk818_battery *)data;
1311
1312         mod_timer(&di->caltimer, jiffies + MINUTE(8) * HZ);
1313         queue_delayed_work(di->bat_monitor_wq, &di->calib_delay_work,
1314                            msecs_to_jiffies(10));
1315 }
1316
1317 static void rk818_bat_internal_calib(struct work_struct *work)
1318 {
1319         int ioffset, poffset;
1320         struct rk818_battery *di = container_of(work,
1321                         struct rk818_battery, calib_delay_work.work);
1322
1323         /* calib coffset */
1324         poffset = rk818_bat_read(di, RK818_POFFSET_REG);
1325         if (poffset)
1326                 di->poffset = poffset;
1327         else
1328                 di->poffset = DEFAULT_POFFSET;
1329
1330         ioffset = rk818_bat_get_ioffset(di);
1331         rk818_bat_set_coffset(di, ioffset + di->poffset);
1332
1333         /* calib voltage kb */
1334         rk818_bat_init_voltage_kb(di);
1335         BAT_INFO("caltimer: ioffset=0x%x, coffset=0x%x, poffset=%d\n",
1336                  ioffset, rk818_bat_get_coffset(di), di->poffset);
1337 }
1338
1339 static void rk818_bat_init_caltimer(struct rk818_battery *di)
1340 {
1341         setup_timer(&di->caltimer, rk818_bat_caltimer_isr, (unsigned long)di);
1342         di->caltimer.expires = jiffies + MINUTE(8) * HZ;
1343         add_timer(&di->caltimer);
1344         INIT_DELAYED_WORK(&di->calib_delay_work, rk818_bat_internal_calib);
1345 }
1346
1347 static void rk818_bat_init_zero_table(struct rk818_battery *di)
1348 {
1349         int i, diff, min, max;
1350         size_t ocv_size, length;
1351
1352         ocv_size = di->pdata->ocv_size;
1353         length = sizeof(di->pdata->zero_table) * ocv_size;
1354         di->pdata->zero_table =
1355                         devm_kzalloc(di->dev, length, GFP_KERNEL);
1356         if (!di->pdata->zero_table) {
1357                 di->pdata->zero_table = di->pdata->ocv_table;
1358                 dev_err(di->dev, "malloc zero table fail\n");
1359                 return;
1360         }
1361
1362         min = di->pdata->pwroff_vol,
1363         max = di->pdata->ocv_table[ocv_size - 4];
1364         diff = (max - min) / (ocv_size - 1);
1365         for (i = 0; i < ocv_size; i++)
1366                 di->pdata->zero_table[i] = min + (i * diff);
1367
1368         for (i = 0; i < ocv_size; i++)
1369                 DBG("zero[%d] = %d\n", i, di->pdata->zero_table[i]);
1370
1371         for (i = 0; i < ocv_size; i++)
1372                 DBG("ocv[%d] = %d\n", i, di->pdata->ocv_table[i]);
1373 }
1374
1375 static void rk818_bat_calc_sm_linek(struct rk818_battery *di)
1376 {
1377         int linek, current_avg;
1378         u8 diff, delta;
1379
1380         delta = abs(di->dsoc - di->rsoc);
1381         diff = delta * 3;/* speed:3/4 */
1382         current_avg = rk818_bat_get_avg_current(di);
1383         if (current_avg >= 0) {
1384                 if (di->dsoc < di->rsoc)
1385                         linek = 1000 * (delta + diff) / diff;
1386                 else if (di->dsoc > di->rsoc)
1387                         linek = 1000 * diff / (delta + diff);
1388                 else
1389                         linek = 1000;
1390                 di->dbg_meet_soc = (di->dsoc >= di->rsoc) ?
1391                                    (di->dsoc + diff) : (di->rsoc + diff);
1392         } else {
1393                 if (di->dsoc < di->rsoc)
1394                         linek = -1000 * diff / (delta + diff);
1395                 else if (di->dsoc > di->rsoc)
1396                         linek = -1000 * (delta + diff) / diff;
1397                 else
1398                         linek = -1000;
1399                 di->dbg_meet_soc = (di->dsoc >= di->rsoc) ?
1400                                    (di->dsoc - diff) : (di->rsoc - diff);
1401         }
1402
1403         di->sm_linek = linek;
1404         di->sm_remain_cap = di->remain_cap;
1405         di->dbg_calc_dsoc = di->dsoc;
1406         di->dbg_calc_rsoc = di->rsoc;
1407
1408         DBG("<%s>.diff=%d, k=%d, cur=%d\n", __func__, diff, linek, current_avg);
1409 }
1410
1411 static void rk818_bat_calc_zero_linek(struct rk818_battery *di)
1412 {
1413         int dead_voltage, ocv_voltage;
1414         int voltage_avg, current_avg, vsys;
1415         int ocv_cap, dead_cap, xsoc;
1416         int ocv_soc, dead_soc;
1417         int pwroff_vol;
1418         int i, cnt, vol_old, vol_now;
1419         int org_linek = 0, min_gap_xsoc;
1420
1421         if ((abs(di->current_avg) < 500) && (di->dsoc > 10))
1422                 pwroff_vol = di->pdata->pwroff_vol + 50;
1423         else
1424                 pwroff_vol = di->pdata->pwroff_vol;
1425
1426         do {
1427                 vol_old = rk818_bat_get_avg_voltage(di);
1428                 msleep(100);
1429                 vol_now = rk818_bat_get_avg_voltage(di);
1430                 cnt++;
1431         } while ((vol_old == vol_now) && (cnt < 11));
1432
1433         voltage_avg = 0;
1434         for (i = 0; i < 10; i++) {
1435                 voltage_avg += rk818_bat_get_avg_voltage(di);
1436                 msleep(100);
1437         }
1438
1439         /* calc estimate ocv voltage */
1440         voltage_avg /= 10;
1441         current_avg = rk818_bat_get_avg_current(di);
1442         vsys = voltage_avg + (current_avg * DEF_PWRPATH_RES) / 1000;
1443
1444         DBG("ZERO0: shtd_vol: org = %d, now = %d\n",
1445             di->pdata->pwroff_vol, pwroff_vol);
1446
1447         dead_voltage = pwroff_vol - current_avg *
1448                                 (di->bat_res + DEF_PWRPATH_RES) / 1000;
1449         ocv_voltage = voltage_avg - (current_avg * di->bat_res) / 1000;
1450         DBG("ZERO0: dead_voltage(shtd) = %d, ocv_voltage(now) = %d\n",
1451             dead_voltage, ocv_voltage);
1452
1453         /* calc estimate soc and cap */
1454         dead_soc = rk818_bat_vol_to_zerosoc(di, dead_voltage);
1455         dead_cap = rk818_bat_vol_to_zerocap(di, dead_voltage);
1456         DBG("ZERO0: dead_soc = %d, dead_cap = %d\n",
1457             dead_soc, dead_cap);
1458
1459         ocv_soc = rk818_bat_vol_to_zerosoc(di, ocv_voltage);
1460         ocv_cap = rk818_bat_vol_to_zerocap(di, ocv_voltage);
1461         DBG("ZERO0: ocv_soc = %d, ocv_cap = %d\n",
1462             ocv_soc, ocv_cap);
1463
1464         if (abs(current_avg) > ZERO_LOAD_LVL1)
1465                 min_gap_xsoc = ZERO_GAP_XSOC3;
1466         else if (abs(current_avg) > ZERO_LOAD_LVL2)
1467                 min_gap_xsoc = ZERO_GAP_XSOC2;
1468         else
1469                 min_gap_xsoc = ZERO_GAP_XSOC1;
1470
1471         /* xsoc: available rsoc */
1472         xsoc = ocv_soc - dead_soc;
1473         di->zero_remain_cap = di->remain_cap;
1474         di->zero_timeout_cnt = 0;
1475         if ((di->dsoc <= 1) && (xsoc > 0)) {
1476                 di->zero_linek = 400;
1477                 di->zero_drop_sec = 0;
1478         } else if (xsoc >= 0) {
1479                 di->zero_drop_sec = 0;
1480                 di->zero_linek = (di->zero_dsoc + xsoc / 2) / DIV(xsoc);
1481                 org_linek = di->zero_linek;
1482                 /* battery energy mode to use up voltage */
1483                 if ((di->pdata->energy_mode) &&
1484                     (xsoc - di->dsoc >= ZERO_GAP_XSOC3) &&
1485                     (di->dsoc <= 10) && (di->zero_linek < 600)) {
1486                         di->zero_linek = 500;
1487                         DBG("ZERO-new: zero_linek adjust step0...\n");
1488                 /* reserve enough power yet, slow down any way */
1489                 } else if ((xsoc - di->dsoc >= min_gap_xsoc) ||
1490                            ((xsoc - di->dsoc >= ZERO_GAP_XSOC2) &&
1491                             (di->dsoc <= 10))) {
1492                         if (xsoc - di->dsoc >= 2 * min_gap_xsoc)
1493                                 di->zero_linek = 400;
1494                         else if (xsoc - di->dsoc >= 2 + min_gap_xsoc)
1495                                 di->zero_linek = 600;
1496                         else
1497                                 di->zero_linek = 800;
1498                         DBG("ZERO-new: zero_linek adjust step1...\n");
1499                 /* control zero mode beginning enter */
1500                 } else if ((di->zero_linek > 1800) && (di->dsoc > 70)) {
1501                         di->zero_linek = 1800;
1502                         DBG("ZERO-new: zero_linek adjust step2...\n");
1503                 /* dsoc close to xsoc: it must reserve power */
1504                 } else if ((di->zero_linek > 1000) && (di->zero_linek < 1300)) {
1505                         di->zero_linek = 1300;
1506                         DBG("ZERO-new: zero_linek adjust step3...\n");
1507                 /* dsoc[5~15], dsoc < xsoc */
1508                 } else if ((di->dsoc <= 15 && di->dsoc > 5) &&
1509                            (di->zero_linek <= 1300)) {
1510                         /* slow down */
1511                         if (xsoc - di->dsoc >= min_gap_xsoc)
1512                                 di->zero_linek = 800;
1513                         /* reserve power */
1514                         else
1515                                 di->zero_linek = 1300;
1516                         DBG("ZERO-new: zero_linek adjust step4...\n");
1517                 /* dsoc[5, 100], dsoc < xsoc */
1518                 } else if ((di->zero_linek < 1000) && (di->dsoc >= 5)) {
1519                         if ((xsoc - di->dsoc) < min_gap_xsoc) {
1520                                 /* reserve power */
1521                                 di->zero_linek = 1300;
1522                         } else {
1523                                 if (abs(di->current_avg) > 500)/* heavy */
1524                                         di->zero_linek = 900;
1525                                 else
1526                                         di->zero_linek = 1000;
1527                         }
1528                         DBG("ZERO-new: zero_linek adjust step5...\n");
1529                 /* dsoc[0~5], dsoc < xsoc */
1530                 } else if ((di->zero_linek < 1000) && (di->dsoc <= 5)) {
1531                         if ((xsoc - di->dsoc) <= 3)
1532                                 di->zero_linek = 1300;
1533                         else
1534                                 di->zero_linek = 800;
1535                                 DBG("ZERO-new: zero_linek adjust step6...\n");
1536                 }
1537         } else {
1538                 /* xsoc < 0 */
1539                 di->zero_linek = 1000;
1540                 if (!di->zero_drop_sec)
1541                         di->zero_drop_sec = get_boot_sec();
1542                 if (base2sec(di->zero_drop_sec) >= WAIT_DSOC_DROP_SEC) {
1543                         DBG("ZERO0: t=%lu\n", base2sec(di->zero_drop_sec));
1544                         di->zero_drop_sec = 0;
1545                         di->dsoc--;
1546                         di->zero_dsoc = (di->dsoc + 1) * 1000 -
1547                                                 MIN_ACCURACY;
1548                 }
1549         }
1550
1551         if (voltage_avg < pwroff_vol - 70) {
1552                 if (!di->shtd_drop_sec)
1553                         di->shtd_drop_sec = get_boot_sec();
1554                 if (base2sec(di->shtd_drop_sec) > WAIT_SHTD_DROP_SEC) {
1555                         BAT_INFO("voltage extreme low...soc:%d->0\n", di->dsoc);
1556                         di->shtd_drop_sec = 0;
1557                         di->dsoc = 0;
1558                 }
1559         } else {
1560                 di->shtd_drop_sec = 0;
1561         }
1562
1563         DBG("ZERO-new: org_linek=%d, zero_linek=%d, dsoc=%d, Xsoc=%d, "
1564             "rsoc=%d, gap=%d, v=%d, vsys=%d\n"
1565             "ZERO-new: di->zero_dsoc=%d, zero_remain_cap=%d, zero_drop=%ld, "
1566             "sht_drop=%ld\n\n",
1567             org_linek, di->zero_linek, di->dsoc, xsoc, di->rsoc,
1568             min_gap_xsoc, voltage_avg, vsys, di->zero_dsoc, di->zero_remain_cap,
1569             base2sec(di->zero_drop_sec), base2sec(di->shtd_drop_sec));
1570 }
1571
1572 static void rk818_bat_finish_algo_prepare(struct rk818_battery *di)
1573 {
1574         di->finish_base = get_boot_sec();
1575         if (!di->finish_base)
1576                 di->finish_base = 1;
1577 }
1578
1579 static void rk818_bat_smooth_algo_prepare(struct rk818_battery *di)
1580 {
1581         int tmp_soc;
1582
1583         tmp_soc = di->sm_chrg_dsoc / 1000;
1584         if (tmp_soc != di->dsoc)
1585                 di->sm_chrg_dsoc = di->dsoc * 1000;
1586
1587         tmp_soc = di->sm_dischrg_dsoc / 1000;
1588         if (tmp_soc != di->dsoc)
1589                 di->sm_dischrg_dsoc =
1590                 (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1591
1592         DBG("<%s>. tmp_soc=%d, dsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d\n",
1593             __func__, tmp_soc, di->dsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1594
1595         rk818_bat_calc_sm_linek(di);
1596 }
1597
1598 static void rk818_bat_zero_algo_prepare(struct rk818_battery *di)
1599 {
1600         int tmp_dsoc;
1601
1602         tmp_dsoc = di->zero_dsoc / 1000;
1603         if (tmp_dsoc != di->dsoc)
1604                 di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1605
1606         DBG("<%s>. first calc, reinit linek\n", __func__);
1607
1608         rk818_bat_calc_zero_linek(di);
1609 }
1610
1611 static void rk818_bat_calc_zero_algorithm(struct rk818_battery *di)
1612 {
1613         int tmp_soc = 0, sm_delta_dsoc = 0;
1614
1615         tmp_soc = di->zero_dsoc / 1000;
1616         if (tmp_soc == di->dsoc)
1617                 goto out;
1618
1619         DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
1620         /* when discharge slow down, take sm chrg into calc */
1621         if (di->dsoc < di->rsoc) {
1622                 /* take sm charge rest into calc */
1623                 tmp_soc = di->sm_chrg_dsoc / 1000;
1624                 if (tmp_soc == di->dsoc) {
1625                         sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000;
1626                         di->sm_chrg_dsoc = di->dsoc * 1000;
1627                         di->zero_dsoc += sm_delta_dsoc;
1628                         DBG("ZERO1: take sm chrg,delta=%d\n", sm_delta_dsoc);
1629                 }
1630         }
1631
1632         /* when discharge speed up, take sm dischrg into calc */
1633         if (di->dsoc > di->rsoc) {
1634                 /* take sm discharge rest into calc */
1635                 tmp_soc = di->sm_dischrg_dsoc / 1000;
1636                 if (tmp_soc == di->dsoc) {
1637                         sm_delta_dsoc = di->sm_dischrg_dsoc -
1638                                 ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
1639                         di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 -
1640                                                                 MIN_ACCURACY;
1641                         di->zero_dsoc += sm_delta_dsoc;
1642                         DBG("ZERO1: take sm dischrg,delta=%d\n", sm_delta_dsoc);
1643                 }
1644         }
1645
1646         /* check overflow */
1647         if (di->zero_dsoc > (di->dsoc + 1) * 1000 - MIN_ACCURACY) {
1648                 DBG("ZERO1: zero dsoc overflow: %d\n", di->zero_dsoc);
1649                 di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1650         }
1651
1652         /* check new dsoc */
1653         tmp_soc = di->zero_dsoc / 1000;
1654         if (tmp_soc != di->dsoc) {
1655                 /* avoid dsoc jump when heavy load */
1656                 if ((di->dsoc - tmp_soc) > 1) {
1657                         di->dsoc--;
1658                         di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1659                         DBG("ZERO1: heavy load...\n");
1660                 } else {
1661                         di->dsoc = tmp_soc;
1662                 }
1663                 di->zero_drop_sec = 0;
1664         }
1665
1666 out:
1667         DBG("ZERO1: zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d, tmp_soc=%d\n",
1668             di->zero_dsoc, di->dsoc, di->rsoc, tmp_soc);
1669         DBG("ZERO1: sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n",
1670             di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1671 }
1672
1673 static void rk818_bat_zero_algorithm(struct rk818_battery *di)
1674 {
1675         int delta_cap = 0, delta_soc = 0;
1676
1677         di->zero_timeout_cnt++;
1678         delta_cap = di->zero_remain_cap - di->remain_cap;
1679         delta_soc = di->zero_linek * (delta_cap * 100) / DIV(di->fcc);
1680
1681         DBG("ZERO1: zero_linek=%d, zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d\n"
1682             "ZERO1: delta_soc(X0)=%d, delta_cap=%d, zero_remain_cap = %d\n"
1683             "ZERO1: timeout_cnt=%d, sm_dischrg=%d, sm_chrg=%d\n\n",
1684             di->zero_linek, di->zero_dsoc, di->dsoc, di->rsoc,
1685             delta_soc, delta_cap, di->zero_remain_cap,
1686             di->zero_timeout_cnt, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1687
1688         if ((delta_soc >= MIN_ZERO_DSOC_ACCURACY) ||
1689             (di->zero_timeout_cnt > MIN_ZERO_OVERCNT) ||
1690             (di->zero_linek == 0)) {
1691                 DBG("ZERO1:--------- enter calc -----------\n");
1692                 di->zero_timeout_cnt = 0;
1693                 di->zero_dsoc -= delta_soc;
1694                 rk818_bat_calc_zero_algorithm(di);
1695                 rk818_bat_calc_zero_linek(di);
1696         }
1697 }
1698
1699 static void rk818_bat_dump_time_table(struct rk818_battery *di)
1700 {
1701         u8 i;
1702         static int old_index;
1703         static int old_min;
1704         int mod = di->dsoc % 10;
1705         int index = di->dsoc / 10;
1706         u32 time;
1707
1708         if (rk818_bat_chrg_online(di))
1709                 time = base2min(di->plug_in_base);
1710         else
1711                 time = base2min(di->plug_out_base);
1712
1713         if ((mod == 0) && (index > 0) && (old_index != index)) {
1714                 di->dbg_chrg_min[index - 1] = time - old_min;
1715                 old_min = time;
1716                 old_index = index;
1717         }
1718
1719         for (i = 1; i < 11; i++)
1720                 DBG("Time[%d]=%d, ", (i * 10), di->dbg_chrg_min[i - 1]);
1721         DBG("\n");
1722 }
1723
1724 static void rk818_bat_debug_info(struct rk818_battery *di)
1725 {
1726         u8 sup_tst, ggcon, ggsts, vb_mod, ts_ctrl, reboot_cnt;
1727         u8 usb_ctrl, chrg_ctrl1, thermal;
1728         u8 int_sts1, int_sts2;
1729         u8 int_msk1, int_msk2;
1730         u8 chrg_ctrl2, chrg_ctrl3, rtc, misc, dcdc_en;
1731         char *work_mode[] = {"ZERO", "FINISH", "UN", "UN", "SMOOTH"};
1732         char *bat_mode[] = {"BAT", "VIRTUAL"};
1733
1734         if (rk818_bat_chrg_online(di))
1735                 di->plug_out_base = get_boot_sec();
1736         else
1737                 di->plug_in_base = get_boot_sec();
1738
1739         rk818_bat_dump_time_table(di);
1740
1741         if (!dbg_enable)
1742                 return;
1743
1744         ts_ctrl = rk818_bat_read(di, RK818_TS_CTRL_REG);
1745         misc = rk818_bat_read(di, RK818_MISC_MARK_REG);
1746         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
1747         ggsts = rk818_bat_read(di, RK818_GGSTS_REG);
1748         sup_tst = rk818_bat_read(di, RK818_SUP_STS_REG);
1749         vb_mod = rk818_bat_read(di, RK818_VB_MON_REG);
1750         usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG);
1751         chrg_ctrl1 = rk818_bat_read(di, RK818_CHRG_CTRL_REG1);
1752         chrg_ctrl2 = rk818_bat_read(di, RK818_CHRG_CTRL_REG2);
1753         chrg_ctrl3 = rk818_bat_read(di, RK818_CHRG_CTRL_REG3);
1754         rtc = rk818_bat_read(di, 0);
1755         thermal = rk818_bat_read(di, RK818_THERMAL_REG);
1756         int_sts1 = rk818_bat_read(di, RK818_INT_STS_REG1);
1757         int_sts2 = rk818_bat_read(di, RK818_INT_STS_REG2);
1758         int_msk1 = rk818_bat_read(di, RK818_INT_STS_MSK_REG1);
1759         int_msk2 = rk818_bat_read(di, RK818_INT_STS_MSK_REG2);
1760         dcdc_en = rk818_bat_read(di, RK818_DCDC_EN_REG);
1761         reboot_cnt = rk818_bat_read(di, RK818_REBOOT_CNT_REG);
1762
1763         DBG("\n------- DEBUG REGS, [Ver: %s] -------------------\n"
1764             "GGCON=0x%2x, GGSTS=0x%2x, RTC=0x%2x, DCDC_EN2=0x%2x\n"
1765             "SUP_STS= 0x%2x, VB_MOD=0x%2x, USB_CTRL=0x%2x\n"
1766             "THERMAL=0x%2x, MISC_MARK=0x%2x, TS_CTRL=0x%2x\n"
1767             "CHRG_CTRL:REG1=0x%2x, REG2=0x%2x, REG3=0x%2x\n"
1768             "INT_STS:  REG1=0x%2x, REG2=0x%2x\n"
1769             "INT_MSK:  REG1=0x%2x, REG2=0x%2x\n",
1770             DRIVER_VERSION, ggcon, ggsts, rtc, dcdc_en,
1771             sup_tst, vb_mod, usb_ctrl,
1772             thermal, misc, ts_ctrl,
1773             chrg_ctrl1, chrg_ctrl2, chrg_ctrl3,
1774             int_sts1, int_sts2, int_msk1, int_msk2
1775            );
1776
1777         DBG("###############################################################\n"
1778             "Dsoc=%d, Rsoc=%d, Vavg=%d, Iavg=%d, Cap=%d, Fcc=%d, d=%d\n"
1779             "K=%d, Mode=%s, Oldcap=%d, Is=%d, Ip=%d, Vs=%d\n"
1780             "shtd_min=%d, fb_temp=%d, bat_temp=%d, sample_res=%d\n"
1781             "off:i=0x%x, c=0x%x, p=%d, Rbat=%d, age_ocv_cap=%d, fb=%d\n"
1782             "adp:finish=%lu, boot_min=%lu, sleep_min=%lu, adc=%d, Vsys=%d\n"
1783             "bat:%s, meet: soc=%d, calc: dsoc=%d, rsoc=%d, Vocv=%d\n"
1784             "pwr: dsoc=%d, rsoc=%d, vol=%d, halt: st=%d, cnt=%d, reboot=%d\n"
1785             "max=%d, init=%d, sw=%d, ocv_c=%d, below0=%d, changed=%d\n"
1786             "###############################################################\n",
1787             di->dsoc, di->rsoc, di->voltage_avg, di->current_avg,
1788             di->remain_cap, di->fcc, di->rsoc - di->dsoc,
1789             di->sm_linek, work_mode[di->work_mode], di->sm_remain_cap,
1790             di->res_div * chrg_cur_sel_array[chrg_ctrl1 & 0x0f],
1791             chrg_cur_input_array[usb_ctrl & 0x0f],
1792             chrg_vol_sel_array[(chrg_ctrl1 & 0x70) >> 4],
1793             di->pwroff_min,
1794             feedback_temp_array[(thermal & 0x0c) >> 2], di->temperature,
1795             di->pdata->sample_res, rk818_bat_get_ioffset(di),
1796             rk818_bat_get_coffset(di), di->poffset, di->bat_res,
1797             di->age_adjust_cap, di->fb_blank, base2min(di->finish_base),
1798             base2min(di->boot_base), di->sleep_sum_sec / 60,
1799             di->adc_allow_update,
1800             di->voltage_avg + di->current_avg * DEF_PWRPATH_RES / 1000,
1801             bat_mode[di->pdata->bat_mode], di->dbg_meet_soc, di->dbg_calc_dsoc,
1802             di->dbg_calc_rsoc, di->voltage_ocv, di->dbg_pwr_dsoc,
1803             di->dbg_pwr_rsoc, di->dbg_pwr_vol, di->is_halt, di->halt_cnt,
1804             reboot_cnt, di->is_max_soc_offset, di->is_initialized,
1805             di->is_sw_reset, di->is_ocv_calib, di->dbg_cap_low0, di->last_dsoc
1806            );
1807 }
1808
1809 static void rk818_bat_init_capacity(struct rk818_battery *di, u32 cap)
1810 {
1811         int delta_cap;
1812
1813         delta_cap = cap - di->remain_cap;
1814         if (!delta_cap)
1815                 return;
1816
1817         di->age_adjust_cap += delta_cap;
1818         rk818_bat_init_coulomb_cap(di, cap);
1819         rk818_bat_smooth_algo_prepare(di);
1820         rk818_bat_zero_algo_prepare(di);
1821 }
1822
1823 static void rk818_bat_update_age_fcc(struct rk818_battery *di)
1824 {
1825         int fcc, remain_cap, age_keep_min, lock_fcc;
1826
1827         lock_fcc = rk818_bat_get_coulomb_cap(di);
1828         remain_cap = lock_fcc - di->age_ocv_cap - di->age_adjust_cap;
1829         age_keep_min = base2min(di->age_keep_sec);
1830
1831         DBG("<%s>. lock_fcc=%d, age:ocv_cap=%d, adjust_cap=%d, remain_cap=%d, "
1832             "allow_update=%d, keep_min:%d\n",
1833             __func__, lock_fcc, di->age_ocv_cap, di->age_adjust_cap, remain_cap,
1834             di->age_allow_update, age_keep_min);
1835
1836         if ((di->chrg_status == CHARGE_FINISH) && (di->age_allow_update) &&
1837             (age_keep_min < 1200)) {
1838                 di->age_allow_update = false;
1839                 fcc = remain_cap * 100 / DIV(100 - di->age_ocv_soc);
1840                 BAT_INFO("lock_fcc=%d, calc_cap=%d, age: soc=%d, cap=%d, "
1841                          "level=%d, fcc:%d->%d?\n",
1842                          lock_fcc, remain_cap, di->age_ocv_soc,
1843                          di->age_ocv_cap, di->age_level, di->fcc, fcc);
1844
1845                 if ((fcc < di->qmax) && (fcc > MIN_FCC)) {
1846                         BAT_INFO("fcc:%d->%d!\n", di->fcc, fcc);
1847                         di->fcc = fcc;
1848                         rk818_bat_init_capacity(di, di->fcc);
1849                         rk818_bat_save_fcc(di, di->fcc);
1850                         rk818_bat_save_age_level(di, di->age_level);
1851                 }
1852         }
1853 }
1854
1855 static void rk818_bat_wait_finish_sig(struct rk818_battery *di)
1856 {
1857         int chrg_finish_vol = di->pdata->max_chrg_voltage;
1858
1859         if (!rk818_bat_chrg_online(di))
1860                 return;
1861
1862         if ((di->chrg_status == CHARGE_FINISH) && (di->adc_allow_update) &&
1863             (di->voltage_avg > chrg_finish_vol - 150)) {
1864                 rk818_bat_update_age_fcc(di);
1865                 if (rk818_bat_adc_calib(di))
1866                         di->adc_allow_update = false;
1867         }
1868 }
1869
1870 static void rk818_bat_finish_algorithm(struct rk818_battery *di)
1871 {
1872         unsigned long finish_sec, soc_sec;
1873         int plus_soc, rest = 0;
1874
1875         /* rsoc */
1876         if ((di->remain_cap != di->fcc) &&
1877             (rk818_bat_get_chrg_status(di) == CHARGE_FINISH)) {
1878                 di->age_adjust_cap += (di->fcc - di->remain_cap);
1879                 rk818_bat_init_coulomb_cap(di, di->fcc);
1880         }
1881
1882         /* dsoc */
1883         if (di->dsoc < 100) {
1884                 if (!di->finish_base)
1885                         di->finish_base = get_boot_sec();
1886                 finish_sec = base2sec(di->finish_base);
1887                 soc_sec = di->fcc * 3600 / 100 / FINISH_CHRG_CUR;
1888                 plus_soc = finish_sec / soc_sec;
1889                 if (finish_sec > soc_sec) {
1890                         rest = finish_sec % soc_sec;
1891                         di->dsoc += plus_soc;
1892                         di->finish_base = get_boot_sec();
1893                         if (di->finish_base > rest)
1894                                 di->finish_base = get_boot_sec() - rest;
1895                 }
1896                 DBG("<%s>.CHARGE_FINISH:dsoc<100,dsoc=%d\n"
1897                     "soc_time=%lu, sec_finish=%lu, plus_soc=%d, rest=%d\n",
1898                     __func__, di->dsoc, soc_sec, finish_sec, plus_soc, rest);
1899         }
1900 }
1901
1902 static void rk818_bat_calc_smooth_dischrg(struct rk818_battery *di)
1903 {
1904         int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0;
1905
1906         tmp_soc = di->sm_dischrg_dsoc / 1000;
1907         if (tmp_soc == di->dsoc)
1908                 goto out;
1909
1910         DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
1911         /* when dischrge slow down, take sm charge rest into calc */
1912         if (di->dsoc < di->rsoc) {
1913                 tmp_soc = di->sm_chrg_dsoc / 1000;
1914                 if (tmp_soc == di->dsoc) {
1915                         sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000;
1916                         di->sm_chrg_dsoc = di->dsoc * 1000;
1917                         di->sm_dischrg_dsoc += sm_delta_dsoc;
1918                         DBG("<%s>. take sm dischrg, delta=%d\n",
1919                             __func__, sm_delta_dsoc);
1920                 }
1921         }
1922
1923         /* when discharge speed up, take zero discharge rest into calc */
1924         if (di->dsoc > di->rsoc) {
1925                 tmp_soc = di->zero_dsoc / 1000;
1926                 if (tmp_soc == di->dsoc) {
1927                         zero_delta_dsoc = di->zero_dsoc - ((di->dsoc + 1) *
1928                                                 1000 - MIN_ACCURACY);
1929                         di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1930                         di->sm_dischrg_dsoc += zero_delta_dsoc;
1931                         DBG("<%s>. take zero schrg, delta=%d\n",
1932                             __func__, zero_delta_dsoc);
1933                 }
1934         }
1935
1936         /* check up overflow */
1937         if ((di->sm_dischrg_dsoc) > ((di->dsoc + 1) * 1000 - MIN_ACCURACY)) {
1938                 DBG("<%s>. dischrg_dsoc up overflow\n", __func__);
1939                 di->sm_dischrg_dsoc = (di->dsoc + 1) *
1940                                         1000 - MIN_ACCURACY;
1941         }
1942
1943         /* check new dsoc */
1944         tmp_soc = di->sm_dischrg_dsoc / 1000;
1945         if (tmp_soc != di->dsoc) {
1946                 di->dsoc = tmp_soc;
1947                 di->sm_chrg_dsoc = di->dsoc * 1000;
1948         }
1949 out:
1950         DBG("<%s>. dsoc=%d, rsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d, zero=%d\n",
1951             __func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc,
1952             di->zero_dsoc);
1953
1954 }
1955
1956 static void rk818_bat_calc_smooth_chrg(struct rk818_battery *di)
1957 {
1958         int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0;
1959
1960         tmp_soc = di->sm_chrg_dsoc / 1000;
1961         if (tmp_soc == di->dsoc)
1962                 goto out;
1963
1964         DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
1965         /* when charge slow down, take zero & sm dischrg into calc */
1966         if (di->dsoc > di->rsoc) {
1967                 /* take sm discharge rest into calc */
1968                 tmp_soc = di->sm_dischrg_dsoc / 1000;
1969                 if (tmp_soc == di->dsoc) {
1970                         sm_delta_dsoc = di->sm_dischrg_dsoc -
1971                                         ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
1972                         di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 -
1973                                                         MIN_ACCURACY;
1974                         di->sm_chrg_dsoc += sm_delta_dsoc;
1975                         DBG("<%s>. take sm dischrg, delta=%d\n",
1976                            __func__, sm_delta_dsoc);
1977                 }
1978
1979                 /* take zero discharge rest into calc */
1980                 tmp_soc = di->zero_dsoc / 1000;
1981                 if (tmp_soc == di->dsoc) {
1982                         zero_delta_dsoc = di->zero_dsoc -
1983                         ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
1984                         di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1985                         di->sm_chrg_dsoc += zero_delta_dsoc;
1986                         DBG("<%s>. take zero dischrg, delta=%d\n",
1987                             __func__, zero_delta_dsoc);
1988                 }
1989         }
1990
1991         /* check down overflow */
1992         if (di->sm_chrg_dsoc < di->dsoc * 1000) {
1993                 DBG("<%s>. chrg_dsoc down overflow\n", __func__);
1994                 di->sm_chrg_dsoc = di->dsoc * 1000;
1995         }
1996
1997         /* check new dsoc */
1998         tmp_soc = di->sm_chrg_dsoc / 1000;
1999         if (tmp_soc != di->dsoc) {
2000                 di->dsoc = tmp_soc;
2001                 di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2002         }
2003 out:
2004         DBG("<%s>.dsoc=%d, rsoc=%d, dsoc: sm_dischrg=%d, sm_chrg=%d, zero=%d\n",
2005             __func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc,
2006             di->zero_dsoc);
2007 }
2008
2009 static void rk818_bat_smooth_algorithm(struct rk818_battery *di)
2010 {
2011         int ydsoc = 0, delta_cap = 0, old_cap = 0;
2012         unsigned long tgt_sec = 0;
2013
2014         di->remain_cap = rk818_bat_get_coulomb_cap(di);
2015
2016         /* full charge: slow down */
2017         if ((di->dsoc == 99) && (di->chrg_status == CC_OR_CV)) {
2018                 di->sm_linek = FULL_CHRG_K;
2019         /* terminal charge, slow down */
2020         } else if ((di->current_avg >= TERM_CHRG_CURR) &&
2021             (di->chrg_status == CC_OR_CV) && (di->dsoc >= TERM_CHRG_DSOC)) {
2022                 di->sm_linek = TERM_CHRG_K;
2023                 DBG("<%s>. terminal mode..\n", __func__);
2024         /* simulate charge, speed up */
2025         } else if ((di->current_avg <= SIMULATE_CHRG_CURR) &&
2026                    (di->current_avg > 0) && (di->chrg_status == CC_OR_CV) &&
2027                    (di->dsoc < TERM_CHRG_DSOC) &&
2028                    ((di->rsoc - di->dsoc) >= SIMULATE_CHRG_INTV)) {
2029                 di->sm_linek = SIMULATE_CHRG_K;
2030                 DBG("<%s>. simulate mode..\n", __func__);
2031         } else {
2032                 /* charge and discharge switch */
2033                 if ((di->sm_linek * di->current_avg <= 0) ||
2034                     (di->sm_linek == TERM_CHRG_K) ||
2035                     (di->sm_linek == FULL_CHRG_K) ||
2036                     (di->sm_linek == SIMULATE_CHRG_K)) {
2037                         DBG("<%s>. linek mode, retinit sm linek..\n", __func__);
2038                         rk818_bat_calc_sm_linek(di);
2039                 }
2040         }
2041
2042         old_cap = di->sm_remain_cap;
2043         /*
2044          * when dsoc equal rsoc(not include full, term, simulate case),
2045          * sm_linek should change to -1000/1000 smoothly to avoid dsoc+1/-1
2046          * right away, so change it after flat seconds
2047          */
2048         if ((di->dsoc == di->rsoc) && (abs(di->sm_linek) != 1000) &&
2049             (di->sm_linek != FULL_CHRG_K && di->sm_linek != TERM_CHRG_K &&
2050              di->sm_linek != SIMULATE_CHRG_K)) {
2051                 if (!di->flat_match_sec)
2052                         di->flat_match_sec = get_boot_sec();
2053                 tgt_sec = di->fcc * 3600 / 100 / abs(di->current_avg) / 3;
2054                 if (base2sec(di->flat_match_sec) >= tgt_sec) {
2055                         di->flat_match_sec = 0;
2056                         di->sm_linek = (di->current_avg >= 0) ? 1000 : -1000;
2057                 }
2058                 DBG("<%s>. flat_sec=%ld, tgt_sec=%ld, sm_k=%d\n", __func__,
2059                     base2sec(di->flat_match_sec), tgt_sec, di->sm_linek);
2060         } else {
2061                 di->flat_match_sec = 0;
2062         }
2063
2064         /* abs(k)=1000 or dsoc=100, stop calc */
2065         if ((abs(di->sm_linek) == 1000) || (di->current_avg >= 0 &&
2066              di->chrg_status == CC_OR_CV && di->dsoc >= 100)) {
2067                 DBG("<%s>. sm_linek=%d\n", __func__, di->sm_linek);
2068                 if (abs(di->sm_linek) == 1000) {
2069                         di->dsoc = di->rsoc;
2070                         di->sm_linek = (di->sm_linek > 0) ? 1000 : -1000;
2071                         DBG("<%s>. dsoc == rsoc, sm_linek=%d\n",
2072                             __func__, di->sm_linek);
2073                 }
2074                 di->sm_remain_cap = di->remain_cap;
2075                 di->sm_chrg_dsoc = di->dsoc * 1000;
2076                 di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2077                 DBG("<%s>. sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n",
2078                     __func__, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
2079         } else {
2080                 delta_cap = di->remain_cap - di->sm_remain_cap;
2081                 if (delta_cap == 0) {
2082                         DBG("<%s>. delta_cap = 0\n", __func__);
2083                         return;
2084                 }
2085                 ydsoc = di->sm_linek * abs(delta_cap) * 100 / DIV(di->fcc);
2086                 if (ydsoc == 0) {
2087                         DBG("<%s>. ydsoc = 0\n", __func__);
2088                         return;
2089                 }
2090                 di->sm_remain_cap = di->remain_cap;
2091
2092                 DBG("<%s>. k=%d, ydsoc=%d; cap:old=%d, new:%d; delta_cap=%d\n",
2093                     __func__, di->sm_linek, ydsoc, old_cap,
2094                     di->sm_remain_cap, delta_cap);
2095
2096                 /* discharge mode */
2097                 if (ydsoc < 0) {
2098                         di->sm_dischrg_dsoc += ydsoc;
2099                         rk818_bat_calc_smooth_dischrg(di);
2100                 /* charge mode */
2101                 } else {
2102                         di->sm_chrg_dsoc += ydsoc;
2103                         rk818_bat_calc_smooth_chrg(di);
2104                 }
2105
2106                 if (di->s2r) {
2107                         di->s2r = false;
2108                         rk818_bat_calc_sm_linek(di);
2109                 }
2110         }
2111 }
2112
2113 /*
2114  * cccv and finish switch all the time will cause dsoc freeze,
2115  * if so, do finish chrg, 100ma is less than min finish_ma.
2116  */
2117 static bool rk818_bat_fake_finish_mode(struct rk818_battery *di)
2118 {
2119         if ((di->rsoc == 100) && (rk818_bat_get_chrg_status(di) == CC_OR_CV) &&
2120             (abs(di->current_avg) <= 100))
2121                 return true;
2122         else
2123                 return false;
2124 }
2125
2126 static void rk818_bat_display_smooth(struct rk818_battery *di)
2127 {
2128         /* discharge: reinit "zero & smooth" algorithm to avoid handling dsoc */
2129         if (di->s2r && !di->sleep_chrg_online) {
2130                 DBG("s2r: discharge, reset algorithm...\n");
2131                 di->s2r = false;
2132                 rk818_bat_zero_algo_prepare(di);
2133                 rk818_bat_smooth_algo_prepare(di);
2134                 return;
2135         }
2136
2137         if (di->work_mode == MODE_FINISH) {
2138                 DBG("step1: charge finish...\n");
2139                 rk818_bat_finish_algorithm(di);
2140                 if ((rk818_bat_get_chrg_status(di) != CHARGE_FINISH) &&
2141                     !rk818_bat_fake_finish_mode(di)) {
2142                         if ((di->current_avg < 0) &&
2143                             (di->voltage_avg < di->pdata->zero_algorithm_vol)) {
2144                                 DBG("step1: change to zero mode...\n");
2145                                 rk818_bat_zero_algo_prepare(di);
2146                                 di->work_mode = MODE_ZERO;
2147                         } else {
2148                                 DBG("step1: change to smooth mode...\n");
2149                                 rk818_bat_smooth_algo_prepare(di);
2150                                 di->work_mode = MODE_SMOOTH;
2151                         }
2152                 }
2153         } else if (di->work_mode == MODE_ZERO) {
2154                 DBG("step2: zero algorithm...\n");
2155                 rk818_bat_zero_algorithm(di);
2156                 if ((di->voltage_avg >= di->pdata->zero_algorithm_vol + 50) ||
2157                     (di->current_avg >= 0)) {
2158                         DBG("step2: change to smooth mode...\n");
2159                         rk818_bat_smooth_algo_prepare(di);
2160                         di->work_mode = MODE_SMOOTH;
2161                 } else if ((rk818_bat_get_chrg_status(di) == CHARGE_FINISH) ||
2162                            rk818_bat_fake_finish_mode(di)) {
2163                         DBG("step2: change to finish mode...\n");
2164                         rk818_bat_finish_algo_prepare(di);
2165                         di->work_mode = MODE_FINISH;
2166                 }
2167         } else {
2168                 DBG("step3: smooth algorithm...\n");
2169                 rk818_bat_smooth_algorithm(di);
2170                 if ((di->current_avg < 0) &&
2171                     (di->voltage_avg < di->pdata->zero_algorithm_vol)) {
2172                         DBG("step3: change to zero mode...\n");
2173                         rk818_bat_zero_algo_prepare(di);
2174                         di->work_mode = MODE_ZERO;
2175                 } else if ((rk818_bat_get_chrg_status(di) == CHARGE_FINISH) ||
2176                            rk818_bat_fake_finish_mode(di)) {
2177                         DBG("step3: change to finish mode...\n");
2178                         rk818_bat_finish_algo_prepare(di);
2179                         di->work_mode = MODE_FINISH;
2180                 }
2181         }
2182 }
2183
2184 static void rk818_bat_relax_vol_calib(struct rk818_battery *di)
2185 {
2186         int soc, cap, vol;
2187
2188         vol = di->voltage_relax;
2189         soc = rk818_bat_vol_to_ocvsoc(di, vol);
2190         cap = rk818_bat_vol_to_ocvcap(di, vol);
2191         rk818_bat_init_capacity(di, cap);
2192         BAT_INFO("sleep ocv calib: rsoc=%d, cap=%d\n", soc, cap);
2193 }
2194
2195 static void rk818_bat_relife_age_flag(struct rk818_battery *di)
2196 {
2197         u8 ocv_soc, ocv_cap, soc_level;
2198
2199         if (di->voltage_relax <= 0)
2200                 return;
2201
2202         ocv_soc = rk818_bat_vol_to_ocvsoc(di, di->voltage_relax);
2203         ocv_cap = rk818_bat_vol_to_ocvcap(di, di->voltage_relax);
2204         DBG("<%s>. ocv_soc=%d, min=%lu, vol=%d\n", __func__,
2205             ocv_soc, di->sleep_dischrg_sec / 60, di->voltage_relax);
2206
2207         /* sleep enough time and ocv_soc enough low */
2208         if (!di->age_allow_update && ocv_soc <= 10) {
2209                 di->age_voltage = di->voltage_relax;
2210                 di->age_ocv_cap = ocv_cap;
2211                 di->age_ocv_soc = ocv_soc;
2212                 di->age_adjust_cap = 0;
2213
2214                 if (ocv_soc <= 1)
2215                         di->age_level = 100;
2216                 else if (ocv_soc < 5)
2217                         di->age_level = 90;
2218                 else
2219                         di->age_level = 80;
2220
2221                 soc_level = rk818_bat_get_age_level(di);
2222                 if (soc_level > di->age_level) {
2223                         di->age_allow_update = false;
2224                 } else {
2225                         di->age_allow_update = true;
2226                         di->age_keep_sec = get_boot_sec();
2227                 }
2228
2229                 BAT_INFO("resume: age_vol:%d, age_ocv_cap:%d, age_ocv_soc:%d, "
2230                          "soc_level:%d, age_allow_update:%d, "
2231                          "age_level:%d\n",
2232                          di->age_voltage, di->age_ocv_cap, ocv_soc, soc_level,
2233                          di->age_allow_update, di->age_level);
2234         }
2235 }
2236
2237 static int rk818_bat_sleep_dischrg(struct rk818_battery *di)
2238 {
2239         bool ocv_soc_updated = false;
2240         int tgt_dsoc, gap_soc, sleep_soc = 0;
2241         int pwroff_vol = di->pdata->pwroff_vol;
2242         unsigned long sleep_sec = di->sleep_dischrg_sec;
2243
2244         DBG("<%s>. enter: dsoc=%d, rsoc=%d, rv=%d, v=%d, sleep_min=%lu\n",
2245             __func__, di->dsoc, di->rsoc, di->voltage_relax,
2246             di->voltage_avg, sleep_sec / 60);
2247
2248         if (di->voltage_relax >= di->voltage_avg) {
2249                 rk818_bat_relax_vol_calib(di);
2250                 rk818_bat_restart_relax(di);
2251                 rk818_bat_relife_age_flag(di);
2252                 ocv_soc_updated = true;
2253         }
2254
2255         /* handle dsoc */
2256         if (di->dsoc <= di->rsoc) {
2257                 di->sleep_sum_cap = (SLP_CURR_MIN * sleep_sec / 3600);
2258                 sleep_soc = di->sleep_sum_cap * 100 / di->fcc;
2259                 tgt_dsoc = di->dsoc - sleep_soc;
2260                 if (sleep_soc > 0) {
2261                         BAT_INFO("calib0: rl=%d, dl=%d, intval=%d\n",
2262                                  di->rsoc, di->dsoc, sleep_soc);
2263                         if (di->dsoc < 5) {
2264                                 di->dsoc--;
2265                         } else if ((tgt_dsoc < 5) && (di->dsoc >= 5)) {
2266                                 if (di->dsoc == 5)
2267                                         di->dsoc--;
2268                                 else
2269                                         di->dsoc = 5;
2270                         } else if (tgt_dsoc > 5) {
2271                                 di->dsoc = tgt_dsoc;
2272                         }
2273                 }
2274
2275                 DBG("%s: dsoc<=rsoc, sum_cap=%d==>sleep_soc=%d, tgt_dsoc=%d\n",
2276                     __func__, di->sleep_sum_cap, sleep_soc, tgt_dsoc);
2277         } else {
2278                 /* di->dsoc > di->rsoc */
2279                 di->sleep_sum_cap = (SLP_CURR_MAX * sleep_sec / 3600);
2280                 sleep_soc = di->sleep_sum_cap / (di->fcc / 100);
2281                 gap_soc = di->dsoc - di->rsoc;
2282
2283                 BAT_INFO("calib1: rsoc=%d, dsoc=%d, intval=%d\n",
2284                          di->rsoc, di->dsoc, sleep_soc);
2285                 if (gap_soc > sleep_soc) {
2286                         if ((gap_soc - 5) > (sleep_soc * 2))
2287                                 di->dsoc -= (sleep_soc * 2);
2288                         else
2289                                 di->dsoc -= sleep_soc;
2290                 } else {
2291                         di->dsoc = di->rsoc;
2292                 }
2293
2294                 DBG("%s: dsoc>rsoc, sum_cap=%d=>sleep_soc=%d, gap_soc=%d\n",
2295                     __func__, di->sleep_sum_cap, sleep_soc, gap_soc);
2296         }
2297
2298         if (di->voltage_avg <= pwroff_vol - 70) {
2299                 di->dsoc = 0;
2300                 BAT_INFO("low power sleeping, shutdown... %d\n", di->dsoc);
2301         }
2302
2303         if (ocv_soc_updated && sleep_soc && (di->rsoc - di->dsoc) < 5 &&
2304             di->dsoc < 40) {
2305                 di->dsoc--;
2306                 BAT_INFO("low power sleeping, reserved... %d\n", di->dsoc);
2307         }
2308
2309         if (di->dsoc <= 0) {
2310                 di->dsoc = 0;
2311                 BAT_INFO("sleep dsoc is %d...\n", di->dsoc);
2312         }
2313
2314         DBG("<%s>. out: dsoc=%d, rsoc=%d, sum_cap=%d\n",
2315             __func__, di->dsoc, di->rsoc, di->sleep_sum_cap);
2316
2317         return sleep_soc;
2318 }
2319
2320 static void rk818_bat_power_supply_changed(struct rk818_battery *di)
2321 {
2322         static int old_soc = -1;
2323
2324         if (di->dsoc > 100)
2325                 di->dsoc = 100;
2326         else if (di->dsoc < 0)
2327                 di->dsoc = 0;
2328
2329         if (di->dsoc == old_soc)
2330                 return;
2331
2332         old_soc = di->dsoc;
2333         di->last_dsoc = di->dsoc;
2334         power_supply_changed(di->bat);
2335         BAT_INFO("changed: dsoc=%d, rsoc=%d, v=%d, c=%d, cap=%d\n",
2336                  di->dsoc, di->rsoc, di->voltage_avg, di->current_avg,
2337                  di->remain_cap);
2338 }
2339
2340 static u8 rk818_bat_check_reboot(struct rk818_battery *di)
2341 {
2342         u8 cnt;
2343
2344         cnt = rk818_bat_read(di, RK818_REBOOT_CNT_REG);
2345         cnt++;
2346
2347         if (cnt >= REBOOT_MAX_CNT) {
2348                 BAT_INFO("reboot: %d --> %d\n", di->dsoc, di->rsoc);
2349                 di->dsoc = di->rsoc;
2350                 if (di->dsoc > 100)
2351                         di->dsoc = 100;
2352                 else if (di->dsoc < 0)
2353                         di->dsoc = 0;
2354                 rk818_bat_save_dsoc(di, di->dsoc);
2355                 cnt = REBOOT_MAX_CNT;
2356         }
2357
2358         rk818_bat_save_reboot_cnt(di, cnt);
2359         DBG("reboot cnt: %d\n", cnt);
2360
2361         return cnt;
2362 }
2363
2364 static void rk818_bat_rsoc_daemon(struct rk818_battery *di)
2365 {
2366         int est_vol;
2367         static unsigned long sec;
2368
2369         if ((di->remain_cap < 0) && (di->fb_blank != 0)) {
2370                 sec = get_boot_sec();
2371                 wake_lock_timeout(&di->wake_lock,
2372                                   (di->pdata->monitor_sec + 1) * HZ);
2373                 if (base2sec(sec) >= 60) {
2374                         sec = 0;
2375                         di->dbg_cap_low0++;
2376                         est_vol = di->voltage_avg -
2377                                         (di->bat_res * di->current_avg) / 1000;
2378                         di->remain_cap = rk818_bat_vol_to_ocvcap(di, est_vol);
2379                         di->rsoc = rk818_bat_vol_to_ocvsoc(di, est_vol);
2380                         rk818_bat_init_capacity(di, di->remain_cap);
2381                         BAT_INFO("adjust cap below 0 --> %d, rsoc=%d\n",
2382                                  di->remain_cap, di->rsoc);
2383                         wake_unlock(&di->wake_lock);
2384                 }
2385         } else {
2386                 sec = 0;
2387         }
2388 }
2389
2390 static void rk818_bat_update_info(struct rk818_battery *di)
2391 {
2392         di->voltage_avg = rk818_bat_get_avg_voltage(di);
2393         di->current_avg = rk818_bat_get_avg_current(di);
2394         di->voltage_relax = rk818_bat_get_relax_voltage(di);
2395         di->rsoc = rk818_bat_get_rsoc(di);
2396         di->remain_cap = rk818_bat_get_coulomb_cap(di);
2397         di->chrg_status = rk818_bat_get_chrg_status(di);
2398
2399         /* smooth charge */
2400         if (di->remain_cap > di->fcc) {
2401                 di->sm_remain_cap -= (di->remain_cap - di->fcc);
2402                 DBG("<%s>. cap: remain=%d, sm_remain=%d\n",
2403                     __func__, di->remain_cap, di->sm_remain_cap);
2404                 rk818_bat_init_coulomb_cap(di, di->fcc);
2405         }
2406
2407         if (di->chrg_status != CHARGE_FINISH)
2408                 di->finish_base = get_boot_sec();
2409
2410         /*
2411          * we need update fcc in continuous charging state, if discharge state
2412          * keep at least 2 hour, we decide not to update fcc, so clear the
2413          * fcc update flag: age_allow_update.
2414          */
2415         if (base2min(di->plug_out_base) > 120)
2416                 di->age_allow_update = false;
2417
2418         /* do adc calib: status must from cccv mode to finish mode */
2419         if (di->chrg_status == CC_OR_CV)
2420                 di->adc_allow_update = true;
2421 }
2422
2423 /* get ntc resistance */
2424 static int rk818_bat_get_ntc_res(struct rk818_battery *di)
2425 {
2426         int val = 0;
2427
2428         val |= rk818_bat_read(di, RK818_TS1_ADC_REGL) << 0;
2429         val |= rk818_bat_read(di, RK818_TS1_ADC_REGH) << 8;
2430
2431         val = val * NTC_CALC_FACTOR; /*reference voltage 2.2V,current 80ua*/
2432         DBG("<%s>. ntc_res=%d\n", __func__, val);
2433
2434         return val;
2435 }
2436
2437 static void rk818_bat_update_temperature(struct rk818_battery *di)
2438 {
2439         u32 ntc_size, *ntc_table;
2440         int i, res;
2441
2442         ntc_table = di->pdata->ntc_table;
2443         ntc_size = di->pdata->ntc_size;
2444         di->temperature = VIRTUAL_TEMPERATURE;
2445
2446         if (ntc_size) {
2447                 res = rk818_bat_get_ntc_res(di);
2448                 if (res < ntc_table[ntc_size - 1]) {
2449                         BAT_INFO("bat ntc upper max degree: R=%d\n", res);
2450                 } else if (res > ntc_table[0]) {
2451                         BAT_INFO("bat ntc lower min degree: R=%d\n", res);
2452                 } else {
2453                         for (i = 0; i < ntc_size; i++) {
2454                                 if (res >= ntc_table[i])
2455                                         break;
2456                         }
2457                         di->temperature = (i + di->pdata->ntc_degree_from) * 10;
2458                 }
2459         }
2460 }
2461
2462 static void rk818_bat_init_dsoc_algorithm(struct rk818_battery *di)
2463 {
2464         u8 buf;
2465         int16_t rest = 0;
2466         unsigned long soc_sec;
2467         const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH",
2468                 "MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", };
2469
2470         /* get rest */
2471         rest |= rk818_bat_read(di, RK818_CALC_REST_REGH) << 8;
2472         rest |= rk818_bat_read(di, RK818_CALC_REST_REGL) << 0;
2473
2474         /* get mode */
2475         buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
2476         di->algo_rest_mode = (buf & ALGO_REST_MODE_MSK) >> ALGO_REST_MODE_SHIFT;
2477
2478         if (rk818_bat_get_chrg_status(di) == CHARGE_FINISH) {
2479                 if (di->algo_rest_mode == MODE_FINISH) {
2480                         soc_sec = di->fcc * 3600 / 100 / FINISH_CHRG_CUR;
2481                         if ((rest / soc_sec) > 0) {
2482                                 if (di->dsoc < 100) {
2483                                         di->dsoc++;
2484                                         di->algo_rest_val = rest % soc_sec;
2485                                         BAT_INFO("algorithm rest(%d) dsoc "
2486                                                  "inc: %d\n",
2487                                                  rest, di->dsoc);
2488                                 } else {
2489                                         di->algo_rest_val = 0;
2490                                 }
2491                         } else {
2492                                 di->algo_rest_val = rest;
2493                         }
2494                 } else {
2495                         di->algo_rest_val = rest;
2496                 }
2497         } else {
2498                 /* charge speed up */
2499                 if ((rest / 1000) > 0 && rk818_bat_chrg_online(di)) {
2500                         if (di->dsoc < di->rsoc) {
2501                                 di->dsoc++;
2502                                 di->algo_rest_val = rest % 1000;
2503                                 BAT_INFO("algorithm rest(%d) dsoc inc: %d\n",
2504                                          rest, di->dsoc);
2505                         } else {
2506                                 di->algo_rest_val = 0;
2507                         }
2508                 /* discharge speed up */
2509                 } else if (((rest / 1000) < 0) && !rk818_bat_chrg_online(di)) {
2510                         if (di->dsoc > di->rsoc) {
2511                                 di->dsoc--;
2512                                 di->algo_rest_val = rest % 1000;
2513                                 BAT_INFO("algorithm rest(%d) dsoc sub: %d\n",
2514                                          rest, di->dsoc);
2515                         } else {
2516                                 di->algo_rest_val = 0;
2517                         }
2518                 } else {
2519                         di->algo_rest_val = rest;
2520                 }
2521         }
2522
2523         if (di->dsoc >= 100)
2524                 di->dsoc = 100;
2525         else if (di->dsoc <= 0)
2526                 di->dsoc = 0;
2527
2528         /* init current mode */
2529         di->voltage_avg = rk818_bat_get_avg_voltage(di);
2530         di->current_avg = rk818_bat_get_avg_current(di);
2531         if (rk818_bat_get_chrg_status(di) == CHARGE_FINISH) {
2532                 rk818_bat_finish_algo_prepare(di);
2533                 di->work_mode = MODE_FINISH;
2534         } else if ((di->current_avg < 0) &&
2535                    (di->voltage_avg < di->pdata->zero_algorithm_vol)) {
2536                 rk818_bat_zero_algo_prepare(di);
2537                 di->work_mode = MODE_ZERO;
2538         } else {
2539                 rk818_bat_smooth_algo_prepare(di);
2540                 di->work_mode = MODE_SMOOTH;
2541         }
2542
2543         DBG("<%s>. init: org_rest=%d, rest=%d, mode=%s; "
2544             "doc(x1000): zero=%d, chrg=%d, dischrg=%d, finish=%lu\n",
2545             __func__, rest, di->algo_rest_val, mode_name[di->algo_rest_mode],
2546             di->zero_dsoc, di->sm_chrg_dsoc, di->sm_dischrg_dsoc,
2547             di->finish_base);
2548 }
2549
2550 static void rk818_bat_save_algo_rest(struct rk818_battery *di)
2551 {
2552         u8 buf, mode;
2553         int16_t algo_rest = 0;
2554         int tmp_soc;
2555         int zero_rest = 0, sm_chrg_rest = 0;
2556         int sm_dischrg_rest = 0, finish_rest = 0;
2557         const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH",
2558                 "MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", };
2559
2560         /* zero dischrg */
2561         tmp_soc = (di->zero_dsoc) / 1000;
2562         if (tmp_soc == di->dsoc)
2563                 zero_rest = di->zero_dsoc - ((di->dsoc + 1) * 1000 -
2564                                 MIN_ACCURACY);
2565
2566         /* sm chrg */
2567         tmp_soc = di->sm_chrg_dsoc / 1000;
2568         if (tmp_soc == di->dsoc)
2569                 sm_chrg_rest = di->sm_chrg_dsoc - di->dsoc * 1000;
2570
2571         /* sm dischrg */
2572         tmp_soc = (di->sm_dischrg_dsoc) / 1000;
2573         if (tmp_soc == di->dsoc)
2574                 sm_dischrg_rest = di->sm_dischrg_dsoc - ((di->dsoc + 1) * 1000 -
2575                                 MIN_ACCURACY);
2576
2577         /* last time is also finish chrg, then add last rest */
2578         if (di->algo_rest_mode == MODE_FINISH && di->algo_rest_val)
2579                 finish_rest = base2sec(di->finish_base) + di->algo_rest_val;
2580         else
2581                 finish_rest = base2sec(di->finish_base);
2582
2583         /* total calc */
2584         if ((rk818_bat_chrg_online(di) && (di->dsoc > di->rsoc)) ||
2585             (!rk818_bat_chrg_online(di) && (di->dsoc < di->rsoc)) ||
2586             (di->dsoc == di->rsoc)) {
2587                 di->algo_rest_val = 0;
2588                 algo_rest = 0;
2589                 DBG("<%s>. step1..\n", __func__);
2590         } else if (di->work_mode == MODE_FINISH) {
2591                 algo_rest = finish_rest;
2592                 DBG("<%s>. step2..\n", __func__);
2593         } else if (di->algo_rest_mode == MODE_FINISH) {
2594                 algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest;
2595                 DBG("<%s>. step3..\n", __func__);
2596         } else {
2597                 if (rk818_bat_chrg_online(di) && (di->dsoc < di->rsoc))
2598                         algo_rest = sm_chrg_rest + di->algo_rest_val;
2599                 else if (!rk818_bat_chrg_online(di) && (di->dsoc > di->rsoc))
2600                         algo_rest = zero_rest + sm_dischrg_rest +
2601                                     di->algo_rest_val;
2602                 else
2603                         algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest +
2604                                     di->algo_rest_val;
2605                 DBG("<%s>. step4..\n", __func__);
2606         }
2607
2608         /* check mode */
2609         if ((di->work_mode == MODE_FINISH) || (di->work_mode == MODE_ZERO)) {
2610                 mode = di->work_mode;
2611         } else {/* MODE_SMOOTH */
2612                 if (di->sm_linek > 0)
2613                         mode = MODE_SMOOTH_CHRG;
2614                 else
2615                         mode = MODE_SMOOTH_DISCHRG;
2616         }
2617
2618         /* save mode */
2619         buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
2620         buf &= ~ALGO_REST_MODE_MSK;
2621         buf |= (mode << ALGO_REST_MODE_SHIFT);
2622         rk818_bat_write(di, RK818_MISC_MARK_REG, buf);
2623
2624         /* save rest */
2625         buf = (algo_rest >> 8) & 0xff;
2626         rk818_bat_write(di, RK818_CALC_REST_REGH, buf);
2627         buf = (algo_rest >> 0) & 0xff;
2628         rk818_bat_write(di, RK818_CALC_REST_REGL, buf);
2629
2630         DBG("<%s>. rest: algo=%d, mode=%s, last_rest=%d; zero=%d, "
2631             "chrg=%d, dischrg=%d, finish=%lu\n",
2632             __func__, algo_rest, mode_name[mode], di->algo_rest_val, zero_rest,
2633             sm_chrg_rest, sm_dischrg_rest, base2sec(di->finish_base));
2634 }
2635
2636 static void rk818_bat_save_data(struct rk818_battery *di)
2637 {
2638         rk818_bat_save_dsoc(di, di->dsoc);
2639         rk818_bat_save_cap(di, di->remain_cap);
2640         rk818_bat_save_algo_rest(di);
2641 }
2642
2643 static void rk818_battery_work(struct work_struct *work)
2644 {
2645         struct rk818_battery *di =
2646                 container_of(work, struct rk818_battery, bat_delay_work.work);
2647
2648         rk818_bat_update_info(di);
2649         rk818_bat_wait_finish_sig(di);
2650         rk818_bat_rsoc_daemon(di);
2651         rk818_bat_update_temperature(di);
2652         rk818_bat_display_smooth(di);
2653         rk818_bat_power_supply_changed(di);
2654         rk818_bat_save_data(di);
2655         rk818_bat_debug_info(di);
2656
2657         queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
2658                            msecs_to_jiffies(di->monitor_ms));
2659 }
2660
2661 static irqreturn_t rk818_vb_low_irq(int irq, void *bat)
2662 {
2663         struct rk818_battery *di = (struct rk818_battery *)bat;
2664
2665         di->dsoc = 0;
2666         rk_send_wakeup_key();
2667         BAT_INFO("lower power yet, power off system! v=%d, c=%d, dsoc=%d\n",
2668                  di->voltage_avg, di->current_avg, di->dsoc);
2669
2670         return IRQ_HANDLED;
2671 }
2672
2673 static void rk818_bat_init_sysfs(struct rk818_battery *di)
2674 {
2675         int i, ret;
2676
2677         for (i = 0; i < ARRAY_SIZE(rk818_bat_attr); i++) {
2678                 ret = sysfs_create_file(&di->dev->kobj,
2679                                         &rk818_bat_attr[i].attr);
2680                 if (ret)
2681                         dev_err(di->dev, "create bat node(%s) error\n",
2682                                 rk818_bat_attr[i].attr.name);
2683         }
2684 }
2685
2686 static int rk818_bat_init_irqs(struct rk818_battery *di)
2687 {
2688         struct rk808 *rk818 = di->rk818;
2689         struct platform_device *pdev = di->pdev;
2690         int ret, vb_lo_irq;
2691
2692         vb_lo_irq = regmap_irq_get_virq(rk818->irq_data, RK818_IRQ_VB_LO);
2693         if (vb_lo_irq < 0) {
2694                 dev_err(di->dev, "vb_lo_irq request failed!\n");
2695                 return vb_lo_irq;
2696         }
2697
2698         ret = devm_request_threaded_irq(di->dev, vb_lo_irq, NULL,
2699                                         rk818_vb_low_irq, IRQF_TRIGGER_HIGH,
2700                                         "rk818_vb_low", di);
2701         if (ret) {
2702                 dev_err(&pdev->dev, "vb_lo_irq request failed!\n");
2703                 return ret;
2704         }
2705         enable_irq_wake(vb_lo_irq);
2706
2707         return 0;
2708 }
2709
2710 static void rk818_bat_init_info(struct rk818_battery *di)
2711 {
2712         di->design_cap = di->pdata->design_capacity;
2713         di->qmax = di->pdata->design_qmax;
2714         di->bat_res = di->pdata->bat_res;
2715         di->monitor_ms = di->pdata->monitor_sec * TIMER_MS_COUNTS;
2716         di->boot_base = POWER_ON_SEC_BASE;
2717         di->res_div = (di->pdata->sample_res == SAMPLE_RES_20MR) ?
2718                        SAMPLE_RES_DIV1 : SAMPLE_RES_DIV2;
2719 }
2720
2721 static int rk818_bat_rtc_sleep_sec(struct rk818_battery *di)
2722 {
2723         int err;
2724         int interval_sec = 0;
2725         struct rtc_time tm;
2726         struct timespec tv = { .tv_nsec = NSEC_PER_SEC >> 1, };
2727         struct rtc_device *rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
2728
2729         err = rtc_read_time(rtc, &tm);
2730         if (err) {
2731                 dev_err(rtc->dev.parent, "hctosys: read hardware clk failed\n");
2732                 return 0;
2733         }
2734
2735         err = rtc_valid_tm(&tm);
2736         if (err) {
2737                 dev_err(rtc->dev.parent, "hctosys: invalid date time\n");
2738                 return 0;
2739         }
2740
2741         rtc_tm_to_time(&tm, &tv.tv_sec);
2742         interval_sec = tv.tv_sec - di->rtc_base.tv_sec;
2743
2744         return (interval_sec > 0) ? interval_sec : 0;
2745 }
2746
2747 static void rk818_bat_init_ts1_detect(struct rk818_battery *di)
2748 {
2749         u8 buf;
2750
2751         if (!di->pdata->ntc_size)
2752                 return;
2753
2754         /* ADC_TS1_EN */
2755         buf = rk818_bat_read(di, RK818_ADC_CTRL_REG);
2756         buf |= ADC_TS1_EN;
2757         rk818_bat_write(di, RK818_ADC_CTRL_REG, buf);
2758 }
2759
2760 static void rk818_bat_set_shtd_vol(struct rk818_battery *di)
2761 {
2762         u8 val;
2763
2764         /* set vbat lowest 3.0v shutdown */
2765         val = rk818_bat_read(di, RK818_VB_MON_REG);
2766         val &= ~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK);
2767         val |= (RK818_VBAT_LOW_3V0 | EN_VABT_LOW_SHUT_DOWN);
2768         rk818_bat_write(di, RK818_VB_MON_REG, val);
2769
2770         /* disable low irq */
2771         rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1,
2772                            VB_LOW_INT_EN, VB_LOW_INT_EN);
2773 }
2774
2775 static void rk818_bat_init_fg(struct rk818_battery *di)
2776 {
2777         rk818_bat_enable_gauge(di);
2778         rk818_bat_init_voltage_kb(di);
2779         rk818_bat_init_coffset(di);
2780         rk818_bat_set_relax_sample(di);
2781         rk818_bat_set_ioffset_sample(di);
2782         rk818_bat_set_ocv_sample(di);
2783         rk818_bat_init_ts1_detect(di);
2784         rk818_bat_init_rsoc(di);
2785         rk818_bat_init_coulomb_cap(di, di->nac);
2786         rk818_bat_init_age_algorithm(di);
2787         rk818_bat_init_chrg_config(di);
2788         rk818_bat_set_shtd_vol(di);
2789         rk818_bat_init_zero_table(di);
2790         rk818_bat_init_caltimer(di);
2791         rk818_bat_init_dsoc_algorithm(di);
2792
2793         di->voltage_avg = rk818_bat_get_avg_voltage(di);
2794         di->voltage_ocv = rk818_bat_get_ocv_voltage(di);
2795         di->voltage_relax = rk818_bat_get_relax_voltage(di);
2796         di->current_avg = rk818_bat_get_avg_current(di);
2797         di->remain_cap = rk818_bat_get_coulomb_cap(di);
2798         di->dbg_pwr_dsoc = di->dsoc;
2799         di->dbg_pwr_rsoc = di->rsoc;
2800         di->dbg_pwr_vol = di->voltage_avg;
2801
2802         rk818_bat_dump_regs(di, 0x99, 0xee);
2803         DBG("nac=%d cap=%d ov=%d v=%d rv=%d dl=%d rl=%d c=%d\n",
2804             di->nac, di->remain_cap, di->voltage_ocv, di->voltage_avg,
2805             di->voltage_relax, di->dsoc, di->rsoc, di->current_avg);
2806 }
2807
2808 #ifdef CONFIG_OF
2809 static int rk818_bat_parse_dt(struct rk818_battery *di)
2810 {
2811         u32 out_value;
2812         int length, ret;
2813         size_t size;
2814         struct device_node *np = di->dev->of_node;
2815         struct battery_platform_data *pdata;
2816         struct device *dev = di->dev;
2817
2818         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2819         if (!pdata)
2820                 return -ENOMEM;
2821
2822         di->pdata = pdata;
2823         /* init default param */
2824         pdata->bat_res = DEFAULT_BAT_RES;
2825         pdata->monitor_sec = DEFAULT_MONITOR_SEC;
2826         pdata->pwroff_vol = DEFAULT_PWROFF_VOL_THRESD;
2827         pdata->sleep_exit_current = DEFAULT_SLP_EXIT_CUR;
2828         pdata->sleep_enter_current = DEFAULT_SLP_ENTER_CUR;
2829         pdata->bat_mode = MODE_BATTARY;
2830         pdata->max_soc_offset = DEFAULT_MAX_SOC_OFFSET;
2831         pdata->sample_res = DEFAULT_SAMPLE_RES;
2832         pdata->energy_mode = DEFAULT_ENERGY_MODE;
2833         pdata->fb_temp = DEFAULT_FB_TEMP;
2834
2835         /* parse necessary param */
2836         if (!of_find_property(np, "ocv_table", &length)) {
2837                 dev_err(dev, "ocv_table not found!\n");
2838                 return -EINVAL;
2839         }
2840
2841         pdata->ocv_size = length / sizeof(u32);
2842         if (pdata->ocv_size <= 0) {
2843                 dev_err(dev, "invalid ocv table\n");
2844                 return -EINVAL;
2845         }
2846
2847         size = sizeof(*pdata->ocv_table) * pdata->ocv_size;
2848         pdata->ocv_table = devm_kzalloc(di->dev, size, GFP_KERNEL);
2849         if (!pdata->ocv_table)
2850                 return -ENOMEM;
2851
2852         ret = of_property_read_u32_array(np, "ocv_table",
2853                                          pdata->ocv_table,
2854                                          pdata->ocv_size);
2855         if (ret < 0)
2856                 return ret;
2857
2858         ret = of_property_read_u32(np, "design_capacity", &out_value);
2859         if (ret < 0) {
2860                 dev_err(dev, "design_capacity not found!\n");
2861                 return ret;
2862         }
2863         pdata->design_capacity = out_value;
2864
2865         ret = of_property_read_u32(np, "design_qmax", &out_value);
2866         if (ret < 0) {
2867                 dev_err(dev, "design_qmax not found!\n");
2868                 return ret;
2869         }
2870         pdata->design_qmax = out_value;
2871         ret = of_property_read_u32(np, "max_chrg_voltage", &out_value);
2872         if (ret < 0) {
2873                 dev_err(dev, "max_chrg_voltage missing!\n");
2874                 return ret;
2875         }
2876         pdata->max_chrg_voltage = out_value;
2877         if (out_value >= 4300)
2878                 pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD2;
2879         else
2880                 pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD1;
2881
2882         ret = of_property_read_u32(np, "fb_temperature", &pdata->fb_temp);
2883         if (ret < 0)
2884                 dev_err(dev, "fb_temperature missing!\n");
2885
2886         ret = of_property_read_u32(np, "sample_res", &pdata->sample_res);
2887         if (ret < 0)
2888                 dev_err(dev, "sample_res missing!\n");
2889
2890         ret = of_property_read_u32(np, "energy_mode", &pdata->energy_mode);
2891         if (ret < 0)
2892                 dev_err(dev, "energy_mode missing!\n");
2893
2894         ret = of_property_read_u32(np, "max_soc_offset",
2895                                    &pdata->max_soc_offset);
2896         if (ret < 0)
2897                 dev_err(dev, "max_soc_offset missing!\n");
2898
2899         ret = of_property_read_u32(np, "monitor_sec", &pdata->monitor_sec);
2900         if (ret < 0)
2901                 dev_err(dev, "monitor_sec missing!\n");
2902
2903         ret = of_property_read_u32(np, "zero_algorithm_vol",
2904                                    &pdata->zero_algorithm_vol);
2905         if (ret < 0)
2906                 dev_err(dev, "zero_algorithm_vol missing!\n");
2907
2908         ret = of_property_read_u32(np, "virtual_power", &pdata->bat_mode);
2909         if (ret < 0)
2910                 dev_err(dev, "virtual_power missing!\n");
2911
2912         ret = of_property_read_u32(np, "bat_res", &pdata->bat_res);
2913         if (ret < 0)
2914                 dev_err(dev, "bat_res missing!\n");
2915
2916         ret = of_property_read_u32(np, "sleep_enter_current",
2917                                    &pdata->sleep_enter_current);
2918         if (ret < 0)
2919                 dev_err(dev, "sleep_enter_current missing!\n");
2920
2921         ret = of_property_read_u32(np, "sleep_exit_current",
2922                                    &pdata->sleep_exit_current);
2923         if (ret < 0)
2924                 dev_err(dev, "sleep_exit_current missing!\n");
2925
2926         ret = of_property_read_u32(np, "power_off_thresd", &pdata->pwroff_vol);
2927         if (ret < 0)
2928                 dev_err(dev, "power_off_thresd missing!\n");
2929
2930         if (!of_find_property(np, "ntc_table", &length)) {
2931                 pdata->ntc_size = 0;
2932         } else {
2933                 /* get ntc degree base value */
2934                 ret = of_property_read_u32_index(np, "ntc_degree_from", 1,
2935                                                  &pdata->ntc_degree_from);
2936                 if (ret) {
2937                         dev_err(dev, "invalid ntc_degree_from\n");
2938                         return -EINVAL;
2939                 }
2940
2941                 of_property_read_u32_index(np, "ntc_degree_from", 0,
2942                                            &out_value);
2943                 if (out_value)
2944                         pdata->ntc_degree_from = -pdata->ntc_degree_from;
2945
2946                 pdata->ntc_size = length / sizeof(u32);
2947         }
2948
2949         if (pdata->ntc_size) {
2950                 size = sizeof(*pdata->ntc_table) * pdata->ntc_size;
2951                 pdata->ntc_table = devm_kzalloc(di->dev, size, GFP_KERNEL);
2952                 if (!pdata->ntc_table)
2953                         return -ENOMEM;
2954
2955                 ret = of_property_read_u32_array(np, "ntc_table",
2956                                                  pdata->ntc_table,
2957                                                  pdata->ntc_size);
2958                 if (ret < 0)
2959                         return ret;
2960         }
2961
2962         DBG("the battery dts info dump:\n"
2963             "bat_res:%d\n"
2964             "design_capacity:%d\n"
2965             "design_qmax :%d\n"
2966             "sleep_enter_current:%d\n"
2967             "sleep_exit_current:%d\n"
2968             "zero_algorithm_vol:%d\n"
2969             "monitor_sec:%d\n"
2970             "max_soc_offset:%d\n"
2971             "virtual_power:%d\n"
2972             "pwroff_vol:%d\n"
2973             "sample_res:%d\n"
2974             "ntc_size=%d\n"
2975             "ntc_degree_from:%d\n"
2976             "ntc_degree_to:%d\n",
2977             pdata->bat_res, pdata->design_capacity, pdata->design_qmax,
2978             pdata->sleep_enter_current, pdata->sleep_exit_current,
2979             pdata->zero_algorithm_vol, pdata->monitor_sec,
2980             pdata->max_soc_offset, pdata->bat_mode, pdata->pwroff_vol,
2981             pdata->sample_res, pdata->ntc_size, pdata->ntc_degree_from,
2982             pdata->ntc_degree_from + pdata->ntc_size - 1
2983             );
2984
2985         return 0;
2986 }
2987 #else
2988 static int rk818_bat_parse_dt(struct rk818_battery *di)
2989 {
2990         return -ENODEV;
2991 }
2992 #endif
2993
2994 static const struct of_device_id rk818_battery_of_match[] = {
2995         {.compatible = "rk818-battery",},
2996         { },
2997 };
2998
2999 static int rk818_battery_probe(struct platform_device *pdev)
3000 {
3001         const struct of_device_id *of_id =
3002                         of_match_device(rk818_battery_of_match, &pdev->dev);
3003         struct rk818_battery *di;
3004         struct rk808 *rk818 = dev_get_drvdata(pdev->dev.parent);
3005         int ret;
3006
3007         if (!of_id) {
3008                 dev_err(&pdev->dev, "Failed to find matching dt id\n");
3009                 return -ENODEV;
3010         }
3011
3012         di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
3013         if (!di)
3014                 return -ENOMEM;
3015
3016         di->rk818 = rk818;
3017         di->pdev = pdev;
3018         di->dev = &pdev->dev;
3019         di->regmap = rk818->regmap;
3020         platform_set_drvdata(pdev, di);
3021
3022         ret = rk818_bat_parse_dt(di);
3023         if (ret < 0) {
3024                 dev_err(di->dev, "rk818 battery parse dt failed!\n");
3025                 return ret;
3026         }
3027
3028         if (!is_rk818_bat_exist(di)) {
3029                 di->pdata->bat_mode = MODE_VIRTUAL;
3030                 dev_err(di->dev, "no battery, virtual power mode\n");
3031         }
3032
3033         ret = rk818_bat_init_irqs(di);
3034         if (ret != 0) {
3035                 dev_err(di->dev, "rk818 bat init irqs failed!\n");
3036                 return ret;
3037         }
3038
3039         ret = rk818_bat_init_power_supply(di);
3040         if (ret) {
3041                 dev_err(di->dev, "rk818 power supply register failed!\n");
3042                 return ret;
3043         }
3044
3045         rk818_bat_init_info(di);
3046         rk818_bat_init_fg(di);
3047         rk818_bat_init_sysfs(di);
3048         rk818_bat_register_fb_notify(di);
3049         wake_lock_init(&di->wake_lock, WAKE_LOCK_SUSPEND, "rk818_bat_lock");
3050         di->bat_monitor_wq = alloc_ordered_workqueue("%s",
3051                         WQ_MEM_RECLAIM | WQ_FREEZABLE, "rk818-bat-monitor-wq");
3052         INIT_DELAYED_WORK(&di->bat_delay_work, rk818_battery_work);
3053         queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
3054                            msecs_to_jiffies(TIMER_MS_COUNTS * 5));
3055
3056         BAT_INFO("driver version %s\n", DRIVER_VERSION);
3057
3058         return ret;
3059 }
3060
3061 static int rk818_battery_suspend(struct platform_device *dev,
3062                                  pm_message_t state)
3063 {
3064         struct rk818_battery *di = platform_get_drvdata(dev);
3065         u8 val;
3066
3067         cancel_delayed_work_sync(&di->bat_delay_work);
3068
3069         di->s2r = false;
3070         di->sleep_chrg_online = rk818_bat_chrg_online(di);
3071         di->sleep_chrg_status = rk818_bat_get_chrg_status(di);
3072         di->current_avg = rk818_bat_get_avg_current(di);
3073         di->remain_cap = rk818_bat_get_coulomb_cap(di);
3074         di->rsoc = rk818_bat_get_rsoc(di);
3075         do_gettimeofday(&di->rtc_base);
3076         rk818_bat_save_data(di);
3077
3078         /* if not CHARGE_FINISH, reinit finish_base.
3079          * avoid sleep loop between suspend and resume
3080          */
3081         if (di->sleep_chrg_status != CHARGE_FINISH)
3082                 di->finish_base = get_boot_sec();
3083
3084         /* avoid: enter suspend from MODE_ZERO: load from heavy to light */
3085         if ((di->work_mode == MODE_ZERO) &&
3086             (di->sleep_chrg_online) && (di->current_avg >= 0)) {
3087                 DBG("suspend: MODE_ZERO exit...\n");
3088                 /* it need't do prepare for mode finish and smooth, it will
3089                  * be done in display_smooth
3090                  */
3091                 if (di->sleep_chrg_status == CHARGE_FINISH) {
3092                         di->work_mode = MODE_FINISH;
3093                         di->finish_base = get_boot_sec();
3094                 } else {
3095                         di->work_mode = MODE_SMOOTH;
3096                         rk818_bat_smooth_algo_prepare(di);
3097                 }
3098         }
3099
3100         /* set vbat low than 3.4v to generate a wakeup irq */
3101         val = rk818_bat_read(di, RK818_VB_MON_REG);
3102         val &= (~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK));
3103         val |= (RK818_VBAT_LOW_3V4 | EN_VBAT_LOW_IRQ);
3104         rk818_bat_write(di, RK818_VB_MON_REG, val);
3105         rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1, VB_LOW_INT_EN, 0);
3106
3107         BAT_INFO("suspend: dl=%d rl=%d c=%d v=%d cap=%d at=%ld st=0x%x ch=%d\n",
3108                  di->dsoc, di->rsoc, di->current_avg,
3109                  rk818_bat_get_avg_voltage(di), rk818_bat_get_coulomb_cap(di),
3110                  di->sleep_dischrg_sec, di->sleep_chrg_status,
3111                  di->sleep_chrg_online);
3112
3113         return 0;
3114 }
3115
3116 static int rk818_battery_resume(struct platform_device *dev)
3117 {
3118         struct rk818_battery *di = platform_get_drvdata(dev);
3119         int interval_sec, time_step, pwroff_vol;
3120         u8 val;
3121
3122         di->s2r = true;
3123         di->current_avg = rk818_bat_get_avg_current(di);
3124         di->voltage_relax = rk818_bat_get_relax_voltage(di);
3125         di->voltage_avg = rk818_bat_get_avg_voltage(di);
3126         di->remain_cap = rk818_bat_get_coulomb_cap(di);
3127         di->rsoc = rk818_bat_get_rsoc(di);
3128         interval_sec = rk818_bat_rtc_sleep_sec(di);
3129         di->sleep_sum_sec += interval_sec;
3130         pwroff_vol = di->pdata->pwroff_vol;
3131
3132         if (!di->sleep_chrg_online) {
3133                 /* only add up discharge sleep seconds */
3134                 di->sleep_dischrg_sec += interval_sec;
3135                 if (di->voltage_avg <= pwroff_vol + 50)
3136                         time_step = DISCHRG_TIME_STEP1;
3137                 else
3138                         time_step = DISCHRG_TIME_STEP2;
3139         }
3140
3141         BAT_INFO("resume: dl=%d rl=%d c=%d v=%d rv=%d "
3142                  "cap=%d dt=%d at=%ld ch=%d\n",
3143                  di->dsoc, di->rsoc, di->current_avg, di->voltage_avg,
3144                  di->voltage_relax, rk818_bat_get_coulomb_cap(di), interval_sec,
3145                  di->sleep_dischrg_sec, di->sleep_chrg_online);
3146
3147         /* sleep: enough time and discharge */
3148         if ((di->sleep_dischrg_sec > time_step) && (!di->sleep_chrg_online)) {
3149                 if (rk818_bat_sleep_dischrg(di))
3150                         di->sleep_dischrg_sec = 0;
3151         }
3152
3153         rk818_bat_save_data(di);
3154
3155         /* set vbat lowest 3.0v shutdown */
3156         val = rk818_bat_read(di, RK818_VB_MON_REG);
3157         val &= ~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK);
3158         val |= (RK818_VBAT_LOW_3V0 | EN_VABT_LOW_SHUT_DOWN);
3159         rk818_bat_write(di, RK818_VB_MON_REG, val);
3160         rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1,
3161                            VB_LOW_INT_EN, VB_LOW_INT_EN);
3162
3163         /* charge/lowpower lock: for battery work to update dsoc and rsoc */
3164         if ((di->sleep_chrg_online) ||
3165             (!di->sleep_chrg_online && di->voltage_avg < di->pdata->pwroff_vol))
3166                 wake_lock_timeout(&di->wake_lock, msecs_to_jiffies(2000));
3167
3168         queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
3169                            msecs_to_jiffies(1000));
3170
3171         return 0;
3172 }
3173
3174 static void rk818_battery_shutdown(struct platform_device *dev)
3175 {
3176         u8 cnt = 0;
3177         struct rk818_battery *di = platform_get_drvdata(dev);
3178
3179         cancel_delayed_work_sync(&di->bat_delay_work);
3180         cancel_delayed_work_sync(&di->calib_delay_work);
3181         rk818_bat_unregister_fb_notify(di);
3182         del_timer(&di->caltimer);
3183         if (base2sec(di->boot_base) < REBOOT_PERIOD_SEC)
3184                 cnt = rk818_bat_check_reboot(di);
3185         else
3186                 rk818_bat_save_reboot_cnt(di, 0);
3187
3188         BAT_INFO("shutdown: dl=%d rl=%d c=%d v=%d cap=%d f=%d ch=%d n=%d "
3189                  "mode=%d rest=%d\n",
3190                  di->dsoc, di->rsoc, di->current_avg, di->voltage_avg,
3191                  di->remain_cap, di->fcc, rk818_bat_chrg_online(di), cnt,
3192                  di->algo_rest_mode, di->algo_rest_val);
3193 }
3194
3195 static struct platform_driver rk818_battery_driver = {
3196         .probe = rk818_battery_probe,
3197         .suspend = rk818_battery_suspend,
3198         .resume = rk818_battery_resume,
3199         .shutdown = rk818_battery_shutdown,
3200         .driver = {
3201                 .name = "rk818-battery",
3202                 .of_match_table = rk818_battery_of_match,
3203         },
3204 };
3205
3206 static int __init battery_init(void)
3207 {
3208         return platform_driver_register(&rk818_battery_driver);
3209 }
3210 fs_initcall_sync(battery_init);
3211
3212 static void __exit battery_exit(void)
3213 {
3214         platform_driver_unregister(&rk818_battery_driver);
3215 }
3216 module_exit(battery_exit);
3217
3218 MODULE_LICENSE("GPL");
3219 MODULE_ALIAS("platform:rk818-battery");
3220 MODULE_AUTHOR("chenjh<chenjh@rock-chips.com>");