Merge branch 'linux-linaro-lsk-v4.4-android' of git://git.linaro.org/kernel/linux...
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50         DRM_FORMAT_C8,
51         DRM_FORMAT_RGB565,
52         DRM_FORMAT_XRGB1555,
53         DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB8888,
61         DRM_FORMAT_XBGR8888,
62         DRM_FORMAT_XRGB2101010,
63         DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_ARGB8888,
72         DRM_FORMAT_ABGR8888,
73         DRM_FORMAT_XRGB2101010,
74         DRM_FORMAT_XBGR2101010,
75         DRM_FORMAT_YUYV,
76         DRM_FORMAT_YVYU,
77         DRM_FORMAT_UYVY,
78         DRM_FORMAT_VYUY,
79 };
80
81 /* Cursor formats */
82 static const uint32_t intel_cursor_formats[] = {
83         DRM_FORMAT_ARGB8888,
84 };
85
86 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89                                 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91                                    struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94                                   struct intel_framebuffer *ifb,
95                                   struct drm_mode_fb_cmd2 *mode_cmd,
96                                   struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100                                          struct intel_link_m_n *m_n,
101                                          struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106                             const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112         struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114                            int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary(struct drm_crtc *crtc);
120
121 typedef struct {
122         int     min, max;
123 } intel_range_t;
124
125 typedef struct {
126         int     dot_limit;
127         int     p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
133         intel_p2_t          p2;
134 };
135
136 /* returns HPLL frequency in kHz */
137 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138 {
139         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141         /* Obtain SKU information */
142         mutex_lock(&dev_priv->sb_lock);
143         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144                 CCK_FUSE_HPLL_FREQ_MASK;
145         mutex_unlock(&dev_priv->sb_lock);
146
147         return vco_freq[hpll_freq] * 1000;
148 }
149
150 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
151                                   const char *name, u32 reg)
152 {
153         u32 val;
154         int divider;
155
156         if (dev_priv->hpll_freq == 0)
157                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
158
159         mutex_lock(&dev_priv->sb_lock);
160         val = vlv_cck_read(dev_priv, reg);
161         mutex_unlock(&dev_priv->sb_lock);
162
163         divider = val & CCK_FREQUENCY_VALUES;
164
165         WARN((val & CCK_FREQUENCY_STATUS) !=
166              (divider << CCK_FREQUENCY_STATUS_SHIFT),
167              "%s change in progress\n", name);
168
169         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
170 }
171
172 int
173 intel_pch_rawclk(struct drm_device *dev)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176
177         WARN_ON(!HAS_PCH_SPLIT(dev));
178
179         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
180 }
181
182 /* hrawclock is 1/4 the FSB frequency */
183 int intel_hrawclk(struct drm_device *dev)
184 {
185         struct drm_i915_private *dev_priv = dev->dev_private;
186         uint32_t clkcfg;
187
188         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
189         if (IS_VALLEYVIEW(dev))
190                 return 200;
191
192         clkcfg = I915_READ(CLKCFG);
193         switch (clkcfg & CLKCFG_FSB_MASK) {
194         case CLKCFG_FSB_400:
195                 return 100;
196         case CLKCFG_FSB_533:
197                 return 133;
198         case CLKCFG_FSB_667:
199                 return 166;
200         case CLKCFG_FSB_800:
201                 return 200;
202         case CLKCFG_FSB_1067:
203                 return 266;
204         case CLKCFG_FSB_1333:
205                 return 333;
206         /* these two are just a guess; one of them might be right */
207         case CLKCFG_FSB_1600:
208         case CLKCFG_FSB_1600_ALT:
209                 return 400;
210         default:
211                 return 133;
212         }
213 }
214
215 static void intel_update_czclk(struct drm_i915_private *dev_priv)
216 {
217         if (!IS_VALLEYVIEW(dev_priv))
218                 return;
219
220         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
221                                                       CCK_CZ_CLOCK_CONTROL);
222
223         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
224 }
225
226 static inline u32 /* units of 100MHz */
227 intel_fdi_link_freq(struct drm_device *dev)
228 {
229         if (IS_GEN5(dev)) {
230                 struct drm_i915_private *dev_priv = dev->dev_private;
231                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
232         } else
233                 return 27;
234 }
235
236 static const intel_limit_t intel_limits_i8xx_dac = {
237         .dot = { .min = 25000, .max = 350000 },
238         .vco = { .min = 908000, .max = 1512000 },
239         .n = { .min = 2, .max = 16 },
240         .m = { .min = 96, .max = 140 },
241         .m1 = { .min = 18, .max = 26 },
242         .m2 = { .min = 6, .max = 16 },
243         .p = { .min = 4, .max = 128 },
244         .p1 = { .min = 2, .max = 33 },
245         .p2 = { .dot_limit = 165000,
246                 .p2_slow = 4, .p2_fast = 2 },
247 };
248
249 static const intel_limit_t intel_limits_i8xx_dvo = {
250         .dot = { .min = 25000, .max = 350000 },
251         .vco = { .min = 908000, .max = 1512000 },
252         .n = { .min = 2, .max = 16 },
253         .m = { .min = 96, .max = 140 },
254         .m1 = { .min = 18, .max = 26 },
255         .m2 = { .min = 6, .max = 16 },
256         .p = { .min = 4, .max = 128 },
257         .p1 = { .min = 2, .max = 33 },
258         .p2 = { .dot_limit = 165000,
259                 .p2_slow = 4, .p2_fast = 4 },
260 };
261
262 static const intel_limit_t intel_limits_i8xx_lvds = {
263         .dot = { .min = 25000, .max = 350000 },
264         .vco = { .min = 908000, .max = 1512000 },
265         .n = { .min = 2, .max = 16 },
266         .m = { .min = 96, .max = 140 },
267         .m1 = { .min = 18, .max = 26 },
268         .m2 = { .min = 6, .max = 16 },
269         .p = { .min = 4, .max = 128 },
270         .p1 = { .min = 1, .max = 6 },
271         .p2 = { .dot_limit = 165000,
272                 .p2_slow = 14, .p2_fast = 7 },
273 };
274
275 static const intel_limit_t intel_limits_i9xx_sdvo = {
276         .dot = { .min = 20000, .max = 400000 },
277         .vco = { .min = 1400000, .max = 2800000 },
278         .n = { .min = 1, .max = 6 },
279         .m = { .min = 70, .max = 120 },
280         .m1 = { .min = 8, .max = 18 },
281         .m2 = { .min = 3, .max = 7 },
282         .p = { .min = 5, .max = 80 },
283         .p1 = { .min = 1, .max = 8 },
284         .p2 = { .dot_limit = 200000,
285                 .p2_slow = 10, .p2_fast = 5 },
286 };
287
288 static const intel_limit_t intel_limits_i9xx_lvds = {
289         .dot = { .min = 20000, .max = 400000 },
290         .vco = { .min = 1400000, .max = 2800000 },
291         .n = { .min = 1, .max = 6 },
292         .m = { .min = 70, .max = 120 },
293         .m1 = { .min = 8, .max = 18 },
294         .m2 = { .min = 3, .max = 7 },
295         .p = { .min = 7, .max = 98 },
296         .p1 = { .min = 1, .max = 8 },
297         .p2 = { .dot_limit = 112000,
298                 .p2_slow = 14, .p2_fast = 7 },
299 };
300
301
302 static const intel_limit_t intel_limits_g4x_sdvo = {
303         .dot = { .min = 25000, .max = 270000 },
304         .vco = { .min = 1750000, .max = 3500000},
305         .n = { .min = 1, .max = 4 },
306         .m = { .min = 104, .max = 138 },
307         .m1 = { .min = 17, .max = 23 },
308         .m2 = { .min = 5, .max = 11 },
309         .p = { .min = 10, .max = 30 },
310         .p1 = { .min = 1, .max = 3},
311         .p2 = { .dot_limit = 270000,
312                 .p2_slow = 10,
313                 .p2_fast = 10
314         },
315 };
316
317 static const intel_limit_t intel_limits_g4x_hdmi = {
318         .dot = { .min = 22000, .max = 400000 },
319         .vco = { .min = 1750000, .max = 3500000},
320         .n = { .min = 1, .max = 4 },
321         .m = { .min = 104, .max = 138 },
322         .m1 = { .min = 16, .max = 23 },
323         .m2 = { .min = 5, .max = 11 },
324         .p = { .min = 5, .max = 80 },
325         .p1 = { .min = 1, .max = 8},
326         .p2 = { .dot_limit = 165000,
327                 .p2_slow = 10, .p2_fast = 5 },
328 };
329
330 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
331         .dot = { .min = 20000, .max = 115000 },
332         .vco = { .min = 1750000, .max = 3500000 },
333         .n = { .min = 1, .max = 3 },
334         .m = { .min = 104, .max = 138 },
335         .m1 = { .min = 17, .max = 23 },
336         .m2 = { .min = 5, .max = 11 },
337         .p = { .min = 28, .max = 112 },
338         .p1 = { .min = 2, .max = 8 },
339         .p2 = { .dot_limit = 0,
340                 .p2_slow = 14, .p2_fast = 14
341         },
342 };
343
344 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
345         .dot = { .min = 80000, .max = 224000 },
346         .vco = { .min = 1750000, .max = 3500000 },
347         .n = { .min = 1, .max = 3 },
348         .m = { .min = 104, .max = 138 },
349         .m1 = { .min = 17, .max = 23 },
350         .m2 = { .min = 5, .max = 11 },
351         .p = { .min = 14, .max = 42 },
352         .p1 = { .min = 2, .max = 6 },
353         .p2 = { .dot_limit = 0,
354                 .p2_slow = 7, .p2_fast = 7
355         },
356 };
357
358 static const intel_limit_t intel_limits_pineview_sdvo = {
359         .dot = { .min = 20000, .max = 400000},
360         .vco = { .min = 1700000, .max = 3500000 },
361         /* Pineview's Ncounter is a ring counter */
362         .n = { .min = 3, .max = 6 },
363         .m = { .min = 2, .max = 256 },
364         /* Pineview only has one combined m divider, which we treat as m2. */
365         .m1 = { .min = 0, .max = 0 },
366         .m2 = { .min = 0, .max = 254 },
367         .p = { .min = 5, .max = 80 },
368         .p1 = { .min = 1, .max = 8 },
369         .p2 = { .dot_limit = 200000,
370                 .p2_slow = 10, .p2_fast = 5 },
371 };
372
373 static const intel_limit_t intel_limits_pineview_lvds = {
374         .dot = { .min = 20000, .max = 400000 },
375         .vco = { .min = 1700000, .max = 3500000 },
376         .n = { .min = 3, .max = 6 },
377         .m = { .min = 2, .max = 256 },
378         .m1 = { .min = 0, .max = 0 },
379         .m2 = { .min = 0, .max = 254 },
380         .p = { .min = 7, .max = 112 },
381         .p1 = { .min = 1, .max = 8 },
382         .p2 = { .dot_limit = 112000,
383                 .p2_slow = 14, .p2_fast = 14 },
384 };
385
386 /* Ironlake / Sandybridge
387  *
388  * We calculate clock using (register_value + 2) for N/M1/M2, so here
389  * the range value for them is (actual_value - 2).
390  */
391 static const intel_limit_t intel_limits_ironlake_dac = {
392         .dot = { .min = 25000, .max = 350000 },
393         .vco = { .min = 1760000, .max = 3510000 },
394         .n = { .min = 1, .max = 5 },
395         .m = { .min = 79, .max = 127 },
396         .m1 = { .min = 12, .max = 22 },
397         .m2 = { .min = 5, .max = 9 },
398         .p = { .min = 5, .max = 80 },
399         .p1 = { .min = 1, .max = 8 },
400         .p2 = { .dot_limit = 225000,
401                 .p2_slow = 10, .p2_fast = 5 },
402 };
403
404 static const intel_limit_t intel_limits_ironlake_single_lvds = {
405         .dot = { .min = 25000, .max = 350000 },
406         .vco = { .min = 1760000, .max = 3510000 },
407         .n = { .min = 1, .max = 3 },
408         .m = { .min = 79, .max = 118 },
409         .m1 = { .min = 12, .max = 22 },
410         .m2 = { .min = 5, .max = 9 },
411         .p = { .min = 28, .max = 112 },
412         .p1 = { .min = 2, .max = 8 },
413         .p2 = { .dot_limit = 225000,
414                 .p2_slow = 14, .p2_fast = 14 },
415 };
416
417 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
418         .dot = { .min = 25000, .max = 350000 },
419         .vco = { .min = 1760000, .max = 3510000 },
420         .n = { .min = 1, .max = 3 },
421         .m = { .min = 79, .max = 127 },
422         .m1 = { .min = 12, .max = 22 },
423         .m2 = { .min = 5, .max = 9 },
424         .p = { .min = 14, .max = 56 },
425         .p1 = { .min = 2, .max = 8 },
426         .p2 = { .dot_limit = 225000,
427                 .p2_slow = 7, .p2_fast = 7 },
428 };
429
430 /* LVDS 100mhz refclk limits. */
431 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
432         .dot = { .min = 25000, .max = 350000 },
433         .vco = { .min = 1760000, .max = 3510000 },
434         .n = { .min = 1, .max = 2 },
435         .m = { .min = 79, .max = 126 },
436         .m1 = { .min = 12, .max = 22 },
437         .m2 = { .min = 5, .max = 9 },
438         .p = { .min = 28, .max = 112 },
439         .p1 = { .min = 2, .max = 8 },
440         .p2 = { .dot_limit = 225000,
441                 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
445         .dot = { .min = 25000, .max = 350000 },
446         .vco = { .min = 1760000, .max = 3510000 },
447         .n = { .min = 1, .max = 3 },
448         .m = { .min = 79, .max = 126 },
449         .m1 = { .min = 12, .max = 22 },
450         .m2 = { .min = 5, .max = 9 },
451         .p = { .min = 14, .max = 42 },
452         .p1 = { .min = 2, .max = 6 },
453         .p2 = { .dot_limit = 225000,
454                 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 static const intel_limit_t intel_limits_vlv = {
458          /*
459           * These are the data rate limits (measured in fast clocks)
460           * since those are the strictest limits we have. The fast
461           * clock and actual rate limits are more relaxed, so checking
462           * them would make no difference.
463           */
464         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
465         .vco = { .min = 4000000, .max = 6000000 },
466         .n = { .min = 1, .max = 7 },
467         .m1 = { .min = 2, .max = 3 },
468         .m2 = { .min = 11, .max = 156 },
469         .p1 = { .min = 2, .max = 3 },
470         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
471 };
472
473 static const intel_limit_t intel_limits_chv = {
474         /*
475          * These are the data rate limits (measured in fast clocks)
476          * since those are the strictest limits we have.  The fast
477          * clock and actual rate limits are more relaxed, so checking
478          * them would make no difference.
479          */
480         .dot = { .min = 25000 * 5, .max = 540000 * 5},
481         .vco = { .min = 4800000, .max = 6480000 },
482         .n = { .min = 1, .max = 1 },
483         .m1 = { .min = 2, .max = 2 },
484         .m2 = { .min = 24 << 22, .max = 175 << 22 },
485         .p1 = { .min = 2, .max = 4 },
486         .p2 = { .p2_slow = 1, .p2_fast = 14 },
487 };
488
489 static const intel_limit_t intel_limits_bxt = {
490         /* FIXME: find real dot limits */
491         .dot = { .min = 0, .max = INT_MAX },
492         .vco = { .min = 4800000, .max = 6700000 },
493         .n = { .min = 1, .max = 1 },
494         .m1 = { .min = 2, .max = 2 },
495         /* FIXME: find real m2 limits */
496         .m2 = { .min = 2 << 22, .max = 255 << 22 },
497         .p1 = { .min = 2, .max = 4 },
498         .p2 = { .p2_slow = 1, .p2_fast = 20 },
499 };
500
501 static bool
502 needs_modeset(struct drm_crtc_state *state)
503 {
504         return drm_atomic_crtc_needs_modeset(state);
505 }
506
507 /**
508  * Returns whether any output on the specified pipe is of the specified type
509  */
510 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
511 {
512         struct drm_device *dev = crtc->base.dev;
513         struct intel_encoder *encoder;
514
515         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
516                 if (encoder->type == type)
517                         return true;
518
519         return false;
520 }
521
522 /**
523  * Returns whether any output on the specified pipe will have the specified
524  * type after a staged modeset is complete, i.e., the same as
525  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
526  * encoder->crtc.
527  */
528 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
529                                       int type)
530 {
531         struct drm_atomic_state *state = crtc_state->base.state;
532         struct drm_connector *connector;
533         struct drm_connector_state *connector_state;
534         struct intel_encoder *encoder;
535         int i, num_connectors = 0;
536
537         for_each_connector_in_state(state, connector, connector_state, i) {
538                 if (connector_state->crtc != crtc_state->base.crtc)
539                         continue;
540
541                 num_connectors++;
542
543                 encoder = to_intel_encoder(connector_state->best_encoder);
544                 if (encoder->type == type)
545                         return true;
546         }
547
548         WARN_ON(num_connectors == 0);
549
550         return false;
551 }
552
553 static const intel_limit_t *
554 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
555 {
556         struct drm_device *dev = crtc_state->base.crtc->dev;
557         const intel_limit_t *limit;
558
559         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
560                 if (intel_is_dual_link_lvds(dev)) {
561                         if (refclk == 100000)
562                                 limit = &intel_limits_ironlake_dual_lvds_100m;
563                         else
564                                 limit = &intel_limits_ironlake_dual_lvds;
565                 } else {
566                         if (refclk == 100000)
567                                 limit = &intel_limits_ironlake_single_lvds_100m;
568                         else
569                                 limit = &intel_limits_ironlake_single_lvds;
570                 }
571         } else
572                 limit = &intel_limits_ironlake_dac;
573
574         return limit;
575 }
576
577 static const intel_limit_t *
578 intel_g4x_limit(struct intel_crtc_state *crtc_state)
579 {
580         struct drm_device *dev = crtc_state->base.crtc->dev;
581         const intel_limit_t *limit;
582
583         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
584                 if (intel_is_dual_link_lvds(dev))
585                         limit = &intel_limits_g4x_dual_channel_lvds;
586                 else
587                         limit = &intel_limits_g4x_single_channel_lvds;
588         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
589                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
590                 limit = &intel_limits_g4x_hdmi;
591         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
592                 limit = &intel_limits_g4x_sdvo;
593         } else /* The option is for other outputs */
594                 limit = &intel_limits_i9xx_sdvo;
595
596         return limit;
597 }
598
599 static const intel_limit_t *
600 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
601 {
602         struct drm_device *dev = crtc_state->base.crtc->dev;
603         const intel_limit_t *limit;
604
605         if (IS_BROXTON(dev))
606                 limit = &intel_limits_bxt;
607         else if (HAS_PCH_SPLIT(dev))
608                 limit = intel_ironlake_limit(crtc_state, refclk);
609         else if (IS_G4X(dev)) {
610                 limit = intel_g4x_limit(crtc_state);
611         } else if (IS_PINEVIEW(dev)) {
612                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
613                         limit = &intel_limits_pineview_lvds;
614                 else
615                         limit = &intel_limits_pineview_sdvo;
616         } else if (IS_CHERRYVIEW(dev)) {
617                 limit = &intel_limits_chv;
618         } else if (IS_VALLEYVIEW(dev)) {
619                 limit = &intel_limits_vlv;
620         } else if (!IS_GEN2(dev)) {
621                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
622                         limit = &intel_limits_i9xx_lvds;
623                 else
624                         limit = &intel_limits_i9xx_sdvo;
625         } else {
626                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
627                         limit = &intel_limits_i8xx_lvds;
628                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
629                         limit = &intel_limits_i8xx_dvo;
630                 else
631                         limit = &intel_limits_i8xx_dac;
632         }
633         return limit;
634 }
635
636 /*
637  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
638  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
639  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
640  * The helpers' return value is the rate of the clock that is fed to the
641  * display engine's pipe which can be the above fast dot clock rate or a
642  * divided-down version of it.
643  */
644 /* m1 is reserved as 0 in Pineview, n is a ring counter */
645 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
646 {
647         clock->m = clock->m2 + 2;
648         clock->p = clock->p1 * clock->p2;
649         if (WARN_ON(clock->n == 0 || clock->p == 0))
650                 return 0;
651         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
652         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
653
654         return clock->dot;
655 }
656
657 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
658 {
659         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
660 }
661
662 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
663 {
664         clock->m = i9xx_dpll_compute_m(clock);
665         clock->p = clock->p1 * clock->p2;
666         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
667                 return 0;
668         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
669         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
670
671         return clock->dot;
672 }
673
674 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
675 {
676         clock->m = clock->m1 * clock->m2;
677         clock->p = clock->p1 * clock->p2;
678         if (WARN_ON(clock->n == 0 || clock->p == 0))
679                 return 0;
680         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
681         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
682
683         return clock->dot / 5;
684 }
685
686 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
687 {
688         clock->m = clock->m1 * clock->m2;
689         clock->p = clock->p1 * clock->p2;
690         if (WARN_ON(clock->n == 0 || clock->p == 0))
691                 return 0;
692         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
693                         clock->n << 22);
694         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
695
696         return clock->dot / 5;
697 }
698
699 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
700 /**
701  * Returns whether the given set of divisors are valid for a given refclk with
702  * the given connectors.
703  */
704
705 static bool intel_PLL_is_valid(struct drm_device *dev,
706                                const intel_limit_t *limit,
707                                const intel_clock_t *clock)
708 {
709         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
710                 INTELPllInvalid("n out of range\n");
711         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
712                 INTELPllInvalid("p1 out of range\n");
713         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
714                 INTELPllInvalid("m2 out of range\n");
715         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
716                 INTELPllInvalid("m1 out of range\n");
717
718         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
719                 if (clock->m1 <= clock->m2)
720                         INTELPllInvalid("m1 <= m2\n");
721
722         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
723                 if (clock->p < limit->p.min || limit->p.max < clock->p)
724                         INTELPllInvalid("p out of range\n");
725                 if (clock->m < limit->m.min || limit->m.max < clock->m)
726                         INTELPllInvalid("m out of range\n");
727         }
728
729         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
730                 INTELPllInvalid("vco out of range\n");
731         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
732          * connector, etc., rather than just a single range.
733          */
734         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
735                 INTELPllInvalid("dot out of range\n");
736
737         return true;
738 }
739
740 static int
741 i9xx_select_p2_div(const intel_limit_t *limit,
742                    const struct intel_crtc_state *crtc_state,
743                    int target)
744 {
745         struct drm_device *dev = crtc_state->base.crtc->dev;
746
747         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
748                 /*
749                  * For LVDS just rely on its current settings for dual-channel.
750                  * We haven't figured out how to reliably set up different
751                  * single/dual channel state, if we even can.
752                  */
753                 if (intel_is_dual_link_lvds(dev))
754                         return limit->p2.p2_fast;
755                 else
756                         return limit->p2.p2_slow;
757         } else {
758                 if (target < limit->p2.dot_limit)
759                         return limit->p2.p2_slow;
760                 else
761                         return limit->p2.p2_fast;
762         }
763 }
764
765 static bool
766 i9xx_find_best_dpll(const intel_limit_t *limit,
767                     struct intel_crtc_state *crtc_state,
768                     int target, int refclk, intel_clock_t *match_clock,
769                     intel_clock_t *best_clock)
770 {
771         struct drm_device *dev = crtc_state->base.crtc->dev;
772         intel_clock_t clock;
773         int err = target;
774
775         memset(best_clock, 0, sizeof(*best_clock));
776
777         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
778
779         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
780              clock.m1++) {
781                 for (clock.m2 = limit->m2.min;
782                      clock.m2 <= limit->m2.max; clock.m2++) {
783                         if (clock.m2 >= clock.m1)
784                                 break;
785                         for (clock.n = limit->n.min;
786                              clock.n <= limit->n.max; clock.n++) {
787                                 for (clock.p1 = limit->p1.min;
788                                         clock.p1 <= limit->p1.max; clock.p1++) {
789                                         int this_err;
790
791                                         i9xx_calc_dpll_params(refclk, &clock);
792                                         if (!intel_PLL_is_valid(dev, limit,
793                                                                 &clock))
794                                                 continue;
795                                         if (match_clock &&
796                                             clock.p != match_clock->p)
797                                                 continue;
798
799                                         this_err = abs(clock.dot - target);
800                                         if (this_err < err) {
801                                                 *best_clock = clock;
802                                                 err = this_err;
803                                         }
804                                 }
805                         }
806                 }
807         }
808
809         return (err != target);
810 }
811
812 static bool
813 pnv_find_best_dpll(const intel_limit_t *limit,
814                    struct intel_crtc_state *crtc_state,
815                    int target, int refclk, intel_clock_t *match_clock,
816                    intel_clock_t *best_clock)
817 {
818         struct drm_device *dev = crtc_state->base.crtc->dev;
819         intel_clock_t clock;
820         int err = target;
821
822         memset(best_clock, 0, sizeof(*best_clock));
823
824         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
825
826         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
827              clock.m1++) {
828                 for (clock.m2 = limit->m2.min;
829                      clock.m2 <= limit->m2.max; clock.m2++) {
830                         for (clock.n = limit->n.min;
831                              clock.n <= limit->n.max; clock.n++) {
832                                 for (clock.p1 = limit->p1.min;
833                                         clock.p1 <= limit->p1.max; clock.p1++) {
834                                         int this_err;
835
836                                         pnv_calc_dpll_params(refclk, &clock);
837                                         if (!intel_PLL_is_valid(dev, limit,
838                                                                 &clock))
839                                                 continue;
840                                         if (match_clock &&
841                                             clock.p != match_clock->p)
842                                                 continue;
843
844                                         this_err = abs(clock.dot - target);
845                                         if (this_err < err) {
846                                                 *best_clock = clock;
847                                                 err = this_err;
848                                         }
849                                 }
850                         }
851                 }
852         }
853
854         return (err != target);
855 }
856
857 static bool
858 g4x_find_best_dpll(const intel_limit_t *limit,
859                    struct intel_crtc_state *crtc_state,
860                    int target, int refclk, intel_clock_t *match_clock,
861                    intel_clock_t *best_clock)
862 {
863         struct drm_device *dev = crtc_state->base.crtc->dev;
864         intel_clock_t clock;
865         int max_n;
866         bool found = false;
867         /* approximately equals target * 0.00585 */
868         int err_most = (target >> 8) + (target >> 9);
869
870         memset(best_clock, 0, sizeof(*best_clock));
871
872         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
873
874         max_n = limit->n.max;
875         /* based on hardware requirement, prefer smaller n to precision */
876         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
877                 /* based on hardware requirement, prefere larger m1,m2 */
878                 for (clock.m1 = limit->m1.max;
879                      clock.m1 >= limit->m1.min; clock.m1--) {
880                         for (clock.m2 = limit->m2.max;
881                              clock.m2 >= limit->m2.min; clock.m2--) {
882                                 for (clock.p1 = limit->p1.max;
883                                      clock.p1 >= limit->p1.min; clock.p1--) {
884                                         int this_err;
885
886                                         i9xx_calc_dpll_params(refclk, &clock);
887                                         if (!intel_PLL_is_valid(dev, limit,
888                                                                 &clock))
889                                                 continue;
890
891                                         this_err = abs(clock.dot - target);
892                                         if (this_err < err_most) {
893                                                 *best_clock = clock;
894                                                 err_most = this_err;
895                                                 max_n = clock.n;
896                                                 found = true;
897                                         }
898                                 }
899                         }
900                 }
901         }
902         return found;
903 }
904
905 /*
906  * Check if the calculated PLL configuration is more optimal compared to the
907  * best configuration and error found so far. Return the calculated error.
908  */
909 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
910                                const intel_clock_t *calculated_clock,
911                                const intel_clock_t *best_clock,
912                                unsigned int best_error_ppm,
913                                unsigned int *error_ppm)
914 {
915         /*
916          * For CHV ignore the error and consider only the P value.
917          * Prefer a bigger P value based on HW requirements.
918          */
919         if (IS_CHERRYVIEW(dev)) {
920                 *error_ppm = 0;
921
922                 return calculated_clock->p > best_clock->p;
923         }
924
925         if (WARN_ON_ONCE(!target_freq))
926                 return false;
927
928         *error_ppm = div_u64(1000000ULL *
929                                 abs(target_freq - calculated_clock->dot),
930                              target_freq);
931         /*
932          * Prefer a better P value over a better (smaller) error if the error
933          * is small. Ensure this preference for future configurations too by
934          * setting the error to 0.
935          */
936         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
937                 *error_ppm = 0;
938
939                 return true;
940         }
941
942         return *error_ppm + 10 < best_error_ppm;
943 }
944
945 static bool
946 vlv_find_best_dpll(const intel_limit_t *limit,
947                    struct intel_crtc_state *crtc_state,
948                    int target, int refclk, intel_clock_t *match_clock,
949                    intel_clock_t *best_clock)
950 {
951         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
952         struct drm_device *dev = crtc->base.dev;
953         intel_clock_t clock;
954         unsigned int bestppm = 1000000;
955         /* min update 19.2 MHz */
956         int max_n = min(limit->n.max, refclk / 19200);
957         bool found = false;
958
959         target *= 5; /* fast clock */
960
961         memset(best_clock, 0, sizeof(*best_clock));
962
963         /* based on hardware requirement, prefer smaller n to precision */
964         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
965                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
966                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
967                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
968                                 clock.p = clock.p1 * clock.p2;
969                                 /* based on hardware requirement, prefer bigger m1,m2 values */
970                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
971                                         unsigned int ppm;
972
973                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
974                                                                      refclk * clock.m1);
975
976                                         vlv_calc_dpll_params(refclk, &clock);
977
978                                         if (!intel_PLL_is_valid(dev, limit,
979                                                                 &clock))
980                                                 continue;
981
982                                         if (!vlv_PLL_is_optimal(dev, target,
983                                                                 &clock,
984                                                                 best_clock,
985                                                                 bestppm, &ppm))
986                                                 continue;
987
988                                         *best_clock = clock;
989                                         bestppm = ppm;
990                                         found = true;
991                                 }
992                         }
993                 }
994         }
995
996         return found;
997 }
998
999 static bool
1000 chv_find_best_dpll(const intel_limit_t *limit,
1001                    struct intel_crtc_state *crtc_state,
1002                    int target, int refclk, intel_clock_t *match_clock,
1003                    intel_clock_t *best_clock)
1004 {
1005         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1006         struct drm_device *dev = crtc->base.dev;
1007         unsigned int best_error_ppm;
1008         intel_clock_t clock;
1009         uint64_t m2;
1010         int found = false;
1011
1012         memset(best_clock, 0, sizeof(*best_clock));
1013         best_error_ppm = 1000000;
1014
1015         /*
1016          * Based on hardware doc, the n always set to 1, and m1 always
1017          * set to 2.  If requires to support 200Mhz refclk, we need to
1018          * revisit this because n may not 1 anymore.
1019          */
1020         clock.n = 1, clock.m1 = 2;
1021         target *= 5;    /* fast clock */
1022
1023         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1024                 for (clock.p2 = limit->p2.p2_fast;
1025                                 clock.p2 >= limit->p2.p2_slow;
1026                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1027                         unsigned int error_ppm;
1028
1029                         clock.p = clock.p1 * clock.p2;
1030
1031                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1032                                         clock.n) << 22, refclk * clock.m1);
1033
1034                         if (m2 > INT_MAX/clock.m1)
1035                                 continue;
1036
1037                         clock.m2 = m2;
1038
1039                         chv_calc_dpll_params(refclk, &clock);
1040
1041                         if (!intel_PLL_is_valid(dev, limit, &clock))
1042                                 continue;
1043
1044                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1045                                                 best_error_ppm, &error_ppm))
1046                                 continue;
1047
1048                         *best_clock = clock;
1049                         best_error_ppm = error_ppm;
1050                         found = true;
1051                 }
1052         }
1053
1054         return found;
1055 }
1056
1057 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1058                         intel_clock_t *best_clock)
1059 {
1060         int refclk = i9xx_get_refclk(crtc_state, 0);
1061
1062         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1063                                   target_clock, refclk, NULL, best_clock);
1064 }
1065
1066 bool intel_crtc_active(struct drm_crtc *crtc)
1067 {
1068         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1069
1070         /* Be paranoid as we can arrive here with only partial
1071          * state retrieved from the hardware during setup.
1072          *
1073          * We can ditch the adjusted_mode.crtc_clock check as soon
1074          * as Haswell has gained clock readout/fastboot support.
1075          *
1076          * We can ditch the crtc->primary->fb check as soon as we can
1077          * properly reconstruct framebuffers.
1078          *
1079          * FIXME: The intel_crtc->active here should be switched to
1080          * crtc->state->active once we have proper CRTC states wired up
1081          * for atomic.
1082          */
1083         return intel_crtc->active && crtc->primary->state->fb &&
1084                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1085 }
1086
1087 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1088                                              enum pipe pipe)
1089 {
1090         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1091         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1092
1093         return intel_crtc->config->cpu_transcoder;
1094 }
1095
1096 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1097 {
1098         struct drm_i915_private *dev_priv = dev->dev_private;
1099         u32 reg = PIPEDSL(pipe);
1100         u32 line1, line2;
1101         u32 line_mask;
1102
1103         if (IS_GEN2(dev))
1104                 line_mask = DSL_LINEMASK_GEN2;
1105         else
1106                 line_mask = DSL_LINEMASK_GEN3;
1107
1108         line1 = I915_READ(reg) & line_mask;
1109         msleep(5);
1110         line2 = I915_READ(reg) & line_mask;
1111
1112         return line1 == line2;
1113 }
1114
1115 /*
1116  * intel_wait_for_pipe_off - wait for pipe to turn off
1117  * @crtc: crtc whose pipe to wait for
1118  *
1119  * After disabling a pipe, we can't wait for vblank in the usual way,
1120  * spinning on the vblank interrupt status bit, since we won't actually
1121  * see an interrupt when the pipe is disabled.
1122  *
1123  * On Gen4 and above:
1124  *   wait for the pipe register state bit to turn off
1125  *
1126  * Otherwise:
1127  *   wait for the display line value to settle (it usually
1128  *   ends up stopping at the start of the next frame).
1129  *
1130  */
1131 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1132 {
1133         struct drm_device *dev = crtc->base.dev;
1134         struct drm_i915_private *dev_priv = dev->dev_private;
1135         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1136         enum pipe pipe = crtc->pipe;
1137
1138         if (INTEL_INFO(dev)->gen >= 4) {
1139                 int reg = PIPECONF(cpu_transcoder);
1140
1141                 /* Wait for the Pipe State to go off */
1142                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1143                              100))
1144                         WARN(1, "pipe_off wait timed out\n");
1145         } else {
1146                 /* Wait for the display line to settle */
1147                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1148                         WARN(1, "pipe_off wait timed out\n");
1149         }
1150 }
1151
1152 static const char *state_string(bool enabled)
1153 {
1154         return enabled ? "on" : "off";
1155 }
1156
1157 /* Only for pre-ILK configs */
1158 void assert_pll(struct drm_i915_private *dev_priv,
1159                 enum pipe pipe, bool state)
1160 {
1161         u32 val;
1162         bool cur_state;
1163
1164         val = I915_READ(DPLL(pipe));
1165         cur_state = !!(val & DPLL_VCO_ENABLE);
1166         I915_STATE_WARN(cur_state != state,
1167              "PLL state assertion failure (expected %s, current %s)\n",
1168              state_string(state), state_string(cur_state));
1169 }
1170
1171 /* XXX: the dsi pll is shared between MIPI DSI ports */
1172 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1173 {
1174         u32 val;
1175         bool cur_state;
1176
1177         mutex_lock(&dev_priv->sb_lock);
1178         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1179         mutex_unlock(&dev_priv->sb_lock);
1180
1181         cur_state = val & DSI_PLL_VCO_EN;
1182         I915_STATE_WARN(cur_state != state,
1183              "DSI PLL state assertion failure (expected %s, current %s)\n",
1184              state_string(state), state_string(cur_state));
1185 }
1186 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1187 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1188
1189 struct intel_shared_dpll *
1190 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1191 {
1192         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1193
1194         if (crtc->config->shared_dpll < 0)
1195                 return NULL;
1196
1197         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1198 }
1199
1200 /* For ILK+ */
1201 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1202                         struct intel_shared_dpll *pll,
1203                         bool state)
1204 {
1205         bool cur_state;
1206         struct intel_dpll_hw_state hw_state;
1207
1208         if (WARN (!pll,
1209                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1210                 return;
1211
1212         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1213         I915_STATE_WARN(cur_state != state,
1214              "%s assertion failure (expected %s, current %s)\n",
1215              pll->name, state_string(state), state_string(cur_state));
1216 }
1217
1218 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1219                           enum pipe pipe, bool state)
1220 {
1221         bool cur_state;
1222         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223                                                                       pipe);
1224
1225         if (HAS_DDI(dev_priv->dev)) {
1226                 /* DDI does not have a specific FDI_TX register */
1227                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1228                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1229         } else {
1230                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1231                 cur_state = !!(val & FDI_TX_ENABLE);
1232         }
1233         I915_STATE_WARN(cur_state != state,
1234              "FDI TX state assertion failure (expected %s, current %s)\n",
1235              state_string(state), state_string(cur_state));
1236 }
1237 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1238 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1239
1240 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1241                           enum pipe pipe, bool state)
1242 {
1243         u32 val;
1244         bool cur_state;
1245
1246         val = I915_READ(FDI_RX_CTL(pipe));
1247         cur_state = !!(val & FDI_RX_ENABLE);
1248         I915_STATE_WARN(cur_state != state,
1249              "FDI RX state assertion failure (expected %s, current %s)\n",
1250              state_string(state), state_string(cur_state));
1251 }
1252 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1253 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1254
1255 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1256                                       enum pipe pipe)
1257 {
1258         u32 val;
1259
1260         /* ILK FDI PLL is always enabled */
1261         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1262                 return;
1263
1264         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1265         if (HAS_DDI(dev_priv->dev))
1266                 return;
1267
1268         val = I915_READ(FDI_TX_CTL(pipe));
1269         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1270 }
1271
1272 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1273                        enum pipe pipe, bool state)
1274 {
1275         u32 val;
1276         bool cur_state;
1277
1278         val = I915_READ(FDI_RX_CTL(pipe));
1279         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1280         I915_STATE_WARN(cur_state != state,
1281              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1282              state_string(state), state_string(cur_state));
1283 }
1284
1285 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1286                            enum pipe pipe)
1287 {
1288         struct drm_device *dev = dev_priv->dev;
1289         int pp_reg;
1290         u32 val;
1291         enum pipe panel_pipe = PIPE_A;
1292         bool locked = true;
1293
1294         if (WARN_ON(HAS_DDI(dev)))
1295                 return;
1296
1297         if (HAS_PCH_SPLIT(dev)) {
1298                 u32 port_sel;
1299
1300                 pp_reg = PCH_PP_CONTROL;
1301                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1302
1303                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1304                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1305                         panel_pipe = PIPE_B;
1306                 /* XXX: else fix for eDP */
1307         } else if (IS_VALLEYVIEW(dev)) {
1308                 /* presumably write lock depends on pipe, not port select */
1309                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1310                 panel_pipe = pipe;
1311         } else {
1312                 pp_reg = PP_CONTROL;
1313                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1314                         panel_pipe = PIPE_B;
1315         }
1316
1317         val = I915_READ(pp_reg);
1318         if (!(val & PANEL_POWER_ON) ||
1319             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1320                 locked = false;
1321
1322         I915_STATE_WARN(panel_pipe == pipe && locked,
1323              "panel assertion failure, pipe %c regs locked\n",
1324              pipe_name(pipe));
1325 }
1326
1327 static void assert_cursor(struct drm_i915_private *dev_priv,
1328                           enum pipe pipe, bool state)
1329 {
1330         struct drm_device *dev = dev_priv->dev;
1331         bool cur_state;
1332
1333         if (IS_845G(dev) || IS_I865G(dev))
1334                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1335         else
1336                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1337
1338         I915_STATE_WARN(cur_state != state,
1339              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1340              pipe_name(pipe), state_string(state), state_string(cur_state));
1341 }
1342 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1343 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1344
1345 void assert_pipe(struct drm_i915_private *dev_priv,
1346                  enum pipe pipe, bool state)
1347 {
1348         bool cur_state;
1349         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1350                                                                       pipe);
1351
1352         /* if we need the pipe quirk it must be always on */
1353         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1354             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1355                 state = true;
1356
1357         if (!intel_display_power_is_enabled(dev_priv,
1358                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1359                 cur_state = false;
1360         } else {
1361                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1362                 cur_state = !!(val & PIPECONF_ENABLE);
1363         }
1364
1365         I915_STATE_WARN(cur_state != state,
1366              "pipe %c assertion failure (expected %s, current %s)\n",
1367              pipe_name(pipe), state_string(state), state_string(cur_state));
1368 }
1369
1370 static void assert_plane(struct drm_i915_private *dev_priv,
1371                          enum plane plane, bool state)
1372 {
1373         u32 val;
1374         bool cur_state;
1375
1376         val = I915_READ(DSPCNTR(plane));
1377         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1378         I915_STATE_WARN(cur_state != state,
1379              "plane %c assertion failure (expected %s, current %s)\n",
1380              plane_name(plane), state_string(state), state_string(cur_state));
1381 }
1382
1383 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1384 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1385
1386 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1387                                    enum pipe pipe)
1388 {
1389         struct drm_device *dev = dev_priv->dev;
1390         int i;
1391
1392         /* Primary planes are fixed to pipes on gen4+ */
1393         if (INTEL_INFO(dev)->gen >= 4) {
1394                 u32 val = I915_READ(DSPCNTR(pipe));
1395                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1396                      "plane %c assertion failure, should be disabled but not\n",
1397                      plane_name(pipe));
1398                 return;
1399         }
1400
1401         /* Need to check both planes against the pipe */
1402         for_each_pipe(dev_priv, i) {
1403                 u32 val = I915_READ(DSPCNTR(i));
1404                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1405                         DISPPLANE_SEL_PIPE_SHIFT;
1406                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1407                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1408                      plane_name(i), pipe_name(pipe));
1409         }
1410 }
1411
1412 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1413                                     enum pipe pipe)
1414 {
1415         struct drm_device *dev = dev_priv->dev;
1416         int sprite;
1417
1418         if (INTEL_INFO(dev)->gen >= 9) {
1419                 for_each_sprite(dev_priv, pipe, sprite) {
1420                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1421                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1422                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1423                              sprite, pipe_name(pipe));
1424                 }
1425         } else if (IS_VALLEYVIEW(dev)) {
1426                 for_each_sprite(dev_priv, pipe, sprite) {
1427                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1428                         I915_STATE_WARN(val & SP_ENABLE,
1429                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1430                              sprite_name(pipe, sprite), pipe_name(pipe));
1431                 }
1432         } else if (INTEL_INFO(dev)->gen >= 7) {
1433                 u32 val = I915_READ(SPRCTL(pipe));
1434                 I915_STATE_WARN(val & SPRITE_ENABLE,
1435                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1436                      plane_name(pipe), pipe_name(pipe));
1437         } else if (INTEL_INFO(dev)->gen >= 5) {
1438                 u32 val = I915_READ(DVSCNTR(pipe));
1439                 I915_STATE_WARN(val & DVS_ENABLE,
1440                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1441                      plane_name(pipe), pipe_name(pipe));
1442         }
1443 }
1444
1445 static void assert_vblank_disabled(struct drm_crtc *crtc)
1446 {
1447         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1448                 drm_crtc_vblank_put(crtc);
1449 }
1450
1451 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1452 {
1453         u32 val;
1454         bool enabled;
1455
1456         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1457
1458         val = I915_READ(PCH_DREF_CONTROL);
1459         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1460                             DREF_SUPERSPREAD_SOURCE_MASK));
1461         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1462 }
1463
1464 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1465                                            enum pipe pipe)
1466 {
1467         u32 val;
1468         bool enabled;
1469
1470         val = I915_READ(PCH_TRANSCONF(pipe));
1471         enabled = !!(val & TRANS_ENABLE);
1472         I915_STATE_WARN(enabled,
1473              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1474              pipe_name(pipe));
1475 }
1476
1477 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1478                             enum pipe pipe, u32 port_sel, u32 val)
1479 {
1480         if ((val & DP_PORT_EN) == 0)
1481                 return false;
1482
1483         if (HAS_PCH_CPT(dev_priv->dev)) {
1484                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1485                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1486                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1487                         return false;
1488         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1489                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1490                         return false;
1491         } else {
1492                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1493                         return false;
1494         }
1495         return true;
1496 }
1497
1498 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1499                               enum pipe pipe, u32 val)
1500 {
1501         if ((val & SDVO_ENABLE) == 0)
1502                 return false;
1503
1504         if (HAS_PCH_CPT(dev_priv->dev)) {
1505                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1506                         return false;
1507         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1508                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1509                         return false;
1510         } else {
1511                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1512                         return false;
1513         }
1514         return true;
1515 }
1516
1517 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1518                               enum pipe pipe, u32 val)
1519 {
1520         if ((val & LVDS_PORT_EN) == 0)
1521                 return false;
1522
1523         if (HAS_PCH_CPT(dev_priv->dev)) {
1524                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1525                         return false;
1526         } else {
1527                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1528                         return false;
1529         }
1530         return true;
1531 }
1532
1533 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1534                               enum pipe pipe, u32 val)
1535 {
1536         if ((val & ADPA_DAC_ENABLE) == 0)
1537                 return false;
1538         if (HAS_PCH_CPT(dev_priv->dev)) {
1539                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1540                         return false;
1541         } else {
1542                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1543                         return false;
1544         }
1545         return true;
1546 }
1547
1548 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1549                                    enum pipe pipe, int reg, u32 port_sel)
1550 {
1551         u32 val = I915_READ(reg);
1552         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1553              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1554              reg, pipe_name(pipe));
1555
1556         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1557              && (val & DP_PIPEB_SELECT),
1558              "IBX PCH dp port still using transcoder B\n");
1559 }
1560
1561 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1562                                      enum pipe pipe, int reg)
1563 {
1564         u32 val = I915_READ(reg);
1565         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1566              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1567              reg, pipe_name(pipe));
1568
1569         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1570              && (val & SDVO_PIPE_B_SELECT),
1571              "IBX PCH hdmi port still using transcoder B\n");
1572 }
1573
1574 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1575                                       enum pipe pipe)
1576 {
1577         u32 val;
1578
1579         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1580         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1581         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1582
1583         val = I915_READ(PCH_ADPA);
1584         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1585              "PCH VGA enabled on transcoder %c, should be disabled\n",
1586              pipe_name(pipe));
1587
1588         val = I915_READ(PCH_LVDS);
1589         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1590              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1591              pipe_name(pipe));
1592
1593         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1594         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1595         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1596 }
1597
1598 static void vlv_enable_pll(struct intel_crtc *crtc,
1599                            const struct intel_crtc_state *pipe_config)
1600 {
1601         struct drm_device *dev = crtc->base.dev;
1602         struct drm_i915_private *dev_priv = dev->dev_private;
1603         int reg = DPLL(crtc->pipe);
1604         u32 dpll = pipe_config->dpll_hw_state.dpll;
1605
1606         assert_pipe_disabled(dev_priv, crtc->pipe);
1607
1608         /* No really, not for ILK+ */
1609         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1610
1611         /* PLL is protected by panel, make sure we can write it */
1612         if (IS_MOBILE(dev_priv->dev))
1613                 assert_panel_unlocked(dev_priv, crtc->pipe);
1614
1615         I915_WRITE(reg, dpll);
1616         POSTING_READ(reg);
1617         udelay(150);
1618
1619         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1620                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1621
1622         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1623         POSTING_READ(DPLL_MD(crtc->pipe));
1624
1625         /* We do this three times for luck */
1626         I915_WRITE(reg, dpll);
1627         POSTING_READ(reg);
1628         udelay(150); /* wait for warmup */
1629         I915_WRITE(reg, dpll);
1630         POSTING_READ(reg);
1631         udelay(150); /* wait for warmup */
1632         I915_WRITE(reg, dpll);
1633         POSTING_READ(reg);
1634         udelay(150); /* wait for warmup */
1635 }
1636
1637 static void chv_enable_pll(struct intel_crtc *crtc,
1638                            const struct intel_crtc_state *pipe_config)
1639 {
1640         struct drm_device *dev = crtc->base.dev;
1641         struct drm_i915_private *dev_priv = dev->dev_private;
1642         int pipe = crtc->pipe;
1643         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1644         u32 tmp;
1645
1646         assert_pipe_disabled(dev_priv, crtc->pipe);
1647
1648         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1649
1650         mutex_lock(&dev_priv->sb_lock);
1651
1652         /* Enable back the 10bit clock to display controller */
1653         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1654         tmp |= DPIO_DCLKP_EN;
1655         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1656
1657         mutex_unlock(&dev_priv->sb_lock);
1658
1659         /*
1660          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1661          */
1662         udelay(1);
1663
1664         /* Enable PLL */
1665         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1666
1667         /* Check PLL is locked */
1668         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1669                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1670
1671         /* not sure when this should be written */
1672         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1673         POSTING_READ(DPLL_MD(pipe));
1674 }
1675
1676 static int intel_num_dvo_pipes(struct drm_device *dev)
1677 {
1678         struct intel_crtc *crtc;
1679         int count = 0;
1680
1681         for_each_intel_crtc(dev, crtc)
1682                 count += crtc->base.state->active &&
1683                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1684
1685         return count;
1686 }
1687
1688 static void i9xx_enable_pll(struct intel_crtc *crtc)
1689 {
1690         struct drm_device *dev = crtc->base.dev;
1691         struct drm_i915_private *dev_priv = dev->dev_private;
1692         int reg = DPLL(crtc->pipe);
1693         u32 dpll = crtc->config->dpll_hw_state.dpll;
1694
1695         assert_pipe_disabled(dev_priv, crtc->pipe);
1696
1697         /* No really, not for ILK+ */
1698         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1699
1700         /* PLL is protected by panel, make sure we can write it */
1701         if (IS_MOBILE(dev) && !IS_I830(dev))
1702                 assert_panel_unlocked(dev_priv, crtc->pipe);
1703
1704         /* Enable DVO 2x clock on both PLLs if necessary */
1705         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1706                 /*
1707                  * It appears to be important that we don't enable this
1708                  * for the current pipe before otherwise configuring the
1709                  * PLL. No idea how this should be handled if multiple
1710                  * DVO outputs are enabled simultaneosly.
1711                  */
1712                 dpll |= DPLL_DVO_2X_MODE;
1713                 I915_WRITE(DPLL(!crtc->pipe),
1714                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1715         }
1716
1717         /*
1718          * Apparently we need to have VGA mode enabled prior to changing
1719          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1720          * dividers, even though the register value does change.
1721          */
1722         I915_WRITE(reg, 0);
1723
1724         I915_WRITE(reg, dpll);
1725
1726         /* Wait for the clocks to stabilize. */
1727         POSTING_READ(reg);
1728         udelay(150);
1729
1730         if (INTEL_INFO(dev)->gen >= 4) {
1731                 I915_WRITE(DPLL_MD(crtc->pipe),
1732                            crtc->config->dpll_hw_state.dpll_md);
1733         } else {
1734                 /* The pixel multiplier can only be updated once the
1735                  * DPLL is enabled and the clocks are stable.
1736                  *
1737                  * So write it again.
1738                  */
1739                 I915_WRITE(reg, dpll);
1740         }
1741
1742         /* We do this three times for luck */
1743         I915_WRITE(reg, dpll);
1744         POSTING_READ(reg);
1745         udelay(150); /* wait for warmup */
1746         I915_WRITE(reg, dpll);
1747         POSTING_READ(reg);
1748         udelay(150); /* wait for warmup */
1749         I915_WRITE(reg, dpll);
1750         POSTING_READ(reg);
1751         udelay(150); /* wait for warmup */
1752 }
1753
1754 /**
1755  * i9xx_disable_pll - disable a PLL
1756  * @dev_priv: i915 private structure
1757  * @pipe: pipe PLL to disable
1758  *
1759  * Disable the PLL for @pipe, making sure the pipe is off first.
1760  *
1761  * Note!  This is for pre-ILK only.
1762  */
1763 static void i9xx_disable_pll(struct intel_crtc *crtc)
1764 {
1765         struct drm_device *dev = crtc->base.dev;
1766         struct drm_i915_private *dev_priv = dev->dev_private;
1767         enum pipe pipe = crtc->pipe;
1768
1769         /* Disable DVO 2x clock on both PLLs if necessary */
1770         if (IS_I830(dev) &&
1771             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1772             !intel_num_dvo_pipes(dev)) {
1773                 I915_WRITE(DPLL(PIPE_B),
1774                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1775                 I915_WRITE(DPLL(PIPE_A),
1776                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1777         }
1778
1779         /* Don't disable pipe or pipe PLLs if needed */
1780         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1781             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1782                 return;
1783
1784         /* Make sure the pipe isn't still relying on us */
1785         assert_pipe_disabled(dev_priv, pipe);
1786
1787         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1788         POSTING_READ(DPLL(pipe));
1789 }
1790
1791 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1792 {
1793         u32 val;
1794
1795         /* Make sure the pipe isn't still relying on us */
1796         assert_pipe_disabled(dev_priv, pipe);
1797
1798         /*
1799          * Leave integrated clock source and reference clock enabled for pipe B.
1800          * The latter is needed for VGA hotplug / manual detection.
1801          */
1802         val = DPLL_VGA_MODE_DIS;
1803         if (pipe == PIPE_B)
1804                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1805         I915_WRITE(DPLL(pipe), val);
1806         POSTING_READ(DPLL(pipe));
1807
1808 }
1809
1810 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1811 {
1812         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1813         u32 val;
1814
1815         /* Make sure the pipe isn't still relying on us */
1816         assert_pipe_disabled(dev_priv, pipe);
1817
1818         /* Set PLL en = 0 */
1819         val = DPLL_SSC_REF_CLK_CHV |
1820                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1821         if (pipe != PIPE_A)
1822                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1823         I915_WRITE(DPLL(pipe), val);
1824         POSTING_READ(DPLL(pipe));
1825
1826         mutex_lock(&dev_priv->sb_lock);
1827
1828         /* Disable 10bit clock to display controller */
1829         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1830         val &= ~DPIO_DCLKP_EN;
1831         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1832
1833         mutex_unlock(&dev_priv->sb_lock);
1834 }
1835
1836 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1837                          struct intel_digital_port *dport,
1838                          unsigned int expected_mask)
1839 {
1840         u32 port_mask;
1841         int dpll_reg;
1842
1843         switch (dport->port) {
1844         case PORT_B:
1845                 port_mask = DPLL_PORTB_READY_MASK;
1846                 dpll_reg = DPLL(0);
1847                 break;
1848         case PORT_C:
1849                 port_mask = DPLL_PORTC_READY_MASK;
1850                 dpll_reg = DPLL(0);
1851                 expected_mask <<= 4;
1852                 break;
1853         case PORT_D:
1854                 port_mask = DPLL_PORTD_READY_MASK;
1855                 dpll_reg = DPIO_PHY_STATUS;
1856                 break;
1857         default:
1858                 BUG();
1859         }
1860
1861         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1862                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1863                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1864 }
1865
1866 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1867 {
1868         struct drm_device *dev = crtc->base.dev;
1869         struct drm_i915_private *dev_priv = dev->dev_private;
1870         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1871
1872         if (WARN_ON(pll == NULL))
1873                 return;
1874
1875         WARN_ON(!pll->config.crtc_mask);
1876         if (pll->active == 0) {
1877                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1878                 WARN_ON(pll->on);
1879                 assert_shared_dpll_disabled(dev_priv, pll);
1880
1881                 pll->mode_set(dev_priv, pll);
1882         }
1883 }
1884
1885 /**
1886  * intel_enable_shared_dpll - enable PCH PLL
1887  * @dev_priv: i915 private structure
1888  * @pipe: pipe PLL to enable
1889  *
1890  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1891  * drives the transcoder clock.
1892  */
1893 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1894 {
1895         struct drm_device *dev = crtc->base.dev;
1896         struct drm_i915_private *dev_priv = dev->dev_private;
1897         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1898
1899         if (WARN_ON(pll == NULL))
1900                 return;
1901
1902         if (WARN_ON(pll->config.crtc_mask == 0))
1903                 return;
1904
1905         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1906                       pll->name, pll->active, pll->on,
1907                       crtc->base.base.id);
1908
1909         if (pll->active++) {
1910                 WARN_ON(!pll->on);
1911                 assert_shared_dpll_enabled(dev_priv, pll);
1912                 return;
1913         }
1914         WARN_ON(pll->on);
1915
1916         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1917
1918         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1919         pll->enable(dev_priv, pll);
1920         pll->on = true;
1921 }
1922
1923 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1924 {
1925         struct drm_device *dev = crtc->base.dev;
1926         struct drm_i915_private *dev_priv = dev->dev_private;
1927         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1928
1929         /* PCH only available on ILK+ */
1930         if (INTEL_INFO(dev)->gen < 5)
1931                 return;
1932
1933         if (pll == NULL)
1934                 return;
1935
1936         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1937                 return;
1938
1939         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1940                       pll->name, pll->active, pll->on,
1941                       crtc->base.base.id);
1942
1943         if (WARN_ON(pll->active == 0)) {
1944                 assert_shared_dpll_disabled(dev_priv, pll);
1945                 return;
1946         }
1947
1948         assert_shared_dpll_enabled(dev_priv, pll);
1949         WARN_ON(!pll->on);
1950         if (--pll->active)
1951                 return;
1952
1953         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1954         pll->disable(dev_priv, pll);
1955         pll->on = false;
1956
1957         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1958 }
1959
1960 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1961                                            enum pipe pipe)
1962 {
1963         struct drm_device *dev = dev_priv->dev;
1964         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1966         uint32_t reg, val, pipeconf_val;
1967
1968         /* PCH only available on ILK+ */
1969         BUG_ON(!HAS_PCH_SPLIT(dev));
1970
1971         /* Make sure PCH DPLL is enabled */
1972         assert_shared_dpll_enabled(dev_priv,
1973                                    intel_crtc_to_shared_dpll(intel_crtc));
1974
1975         /* FDI must be feeding us bits for PCH ports */
1976         assert_fdi_tx_enabled(dev_priv, pipe);
1977         assert_fdi_rx_enabled(dev_priv, pipe);
1978
1979         if (HAS_PCH_CPT(dev)) {
1980                 /* Workaround: Set the timing override bit before enabling the
1981                  * pch transcoder. */
1982                 reg = TRANS_CHICKEN2(pipe);
1983                 val = I915_READ(reg);
1984                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1985                 I915_WRITE(reg, val);
1986         }
1987
1988         reg = PCH_TRANSCONF(pipe);
1989         val = I915_READ(reg);
1990         pipeconf_val = I915_READ(PIPECONF(pipe));
1991
1992         if (HAS_PCH_IBX(dev_priv->dev)) {
1993                 /*
1994                  * Make the BPC in transcoder be consistent with
1995                  * that in pipeconf reg. For HDMI we must use 8bpc
1996                  * here for both 8bpc and 12bpc.
1997                  */
1998                 val &= ~PIPECONF_BPC_MASK;
1999                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2000                         val |= PIPECONF_8BPC;
2001                 else
2002                         val |= pipeconf_val & PIPECONF_BPC_MASK;
2003         }
2004
2005         val &= ~TRANS_INTERLACE_MASK;
2006         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2007                 if (HAS_PCH_IBX(dev_priv->dev) &&
2008                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2009                         val |= TRANS_LEGACY_INTERLACED_ILK;
2010                 else
2011                         val |= TRANS_INTERLACED;
2012         else
2013                 val |= TRANS_PROGRESSIVE;
2014
2015         I915_WRITE(reg, val | TRANS_ENABLE);
2016         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2017                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2018 }
2019
2020 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2021                                       enum transcoder cpu_transcoder)
2022 {
2023         u32 val, pipeconf_val;
2024
2025         /* PCH only available on ILK+ */
2026         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2027
2028         /* FDI must be feeding us bits for PCH ports */
2029         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2030         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2031
2032         /* Workaround: set timing override bit. */
2033         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2034         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2035         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2036
2037         val = TRANS_ENABLE;
2038         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2039
2040         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2041             PIPECONF_INTERLACED_ILK)
2042                 val |= TRANS_INTERLACED;
2043         else
2044                 val |= TRANS_PROGRESSIVE;
2045
2046         I915_WRITE(LPT_TRANSCONF, val);
2047         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2048                 DRM_ERROR("Failed to enable PCH transcoder\n");
2049 }
2050
2051 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2052                                             enum pipe pipe)
2053 {
2054         struct drm_device *dev = dev_priv->dev;
2055         uint32_t reg, val;
2056
2057         /* FDI relies on the transcoder */
2058         assert_fdi_tx_disabled(dev_priv, pipe);
2059         assert_fdi_rx_disabled(dev_priv, pipe);
2060
2061         /* Ports must be off as well */
2062         assert_pch_ports_disabled(dev_priv, pipe);
2063
2064         reg = PCH_TRANSCONF(pipe);
2065         val = I915_READ(reg);
2066         val &= ~TRANS_ENABLE;
2067         I915_WRITE(reg, val);
2068         /* wait for PCH transcoder off, transcoder state */
2069         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2070                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2071
2072         if (!HAS_PCH_IBX(dev)) {
2073                 /* Workaround: Clear the timing override chicken bit again. */
2074                 reg = TRANS_CHICKEN2(pipe);
2075                 val = I915_READ(reg);
2076                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2077                 I915_WRITE(reg, val);
2078         }
2079 }
2080
2081 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2082 {
2083         u32 val;
2084
2085         val = I915_READ(LPT_TRANSCONF);
2086         val &= ~TRANS_ENABLE;
2087         I915_WRITE(LPT_TRANSCONF, val);
2088         /* wait for PCH transcoder off, transcoder state */
2089         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2090                 DRM_ERROR("Failed to disable PCH transcoder\n");
2091
2092         /* Workaround: clear timing override bit. */
2093         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2094         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2095         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2096 }
2097
2098 /**
2099  * intel_enable_pipe - enable a pipe, asserting requirements
2100  * @crtc: crtc responsible for the pipe
2101  *
2102  * Enable @crtc's pipe, making sure that various hardware specific requirements
2103  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2104  */
2105 static void intel_enable_pipe(struct intel_crtc *crtc)
2106 {
2107         struct drm_device *dev = crtc->base.dev;
2108         struct drm_i915_private *dev_priv = dev->dev_private;
2109         enum pipe pipe = crtc->pipe;
2110         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2111                                                                       pipe);
2112         enum pipe pch_transcoder;
2113         int reg;
2114         u32 val;
2115
2116         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2117
2118         assert_planes_disabled(dev_priv, pipe);
2119         assert_cursor_disabled(dev_priv, pipe);
2120         assert_sprites_disabled(dev_priv, pipe);
2121
2122         if (HAS_PCH_LPT(dev_priv->dev))
2123                 pch_transcoder = TRANSCODER_A;
2124         else
2125                 pch_transcoder = pipe;
2126
2127         /*
2128          * A pipe without a PLL won't actually be able to drive bits from
2129          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2130          * need the check.
2131          */
2132         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2133                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2134                         assert_dsi_pll_enabled(dev_priv);
2135                 else
2136                         assert_pll_enabled(dev_priv, pipe);
2137         else {
2138                 if (crtc->config->has_pch_encoder) {
2139                         /* if driving the PCH, we need FDI enabled */
2140                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2141                         assert_fdi_tx_pll_enabled(dev_priv,
2142                                                   (enum pipe) cpu_transcoder);
2143                 }
2144                 /* FIXME: assert CPU port conditions for SNB+ */
2145         }
2146
2147         reg = PIPECONF(cpu_transcoder);
2148         val = I915_READ(reg);
2149         if (val & PIPECONF_ENABLE) {
2150                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2151                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2152                 return;
2153         }
2154
2155         I915_WRITE(reg, val | PIPECONF_ENABLE);
2156         POSTING_READ(reg);
2157 }
2158
2159 /**
2160  * intel_disable_pipe - disable a pipe, asserting requirements
2161  * @crtc: crtc whose pipes is to be disabled
2162  *
2163  * Disable the pipe of @crtc, making sure that various hardware
2164  * specific requirements are met, if applicable, e.g. plane
2165  * disabled, panel fitter off, etc.
2166  *
2167  * Will wait until the pipe has shut down before returning.
2168  */
2169 static void intel_disable_pipe(struct intel_crtc *crtc)
2170 {
2171         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2172         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2173         enum pipe pipe = crtc->pipe;
2174         int reg;
2175         u32 val;
2176
2177         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2178
2179         /*
2180          * Make sure planes won't keep trying to pump pixels to us,
2181          * or we might hang the display.
2182          */
2183         assert_planes_disabled(dev_priv, pipe);
2184         assert_cursor_disabled(dev_priv, pipe);
2185         assert_sprites_disabled(dev_priv, pipe);
2186
2187         reg = PIPECONF(cpu_transcoder);
2188         val = I915_READ(reg);
2189         if ((val & PIPECONF_ENABLE) == 0)
2190                 return;
2191
2192         /*
2193          * Double wide has implications for planes
2194          * so best keep it disabled when not needed.
2195          */
2196         if (crtc->config->double_wide)
2197                 val &= ~PIPECONF_DOUBLE_WIDE;
2198
2199         /* Don't disable pipe or pipe PLLs if needed */
2200         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2201             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2202                 val &= ~PIPECONF_ENABLE;
2203
2204         I915_WRITE(reg, val);
2205         if ((val & PIPECONF_ENABLE) == 0)
2206                 intel_wait_for_pipe_off(crtc);
2207 }
2208
2209 static bool need_vtd_wa(struct drm_device *dev)
2210 {
2211 #ifdef CONFIG_INTEL_IOMMU
2212         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2213                 return true;
2214 #endif
2215         return false;
2216 }
2217
2218 unsigned int
2219 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2220                   uint64_t fb_format_modifier, unsigned int plane)
2221 {
2222         unsigned int tile_height;
2223         uint32_t pixel_bytes;
2224
2225         switch (fb_format_modifier) {
2226         case DRM_FORMAT_MOD_NONE:
2227                 tile_height = 1;
2228                 break;
2229         case I915_FORMAT_MOD_X_TILED:
2230                 tile_height = IS_GEN2(dev) ? 16 : 8;
2231                 break;
2232         case I915_FORMAT_MOD_Y_TILED:
2233                 tile_height = 32;
2234                 break;
2235         case I915_FORMAT_MOD_Yf_TILED:
2236                 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2237                 switch (pixel_bytes) {
2238                 default:
2239                 case 1:
2240                         tile_height = 64;
2241                         break;
2242                 case 2:
2243                 case 4:
2244                         tile_height = 32;
2245                         break;
2246                 case 8:
2247                         tile_height = 16;
2248                         break;
2249                 case 16:
2250                         WARN_ONCE(1,
2251                                   "128-bit pixels are not supported for display!");
2252                         tile_height = 16;
2253                         break;
2254                 }
2255                 break;
2256         default:
2257                 MISSING_CASE(fb_format_modifier);
2258                 tile_height = 1;
2259                 break;
2260         }
2261
2262         return tile_height;
2263 }
2264
2265 unsigned int
2266 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2267                       uint32_t pixel_format, uint64_t fb_format_modifier)
2268 {
2269         return ALIGN(height, intel_tile_height(dev, pixel_format,
2270                                                fb_format_modifier, 0));
2271 }
2272
2273 static int
2274 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2275                         const struct drm_plane_state *plane_state)
2276 {
2277         struct intel_rotation_info *info = &view->rotation_info;
2278         unsigned int tile_height, tile_pitch;
2279
2280         *view = i915_ggtt_view_normal;
2281
2282         if (!plane_state)
2283                 return 0;
2284
2285         if (!intel_rotation_90_or_270(plane_state->rotation))
2286                 return 0;
2287
2288         *view = i915_ggtt_view_rotated;
2289
2290         info->height = fb->height;
2291         info->pixel_format = fb->pixel_format;
2292         info->pitch = fb->pitches[0];
2293         info->uv_offset = fb->offsets[1];
2294         info->fb_modifier = fb->modifier[0];
2295
2296         tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2297                                         fb->modifier[0], 0);
2298         tile_pitch = PAGE_SIZE / tile_height;
2299         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2300         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2301         info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2302
2303         if (info->pixel_format == DRM_FORMAT_NV12) {
2304                 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2305                                                 fb->modifier[0], 1);
2306                 tile_pitch = PAGE_SIZE / tile_height;
2307                 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2308                 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2309                                                      tile_height);
2310                 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2311                                 PAGE_SIZE;
2312         }
2313
2314         return 0;
2315 }
2316
2317 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2318 {
2319         if (INTEL_INFO(dev_priv)->gen >= 9)
2320                 return 256 * 1024;
2321         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2322                  IS_VALLEYVIEW(dev_priv))
2323                 return 128 * 1024;
2324         else if (INTEL_INFO(dev_priv)->gen >= 4)
2325                 return 4 * 1024;
2326         else
2327                 return 0;
2328 }
2329
2330 int
2331 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2332                            struct drm_framebuffer *fb,
2333                            const struct drm_plane_state *plane_state,
2334                            struct intel_engine_cs *pipelined,
2335                            struct drm_i915_gem_request **pipelined_request)
2336 {
2337         struct drm_device *dev = fb->dev;
2338         struct drm_i915_private *dev_priv = dev->dev_private;
2339         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2340         struct i915_ggtt_view view;
2341         u32 alignment;
2342         int ret;
2343
2344         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2345
2346         switch (fb->modifier[0]) {
2347         case DRM_FORMAT_MOD_NONE:
2348                 alignment = intel_linear_alignment(dev_priv);
2349                 break;
2350         case I915_FORMAT_MOD_X_TILED:
2351                 if (INTEL_INFO(dev)->gen >= 9)
2352                         alignment = 256 * 1024;
2353                 else {
2354                         /* pin() will align the object as required by fence */
2355                         alignment = 0;
2356                 }
2357                 break;
2358         case I915_FORMAT_MOD_Y_TILED:
2359         case I915_FORMAT_MOD_Yf_TILED:
2360                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2361                           "Y tiling bo slipped through, driver bug!\n"))
2362                         return -EINVAL;
2363                 alignment = 1 * 1024 * 1024;
2364                 break;
2365         default:
2366                 MISSING_CASE(fb->modifier[0]);
2367                 return -EINVAL;
2368         }
2369
2370         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2371         if (ret)
2372                 return ret;
2373
2374         /* Note that the w/a also requires 64 PTE of padding following the
2375          * bo. We currently fill all unused PTE with the shadow page and so
2376          * we should always have valid PTE following the scanout preventing
2377          * the VT-d warning.
2378          */
2379         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2380                 alignment = 256 * 1024;
2381
2382         /*
2383          * Global gtt pte registers are special registers which actually forward
2384          * writes to a chunk of system memory. Which means that there is no risk
2385          * that the register values disappear as soon as we call
2386          * intel_runtime_pm_put(), so it is correct to wrap only the
2387          * pin/unpin/fence and not more.
2388          */
2389         intel_runtime_pm_get(dev_priv);
2390
2391         dev_priv->mm.interruptible = false;
2392         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2393                                                    pipelined_request, &view);
2394         if (ret)
2395                 goto err_interruptible;
2396
2397         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2398          * fence, whereas 965+ only requires a fence if using
2399          * framebuffer compression.  For simplicity, we always install
2400          * a fence as the cost is not that onerous.
2401          */
2402         if (view.type == I915_GGTT_VIEW_NORMAL) {
2403                 ret = i915_gem_object_get_fence(obj);
2404                 if (ret == -EDEADLK) {
2405                         /*
2406                          * -EDEADLK means there are no free fences
2407                          * no pending flips.
2408                          *
2409                          * This is propagated to atomic, but it uses
2410                          * -EDEADLK to force a locking recovery, so
2411                          * change the returned error to -EBUSY.
2412                          */
2413                         ret = -EBUSY;
2414                         goto err_unpin;
2415                 } else if (ret)
2416                         goto err_unpin;
2417
2418                 i915_gem_object_pin_fence(obj);
2419         }
2420
2421         dev_priv->mm.interruptible = true;
2422         intel_runtime_pm_put(dev_priv);
2423         return 0;
2424
2425 err_unpin:
2426         i915_gem_object_unpin_from_display_plane(obj, &view);
2427 err_interruptible:
2428         dev_priv->mm.interruptible = true;
2429         intel_runtime_pm_put(dev_priv);
2430         return ret;
2431 }
2432
2433 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2434                                const struct drm_plane_state *plane_state)
2435 {
2436         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2437         struct i915_ggtt_view view;
2438         int ret;
2439
2440         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2441
2442         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2443         WARN_ONCE(ret, "Couldn't get view from plane state!");
2444
2445         if (view.type == I915_GGTT_VIEW_NORMAL)
2446                 i915_gem_object_unpin_fence(obj);
2447
2448         i915_gem_object_unpin_from_display_plane(obj, &view);
2449 }
2450
2451 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2452  * is assumed to be a power-of-two. */
2453 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2454                                              int *x, int *y,
2455                                              unsigned int tiling_mode,
2456                                              unsigned int cpp,
2457                                              unsigned int pitch)
2458 {
2459         if (tiling_mode != I915_TILING_NONE) {
2460                 unsigned int tile_rows, tiles;
2461
2462                 tile_rows = *y / 8;
2463                 *y %= 8;
2464
2465                 tiles = *x / (512/cpp);
2466                 *x %= 512/cpp;
2467
2468                 return tile_rows * pitch * 8 + tiles * 4096;
2469         } else {
2470                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2471                 unsigned int offset;
2472
2473                 offset = *y * pitch + *x * cpp;
2474                 *y = (offset & alignment) / pitch;
2475                 *x = ((offset & alignment) - *y * pitch) / cpp;
2476                 return offset & ~alignment;
2477         }
2478 }
2479
2480 static int i9xx_format_to_fourcc(int format)
2481 {
2482         switch (format) {
2483         case DISPPLANE_8BPP:
2484                 return DRM_FORMAT_C8;
2485         case DISPPLANE_BGRX555:
2486                 return DRM_FORMAT_XRGB1555;
2487         case DISPPLANE_BGRX565:
2488                 return DRM_FORMAT_RGB565;
2489         default:
2490         case DISPPLANE_BGRX888:
2491                 return DRM_FORMAT_XRGB8888;
2492         case DISPPLANE_RGBX888:
2493                 return DRM_FORMAT_XBGR8888;
2494         case DISPPLANE_BGRX101010:
2495                 return DRM_FORMAT_XRGB2101010;
2496         case DISPPLANE_RGBX101010:
2497                 return DRM_FORMAT_XBGR2101010;
2498         }
2499 }
2500
2501 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2502 {
2503         switch (format) {
2504         case PLANE_CTL_FORMAT_RGB_565:
2505                 return DRM_FORMAT_RGB565;
2506         default:
2507         case PLANE_CTL_FORMAT_XRGB_8888:
2508                 if (rgb_order) {
2509                         if (alpha)
2510                                 return DRM_FORMAT_ABGR8888;
2511                         else
2512                                 return DRM_FORMAT_XBGR8888;
2513                 } else {
2514                         if (alpha)
2515                                 return DRM_FORMAT_ARGB8888;
2516                         else
2517                                 return DRM_FORMAT_XRGB8888;
2518                 }
2519         case PLANE_CTL_FORMAT_XRGB_2101010:
2520                 if (rgb_order)
2521                         return DRM_FORMAT_XBGR2101010;
2522                 else
2523                         return DRM_FORMAT_XRGB2101010;
2524         }
2525 }
2526
2527 static bool
2528 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2529                               struct intel_initial_plane_config *plane_config)
2530 {
2531         struct drm_device *dev = crtc->base.dev;
2532         struct drm_i915_private *dev_priv = to_i915(dev);
2533         struct drm_i915_gem_object *obj = NULL;
2534         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2535         struct drm_framebuffer *fb = &plane_config->fb->base;
2536         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2537         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2538                                     PAGE_SIZE);
2539
2540         size_aligned -= base_aligned;
2541
2542         if (plane_config->size == 0)
2543                 return false;
2544
2545         /* If the FB is too big, just don't use it since fbdev is not very
2546          * important and we should probably use that space with FBC or other
2547          * features. */
2548         if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2549                 return false;
2550
2551         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2552                                                              base_aligned,
2553                                                              base_aligned,
2554                                                              size_aligned);
2555         if (!obj)
2556                 return false;
2557
2558         obj->tiling_mode = plane_config->tiling;
2559         if (obj->tiling_mode == I915_TILING_X)
2560                 obj->stride = fb->pitches[0];
2561
2562         mode_cmd.pixel_format = fb->pixel_format;
2563         mode_cmd.width = fb->width;
2564         mode_cmd.height = fb->height;
2565         mode_cmd.pitches[0] = fb->pitches[0];
2566         mode_cmd.modifier[0] = fb->modifier[0];
2567         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2568
2569         mutex_lock(&dev->struct_mutex);
2570         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2571                                    &mode_cmd, obj)) {
2572                 DRM_DEBUG_KMS("intel fb init failed\n");
2573                 goto out_unref_obj;
2574         }
2575         mutex_unlock(&dev->struct_mutex);
2576
2577         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2578         return true;
2579
2580 out_unref_obj:
2581         drm_gem_object_unreference(&obj->base);
2582         mutex_unlock(&dev->struct_mutex);
2583         return false;
2584 }
2585
2586 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2587 static void
2588 update_state_fb(struct drm_plane *plane)
2589 {
2590         if (plane->fb == plane->state->fb)
2591                 return;
2592
2593         if (plane->state->fb)
2594                 drm_framebuffer_unreference(plane->state->fb);
2595         plane->state->fb = plane->fb;
2596         if (plane->state->fb)
2597                 drm_framebuffer_reference(plane->state->fb);
2598 }
2599
2600 static void
2601 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2602                              struct intel_initial_plane_config *plane_config)
2603 {
2604         struct drm_device *dev = intel_crtc->base.dev;
2605         struct drm_i915_private *dev_priv = dev->dev_private;
2606         struct drm_crtc *c;
2607         struct intel_crtc *i;
2608         struct drm_i915_gem_object *obj;
2609         struct drm_plane *primary = intel_crtc->base.primary;
2610         struct drm_plane_state *plane_state = primary->state;
2611         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2612         struct intel_plane *intel_plane = to_intel_plane(primary);
2613         struct drm_framebuffer *fb;
2614
2615         if (!plane_config->fb)
2616                 return;
2617
2618         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2619                 fb = &plane_config->fb->base;
2620                 goto valid_fb;
2621         }
2622
2623         kfree(plane_config->fb);
2624
2625         /*
2626          * Failed to alloc the obj, check to see if we should share
2627          * an fb with another CRTC instead
2628          */
2629         for_each_crtc(dev, c) {
2630                 i = to_intel_crtc(c);
2631
2632                 if (c == &intel_crtc->base)
2633                         continue;
2634
2635                 if (!i->active)
2636                         continue;
2637
2638                 fb = c->primary->fb;
2639                 if (!fb)
2640                         continue;
2641
2642                 obj = intel_fb_obj(fb);
2643                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2644                         drm_framebuffer_reference(fb);
2645                         goto valid_fb;
2646                 }
2647         }
2648
2649         /*
2650          * We've failed to reconstruct the BIOS FB.  Current display state
2651          * indicates that the primary plane is visible, but has a NULL FB,
2652          * which will lead to problems later if we don't fix it up.  The
2653          * simplest solution is to just disable the primary plane now and
2654          * pretend the BIOS never had it enabled.
2655          */
2656         to_intel_plane_state(plane_state)->visible = false;
2657         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2658         intel_pre_disable_primary(&intel_crtc->base);
2659         intel_plane->disable_plane(primary, &intel_crtc->base);
2660
2661         return;
2662
2663 valid_fb:
2664         plane_state->src_x = 0;
2665         plane_state->src_y = 0;
2666         plane_state->src_w = fb->width << 16;
2667         plane_state->src_h = fb->height << 16;
2668
2669         plane_state->crtc_x = 0;
2670         plane_state->crtc_y = 0;
2671         plane_state->crtc_w = fb->width;
2672         plane_state->crtc_h = fb->height;
2673
2674         obj = intel_fb_obj(fb);
2675         if (obj->tiling_mode != I915_TILING_NONE)
2676                 dev_priv->preserve_bios_swizzle = true;
2677
2678         drm_framebuffer_reference(fb);
2679         primary->fb = primary->state->fb = fb;
2680         primary->crtc = primary->state->crtc = &intel_crtc->base;
2681         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2682         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2683 }
2684
2685 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2686                                       struct drm_framebuffer *fb,
2687                                       int x, int y)
2688 {
2689         struct drm_device *dev = crtc->dev;
2690         struct drm_i915_private *dev_priv = dev->dev_private;
2691         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2692         struct drm_plane *primary = crtc->primary;
2693         bool visible = to_intel_plane_state(primary->state)->visible;
2694         struct drm_i915_gem_object *obj;
2695         int plane = intel_crtc->plane;
2696         unsigned long linear_offset;
2697         u32 dspcntr;
2698         u32 reg = DSPCNTR(plane);
2699         int pixel_size;
2700
2701         if (!visible || !fb) {
2702                 I915_WRITE(reg, 0);
2703                 if (INTEL_INFO(dev)->gen >= 4)
2704                         I915_WRITE(DSPSURF(plane), 0);
2705                 else
2706                         I915_WRITE(DSPADDR(plane), 0);
2707                 POSTING_READ(reg);
2708                 return;
2709         }
2710
2711         obj = intel_fb_obj(fb);
2712         if (WARN_ON(obj == NULL))
2713                 return;
2714
2715         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2716
2717         dspcntr = DISPPLANE_GAMMA_ENABLE;
2718
2719         dspcntr |= DISPLAY_PLANE_ENABLE;
2720
2721         if (INTEL_INFO(dev)->gen < 4) {
2722                 if (intel_crtc->pipe == PIPE_B)
2723                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2724
2725                 /* pipesrc and dspsize control the size that is scaled from,
2726                  * which should always be the user's requested size.
2727                  */
2728                 I915_WRITE(DSPSIZE(plane),
2729                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2730                            (intel_crtc->config->pipe_src_w - 1));
2731                 I915_WRITE(DSPPOS(plane), 0);
2732         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2733                 I915_WRITE(PRIMSIZE(plane),
2734                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2735                            (intel_crtc->config->pipe_src_w - 1));
2736                 I915_WRITE(PRIMPOS(plane), 0);
2737                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2738         }
2739
2740         switch (fb->pixel_format) {
2741         case DRM_FORMAT_C8:
2742                 dspcntr |= DISPPLANE_8BPP;
2743                 break;
2744         case DRM_FORMAT_XRGB1555:
2745                 dspcntr |= DISPPLANE_BGRX555;
2746                 break;
2747         case DRM_FORMAT_RGB565:
2748                 dspcntr |= DISPPLANE_BGRX565;
2749                 break;
2750         case DRM_FORMAT_XRGB8888:
2751                 dspcntr |= DISPPLANE_BGRX888;
2752                 break;
2753         case DRM_FORMAT_XBGR8888:
2754                 dspcntr |= DISPPLANE_RGBX888;
2755                 break;
2756         case DRM_FORMAT_XRGB2101010:
2757                 dspcntr |= DISPPLANE_BGRX101010;
2758                 break;
2759         case DRM_FORMAT_XBGR2101010:
2760                 dspcntr |= DISPPLANE_RGBX101010;
2761                 break;
2762         default:
2763                 BUG();
2764         }
2765
2766         if (INTEL_INFO(dev)->gen >= 4 &&
2767             obj->tiling_mode != I915_TILING_NONE)
2768                 dspcntr |= DISPPLANE_TILED;
2769
2770         if (IS_G4X(dev))
2771                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2772
2773         linear_offset = y * fb->pitches[0] + x * pixel_size;
2774
2775         if (INTEL_INFO(dev)->gen >= 4) {
2776                 intel_crtc->dspaddr_offset =
2777                         intel_gen4_compute_page_offset(dev_priv,
2778                                                        &x, &y, obj->tiling_mode,
2779                                                        pixel_size,
2780                                                        fb->pitches[0]);
2781                 linear_offset -= intel_crtc->dspaddr_offset;
2782         } else {
2783                 intel_crtc->dspaddr_offset = linear_offset;
2784         }
2785
2786         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2787                 dspcntr |= DISPPLANE_ROTATE_180;
2788
2789                 x += (intel_crtc->config->pipe_src_w - 1);
2790                 y += (intel_crtc->config->pipe_src_h - 1);
2791
2792                 /* Finding the last pixel of the last line of the display
2793                 data and adding to linear_offset*/
2794                 linear_offset +=
2795                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2796                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2797         }
2798
2799         intel_crtc->adjusted_x = x;
2800         intel_crtc->adjusted_y = y;
2801
2802         I915_WRITE(reg, dspcntr);
2803
2804         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2805         if (INTEL_INFO(dev)->gen >= 4) {
2806                 I915_WRITE(DSPSURF(plane),
2807                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2808                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2809                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2810         } else
2811                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2812         POSTING_READ(reg);
2813 }
2814
2815 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2816                                           struct drm_framebuffer *fb,
2817                                           int x, int y)
2818 {
2819         struct drm_device *dev = crtc->dev;
2820         struct drm_i915_private *dev_priv = dev->dev_private;
2821         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2822         struct drm_plane *primary = crtc->primary;
2823         bool visible = to_intel_plane_state(primary->state)->visible;
2824         struct drm_i915_gem_object *obj;
2825         int plane = intel_crtc->plane;
2826         unsigned long linear_offset;
2827         u32 dspcntr;
2828         u32 reg = DSPCNTR(plane);
2829         int pixel_size;
2830
2831         if (!visible || !fb) {
2832                 I915_WRITE(reg, 0);
2833                 I915_WRITE(DSPSURF(plane), 0);
2834                 POSTING_READ(reg);
2835                 return;
2836         }
2837
2838         obj = intel_fb_obj(fb);
2839         if (WARN_ON(obj == NULL))
2840                 return;
2841
2842         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2843
2844         dspcntr = DISPPLANE_GAMMA_ENABLE;
2845
2846         dspcntr |= DISPLAY_PLANE_ENABLE;
2847
2848         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2849                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2850
2851         switch (fb->pixel_format) {
2852         case DRM_FORMAT_C8:
2853                 dspcntr |= DISPPLANE_8BPP;
2854                 break;
2855         case DRM_FORMAT_RGB565:
2856                 dspcntr |= DISPPLANE_BGRX565;
2857                 break;
2858         case DRM_FORMAT_XRGB8888:
2859                 dspcntr |= DISPPLANE_BGRX888;
2860                 break;
2861         case DRM_FORMAT_XBGR8888:
2862                 dspcntr |= DISPPLANE_RGBX888;
2863                 break;
2864         case DRM_FORMAT_XRGB2101010:
2865                 dspcntr |= DISPPLANE_BGRX101010;
2866                 break;
2867         case DRM_FORMAT_XBGR2101010:
2868                 dspcntr |= DISPPLANE_RGBX101010;
2869                 break;
2870         default:
2871                 BUG();
2872         }
2873
2874         if (obj->tiling_mode != I915_TILING_NONE)
2875                 dspcntr |= DISPPLANE_TILED;
2876
2877         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2878                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2879
2880         linear_offset = y * fb->pitches[0] + x * pixel_size;
2881         intel_crtc->dspaddr_offset =
2882                 intel_gen4_compute_page_offset(dev_priv,
2883                                                &x, &y, obj->tiling_mode,
2884                                                pixel_size,
2885                                                fb->pitches[0]);
2886         linear_offset -= intel_crtc->dspaddr_offset;
2887         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2888                 dspcntr |= DISPPLANE_ROTATE_180;
2889
2890                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2891                         x += (intel_crtc->config->pipe_src_w - 1);
2892                         y += (intel_crtc->config->pipe_src_h - 1);
2893
2894                         /* Finding the last pixel of the last line of the display
2895                         data and adding to linear_offset*/
2896                         linear_offset +=
2897                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2898                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2899                 }
2900         }
2901
2902         intel_crtc->adjusted_x = x;
2903         intel_crtc->adjusted_y = y;
2904
2905         I915_WRITE(reg, dspcntr);
2906
2907         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2908         I915_WRITE(DSPSURF(plane),
2909                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2910         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2911                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2912         } else {
2913                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2914                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2915         }
2916         POSTING_READ(reg);
2917 }
2918
2919 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2920                               uint32_t pixel_format)
2921 {
2922         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2923
2924         /*
2925          * The stride is either expressed as a multiple of 64 bytes
2926          * chunks for linear buffers or in number of tiles for tiled
2927          * buffers.
2928          */
2929         switch (fb_modifier) {
2930         case DRM_FORMAT_MOD_NONE:
2931                 return 64;
2932         case I915_FORMAT_MOD_X_TILED:
2933                 if (INTEL_INFO(dev)->gen == 2)
2934                         return 128;
2935                 return 512;
2936         case I915_FORMAT_MOD_Y_TILED:
2937                 /* No need to check for old gens and Y tiling since this is
2938                  * about the display engine and those will be blocked before
2939                  * we get here.
2940                  */
2941                 return 128;
2942         case I915_FORMAT_MOD_Yf_TILED:
2943                 if (bits_per_pixel == 8)
2944                         return 64;
2945                 else
2946                         return 128;
2947         default:
2948                 MISSING_CASE(fb_modifier);
2949                 return 64;
2950         }
2951 }
2952
2953 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2954                            struct drm_i915_gem_object *obj,
2955                            unsigned int plane)
2956 {
2957         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2958         struct i915_vma *vma;
2959         u64 offset;
2960
2961         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2962                 view = &i915_ggtt_view_rotated;
2963
2964         vma = i915_gem_obj_to_ggtt_view(obj, view);
2965         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2966                 view->type))
2967                 return -1;
2968
2969         offset = vma->node.start;
2970
2971         if (plane == 1) {
2972                 offset += vma->ggtt_view.rotation_info.uv_start_page *
2973                           PAGE_SIZE;
2974         }
2975
2976         WARN_ON(upper_32_bits(offset));
2977
2978         return lower_32_bits(offset);
2979 }
2980
2981 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2982 {
2983         struct drm_device *dev = intel_crtc->base.dev;
2984         struct drm_i915_private *dev_priv = dev->dev_private;
2985
2986         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2987         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2988         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2989 }
2990
2991 /*
2992  * This function detaches (aka. unbinds) unused scalers in hardware
2993  */
2994 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2995 {
2996         struct intel_crtc_scaler_state *scaler_state;
2997         int i;
2998
2999         scaler_state = &intel_crtc->config->scaler_state;
3000
3001         /* loop through and disable scalers that aren't in use */
3002         for (i = 0; i < intel_crtc->num_scalers; i++) {
3003                 if (!scaler_state->scalers[i].in_use)
3004                         skl_detach_scaler(intel_crtc, i);
3005         }
3006 }
3007
3008 u32 skl_plane_ctl_format(uint32_t pixel_format)
3009 {
3010         switch (pixel_format) {
3011         case DRM_FORMAT_C8:
3012                 return PLANE_CTL_FORMAT_INDEXED;
3013         case DRM_FORMAT_RGB565:
3014                 return PLANE_CTL_FORMAT_RGB_565;
3015         case DRM_FORMAT_XBGR8888:
3016                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3017         case DRM_FORMAT_XRGB8888:
3018                 return PLANE_CTL_FORMAT_XRGB_8888;
3019         /*
3020          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3021          * to be already pre-multiplied. We need to add a knob (or a different
3022          * DRM_FORMAT) for user-space to configure that.
3023          */
3024         case DRM_FORMAT_ABGR8888:
3025                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3026                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3027         case DRM_FORMAT_ARGB8888:
3028                 return PLANE_CTL_FORMAT_XRGB_8888 |
3029                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3030         case DRM_FORMAT_XRGB2101010:
3031                 return PLANE_CTL_FORMAT_XRGB_2101010;
3032         case DRM_FORMAT_XBGR2101010:
3033                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3034         case DRM_FORMAT_YUYV:
3035                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3036         case DRM_FORMAT_YVYU:
3037                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3038         case DRM_FORMAT_UYVY:
3039                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3040         case DRM_FORMAT_VYUY:
3041                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3042         default:
3043                 MISSING_CASE(pixel_format);
3044         }
3045
3046         return 0;
3047 }
3048
3049 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3050 {
3051         switch (fb_modifier) {
3052         case DRM_FORMAT_MOD_NONE:
3053                 break;
3054         case I915_FORMAT_MOD_X_TILED:
3055                 return PLANE_CTL_TILED_X;
3056         case I915_FORMAT_MOD_Y_TILED:
3057                 return PLANE_CTL_TILED_Y;
3058         case I915_FORMAT_MOD_Yf_TILED:
3059                 return PLANE_CTL_TILED_YF;
3060         default:
3061                 MISSING_CASE(fb_modifier);
3062         }
3063
3064         return 0;
3065 }
3066
3067 u32 skl_plane_ctl_rotation(unsigned int rotation)
3068 {
3069         switch (rotation) {
3070         case BIT(DRM_ROTATE_0):
3071                 break;
3072         /*
3073          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3074          * while i915 HW rotation is clockwise, thats why this swapping.
3075          */
3076         case BIT(DRM_ROTATE_90):
3077                 return PLANE_CTL_ROTATE_270;
3078         case BIT(DRM_ROTATE_180):
3079                 return PLANE_CTL_ROTATE_180;
3080         case BIT(DRM_ROTATE_270):
3081                 return PLANE_CTL_ROTATE_90;
3082         default:
3083                 MISSING_CASE(rotation);
3084         }
3085
3086         return 0;
3087 }
3088
3089 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3090                                          struct drm_framebuffer *fb,
3091                                          int x, int y)
3092 {
3093         struct drm_device *dev = crtc->dev;
3094         struct drm_i915_private *dev_priv = dev->dev_private;
3095         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3096         struct drm_plane *plane = crtc->primary;
3097         bool visible = to_intel_plane_state(plane->state)->visible;
3098         struct drm_i915_gem_object *obj;
3099         int pipe = intel_crtc->pipe;
3100         u32 plane_ctl, stride_div, stride;
3101         u32 tile_height, plane_offset, plane_size;
3102         unsigned int rotation;
3103         int x_offset, y_offset;
3104         u32 surf_addr;
3105         struct intel_crtc_state *crtc_state = intel_crtc->config;
3106         struct intel_plane_state *plane_state;
3107         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3108         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3109         int scaler_id = -1;
3110
3111         plane_state = to_intel_plane_state(plane->state);
3112
3113         if (!visible || !fb) {
3114                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3115                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3116                 POSTING_READ(PLANE_CTL(pipe, 0));
3117                 return;
3118         }
3119
3120         plane_ctl = PLANE_CTL_ENABLE |
3121                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3122                     PLANE_CTL_PIPE_CSC_ENABLE;
3123
3124         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3125         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3126         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3127
3128         rotation = plane->state->rotation;
3129         plane_ctl |= skl_plane_ctl_rotation(rotation);
3130
3131         obj = intel_fb_obj(fb);
3132         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3133                                                fb->pixel_format);
3134         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3135
3136         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3137
3138         scaler_id = plane_state->scaler_id;
3139         src_x = plane_state->src.x1 >> 16;
3140         src_y = plane_state->src.y1 >> 16;
3141         src_w = drm_rect_width(&plane_state->src) >> 16;
3142         src_h = drm_rect_height(&plane_state->src) >> 16;
3143         dst_x = plane_state->dst.x1;
3144         dst_y = plane_state->dst.y1;
3145         dst_w = drm_rect_width(&plane_state->dst);
3146         dst_h = drm_rect_height(&plane_state->dst);
3147
3148         WARN_ON(x != src_x || y != src_y);
3149
3150         if (intel_rotation_90_or_270(rotation)) {
3151                 /* stride = Surface height in tiles */
3152                 tile_height = intel_tile_height(dev, fb->pixel_format,
3153                                                 fb->modifier[0], 0);
3154                 stride = DIV_ROUND_UP(fb->height, tile_height);
3155                 x_offset = stride * tile_height - y - src_h;
3156                 y_offset = x;
3157                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3158         } else {
3159                 stride = fb->pitches[0] / stride_div;
3160                 x_offset = x;
3161                 y_offset = y;
3162                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3163         }
3164         plane_offset = y_offset << 16 | x_offset;
3165
3166         intel_crtc->adjusted_x = x_offset;
3167         intel_crtc->adjusted_y = y_offset;
3168
3169         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3170         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3171         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3172         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3173
3174         if (scaler_id >= 0) {
3175                 uint32_t ps_ctrl = 0;
3176
3177                 WARN_ON(!dst_w || !dst_h);
3178                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3179                         crtc_state->scaler_state.scalers[scaler_id].mode;
3180                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3181                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3182                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3183                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3184                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3185         } else {
3186                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3187         }
3188
3189         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3190
3191         POSTING_READ(PLANE_SURF(pipe, 0));
3192 }
3193
3194 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3195 static int
3196 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3197                            int x, int y, enum mode_set_atomic state)
3198 {
3199         struct drm_device *dev = crtc->dev;
3200         struct drm_i915_private *dev_priv = dev->dev_private;
3201
3202         if (dev_priv->fbc.disable_fbc)
3203                 dev_priv->fbc.disable_fbc(dev_priv);
3204
3205         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3206
3207         return 0;
3208 }
3209
3210 static void intel_complete_page_flips(struct drm_device *dev)
3211 {
3212         struct drm_crtc *crtc;
3213
3214         for_each_crtc(dev, crtc) {
3215                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3216                 enum plane plane = intel_crtc->plane;
3217
3218                 intel_prepare_page_flip(dev, plane);
3219                 intel_finish_page_flip_plane(dev, plane);
3220         }
3221 }
3222
3223 static void intel_update_primary_planes(struct drm_device *dev)
3224 {
3225         struct drm_crtc *crtc;
3226
3227         for_each_crtc(dev, crtc) {
3228                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3229                 struct intel_plane_state *plane_state;
3230
3231                 drm_modeset_lock_crtc(crtc, &plane->base);
3232
3233                 plane_state = to_intel_plane_state(plane->base.state);
3234
3235                 if (plane_state->base.fb)
3236                         plane->commit_plane(&plane->base, plane_state);
3237
3238                 drm_modeset_unlock_crtc(crtc);
3239         }
3240 }
3241
3242 void intel_prepare_reset(struct drm_device *dev)
3243 {
3244         /* no reset support for gen2 */
3245         if (IS_GEN2(dev))
3246                 return;
3247
3248         /* reset doesn't touch the display */
3249         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3250                 return;
3251
3252         drm_modeset_lock_all(dev);
3253         /*
3254          * Disabling the crtcs gracefully seems nicer. Also the
3255          * g33 docs say we should at least disable all the planes.
3256          */
3257         intel_display_suspend(dev);
3258 }
3259
3260 void intel_finish_reset(struct drm_device *dev)
3261 {
3262         struct drm_i915_private *dev_priv = to_i915(dev);
3263
3264         /*
3265          * Flips in the rings will be nuked by the reset,
3266          * so complete all pending flips so that user space
3267          * will get its events and not get stuck.
3268          */
3269         intel_complete_page_flips(dev);
3270
3271         /* no reset support for gen2 */
3272         if (IS_GEN2(dev))
3273                 return;
3274
3275         /* reset doesn't touch the display */
3276         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3277                 /*
3278                  * Flips in the rings have been nuked by the reset,
3279                  * so update the base address of all primary
3280                  * planes to the the last fb to make sure we're
3281                  * showing the correct fb after a reset.
3282                  *
3283                  * FIXME: Atomic will make this obsolete since we won't schedule
3284                  * CS-based flips (which might get lost in gpu resets) any more.
3285                  */
3286                 intel_update_primary_planes(dev);
3287                 return;
3288         }
3289
3290         /*
3291          * The display has been reset as well,
3292          * so need a full re-initialization.
3293          */
3294         intel_runtime_pm_disable_interrupts(dev_priv);
3295         intel_runtime_pm_enable_interrupts(dev_priv);
3296
3297         intel_modeset_init_hw(dev);
3298
3299         spin_lock_irq(&dev_priv->irq_lock);
3300         if (dev_priv->display.hpd_irq_setup)
3301                 dev_priv->display.hpd_irq_setup(dev);
3302         spin_unlock_irq(&dev_priv->irq_lock);
3303
3304         intel_display_resume(dev);
3305
3306         intel_hpd_init(dev_priv);
3307
3308         drm_modeset_unlock_all(dev);
3309 }
3310
3311 static void
3312 intel_finish_fb(struct drm_framebuffer *old_fb)
3313 {
3314         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3315         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3316         bool was_interruptible = dev_priv->mm.interruptible;
3317         int ret;
3318
3319         /* Big Hammer, we also need to ensure that any pending
3320          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3321          * current scanout is retired before unpinning the old
3322          * framebuffer. Note that we rely on userspace rendering
3323          * into the buffer attached to the pipe they are waiting
3324          * on. If not, userspace generates a GPU hang with IPEHR
3325          * point to the MI_WAIT_FOR_EVENT.
3326          *
3327          * This should only fail upon a hung GPU, in which case we
3328          * can safely continue.
3329          */
3330         dev_priv->mm.interruptible = false;
3331         ret = i915_gem_object_wait_rendering(obj, true);
3332         dev_priv->mm.interruptible = was_interruptible;
3333
3334         WARN_ON(ret);
3335 }
3336
3337 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3338 {
3339         struct drm_device *dev = crtc->dev;
3340         struct drm_i915_private *dev_priv = dev->dev_private;
3341         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3342         bool pending;
3343
3344         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3345             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3346                 return false;
3347
3348         spin_lock_irq(&dev->event_lock);
3349         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3350         spin_unlock_irq(&dev->event_lock);
3351
3352         return pending;
3353 }
3354
3355 static void intel_update_pipe_config(struct intel_crtc *crtc,
3356                                      struct intel_crtc_state *old_crtc_state)
3357 {
3358         struct drm_device *dev = crtc->base.dev;
3359         struct drm_i915_private *dev_priv = dev->dev_private;
3360         struct intel_crtc_state *pipe_config =
3361                 to_intel_crtc_state(crtc->base.state);
3362
3363         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3364         crtc->base.mode = crtc->base.state->mode;
3365
3366         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3367                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3368                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3369
3370         if (HAS_DDI(dev))
3371                 intel_set_pipe_csc(&crtc->base);
3372
3373         /*
3374          * Update pipe size and adjust fitter if needed: the reason for this is
3375          * that in compute_mode_changes we check the native mode (not the pfit
3376          * mode) to see if we can flip rather than do a full mode set. In the
3377          * fastboot case, we'll flip, but if we don't update the pipesrc and
3378          * pfit state, we'll end up with a big fb scanned out into the wrong
3379          * sized surface.
3380          */
3381
3382         I915_WRITE(PIPESRC(crtc->pipe),
3383                    ((pipe_config->pipe_src_w - 1) << 16) |
3384                    (pipe_config->pipe_src_h - 1));
3385
3386         /* on skylake this is done by detaching scalers */
3387         if (INTEL_INFO(dev)->gen >= 9) {
3388                 skl_detach_scalers(crtc);
3389
3390                 if (pipe_config->pch_pfit.enabled)
3391                         skylake_pfit_enable(crtc);
3392         } else if (HAS_PCH_SPLIT(dev)) {
3393                 if (pipe_config->pch_pfit.enabled)
3394                         ironlake_pfit_enable(crtc);
3395                 else if (old_crtc_state->pch_pfit.enabled)
3396                         ironlake_pfit_disable(crtc, true);
3397         }
3398 }
3399
3400 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3401 {
3402         struct drm_device *dev = crtc->dev;
3403         struct drm_i915_private *dev_priv = dev->dev_private;
3404         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3405         int pipe = intel_crtc->pipe;
3406         u32 reg, temp;
3407
3408         /* enable normal train */
3409         reg = FDI_TX_CTL(pipe);
3410         temp = I915_READ(reg);
3411         if (IS_IVYBRIDGE(dev)) {
3412                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3413                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3414         } else {
3415                 temp &= ~FDI_LINK_TRAIN_NONE;
3416                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3417         }
3418         I915_WRITE(reg, temp);
3419
3420         reg = FDI_RX_CTL(pipe);
3421         temp = I915_READ(reg);
3422         if (HAS_PCH_CPT(dev)) {
3423                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3424                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3425         } else {
3426                 temp &= ~FDI_LINK_TRAIN_NONE;
3427                 temp |= FDI_LINK_TRAIN_NONE;
3428         }
3429         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3430
3431         /* wait one idle pattern time */
3432         POSTING_READ(reg);
3433         udelay(1000);
3434
3435         /* IVB wants error correction enabled */
3436         if (IS_IVYBRIDGE(dev))
3437                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3438                            FDI_FE_ERRC_ENABLE);
3439 }
3440
3441 /* The FDI link training functions for ILK/Ibexpeak. */
3442 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3443 {
3444         struct drm_device *dev = crtc->dev;
3445         struct drm_i915_private *dev_priv = dev->dev_private;
3446         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3447         int pipe = intel_crtc->pipe;
3448         u32 reg, temp, tries;
3449
3450         /* FDI needs bits from pipe first */
3451         assert_pipe_enabled(dev_priv, pipe);
3452
3453         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3454            for train result */
3455         reg = FDI_RX_IMR(pipe);
3456         temp = I915_READ(reg);
3457         temp &= ~FDI_RX_SYMBOL_LOCK;
3458         temp &= ~FDI_RX_BIT_LOCK;
3459         I915_WRITE(reg, temp);
3460         I915_READ(reg);
3461         udelay(150);
3462
3463         /* enable CPU FDI TX and PCH FDI RX */
3464         reg = FDI_TX_CTL(pipe);
3465         temp = I915_READ(reg);
3466         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3467         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3468         temp &= ~FDI_LINK_TRAIN_NONE;
3469         temp |= FDI_LINK_TRAIN_PATTERN_1;
3470         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3471
3472         reg = FDI_RX_CTL(pipe);
3473         temp = I915_READ(reg);
3474         temp &= ~FDI_LINK_TRAIN_NONE;
3475         temp |= FDI_LINK_TRAIN_PATTERN_1;
3476         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3477
3478         POSTING_READ(reg);
3479         udelay(150);
3480
3481         /* Ironlake workaround, enable clock pointer after FDI enable*/
3482         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3483         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3484                    FDI_RX_PHASE_SYNC_POINTER_EN);
3485
3486         reg = FDI_RX_IIR(pipe);
3487         for (tries = 0; tries < 5; tries++) {
3488                 temp = I915_READ(reg);
3489                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3490
3491                 if ((temp & FDI_RX_BIT_LOCK)) {
3492                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3493                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3494                         break;
3495                 }
3496         }
3497         if (tries == 5)
3498                 DRM_ERROR("FDI train 1 fail!\n");
3499
3500         /* Train 2 */
3501         reg = FDI_TX_CTL(pipe);
3502         temp = I915_READ(reg);
3503         temp &= ~FDI_LINK_TRAIN_NONE;
3504         temp |= FDI_LINK_TRAIN_PATTERN_2;
3505         I915_WRITE(reg, temp);
3506
3507         reg = FDI_RX_CTL(pipe);
3508         temp = I915_READ(reg);
3509         temp &= ~FDI_LINK_TRAIN_NONE;
3510         temp |= FDI_LINK_TRAIN_PATTERN_2;
3511         I915_WRITE(reg, temp);
3512
3513         POSTING_READ(reg);
3514         udelay(150);
3515
3516         reg = FDI_RX_IIR(pipe);
3517         for (tries = 0; tries < 5; tries++) {
3518                 temp = I915_READ(reg);
3519                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3520
3521                 if (temp & FDI_RX_SYMBOL_LOCK) {
3522                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3523                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3524                         break;
3525                 }
3526         }
3527         if (tries == 5)
3528                 DRM_ERROR("FDI train 2 fail!\n");
3529
3530         DRM_DEBUG_KMS("FDI train done\n");
3531
3532 }
3533
3534 static const int snb_b_fdi_train_param[] = {
3535         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3536         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3537         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3538         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3539 };
3540
3541 /* The FDI link training functions for SNB/Cougarpoint. */
3542 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3543 {
3544         struct drm_device *dev = crtc->dev;
3545         struct drm_i915_private *dev_priv = dev->dev_private;
3546         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3547         int pipe = intel_crtc->pipe;
3548         u32 reg, temp, i, retry;
3549
3550         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3551            for train result */
3552         reg = FDI_RX_IMR(pipe);
3553         temp = I915_READ(reg);
3554         temp &= ~FDI_RX_SYMBOL_LOCK;
3555         temp &= ~FDI_RX_BIT_LOCK;
3556         I915_WRITE(reg, temp);
3557
3558         POSTING_READ(reg);
3559         udelay(150);
3560
3561         /* enable CPU FDI TX and PCH FDI RX */
3562         reg = FDI_TX_CTL(pipe);
3563         temp = I915_READ(reg);
3564         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3565         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3566         temp &= ~FDI_LINK_TRAIN_NONE;
3567         temp |= FDI_LINK_TRAIN_PATTERN_1;
3568         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3569         /* SNB-B */
3570         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3571         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3572
3573         I915_WRITE(FDI_RX_MISC(pipe),
3574                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3575
3576         reg = FDI_RX_CTL(pipe);
3577         temp = I915_READ(reg);
3578         if (HAS_PCH_CPT(dev)) {
3579                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3580                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3581         } else {
3582                 temp &= ~FDI_LINK_TRAIN_NONE;
3583                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3584         }
3585         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3586
3587         POSTING_READ(reg);
3588         udelay(150);
3589
3590         for (i = 0; i < 4; i++) {
3591                 reg = FDI_TX_CTL(pipe);
3592                 temp = I915_READ(reg);
3593                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3594                 temp |= snb_b_fdi_train_param[i];
3595                 I915_WRITE(reg, temp);
3596
3597                 POSTING_READ(reg);
3598                 udelay(500);
3599
3600                 for (retry = 0; retry < 5; retry++) {
3601                         reg = FDI_RX_IIR(pipe);
3602                         temp = I915_READ(reg);
3603                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3604                         if (temp & FDI_RX_BIT_LOCK) {
3605                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3606                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3607                                 break;
3608                         }
3609                         udelay(50);
3610                 }
3611                 if (retry < 5)
3612                         break;
3613         }
3614         if (i == 4)
3615                 DRM_ERROR("FDI train 1 fail!\n");
3616
3617         /* Train 2 */
3618         reg = FDI_TX_CTL(pipe);
3619         temp = I915_READ(reg);
3620         temp &= ~FDI_LINK_TRAIN_NONE;
3621         temp |= FDI_LINK_TRAIN_PATTERN_2;
3622         if (IS_GEN6(dev)) {
3623                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3624                 /* SNB-B */
3625                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3626         }
3627         I915_WRITE(reg, temp);
3628
3629         reg = FDI_RX_CTL(pipe);
3630         temp = I915_READ(reg);
3631         if (HAS_PCH_CPT(dev)) {
3632                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3633                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3634         } else {
3635                 temp &= ~FDI_LINK_TRAIN_NONE;
3636                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3637         }
3638         I915_WRITE(reg, temp);
3639
3640         POSTING_READ(reg);
3641         udelay(150);
3642
3643         for (i = 0; i < 4; i++) {
3644                 reg = FDI_TX_CTL(pipe);
3645                 temp = I915_READ(reg);
3646                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3647                 temp |= snb_b_fdi_train_param[i];
3648                 I915_WRITE(reg, temp);
3649
3650                 POSTING_READ(reg);
3651                 udelay(500);
3652
3653                 for (retry = 0; retry < 5; retry++) {
3654                         reg = FDI_RX_IIR(pipe);
3655                         temp = I915_READ(reg);
3656                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3657                         if (temp & FDI_RX_SYMBOL_LOCK) {
3658                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3659                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3660                                 break;
3661                         }
3662                         udelay(50);
3663                 }
3664                 if (retry < 5)
3665                         break;
3666         }
3667         if (i == 4)
3668                 DRM_ERROR("FDI train 2 fail!\n");
3669
3670         DRM_DEBUG_KMS("FDI train done.\n");
3671 }
3672
3673 /* Manual link training for Ivy Bridge A0 parts */
3674 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3675 {
3676         struct drm_device *dev = crtc->dev;
3677         struct drm_i915_private *dev_priv = dev->dev_private;
3678         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3679         int pipe = intel_crtc->pipe;
3680         u32 reg, temp, i, j;
3681
3682         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3683            for train result */
3684         reg = FDI_RX_IMR(pipe);
3685         temp = I915_READ(reg);
3686         temp &= ~FDI_RX_SYMBOL_LOCK;
3687         temp &= ~FDI_RX_BIT_LOCK;
3688         I915_WRITE(reg, temp);
3689
3690         POSTING_READ(reg);
3691         udelay(150);
3692
3693         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3694                       I915_READ(FDI_RX_IIR(pipe)));
3695
3696         /* Try each vswing and preemphasis setting twice before moving on */
3697         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3698                 /* disable first in case we need to retry */
3699                 reg = FDI_TX_CTL(pipe);
3700                 temp = I915_READ(reg);
3701                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3702                 temp &= ~FDI_TX_ENABLE;
3703                 I915_WRITE(reg, temp);
3704
3705                 reg = FDI_RX_CTL(pipe);
3706                 temp = I915_READ(reg);
3707                 temp &= ~FDI_LINK_TRAIN_AUTO;
3708                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3709                 temp &= ~FDI_RX_ENABLE;
3710                 I915_WRITE(reg, temp);
3711
3712                 /* enable CPU FDI TX and PCH FDI RX */
3713                 reg = FDI_TX_CTL(pipe);
3714                 temp = I915_READ(reg);
3715                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3716                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3717                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3718                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3719                 temp |= snb_b_fdi_train_param[j/2];
3720                 temp |= FDI_COMPOSITE_SYNC;
3721                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3722
3723                 I915_WRITE(FDI_RX_MISC(pipe),
3724                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3725
3726                 reg = FDI_RX_CTL(pipe);
3727                 temp = I915_READ(reg);
3728                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3729                 temp |= FDI_COMPOSITE_SYNC;
3730                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3731
3732                 POSTING_READ(reg);
3733                 udelay(1); /* should be 0.5us */
3734
3735                 for (i = 0; i < 4; i++) {
3736                         reg = FDI_RX_IIR(pipe);
3737                         temp = I915_READ(reg);
3738                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3739
3740                         if (temp & FDI_RX_BIT_LOCK ||
3741                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3742                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3743                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3744                                               i);
3745                                 break;
3746                         }
3747                         udelay(1); /* should be 0.5us */
3748                 }
3749                 if (i == 4) {
3750                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3751                         continue;
3752                 }
3753
3754                 /* Train 2 */
3755                 reg = FDI_TX_CTL(pipe);
3756                 temp = I915_READ(reg);
3757                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3758                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3759                 I915_WRITE(reg, temp);
3760
3761                 reg = FDI_RX_CTL(pipe);
3762                 temp = I915_READ(reg);
3763                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3764                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3765                 I915_WRITE(reg, temp);
3766
3767                 POSTING_READ(reg);
3768                 udelay(2); /* should be 1.5us */
3769
3770                 for (i = 0; i < 4; i++) {
3771                         reg = FDI_RX_IIR(pipe);
3772                         temp = I915_READ(reg);
3773                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3774
3775                         if (temp & FDI_RX_SYMBOL_LOCK ||
3776                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3777                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3778                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3779                                               i);
3780                                 goto train_done;
3781                         }
3782                         udelay(2); /* should be 1.5us */
3783                 }
3784                 if (i == 4)
3785                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3786         }
3787
3788 train_done:
3789         DRM_DEBUG_KMS("FDI train done.\n");
3790 }
3791
3792 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3793 {
3794         struct drm_device *dev = intel_crtc->base.dev;
3795         struct drm_i915_private *dev_priv = dev->dev_private;
3796         int pipe = intel_crtc->pipe;
3797         u32 reg, temp;
3798
3799
3800         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3801         reg = FDI_RX_CTL(pipe);
3802         temp = I915_READ(reg);
3803         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3804         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3805         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3806         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3807
3808         POSTING_READ(reg);
3809         udelay(200);
3810
3811         /* Switch from Rawclk to PCDclk */
3812         temp = I915_READ(reg);
3813         I915_WRITE(reg, temp | FDI_PCDCLK);
3814
3815         POSTING_READ(reg);
3816         udelay(200);
3817
3818         /* Enable CPU FDI TX PLL, always on for Ironlake */
3819         reg = FDI_TX_CTL(pipe);
3820         temp = I915_READ(reg);
3821         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3822                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3823
3824                 POSTING_READ(reg);
3825                 udelay(100);
3826         }
3827 }
3828
3829 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3830 {
3831         struct drm_device *dev = intel_crtc->base.dev;
3832         struct drm_i915_private *dev_priv = dev->dev_private;
3833         int pipe = intel_crtc->pipe;
3834         u32 reg, temp;
3835
3836         /* Switch from PCDclk to Rawclk */
3837         reg = FDI_RX_CTL(pipe);
3838         temp = I915_READ(reg);
3839         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3840
3841         /* Disable CPU FDI TX PLL */
3842         reg = FDI_TX_CTL(pipe);
3843         temp = I915_READ(reg);
3844         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3845
3846         POSTING_READ(reg);
3847         udelay(100);
3848
3849         reg = FDI_RX_CTL(pipe);
3850         temp = I915_READ(reg);
3851         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3852
3853         /* Wait for the clocks to turn off. */
3854         POSTING_READ(reg);
3855         udelay(100);
3856 }
3857
3858 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3859 {
3860         struct drm_device *dev = crtc->dev;
3861         struct drm_i915_private *dev_priv = dev->dev_private;
3862         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3863         int pipe = intel_crtc->pipe;
3864         u32 reg, temp;
3865
3866         /* disable CPU FDI tx and PCH FDI rx */
3867         reg = FDI_TX_CTL(pipe);
3868         temp = I915_READ(reg);
3869         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3870         POSTING_READ(reg);
3871
3872         reg = FDI_RX_CTL(pipe);
3873         temp = I915_READ(reg);
3874         temp &= ~(0x7 << 16);
3875         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3876         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3877
3878         POSTING_READ(reg);
3879         udelay(100);
3880
3881         /* Ironlake workaround, disable clock pointer after downing FDI */
3882         if (HAS_PCH_IBX(dev))
3883                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3884
3885         /* still set train pattern 1 */
3886         reg = FDI_TX_CTL(pipe);
3887         temp = I915_READ(reg);
3888         temp &= ~FDI_LINK_TRAIN_NONE;
3889         temp |= FDI_LINK_TRAIN_PATTERN_1;
3890         I915_WRITE(reg, temp);
3891
3892         reg = FDI_RX_CTL(pipe);
3893         temp = I915_READ(reg);
3894         if (HAS_PCH_CPT(dev)) {
3895                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3896                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3897         } else {
3898                 temp &= ~FDI_LINK_TRAIN_NONE;
3899                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3900         }
3901         /* BPC in FDI rx is consistent with that in PIPECONF */
3902         temp &= ~(0x07 << 16);
3903         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3904         I915_WRITE(reg, temp);
3905
3906         POSTING_READ(reg);
3907         udelay(100);
3908 }
3909
3910 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3911 {
3912         struct intel_crtc *crtc;
3913
3914         /* Note that we don't need to be called with mode_config.lock here
3915          * as our list of CRTC objects is static for the lifetime of the
3916          * device and so cannot disappear as we iterate. Similarly, we can
3917          * happily treat the predicates as racy, atomic checks as userspace
3918          * cannot claim and pin a new fb without at least acquring the
3919          * struct_mutex and so serialising with us.
3920          */
3921         for_each_intel_crtc(dev, crtc) {
3922                 if (atomic_read(&crtc->unpin_work_count) == 0)
3923                         continue;
3924
3925                 if (crtc->unpin_work)
3926                         intel_wait_for_vblank(dev, crtc->pipe);
3927
3928                 return true;
3929         }
3930
3931         return false;
3932 }
3933
3934 static void page_flip_completed(struct intel_crtc *intel_crtc)
3935 {
3936         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3937         struct intel_unpin_work *work = intel_crtc->unpin_work;
3938
3939         /* ensure that the unpin work is consistent wrt ->pending. */
3940         smp_rmb();
3941         intel_crtc->unpin_work = NULL;
3942
3943         if (work->event)
3944                 drm_send_vblank_event(intel_crtc->base.dev,
3945                                       intel_crtc->pipe,
3946                                       work->event);
3947
3948         drm_crtc_vblank_put(&intel_crtc->base);
3949
3950         wake_up_all(&dev_priv->pending_flip_queue);
3951         trace_i915_flip_complete(intel_crtc->plane,
3952                                  work->pending_flip_obj);
3953
3954         queue_work(dev_priv->wq, &work->work);
3955 }
3956
3957 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3958 {
3959         struct drm_device *dev = crtc->dev;
3960         struct drm_i915_private *dev_priv = dev->dev_private;
3961
3962         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3963         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3964                                        !intel_crtc_has_pending_flip(crtc),
3965                                        60*HZ) == 0)) {
3966                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3967
3968                 spin_lock_irq(&dev->event_lock);
3969                 if (intel_crtc->unpin_work) {
3970                         WARN_ONCE(1, "Removing stuck page flip\n");
3971                         page_flip_completed(intel_crtc);
3972                 }
3973                 spin_unlock_irq(&dev->event_lock);
3974         }
3975
3976         if (crtc->primary->fb) {
3977                 mutex_lock(&dev->struct_mutex);
3978                 intel_finish_fb(crtc->primary->fb);
3979                 mutex_unlock(&dev->struct_mutex);
3980         }
3981 }
3982
3983 /* Program iCLKIP clock to the desired frequency */
3984 static void lpt_program_iclkip(struct drm_crtc *crtc)
3985 {
3986         struct drm_device *dev = crtc->dev;
3987         struct drm_i915_private *dev_priv = dev->dev_private;
3988         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3989         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3990         u32 temp;
3991
3992         mutex_lock(&dev_priv->sb_lock);
3993
3994         /* It is necessary to ungate the pixclk gate prior to programming
3995          * the divisors, and gate it back when it is done.
3996          */
3997         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3998
3999         /* Disable SSCCTL */
4000         intel_sbi_write(dev_priv, SBI_SSCCTL6,
4001                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
4002                                 SBI_SSCCTL_DISABLE,
4003                         SBI_ICLK);
4004
4005         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
4006         if (clock == 20000) {
4007                 auxdiv = 1;
4008                 divsel = 0x41;
4009                 phaseinc = 0x20;
4010         } else {
4011                 /* The iCLK virtual clock root frequency is in MHz,
4012                  * but the adjusted_mode->crtc_clock in in KHz. To get the
4013                  * divisors, it is necessary to divide one by another, so we
4014                  * convert the virtual clock precision to KHz here for higher
4015                  * precision.
4016                  */
4017                 u32 iclk_virtual_root_freq = 172800 * 1000;
4018                 u32 iclk_pi_range = 64;
4019                 u32 desired_divisor, msb_divisor_value, pi_value;
4020
4021                 desired_divisor = (iclk_virtual_root_freq / clock);
4022                 msb_divisor_value = desired_divisor / iclk_pi_range;
4023                 pi_value = desired_divisor % iclk_pi_range;
4024
4025                 auxdiv = 0;
4026                 divsel = msb_divisor_value - 2;
4027                 phaseinc = pi_value;
4028         }
4029
4030         /* This should not happen with any sane values */
4031         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4032                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4033         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4034                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4035
4036         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4037                         clock,
4038                         auxdiv,
4039                         divsel,
4040                         phasedir,
4041                         phaseinc);
4042
4043         /* Program SSCDIVINTPHASE6 */
4044         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4045         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4046         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4047         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4048         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4049         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4050         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4051         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4052
4053         /* Program SSCAUXDIV */
4054         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4055         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4056         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4057         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4058
4059         /* Enable modulator and associated divider */
4060         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4061         temp &= ~SBI_SSCCTL_DISABLE;
4062         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4063
4064         /* Wait for initialization time */
4065         udelay(24);
4066
4067         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4068
4069         mutex_unlock(&dev_priv->sb_lock);
4070 }
4071
4072 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4073                                                 enum pipe pch_transcoder)
4074 {
4075         struct drm_device *dev = crtc->base.dev;
4076         struct drm_i915_private *dev_priv = dev->dev_private;
4077         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4078
4079         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4080                    I915_READ(HTOTAL(cpu_transcoder)));
4081         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4082                    I915_READ(HBLANK(cpu_transcoder)));
4083         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4084                    I915_READ(HSYNC(cpu_transcoder)));
4085
4086         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4087                    I915_READ(VTOTAL(cpu_transcoder)));
4088         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4089                    I915_READ(VBLANK(cpu_transcoder)));
4090         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4091                    I915_READ(VSYNC(cpu_transcoder)));
4092         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4093                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4094 }
4095
4096 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4097 {
4098         struct drm_i915_private *dev_priv = dev->dev_private;
4099         uint32_t temp;
4100
4101         temp = I915_READ(SOUTH_CHICKEN1);
4102         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4103                 return;
4104
4105         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4106         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4107
4108         temp &= ~FDI_BC_BIFURCATION_SELECT;
4109         if (enable)
4110                 temp |= FDI_BC_BIFURCATION_SELECT;
4111
4112         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4113         I915_WRITE(SOUTH_CHICKEN1, temp);
4114         POSTING_READ(SOUTH_CHICKEN1);
4115 }
4116
4117 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4118 {
4119         struct drm_device *dev = intel_crtc->base.dev;
4120
4121         switch (intel_crtc->pipe) {
4122         case PIPE_A:
4123                 break;
4124         case PIPE_B:
4125                 if (intel_crtc->config->fdi_lanes > 2)
4126                         cpt_set_fdi_bc_bifurcation(dev, false);
4127                 else
4128                         cpt_set_fdi_bc_bifurcation(dev, true);
4129
4130                 break;
4131         case PIPE_C:
4132                 cpt_set_fdi_bc_bifurcation(dev, true);
4133
4134                 break;
4135         default:
4136                 BUG();
4137         }
4138 }
4139
4140 /*
4141  * Enable PCH resources required for PCH ports:
4142  *   - PCH PLLs
4143  *   - FDI training & RX/TX
4144  *   - update transcoder timings
4145  *   - DP transcoding bits
4146  *   - transcoder
4147  */
4148 static void ironlake_pch_enable(struct drm_crtc *crtc)
4149 {
4150         struct drm_device *dev = crtc->dev;
4151         struct drm_i915_private *dev_priv = dev->dev_private;
4152         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4153         int pipe = intel_crtc->pipe;
4154         u32 reg, temp;
4155
4156         assert_pch_transcoder_disabled(dev_priv, pipe);
4157
4158         if (IS_IVYBRIDGE(dev))
4159                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4160
4161         /* Write the TU size bits before fdi link training, so that error
4162          * detection works. */
4163         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4164                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4165
4166         /* For PCH output, training FDI link */
4167         dev_priv->display.fdi_link_train(crtc);
4168
4169         /* We need to program the right clock selection before writing the pixel
4170          * mutliplier into the DPLL. */
4171         if (HAS_PCH_CPT(dev)) {
4172                 u32 sel;
4173
4174                 temp = I915_READ(PCH_DPLL_SEL);
4175                 temp |= TRANS_DPLL_ENABLE(pipe);
4176                 sel = TRANS_DPLLB_SEL(pipe);
4177                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4178                         temp |= sel;
4179                 else
4180                         temp &= ~sel;
4181                 I915_WRITE(PCH_DPLL_SEL, temp);
4182         }
4183
4184         /* XXX: pch pll's can be enabled any time before we enable the PCH
4185          * transcoder, and we actually should do this to not upset any PCH
4186          * transcoder that already use the clock when we share it.
4187          *
4188          * Note that enable_shared_dpll tries to do the right thing, but
4189          * get_shared_dpll unconditionally resets the pll - we need that to have
4190          * the right LVDS enable sequence. */
4191         intel_enable_shared_dpll(intel_crtc);
4192
4193         /* set transcoder timing, panel must allow it */
4194         assert_panel_unlocked(dev_priv, pipe);
4195         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4196
4197         intel_fdi_normal_train(crtc);
4198
4199         /* For PCH DP, enable TRANS_DP_CTL */
4200         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4201                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4202                 reg = TRANS_DP_CTL(pipe);
4203                 temp = I915_READ(reg);
4204                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4205                           TRANS_DP_SYNC_MASK |
4206                           TRANS_DP_BPC_MASK);
4207                 temp |= TRANS_DP_OUTPUT_ENABLE;
4208                 temp |= bpc << 9; /* same format but at 11:9 */
4209
4210                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4211                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4212                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4213                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4214
4215                 switch (intel_trans_dp_port_sel(crtc)) {
4216                 case PCH_DP_B:
4217                         temp |= TRANS_DP_PORT_SEL_B;
4218                         break;
4219                 case PCH_DP_C:
4220                         temp |= TRANS_DP_PORT_SEL_C;
4221                         break;
4222                 case PCH_DP_D:
4223                         temp |= TRANS_DP_PORT_SEL_D;
4224                         break;
4225                 default:
4226                         BUG();
4227                 }
4228
4229                 I915_WRITE(reg, temp);
4230         }
4231
4232         ironlake_enable_pch_transcoder(dev_priv, pipe);
4233 }
4234
4235 static void lpt_pch_enable(struct drm_crtc *crtc)
4236 {
4237         struct drm_device *dev = crtc->dev;
4238         struct drm_i915_private *dev_priv = dev->dev_private;
4239         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4240         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4241
4242         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4243
4244         lpt_program_iclkip(crtc);
4245
4246         /* Set transcoder timing. */
4247         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4248
4249         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4250 }
4251
4252 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4253                                                 struct intel_crtc_state *crtc_state)
4254 {
4255         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4256         struct intel_shared_dpll *pll;
4257         struct intel_shared_dpll_config *shared_dpll;
4258         enum intel_dpll_id i;
4259         int max = dev_priv->num_shared_dpll;
4260
4261         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4262
4263         if (HAS_PCH_IBX(dev_priv->dev)) {
4264                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4265                 i = (enum intel_dpll_id) crtc->pipe;
4266                 pll = &dev_priv->shared_dplls[i];
4267
4268                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4269                               crtc->base.base.id, pll->name);
4270
4271                 WARN_ON(shared_dpll[i].crtc_mask);
4272
4273                 goto found;
4274         }
4275
4276         if (IS_BROXTON(dev_priv->dev)) {
4277                 /* PLL is attached to port in bxt */
4278                 struct intel_encoder *encoder;
4279                 struct intel_digital_port *intel_dig_port;
4280
4281                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4282                 if (WARN_ON(!encoder))
4283                         return NULL;
4284
4285                 intel_dig_port = enc_to_dig_port(&encoder->base);
4286                 /* 1:1 mapping between ports and PLLs */
4287                 i = (enum intel_dpll_id)intel_dig_port->port;
4288                 pll = &dev_priv->shared_dplls[i];
4289                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4290                         crtc->base.base.id, pll->name);
4291                 WARN_ON(shared_dpll[i].crtc_mask);
4292
4293                 goto found;
4294         } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4295                 /* Do not consider SPLL */
4296                 max = 2;
4297
4298         for (i = 0; i < max; i++) {
4299                 pll = &dev_priv->shared_dplls[i];
4300
4301                 /* Only want to check enabled timings first */
4302                 if (shared_dpll[i].crtc_mask == 0)
4303                         continue;
4304
4305                 if (memcmp(&crtc_state->dpll_hw_state,
4306                            &shared_dpll[i].hw_state,
4307                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4308                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4309                                       crtc->base.base.id, pll->name,
4310                                       shared_dpll[i].crtc_mask,
4311                                       pll->active);
4312                         goto found;
4313                 }
4314         }
4315
4316         /* Ok no matching timings, maybe there's a free one? */
4317         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4318                 pll = &dev_priv->shared_dplls[i];
4319                 if (shared_dpll[i].crtc_mask == 0) {
4320                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4321                                       crtc->base.base.id, pll->name);
4322                         goto found;
4323                 }
4324         }
4325
4326         return NULL;
4327
4328 found:
4329         if (shared_dpll[i].crtc_mask == 0)
4330                 shared_dpll[i].hw_state =
4331                         crtc_state->dpll_hw_state;
4332
4333         crtc_state->shared_dpll = i;
4334         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4335                          pipe_name(crtc->pipe));
4336
4337         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4338
4339         return pll;
4340 }
4341
4342 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4343 {
4344         struct drm_i915_private *dev_priv = to_i915(state->dev);
4345         struct intel_shared_dpll_config *shared_dpll;
4346         struct intel_shared_dpll *pll;
4347         enum intel_dpll_id i;
4348
4349         if (!to_intel_atomic_state(state)->dpll_set)
4350                 return;
4351
4352         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4353         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4354                 pll = &dev_priv->shared_dplls[i];
4355                 pll->config = shared_dpll[i];
4356         }
4357 }
4358
4359 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4360 {
4361         struct drm_i915_private *dev_priv = dev->dev_private;
4362         int dslreg = PIPEDSL(pipe);
4363         u32 temp;
4364
4365         temp = I915_READ(dslreg);
4366         udelay(500);
4367         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4368                 if (wait_for(I915_READ(dslreg) != temp, 5))
4369                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4370         }
4371 }
4372
4373 static int
4374 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4375                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4376                   int src_w, int src_h, int dst_w, int dst_h)
4377 {
4378         struct intel_crtc_scaler_state *scaler_state =
4379                 &crtc_state->scaler_state;
4380         struct intel_crtc *intel_crtc =
4381                 to_intel_crtc(crtc_state->base.crtc);
4382         int need_scaling;
4383
4384         need_scaling = intel_rotation_90_or_270(rotation) ?
4385                 (src_h != dst_w || src_w != dst_h):
4386                 (src_w != dst_w || src_h != dst_h);
4387
4388         /*
4389          * if plane is being disabled or scaler is no more required or force detach
4390          *  - free scaler binded to this plane/crtc
4391          *  - in order to do this, update crtc->scaler_usage
4392          *
4393          * Here scaler state in crtc_state is set free so that
4394          * scaler can be assigned to other user. Actual register
4395          * update to free the scaler is done in plane/panel-fit programming.
4396          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4397          */
4398         if (force_detach || !need_scaling) {
4399                 if (*scaler_id >= 0) {
4400                         scaler_state->scaler_users &= ~(1 << scaler_user);
4401                         scaler_state->scalers[*scaler_id].in_use = 0;
4402
4403                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4404                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4405                                 intel_crtc->pipe, scaler_user, *scaler_id,
4406                                 scaler_state->scaler_users);
4407                         *scaler_id = -1;
4408                 }
4409                 return 0;
4410         }
4411
4412         /* range checks */
4413         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4414                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4415
4416                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4417                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4418                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4419                         "size is out of scaler range\n",
4420                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4421                 return -EINVAL;
4422         }
4423
4424         /* mark this plane as a scaler user in crtc_state */
4425         scaler_state->scaler_users |= (1 << scaler_user);
4426         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4427                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4428                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4429                 scaler_state->scaler_users);
4430
4431         return 0;
4432 }
4433
4434 /**
4435  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4436  *
4437  * @state: crtc's scaler state
4438  *
4439  * Return
4440  *     0 - scaler_usage updated successfully
4441  *    error - requested scaling cannot be supported or other error condition
4442  */
4443 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4444 {
4445         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4446         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4447
4448         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4449                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4450
4451         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4452                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4453                 state->pipe_src_w, state->pipe_src_h,
4454                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4455 }
4456
4457 /**
4458  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4459  *
4460  * @state: crtc's scaler state
4461  * @plane_state: atomic plane state to update
4462  *
4463  * Return
4464  *     0 - scaler_usage updated successfully
4465  *    error - requested scaling cannot be supported or other error condition
4466  */
4467 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4468                                    struct intel_plane_state *plane_state)
4469 {
4470
4471         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4472         struct intel_plane *intel_plane =
4473                 to_intel_plane(plane_state->base.plane);
4474         struct drm_framebuffer *fb = plane_state->base.fb;
4475         int ret;
4476
4477         bool force_detach = !fb || !plane_state->visible;
4478
4479         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4480                       intel_plane->base.base.id, intel_crtc->pipe,
4481                       drm_plane_index(&intel_plane->base));
4482
4483         ret = skl_update_scaler(crtc_state, force_detach,
4484                                 drm_plane_index(&intel_plane->base),
4485                                 &plane_state->scaler_id,
4486                                 plane_state->base.rotation,
4487                                 drm_rect_width(&plane_state->src) >> 16,
4488                                 drm_rect_height(&plane_state->src) >> 16,
4489                                 drm_rect_width(&plane_state->dst),
4490                                 drm_rect_height(&plane_state->dst));
4491
4492         if (ret || plane_state->scaler_id < 0)
4493                 return ret;
4494
4495         /* check colorkey */
4496         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4497                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4498                               intel_plane->base.base.id);
4499                 return -EINVAL;
4500         }
4501
4502         /* Check src format */
4503         switch (fb->pixel_format) {
4504         case DRM_FORMAT_RGB565:
4505         case DRM_FORMAT_XBGR8888:
4506         case DRM_FORMAT_XRGB8888:
4507         case DRM_FORMAT_ABGR8888:
4508         case DRM_FORMAT_ARGB8888:
4509         case DRM_FORMAT_XRGB2101010:
4510         case DRM_FORMAT_XBGR2101010:
4511         case DRM_FORMAT_YUYV:
4512         case DRM_FORMAT_YVYU:
4513         case DRM_FORMAT_UYVY:
4514         case DRM_FORMAT_VYUY:
4515                 break;
4516         default:
4517                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4518                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4519                 return -EINVAL;
4520         }
4521
4522         return 0;
4523 }
4524
4525 static void skylake_scaler_disable(struct intel_crtc *crtc)
4526 {
4527         int i;
4528
4529         for (i = 0; i < crtc->num_scalers; i++)
4530                 skl_detach_scaler(crtc, i);
4531 }
4532
4533 static void skylake_pfit_enable(struct intel_crtc *crtc)
4534 {
4535         struct drm_device *dev = crtc->base.dev;
4536         struct drm_i915_private *dev_priv = dev->dev_private;
4537         int pipe = crtc->pipe;
4538         struct intel_crtc_scaler_state *scaler_state =
4539                 &crtc->config->scaler_state;
4540
4541         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4542
4543         if (crtc->config->pch_pfit.enabled) {
4544                 int id;
4545
4546                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4547                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4548                         return;
4549                 }
4550
4551                 id = scaler_state->scaler_id;
4552                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4553                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4554                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4555                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4556
4557                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4558         }
4559 }
4560
4561 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4562 {
4563         struct drm_device *dev = crtc->base.dev;
4564         struct drm_i915_private *dev_priv = dev->dev_private;
4565         int pipe = crtc->pipe;
4566
4567         if (crtc->config->pch_pfit.enabled) {
4568                 /* Force use of hard-coded filter coefficients
4569                  * as some pre-programmed values are broken,
4570                  * e.g. x201.
4571                  */
4572                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4573                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4574                                                  PF_PIPE_SEL_IVB(pipe));
4575                 else
4576                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4577                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4578                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4579         }
4580 }
4581
4582 void hsw_enable_ips(struct intel_crtc *crtc)
4583 {
4584         struct drm_device *dev = crtc->base.dev;
4585         struct drm_i915_private *dev_priv = dev->dev_private;
4586
4587         if (!crtc->config->ips_enabled)
4588                 return;
4589
4590         /* We can only enable IPS after we enable a plane and wait for a vblank */
4591         intel_wait_for_vblank(dev, crtc->pipe);
4592
4593         assert_plane_enabled(dev_priv, crtc->plane);
4594         if (IS_BROADWELL(dev)) {
4595                 mutex_lock(&dev_priv->rps.hw_lock);
4596                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4597                 mutex_unlock(&dev_priv->rps.hw_lock);
4598                 /* Quoting Art Runyan: "its not safe to expect any particular
4599                  * value in IPS_CTL bit 31 after enabling IPS through the
4600                  * mailbox." Moreover, the mailbox may return a bogus state,
4601                  * so we need to just enable it and continue on.
4602                  */
4603         } else {
4604                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4605                 /* The bit only becomes 1 in the next vblank, so this wait here
4606                  * is essentially intel_wait_for_vblank. If we don't have this
4607                  * and don't wait for vblanks until the end of crtc_enable, then
4608                  * the HW state readout code will complain that the expected
4609                  * IPS_CTL value is not the one we read. */
4610                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4611                         DRM_ERROR("Timed out waiting for IPS enable\n");
4612         }
4613 }
4614
4615 void hsw_disable_ips(struct intel_crtc *crtc)
4616 {
4617         struct drm_device *dev = crtc->base.dev;
4618         struct drm_i915_private *dev_priv = dev->dev_private;
4619
4620         if (!crtc->config->ips_enabled)
4621                 return;
4622
4623         assert_plane_enabled(dev_priv, crtc->plane);
4624         if (IS_BROADWELL(dev)) {
4625                 mutex_lock(&dev_priv->rps.hw_lock);
4626                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4627                 mutex_unlock(&dev_priv->rps.hw_lock);
4628                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4629                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4630                         DRM_ERROR("Timed out waiting for IPS disable\n");
4631         } else {
4632                 I915_WRITE(IPS_CTL, 0);
4633                 POSTING_READ(IPS_CTL);
4634         }
4635
4636         /* We need to wait for a vblank before we can disable the plane. */
4637         intel_wait_for_vblank(dev, crtc->pipe);
4638 }
4639
4640 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4641 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4642 {
4643         struct drm_device *dev = crtc->dev;
4644         struct drm_i915_private *dev_priv = dev->dev_private;
4645         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4646         enum pipe pipe = intel_crtc->pipe;
4647         int i;
4648         bool reenable_ips = false;
4649
4650         /* The clocks have to be on to load the palette. */
4651         if (!crtc->state->active)
4652                 return;
4653
4654         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4655                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4656                         assert_dsi_pll_enabled(dev_priv);
4657                 else
4658                         assert_pll_enabled(dev_priv, pipe);
4659         }
4660
4661         /* Workaround : Do not read or write the pipe palette/gamma data while
4662          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4663          */
4664         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4665             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4666              GAMMA_MODE_MODE_SPLIT)) {
4667                 hsw_disable_ips(intel_crtc);
4668                 reenable_ips = true;
4669         }
4670
4671         for (i = 0; i < 256; i++) {
4672                 u32 palreg;
4673
4674                 if (HAS_GMCH_DISPLAY(dev))
4675                         palreg = PALETTE(pipe, i);
4676                 else
4677                         palreg = LGC_PALETTE(pipe, i);
4678
4679                 I915_WRITE(palreg,
4680                            (intel_crtc->lut_r[i] << 16) |
4681                            (intel_crtc->lut_g[i] << 8) |
4682                            intel_crtc->lut_b[i]);
4683         }
4684
4685         if (reenable_ips)
4686                 hsw_enable_ips(intel_crtc);
4687 }
4688
4689 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4690 {
4691         if (intel_crtc->overlay) {
4692                 struct drm_device *dev = intel_crtc->base.dev;
4693                 struct drm_i915_private *dev_priv = dev->dev_private;
4694
4695                 mutex_lock(&dev->struct_mutex);
4696                 dev_priv->mm.interruptible = false;
4697                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4698                 dev_priv->mm.interruptible = true;
4699                 mutex_unlock(&dev->struct_mutex);
4700         }
4701
4702         /* Let userspace switch the overlay on again. In most cases userspace
4703          * has to recompute where to put it anyway.
4704          */
4705 }
4706
4707 /**
4708  * intel_post_enable_primary - Perform operations after enabling primary plane
4709  * @crtc: the CRTC whose primary plane was just enabled
4710  *
4711  * Performs potentially sleeping operations that must be done after the primary
4712  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4713  * called due to an explicit primary plane update, or due to an implicit
4714  * re-enable that is caused when a sprite plane is updated to no longer
4715  * completely hide the primary plane.
4716  */
4717 static void
4718 intel_post_enable_primary(struct drm_crtc *crtc)
4719 {
4720         struct drm_device *dev = crtc->dev;
4721         struct drm_i915_private *dev_priv = dev->dev_private;
4722         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4723         int pipe = intel_crtc->pipe;
4724
4725         /*
4726          * BDW signals flip done immediately if the plane
4727          * is disabled, even if the plane enable is already
4728          * armed to occur at the next vblank :(
4729          */
4730         if (IS_BROADWELL(dev))
4731                 intel_wait_for_vblank(dev, pipe);
4732
4733         /*
4734          * FIXME IPS should be fine as long as one plane is
4735          * enabled, but in practice it seems to have problems
4736          * when going from primary only to sprite only and vice
4737          * versa.
4738          */
4739         hsw_enable_ips(intel_crtc);
4740
4741         /*
4742          * Gen2 reports pipe underruns whenever all planes are disabled.
4743          * So don't enable underrun reporting before at least some planes
4744          * are enabled.
4745          * FIXME: Need to fix the logic to work when we turn off all planes
4746          * but leave the pipe running.
4747          */
4748         if (IS_GEN2(dev))
4749                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4750
4751         /* Underruns don't raise interrupts, so check manually. */
4752         if (HAS_GMCH_DISPLAY(dev))
4753                 i9xx_check_fifo_underruns(dev_priv);
4754 }
4755
4756 /**
4757  * intel_pre_disable_primary - Perform operations before disabling primary plane
4758  * @crtc: the CRTC whose primary plane is to be disabled
4759  *
4760  * Performs potentially sleeping operations that must be done before the
4761  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4762  * be called due to an explicit primary plane update, or due to an implicit
4763  * disable that is caused when a sprite plane completely hides the primary
4764  * plane.
4765  */
4766 static void
4767 intel_pre_disable_primary(struct drm_crtc *crtc)
4768 {
4769         struct drm_device *dev = crtc->dev;
4770         struct drm_i915_private *dev_priv = dev->dev_private;
4771         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4772         int pipe = intel_crtc->pipe;
4773
4774         /*
4775          * Gen2 reports pipe underruns whenever all planes are disabled.
4776          * So diasble underrun reporting before all the planes get disabled.
4777          * FIXME: Need to fix the logic to work when we turn off all planes
4778          * but leave the pipe running.
4779          */
4780         if (IS_GEN2(dev))
4781                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4782
4783         /*
4784          * Vblank time updates from the shadow to live plane control register
4785          * are blocked if the memory self-refresh mode is active at that
4786          * moment. So to make sure the plane gets truly disabled, disable
4787          * first the self-refresh mode. The self-refresh enable bit in turn
4788          * will be checked/applied by the HW only at the next frame start
4789          * event which is after the vblank start event, so we need to have a
4790          * wait-for-vblank between disabling the plane and the pipe.
4791          */
4792         if (HAS_GMCH_DISPLAY(dev)) {
4793                 intel_set_memory_cxsr(dev_priv, false);
4794                 dev_priv->wm.vlv.cxsr = false;
4795                 intel_wait_for_vblank(dev, pipe);
4796         }
4797
4798         /*
4799          * FIXME IPS should be fine as long as one plane is
4800          * enabled, but in practice it seems to have problems
4801          * when going from primary only to sprite only and vice
4802          * versa.
4803          */
4804         hsw_disable_ips(intel_crtc);
4805 }
4806
4807 static void intel_post_plane_update(struct intel_crtc *crtc)
4808 {
4809         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4810         struct drm_device *dev = crtc->base.dev;
4811         struct drm_i915_private *dev_priv = dev->dev_private;
4812         struct drm_plane *plane;
4813
4814         if (atomic->wait_vblank)
4815                 intel_wait_for_vblank(dev, crtc->pipe);
4816
4817         intel_frontbuffer_flip(dev, atomic->fb_bits);
4818
4819         if (atomic->disable_cxsr)
4820                 crtc->wm.cxsr_allowed = true;
4821
4822         if (crtc->atomic.update_wm_post)
4823                 intel_update_watermarks(&crtc->base);
4824
4825         if (atomic->update_fbc)
4826                 intel_fbc_update(dev_priv);
4827
4828         if (atomic->post_enable_primary)
4829                 intel_post_enable_primary(&crtc->base);
4830
4831         drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4832                 intel_update_sprite_watermarks(plane, &crtc->base,
4833                                                0, 0, 0, false, false);
4834
4835         memset(atomic, 0, sizeof(*atomic));
4836 }
4837
4838 static void intel_pre_plane_update(struct intel_crtc *crtc)
4839 {
4840         struct drm_device *dev = crtc->base.dev;
4841         struct drm_i915_private *dev_priv = dev->dev_private;
4842         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4843         struct drm_plane *p;
4844
4845         /* Track fb's for any planes being disabled */
4846         drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4847                 struct intel_plane *plane = to_intel_plane(p);
4848
4849                 mutex_lock(&dev->struct_mutex);
4850                 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4851                                   plane->frontbuffer_bit);
4852                 mutex_unlock(&dev->struct_mutex);
4853         }
4854
4855         if (atomic->wait_for_flips)
4856                 intel_crtc_wait_for_pending_flips(&crtc->base);
4857
4858         if (atomic->disable_fbc)
4859                 intel_fbc_disable_crtc(crtc);
4860
4861         if (crtc->atomic.disable_ips)
4862                 hsw_disable_ips(crtc);
4863
4864         if (atomic->pre_disable_primary)
4865                 intel_pre_disable_primary(&crtc->base);
4866
4867         if (atomic->disable_cxsr) {
4868                 crtc->wm.cxsr_allowed = false;
4869                 intel_set_memory_cxsr(dev_priv, false);
4870         }
4871 }
4872
4873 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4874 {
4875         struct drm_device *dev = crtc->dev;
4876         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4877         struct drm_plane *p;
4878         int pipe = intel_crtc->pipe;
4879
4880         intel_crtc_dpms_overlay_disable(intel_crtc);
4881
4882         drm_for_each_plane_mask(p, dev, plane_mask)
4883                 to_intel_plane(p)->disable_plane(p, crtc);
4884
4885         /*
4886          * FIXME: Once we grow proper nuclear flip support out of this we need
4887          * to compute the mask of flip planes precisely. For the time being
4888          * consider this a flip to a NULL plane.
4889          */
4890         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4891 }
4892
4893 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4894 {
4895         struct drm_device *dev = crtc->dev;
4896         struct drm_i915_private *dev_priv = dev->dev_private;
4897         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4898         struct intel_encoder *encoder;
4899         int pipe = intel_crtc->pipe;
4900
4901         if (WARN_ON(intel_crtc->active))
4902                 return;
4903
4904         if (intel_crtc->config->has_pch_encoder)
4905                 intel_prepare_shared_dpll(intel_crtc);
4906
4907         if (intel_crtc->config->has_dp_encoder)
4908                 intel_dp_set_m_n(intel_crtc, M1_N1);
4909
4910         intel_set_pipe_timings(intel_crtc);
4911
4912         if (intel_crtc->config->has_pch_encoder) {
4913                 intel_cpu_transcoder_set_m_n(intel_crtc,
4914                                      &intel_crtc->config->fdi_m_n, NULL);
4915         }
4916
4917         ironlake_set_pipeconf(crtc);
4918
4919         intel_crtc->active = true;
4920
4921         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4922         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4923
4924         for_each_encoder_on_crtc(dev, crtc, encoder)
4925                 if (encoder->pre_enable)
4926                         encoder->pre_enable(encoder);
4927
4928         if (intel_crtc->config->has_pch_encoder) {
4929                 /* Note: FDI PLL enabling _must_ be done before we enable the
4930                  * cpu pipes, hence this is separate from all the other fdi/pch
4931                  * enabling. */
4932                 ironlake_fdi_pll_enable(intel_crtc);
4933         } else {
4934                 assert_fdi_tx_disabled(dev_priv, pipe);
4935                 assert_fdi_rx_disabled(dev_priv, pipe);
4936         }
4937
4938         ironlake_pfit_enable(intel_crtc);
4939
4940         /*
4941          * On ILK+ LUT must be loaded before the pipe is running but with
4942          * clocks enabled
4943          */
4944         intel_crtc_load_lut(crtc);
4945
4946         intel_update_watermarks(crtc);
4947         intel_enable_pipe(intel_crtc);
4948
4949         if (intel_crtc->config->has_pch_encoder)
4950                 ironlake_pch_enable(crtc);
4951
4952         assert_vblank_disabled(crtc);
4953         drm_crtc_vblank_on(crtc);
4954
4955         for_each_encoder_on_crtc(dev, crtc, encoder)
4956                 encoder->enable(encoder);
4957
4958         if (HAS_PCH_CPT(dev))
4959                 cpt_verify_modeset(dev, intel_crtc->pipe);
4960 }
4961
4962 /* IPS only exists on ULT machines and is tied to pipe A. */
4963 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4964 {
4965         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4966 }
4967
4968 static void haswell_crtc_enable(struct drm_crtc *crtc)
4969 {
4970         struct drm_device *dev = crtc->dev;
4971         struct drm_i915_private *dev_priv = dev->dev_private;
4972         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4973         struct intel_encoder *encoder;
4974         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4975         struct intel_crtc_state *pipe_config =
4976                 to_intel_crtc_state(crtc->state);
4977         bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4978
4979         if (WARN_ON(intel_crtc->active))
4980                 return;
4981
4982         if (intel_crtc_to_shared_dpll(intel_crtc))
4983                 intel_enable_shared_dpll(intel_crtc);
4984
4985         if (intel_crtc->config->has_dp_encoder)
4986                 intel_dp_set_m_n(intel_crtc, M1_N1);
4987
4988         intel_set_pipe_timings(intel_crtc);
4989
4990         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4991                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4992                            intel_crtc->config->pixel_multiplier - 1);
4993         }
4994
4995         if (intel_crtc->config->has_pch_encoder) {
4996                 intel_cpu_transcoder_set_m_n(intel_crtc,
4997                                      &intel_crtc->config->fdi_m_n, NULL);
4998         }
4999
5000         haswell_set_pipeconf(crtc);
5001
5002         intel_set_pipe_csc(crtc);
5003
5004         intel_crtc->active = true;
5005
5006         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5007         for_each_encoder_on_crtc(dev, crtc, encoder) {
5008                 if (encoder->pre_pll_enable)
5009                         encoder->pre_pll_enable(encoder);
5010                 if (encoder->pre_enable)
5011                         encoder->pre_enable(encoder);
5012         }
5013
5014         if (intel_crtc->config->has_pch_encoder) {
5015                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5016                                                       true);
5017                 dev_priv->display.fdi_link_train(crtc);
5018         }
5019
5020         if (!is_dsi)
5021                 intel_ddi_enable_pipe_clock(intel_crtc);
5022
5023         if (INTEL_INFO(dev)->gen >= 9)
5024                 skylake_pfit_enable(intel_crtc);
5025         else
5026                 ironlake_pfit_enable(intel_crtc);
5027
5028         /*
5029          * On ILK+ LUT must be loaded before the pipe is running but with
5030          * clocks enabled
5031          */
5032         intel_crtc_load_lut(crtc);
5033
5034         intel_ddi_set_pipe_settings(crtc);
5035         if (!is_dsi)
5036                 intel_ddi_enable_transcoder_func(crtc);
5037
5038         intel_update_watermarks(crtc);
5039         intel_enable_pipe(intel_crtc);
5040
5041         if (intel_crtc->config->has_pch_encoder)
5042                 lpt_pch_enable(crtc);
5043
5044         if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
5045                 intel_ddi_set_vc_payload_alloc(crtc, true);
5046
5047         assert_vblank_disabled(crtc);
5048         drm_crtc_vblank_on(crtc);
5049
5050         for_each_encoder_on_crtc(dev, crtc, encoder) {
5051                 encoder->enable(encoder);
5052                 intel_opregion_notify_encoder(encoder, true);
5053         }
5054
5055         /* If we change the relative order between pipe/planes enabling, we need
5056          * to change the workaround. */
5057         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5058         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5059                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5060                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5061         }
5062 }
5063
5064 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5065 {
5066         struct drm_device *dev = crtc->base.dev;
5067         struct drm_i915_private *dev_priv = dev->dev_private;
5068         int pipe = crtc->pipe;
5069
5070         /* To avoid upsetting the power well on haswell only disable the pfit if
5071          * it's in use. The hw state code will make sure we get this right. */
5072         if (force || crtc->config->pch_pfit.enabled) {
5073                 I915_WRITE(PF_CTL(pipe), 0);
5074                 I915_WRITE(PF_WIN_POS(pipe), 0);
5075                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5076         }
5077 }
5078
5079 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5080 {
5081         struct drm_device *dev = crtc->dev;
5082         struct drm_i915_private *dev_priv = dev->dev_private;
5083         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5084         struct intel_encoder *encoder;
5085         int pipe = intel_crtc->pipe;
5086         u32 reg, temp;
5087
5088         for_each_encoder_on_crtc(dev, crtc, encoder)
5089                 encoder->disable(encoder);
5090
5091         drm_crtc_vblank_off(crtc);
5092         assert_vblank_disabled(crtc);
5093
5094         if (intel_crtc->config->has_pch_encoder)
5095                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5096
5097         intel_disable_pipe(intel_crtc);
5098
5099         ironlake_pfit_disable(intel_crtc, false);
5100
5101         if (intel_crtc->config->has_pch_encoder)
5102                 ironlake_fdi_disable(crtc);
5103
5104         for_each_encoder_on_crtc(dev, crtc, encoder)
5105                 if (encoder->post_disable)
5106                         encoder->post_disable(encoder);
5107
5108         if (intel_crtc->config->has_pch_encoder) {
5109                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5110
5111                 if (HAS_PCH_CPT(dev)) {
5112                         /* disable TRANS_DP_CTL */
5113                         reg = TRANS_DP_CTL(pipe);
5114                         temp = I915_READ(reg);
5115                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5116                                   TRANS_DP_PORT_SEL_MASK);
5117                         temp |= TRANS_DP_PORT_SEL_NONE;
5118                         I915_WRITE(reg, temp);
5119
5120                         /* disable DPLL_SEL */
5121                         temp = I915_READ(PCH_DPLL_SEL);
5122                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5123                         I915_WRITE(PCH_DPLL_SEL, temp);
5124                 }
5125
5126                 ironlake_fdi_pll_disable(intel_crtc);
5127         }
5128 }
5129
5130 static void haswell_crtc_disable(struct drm_crtc *crtc)
5131 {
5132         struct drm_device *dev = crtc->dev;
5133         struct drm_i915_private *dev_priv = dev->dev_private;
5134         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5135         struct intel_encoder *encoder;
5136         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5137         bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5138
5139         for_each_encoder_on_crtc(dev, crtc, encoder) {
5140                 intel_opregion_notify_encoder(encoder, false);
5141                 encoder->disable(encoder);
5142         }
5143
5144         drm_crtc_vblank_off(crtc);
5145         assert_vblank_disabled(crtc);
5146
5147         if (intel_crtc->config->has_pch_encoder)
5148                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5149                                                       false);
5150         intel_disable_pipe(intel_crtc);
5151
5152         if (intel_crtc->config->dp_encoder_is_mst)
5153                 intel_ddi_set_vc_payload_alloc(crtc, false);
5154
5155         if (!is_dsi)
5156                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5157
5158         if (INTEL_INFO(dev)->gen >= 9)
5159                 skylake_scaler_disable(intel_crtc);
5160         else
5161                 ironlake_pfit_disable(intel_crtc, false);
5162
5163         if (!is_dsi)
5164                 intel_ddi_disable_pipe_clock(intel_crtc);
5165
5166         if (intel_crtc->config->has_pch_encoder) {
5167                 lpt_disable_pch_transcoder(dev_priv);
5168                 intel_ddi_fdi_disable(crtc);
5169         }
5170
5171         for_each_encoder_on_crtc(dev, crtc, encoder)
5172                 if (encoder->post_disable)
5173                         encoder->post_disable(encoder);
5174 }
5175
5176 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5177 {
5178         struct drm_device *dev = crtc->base.dev;
5179         struct drm_i915_private *dev_priv = dev->dev_private;
5180         struct intel_crtc_state *pipe_config = crtc->config;
5181
5182         if (!pipe_config->gmch_pfit.control)
5183                 return;
5184
5185         /*
5186          * The panel fitter should only be adjusted whilst the pipe is disabled,
5187          * according to register description and PRM.
5188          */
5189         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5190         assert_pipe_disabled(dev_priv, crtc->pipe);
5191
5192         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5193         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5194
5195         /* Border color in case we don't scale up to the full screen. Black by
5196          * default, change to something else for debugging. */
5197         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5198 }
5199
5200 static enum intel_display_power_domain port_to_power_domain(enum port port)
5201 {
5202         switch (port) {
5203         case PORT_A:
5204                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5205         case PORT_B:
5206                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5207         case PORT_C:
5208                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5209         case PORT_D:
5210                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5211         case PORT_E:
5212                 return POWER_DOMAIN_PORT_DDI_E_2_LANES;
5213         default:
5214                 MISSING_CASE(port);
5215                 return POWER_DOMAIN_PORT_OTHER;
5216         }
5217 }
5218
5219 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5220 {
5221         switch (port) {
5222         case PORT_A:
5223                 return POWER_DOMAIN_AUX_A;
5224         case PORT_B:
5225                 return POWER_DOMAIN_AUX_B;
5226         case PORT_C:
5227                 return POWER_DOMAIN_AUX_C;
5228         case PORT_D:
5229                 return POWER_DOMAIN_AUX_D;
5230         case PORT_E:
5231                 /* FIXME: Check VBT for actual wiring of PORT E */
5232                 return POWER_DOMAIN_AUX_D;
5233         default:
5234                 MISSING_CASE(port);
5235                 return POWER_DOMAIN_AUX_A;
5236         }
5237 }
5238
5239 #define for_each_power_domain(domain, mask)                             \
5240         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5241                 if ((1 << (domain)) & (mask))
5242
5243 enum intel_display_power_domain
5244 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5245 {
5246         struct drm_device *dev = intel_encoder->base.dev;
5247         struct intel_digital_port *intel_dig_port;
5248
5249         switch (intel_encoder->type) {
5250         case INTEL_OUTPUT_UNKNOWN:
5251                 /* Only DDI platforms should ever use this output type */
5252                 WARN_ON_ONCE(!HAS_DDI(dev));
5253         case INTEL_OUTPUT_DISPLAYPORT:
5254         case INTEL_OUTPUT_HDMI:
5255         case INTEL_OUTPUT_EDP:
5256                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5257                 return port_to_power_domain(intel_dig_port->port);
5258         case INTEL_OUTPUT_DP_MST:
5259                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5260                 return port_to_power_domain(intel_dig_port->port);
5261         case INTEL_OUTPUT_ANALOG:
5262                 return POWER_DOMAIN_PORT_CRT;
5263         case INTEL_OUTPUT_DSI:
5264                 return POWER_DOMAIN_PORT_DSI;
5265         default:
5266                 return POWER_DOMAIN_PORT_OTHER;
5267         }
5268 }
5269
5270 enum intel_display_power_domain
5271 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5272 {
5273         struct drm_device *dev = intel_encoder->base.dev;
5274         struct intel_digital_port *intel_dig_port;
5275
5276         switch (intel_encoder->type) {
5277         case INTEL_OUTPUT_UNKNOWN:
5278         case INTEL_OUTPUT_HDMI:
5279                 /*
5280                  * Only DDI platforms should ever use these output types.
5281                  * We can get here after the HDMI detect code has already set
5282                  * the type of the shared encoder. Since we can't be sure
5283                  * what's the status of the given connectors, play safe and
5284                  * run the DP detection too.
5285                  */
5286                 WARN_ON_ONCE(!HAS_DDI(dev));
5287         case INTEL_OUTPUT_DISPLAYPORT:
5288         case INTEL_OUTPUT_EDP:
5289                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5290                 return port_to_aux_power_domain(intel_dig_port->port);
5291         case INTEL_OUTPUT_DP_MST:
5292                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5293                 return port_to_aux_power_domain(intel_dig_port->port);
5294         default:
5295                 MISSING_CASE(intel_encoder->type);
5296                 return POWER_DOMAIN_AUX_A;
5297         }
5298 }
5299
5300 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5301 {
5302         struct drm_device *dev = crtc->dev;
5303         struct intel_encoder *intel_encoder;
5304         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5305         enum pipe pipe = intel_crtc->pipe;
5306         unsigned long mask;
5307         enum transcoder transcoder;
5308
5309         if (!crtc->state->active)
5310                 return 0;
5311
5312         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5313
5314         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5315         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5316         if (intel_crtc->config->pch_pfit.enabled ||
5317             intel_crtc->config->pch_pfit.force_thru)
5318                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5319
5320         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5321                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5322
5323         return mask;
5324 }
5325
5326 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5327 {
5328         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5329         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5330         enum intel_display_power_domain domain;
5331         unsigned long domains, new_domains, old_domains;
5332
5333         old_domains = intel_crtc->enabled_power_domains;
5334         intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5335
5336         domains = new_domains & ~old_domains;
5337
5338         for_each_power_domain(domain, domains)
5339                 intel_display_power_get(dev_priv, domain);
5340
5341         return old_domains & ~new_domains;
5342 }
5343
5344 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5345                                       unsigned long domains)
5346 {
5347         enum intel_display_power_domain domain;
5348
5349         for_each_power_domain(domain, domains)
5350                 intel_display_power_put(dev_priv, domain);
5351 }
5352
5353 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5354 {
5355         struct drm_device *dev = state->dev;
5356         struct drm_i915_private *dev_priv = dev->dev_private;
5357         unsigned long put_domains[I915_MAX_PIPES] = {};
5358         struct drm_crtc_state *crtc_state;
5359         struct drm_crtc *crtc;
5360         int i;
5361
5362         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5363                 if (needs_modeset(crtc->state))
5364                         put_domains[to_intel_crtc(crtc)->pipe] =
5365                                 modeset_get_crtc_power_domains(crtc);
5366         }
5367
5368         if (dev_priv->display.modeset_commit_cdclk) {
5369                 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5370
5371                 if (cdclk != dev_priv->cdclk_freq &&
5372                     !WARN_ON(!state->allow_modeset))
5373                         dev_priv->display.modeset_commit_cdclk(state);
5374         }
5375
5376         for (i = 0; i < I915_MAX_PIPES; i++)
5377                 if (put_domains[i])
5378                         modeset_put_power_domains(dev_priv, put_domains[i]);
5379 }
5380
5381 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5382 {
5383         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5384
5385         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5386             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5387                 return max_cdclk_freq;
5388         else if (IS_CHERRYVIEW(dev_priv))
5389                 return max_cdclk_freq*95/100;
5390         else if (INTEL_INFO(dev_priv)->gen < 4)
5391                 return 2*max_cdclk_freq*90/100;
5392         else
5393                 return max_cdclk_freq*90/100;
5394 }
5395
5396 static void intel_update_max_cdclk(struct drm_device *dev)
5397 {
5398         struct drm_i915_private *dev_priv = dev->dev_private;
5399
5400         if (IS_SKYLAKE(dev)) {
5401                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5402
5403                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5404                         dev_priv->max_cdclk_freq = 675000;
5405                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5406                         dev_priv->max_cdclk_freq = 540000;
5407                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5408                         dev_priv->max_cdclk_freq = 450000;
5409                 else
5410                         dev_priv->max_cdclk_freq = 337500;
5411         } else if (IS_BROADWELL(dev))  {
5412                 /*
5413                  * FIXME with extra cooling we can allow
5414                  * 540 MHz for ULX and 675 Mhz for ULT.
5415                  * How can we know if extra cooling is
5416                  * available? PCI ID, VTB, something else?
5417                  */
5418                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5419                         dev_priv->max_cdclk_freq = 450000;
5420                 else if (IS_BDW_ULX(dev))
5421                         dev_priv->max_cdclk_freq = 450000;
5422                 else if (IS_BDW_ULT(dev))
5423                         dev_priv->max_cdclk_freq = 540000;
5424                 else
5425                         dev_priv->max_cdclk_freq = 675000;
5426         } else if (IS_CHERRYVIEW(dev)) {
5427                 dev_priv->max_cdclk_freq = 320000;
5428         } else if (IS_VALLEYVIEW(dev)) {
5429                 dev_priv->max_cdclk_freq = 400000;
5430         } else {
5431                 /* otherwise assume cdclk is fixed */
5432                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5433         }
5434
5435         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5436
5437         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5438                          dev_priv->max_cdclk_freq);
5439
5440         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5441                          dev_priv->max_dotclk_freq);
5442 }
5443
5444 static void intel_update_cdclk(struct drm_device *dev)
5445 {
5446         struct drm_i915_private *dev_priv = dev->dev_private;
5447
5448         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5449         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5450                          dev_priv->cdclk_freq);
5451
5452         /*
5453          * Program the gmbus_freq based on the cdclk frequency.
5454          * BSpec erroneously claims we should aim for 4MHz, but
5455          * in fact 1MHz is the correct frequency.
5456          */
5457         if (IS_VALLEYVIEW(dev)) {
5458                 /*
5459                  * Program the gmbus_freq based on the cdclk frequency.
5460                  * BSpec erroneously claims we should aim for 4MHz, but
5461                  * in fact 1MHz is the correct frequency.
5462                  */
5463                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5464         }
5465
5466         if (dev_priv->max_cdclk_freq == 0)
5467                 intel_update_max_cdclk(dev);
5468 }
5469
5470 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5471 {
5472         struct drm_i915_private *dev_priv = dev->dev_private;
5473         uint32_t divider;
5474         uint32_t ratio;
5475         uint32_t current_freq;
5476         int ret;
5477
5478         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5479         switch (frequency) {
5480         case 144000:
5481                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5482                 ratio = BXT_DE_PLL_RATIO(60);
5483                 break;
5484         case 288000:
5485                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5486                 ratio = BXT_DE_PLL_RATIO(60);
5487                 break;
5488         case 384000:
5489                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5490                 ratio = BXT_DE_PLL_RATIO(60);
5491                 break;
5492         case 576000:
5493                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5494                 ratio = BXT_DE_PLL_RATIO(60);
5495                 break;
5496         case 624000:
5497                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5498                 ratio = BXT_DE_PLL_RATIO(65);
5499                 break;
5500         case 19200:
5501                 /*
5502                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5503                  * to suppress GCC warning.
5504                  */
5505                 ratio = 0;
5506                 divider = 0;
5507                 break;
5508         default:
5509                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5510
5511                 return;
5512         }
5513
5514         mutex_lock(&dev_priv->rps.hw_lock);
5515         /* Inform power controller of upcoming frequency change */
5516         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5517                                       0x80000000);
5518         mutex_unlock(&dev_priv->rps.hw_lock);
5519
5520         if (ret) {
5521                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5522                           ret, frequency);
5523                 return;
5524         }
5525
5526         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5527         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5528         current_freq = current_freq * 500 + 1000;
5529
5530         /*
5531          * DE PLL has to be disabled when
5532          * - setting to 19.2MHz (bypass, PLL isn't used)
5533          * - before setting to 624MHz (PLL needs toggling)
5534          * - before setting to any frequency from 624MHz (PLL needs toggling)
5535          */
5536         if (frequency == 19200 || frequency == 624000 ||
5537             current_freq == 624000) {
5538                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5539                 /* Timeout 200us */
5540                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5541                              1))
5542                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5543         }
5544
5545         if (frequency != 19200) {
5546                 uint32_t val;
5547
5548                 val = I915_READ(BXT_DE_PLL_CTL);
5549                 val &= ~BXT_DE_PLL_RATIO_MASK;
5550                 val |= ratio;
5551                 I915_WRITE(BXT_DE_PLL_CTL, val);
5552
5553                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5554                 /* Timeout 200us */
5555                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5556                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5557
5558                 val = I915_READ(CDCLK_CTL);
5559                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5560                 val |= divider;
5561                 /*
5562                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5563                  * enable otherwise.
5564                  */
5565                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5566                 if (frequency >= 500000)
5567                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5568
5569                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5570                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5571                 val |= (frequency - 1000) / 500;
5572                 I915_WRITE(CDCLK_CTL, val);
5573         }
5574
5575         mutex_lock(&dev_priv->rps.hw_lock);
5576         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5577                                       DIV_ROUND_UP(frequency, 25000));
5578         mutex_unlock(&dev_priv->rps.hw_lock);
5579
5580         if (ret) {
5581                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5582                           ret, frequency);
5583                 return;
5584         }
5585
5586         intel_update_cdclk(dev);
5587 }
5588
5589 void broxton_init_cdclk(struct drm_device *dev)
5590 {
5591         struct drm_i915_private *dev_priv = dev->dev_private;
5592         uint32_t val;
5593
5594         /*
5595          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5596          * or else the reset will hang because there is no PCH to respond.
5597          * Move the handshake programming to initialization sequence.
5598          * Previously was left up to BIOS.
5599          */
5600         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5601         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5602         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5603
5604         /* Enable PG1 for cdclk */
5605         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5606
5607         /* check if cd clock is enabled */
5608         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5609                 DRM_DEBUG_KMS("Display already initialized\n");
5610                 return;
5611         }
5612
5613         /*
5614          * FIXME:
5615          * - The initial CDCLK needs to be read from VBT.
5616          *   Need to make this change after VBT has changes for BXT.
5617          * - check if setting the max (or any) cdclk freq is really necessary
5618          *   here, it belongs to modeset time
5619          */
5620         broxton_set_cdclk(dev, 624000);
5621
5622         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5623         POSTING_READ(DBUF_CTL);
5624
5625         udelay(10);
5626
5627         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5628                 DRM_ERROR("DBuf power enable timeout!\n");
5629 }
5630
5631 void broxton_uninit_cdclk(struct drm_device *dev)
5632 {
5633         struct drm_i915_private *dev_priv = dev->dev_private;
5634
5635         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5636         POSTING_READ(DBUF_CTL);
5637
5638         udelay(10);
5639
5640         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5641                 DRM_ERROR("DBuf power disable timeout!\n");
5642
5643         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5644         broxton_set_cdclk(dev, 19200);
5645
5646         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5647 }
5648
5649 static const struct skl_cdclk_entry {
5650         unsigned int freq;
5651         unsigned int vco;
5652 } skl_cdclk_frequencies[] = {
5653         { .freq = 308570, .vco = 8640 },
5654         { .freq = 337500, .vco = 8100 },
5655         { .freq = 432000, .vco = 8640 },
5656         { .freq = 450000, .vco = 8100 },
5657         { .freq = 540000, .vco = 8100 },
5658         { .freq = 617140, .vco = 8640 },
5659         { .freq = 675000, .vco = 8100 },
5660 };
5661
5662 static unsigned int skl_cdclk_decimal(unsigned int freq)
5663 {
5664         return (freq - 1000) / 500;
5665 }
5666
5667 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5668 {
5669         unsigned int i;
5670
5671         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5672                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5673
5674                 if (e->freq == freq)
5675                         return e->vco;
5676         }
5677
5678         return 8100;
5679 }
5680
5681 static void
5682 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5683 {
5684         unsigned int min_freq;
5685         u32 val;
5686
5687         /* select the minimum CDCLK before enabling DPLL 0 */
5688         val = I915_READ(CDCLK_CTL);
5689         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5690         val |= CDCLK_FREQ_337_308;
5691
5692         if (required_vco == 8640)
5693                 min_freq = 308570;
5694         else
5695                 min_freq = 337500;
5696
5697         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5698
5699         I915_WRITE(CDCLK_CTL, val);
5700         POSTING_READ(CDCLK_CTL);
5701
5702         /*
5703          * We always enable DPLL0 with the lowest link rate possible, but still
5704          * taking into account the VCO required to operate the eDP panel at the
5705          * desired frequency. The usual DP link rates operate with a VCO of
5706          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5707          * The modeset code is responsible for the selection of the exact link
5708          * rate later on, with the constraint of choosing a frequency that
5709          * works with required_vco.
5710          */
5711         val = I915_READ(DPLL_CTRL1);
5712
5713         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5714                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5715         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5716         if (required_vco == 8640)
5717                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5718                                             SKL_DPLL0);
5719         else
5720                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5721                                             SKL_DPLL0);
5722
5723         I915_WRITE(DPLL_CTRL1, val);
5724         POSTING_READ(DPLL_CTRL1);
5725
5726         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5727
5728         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5729                 DRM_ERROR("DPLL0 not locked\n");
5730 }
5731
5732 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5733 {
5734         int ret;
5735         u32 val;
5736
5737         /* inform PCU we want to change CDCLK */
5738         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5739         mutex_lock(&dev_priv->rps.hw_lock);
5740         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5741         mutex_unlock(&dev_priv->rps.hw_lock);
5742
5743         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5744 }
5745
5746 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5747 {
5748         unsigned int i;
5749
5750         for (i = 0; i < 15; i++) {
5751                 if (skl_cdclk_pcu_ready(dev_priv))
5752                         return true;
5753                 udelay(10);
5754         }
5755
5756         return false;
5757 }
5758
5759 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5760 {
5761         struct drm_device *dev = dev_priv->dev;
5762         u32 freq_select, pcu_ack;
5763
5764         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5765
5766         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5767                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5768                 return;
5769         }
5770
5771         /* set CDCLK_CTL */
5772         switch(freq) {
5773         case 450000:
5774         case 432000:
5775                 freq_select = CDCLK_FREQ_450_432;
5776                 pcu_ack = 1;
5777                 break;
5778         case 540000:
5779                 freq_select = CDCLK_FREQ_540;
5780                 pcu_ack = 2;
5781                 break;
5782         case 308570:
5783         case 337500:
5784         default:
5785                 freq_select = CDCLK_FREQ_337_308;
5786                 pcu_ack = 0;
5787                 break;
5788         case 617140:
5789         case 675000:
5790                 freq_select = CDCLK_FREQ_675_617;
5791                 pcu_ack = 3;
5792                 break;
5793         }
5794
5795         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5796         POSTING_READ(CDCLK_CTL);
5797
5798         /* inform PCU of the change */
5799         mutex_lock(&dev_priv->rps.hw_lock);
5800         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5801         mutex_unlock(&dev_priv->rps.hw_lock);
5802
5803         intel_update_cdclk(dev);
5804 }
5805
5806 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5807 {
5808         /* disable DBUF power */
5809         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5810         POSTING_READ(DBUF_CTL);
5811
5812         udelay(10);
5813
5814         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5815                 DRM_ERROR("DBuf power disable timeout\n");
5816
5817         /*
5818          * DMC assumes ownership of LCPLL and will get confused if we touch it.
5819          */
5820         if (dev_priv->csr.dmc_payload) {
5821                 /* disable DPLL0 */
5822                 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) &
5823                                         ~LCPLL_PLL_ENABLE);
5824                 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5825                         DRM_ERROR("Couldn't disable DPLL0\n");
5826         }
5827
5828         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5829 }
5830
5831 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5832 {
5833         u32 val;
5834         unsigned int required_vco;
5835
5836         /* enable PCH reset handshake */
5837         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5838         I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5839
5840         /* enable PG1 and Misc I/O */
5841         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5842
5843         /* DPLL0 not enabled (happens on early BIOS versions) */
5844         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5845                 /* enable DPLL0 */
5846                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5847                 skl_dpll0_enable(dev_priv, required_vco);
5848         }
5849
5850         /* set CDCLK to the frequency the BIOS chose */
5851         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5852
5853         /* enable DBUF power */
5854         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5855         POSTING_READ(DBUF_CTL);
5856
5857         udelay(10);
5858
5859         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5860                 DRM_ERROR("DBuf power enable timeout\n");
5861 }
5862
5863 /* Adjust CDclk dividers to allow high res or save power if possible */
5864 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5865 {
5866         struct drm_i915_private *dev_priv = dev->dev_private;
5867         u32 val, cmd;
5868
5869         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5870                                         != dev_priv->cdclk_freq);
5871
5872         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5873                 cmd = 2;
5874         else if (cdclk == 266667)
5875                 cmd = 1;
5876         else
5877                 cmd = 0;
5878
5879         mutex_lock(&dev_priv->rps.hw_lock);
5880         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5881         val &= ~DSPFREQGUAR_MASK;
5882         val |= (cmd << DSPFREQGUAR_SHIFT);
5883         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5884         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5885                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5886                      50)) {
5887                 DRM_ERROR("timed out waiting for CDclk change\n");
5888         }
5889         mutex_unlock(&dev_priv->rps.hw_lock);
5890
5891         mutex_lock(&dev_priv->sb_lock);
5892
5893         if (cdclk == 400000) {
5894                 u32 divider;
5895
5896                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5897
5898                 /* adjust cdclk divider */
5899                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5900                 val &= ~CCK_FREQUENCY_VALUES;
5901                 val |= divider;
5902                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5903
5904                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5905                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5906                              50))
5907                         DRM_ERROR("timed out waiting for CDclk change\n");
5908         }
5909
5910         /* adjust self-refresh exit latency value */
5911         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5912         val &= ~0x7f;
5913
5914         /*
5915          * For high bandwidth configs, we set a higher latency in the bunit
5916          * so that the core display fetch happens in time to avoid underruns.
5917          */
5918         if (cdclk == 400000)
5919                 val |= 4500 / 250; /* 4.5 usec */
5920         else
5921                 val |= 3000 / 250; /* 3.0 usec */
5922         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5923
5924         mutex_unlock(&dev_priv->sb_lock);
5925
5926         intel_update_cdclk(dev);
5927 }
5928
5929 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5930 {
5931         struct drm_i915_private *dev_priv = dev->dev_private;
5932         u32 val, cmd;
5933
5934         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5935                                                 != dev_priv->cdclk_freq);
5936
5937         switch (cdclk) {
5938         case 333333:
5939         case 320000:
5940         case 266667:
5941         case 200000:
5942                 break;
5943         default:
5944                 MISSING_CASE(cdclk);
5945                 return;
5946         }
5947
5948         /*
5949          * Specs are full of misinformation, but testing on actual
5950          * hardware has shown that we just need to write the desired
5951          * CCK divider into the Punit register.
5952          */
5953         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5954
5955         mutex_lock(&dev_priv->rps.hw_lock);
5956         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5957         val &= ~DSPFREQGUAR_MASK_CHV;
5958         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5959         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5960         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5961                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5962                      50)) {
5963                 DRM_ERROR("timed out waiting for CDclk change\n");
5964         }
5965         mutex_unlock(&dev_priv->rps.hw_lock);
5966
5967         intel_update_cdclk(dev);
5968 }
5969
5970 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5971                                  int max_pixclk)
5972 {
5973         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5974         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5975
5976         /*
5977          * Really only a few cases to deal with, as only 4 CDclks are supported:
5978          *   200MHz
5979          *   267MHz
5980          *   320/333MHz (depends on HPLL freq)
5981          *   400MHz (VLV only)
5982          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5983          * of the lower bin and adjust if needed.
5984          *
5985          * We seem to get an unstable or solid color picture at 200MHz.
5986          * Not sure what's wrong. For now use 200MHz only when all pipes
5987          * are off.
5988          */
5989         if (!IS_CHERRYVIEW(dev_priv) &&
5990             max_pixclk > freq_320*limit/100)
5991                 return 400000;
5992         else if (max_pixclk > 266667*limit/100)
5993                 return freq_320;
5994         else if (max_pixclk > 0)
5995                 return 266667;
5996         else
5997                 return 200000;
5998 }
5999
6000 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
6001                               int max_pixclk)
6002 {
6003         /*
6004          * FIXME:
6005          * - remove the guardband, it's not needed on BXT
6006          * - set 19.2MHz bypass frequency if there are no active pipes
6007          */
6008         if (max_pixclk > 576000*9/10)
6009                 return 624000;
6010         else if (max_pixclk > 384000*9/10)
6011                 return 576000;
6012         else if (max_pixclk > 288000*9/10)
6013                 return 384000;
6014         else if (max_pixclk > 144000*9/10)
6015                 return 288000;
6016         else
6017                 return 144000;
6018 }
6019
6020 /* Compute the max pixel clock for new configuration. Uses atomic state if
6021  * that's non-NULL, look at current state otherwise. */
6022 static int intel_mode_max_pixclk(struct drm_device *dev,
6023                                  struct drm_atomic_state *state)
6024 {
6025         struct intel_crtc *intel_crtc;
6026         struct intel_crtc_state *crtc_state;
6027         int max_pixclk = 0;
6028
6029         for_each_intel_crtc(dev, intel_crtc) {
6030                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6031                 if (IS_ERR(crtc_state))
6032                         return PTR_ERR(crtc_state);
6033
6034                 if (!crtc_state->base.enable)
6035                         continue;
6036
6037                 max_pixclk = max(max_pixclk,
6038                                  crtc_state->base.adjusted_mode.crtc_clock);
6039         }
6040
6041         return max_pixclk;
6042 }
6043
6044 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6045 {
6046         struct drm_device *dev = state->dev;
6047         struct drm_i915_private *dev_priv = dev->dev_private;
6048         int max_pixclk = intel_mode_max_pixclk(dev, state);
6049
6050         if (max_pixclk < 0)
6051                 return max_pixclk;
6052
6053         to_intel_atomic_state(state)->cdclk =
6054                 valleyview_calc_cdclk(dev_priv, max_pixclk);
6055
6056         return 0;
6057 }
6058
6059 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6060 {
6061         struct drm_device *dev = state->dev;
6062         struct drm_i915_private *dev_priv = dev->dev_private;
6063         int max_pixclk = intel_mode_max_pixclk(dev, state);
6064
6065         if (max_pixclk < 0)
6066                 return max_pixclk;
6067
6068         to_intel_atomic_state(state)->cdclk =
6069                 broxton_calc_cdclk(dev_priv, max_pixclk);
6070
6071         return 0;
6072 }
6073
6074 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6075 {
6076         unsigned int credits, default_credits;
6077
6078         if (IS_CHERRYVIEW(dev_priv))
6079                 default_credits = PFI_CREDIT(12);
6080         else
6081                 default_credits = PFI_CREDIT(8);
6082
6083         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6084                 /* CHV suggested value is 31 or 63 */
6085                 if (IS_CHERRYVIEW(dev_priv))
6086                         credits = PFI_CREDIT_63;
6087                 else
6088                         credits = PFI_CREDIT(15);
6089         } else {
6090                 credits = default_credits;
6091         }
6092
6093         /*
6094          * WA - write default credits before re-programming
6095          * FIXME: should we also set the resend bit here?
6096          */
6097         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6098                    default_credits);
6099
6100         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6101                    credits | PFI_CREDIT_RESEND);
6102
6103         /*
6104          * FIXME is this guaranteed to clear
6105          * immediately or should we poll for it?
6106          */
6107         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6108 }
6109
6110 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6111 {
6112         struct drm_device *dev = old_state->dev;
6113         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6114         struct drm_i915_private *dev_priv = dev->dev_private;
6115
6116         /*
6117          * FIXME: We can end up here with all power domains off, yet
6118          * with a CDCLK frequency other than the minimum. To account
6119          * for this take the PIPE-A power domain, which covers the HW
6120          * blocks needed for the following programming. This can be
6121          * removed once it's guaranteed that we get here either with
6122          * the minimum CDCLK set, or the required power domains
6123          * enabled.
6124          */
6125         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6126
6127         if (IS_CHERRYVIEW(dev))
6128                 cherryview_set_cdclk(dev, req_cdclk);
6129         else
6130                 valleyview_set_cdclk(dev, req_cdclk);
6131
6132         vlv_program_pfi_credits(dev_priv);
6133
6134         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6135 }
6136
6137 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6138 {
6139         struct drm_device *dev = crtc->dev;
6140         struct drm_i915_private *dev_priv = to_i915(dev);
6141         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6142         struct intel_encoder *encoder;
6143         int pipe = intel_crtc->pipe;
6144         bool is_dsi;
6145
6146         if (WARN_ON(intel_crtc->active))
6147                 return;
6148
6149         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6150
6151         if (intel_crtc->config->has_dp_encoder)
6152                 intel_dp_set_m_n(intel_crtc, M1_N1);
6153
6154         intel_set_pipe_timings(intel_crtc);
6155
6156         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6157                 struct drm_i915_private *dev_priv = dev->dev_private;
6158
6159                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6160                 I915_WRITE(CHV_CANVAS(pipe), 0);
6161         }
6162
6163         i9xx_set_pipeconf(intel_crtc);
6164
6165         intel_crtc->active = true;
6166
6167         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6168
6169         for_each_encoder_on_crtc(dev, crtc, encoder)
6170                 if (encoder->pre_pll_enable)
6171                         encoder->pre_pll_enable(encoder);
6172
6173         if (!is_dsi) {
6174                 if (IS_CHERRYVIEW(dev)) {
6175                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6176                         chv_enable_pll(intel_crtc, intel_crtc->config);
6177                 } else {
6178                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6179                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6180                 }
6181         }
6182
6183         for_each_encoder_on_crtc(dev, crtc, encoder)
6184                 if (encoder->pre_enable)
6185                         encoder->pre_enable(encoder);
6186
6187         i9xx_pfit_enable(intel_crtc);
6188
6189         intel_crtc_load_lut(crtc);
6190
6191         intel_enable_pipe(intel_crtc);
6192
6193         assert_vblank_disabled(crtc);
6194         drm_crtc_vblank_on(crtc);
6195
6196         for_each_encoder_on_crtc(dev, crtc, encoder)
6197                 encoder->enable(encoder);
6198 }
6199
6200 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6201 {
6202         struct drm_device *dev = crtc->base.dev;
6203         struct drm_i915_private *dev_priv = dev->dev_private;
6204
6205         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6206         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6207 }
6208
6209 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6210 {
6211         struct drm_device *dev = crtc->dev;
6212         struct drm_i915_private *dev_priv = to_i915(dev);
6213         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6214         struct intel_encoder *encoder;
6215         int pipe = intel_crtc->pipe;
6216
6217         if (WARN_ON(intel_crtc->active))
6218                 return;
6219
6220         i9xx_set_pll_dividers(intel_crtc);
6221
6222         if (intel_crtc->config->has_dp_encoder)
6223                 intel_dp_set_m_n(intel_crtc, M1_N1);
6224
6225         intel_set_pipe_timings(intel_crtc);
6226
6227         i9xx_set_pipeconf(intel_crtc);
6228
6229         intel_crtc->active = true;
6230
6231         if (!IS_GEN2(dev))
6232                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6233
6234         for_each_encoder_on_crtc(dev, crtc, encoder)
6235                 if (encoder->pre_enable)
6236                         encoder->pre_enable(encoder);
6237
6238         i9xx_enable_pll(intel_crtc);
6239
6240         i9xx_pfit_enable(intel_crtc);
6241
6242         intel_crtc_load_lut(crtc);
6243
6244         intel_update_watermarks(crtc);
6245         intel_enable_pipe(intel_crtc);
6246
6247         assert_vblank_disabled(crtc);
6248         drm_crtc_vblank_on(crtc);
6249
6250         for_each_encoder_on_crtc(dev, crtc, encoder)
6251                 encoder->enable(encoder);
6252 }
6253
6254 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6255 {
6256         struct drm_device *dev = crtc->base.dev;
6257         struct drm_i915_private *dev_priv = dev->dev_private;
6258
6259         if (!crtc->config->gmch_pfit.control)
6260                 return;
6261
6262         assert_pipe_disabled(dev_priv, crtc->pipe);
6263
6264         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6265                          I915_READ(PFIT_CONTROL));
6266         I915_WRITE(PFIT_CONTROL, 0);
6267 }
6268
6269 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6270 {
6271         struct drm_device *dev = crtc->dev;
6272         struct drm_i915_private *dev_priv = dev->dev_private;
6273         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6274         struct intel_encoder *encoder;
6275         int pipe = intel_crtc->pipe;
6276
6277         /*
6278          * On gen2 planes are double buffered but the pipe isn't, so we must
6279          * wait for planes to fully turn off before disabling the pipe.
6280          * We also need to wait on all gmch platforms because of the
6281          * self-refresh mode constraint explained above.
6282          */
6283         intel_wait_for_vblank(dev, pipe);
6284
6285         for_each_encoder_on_crtc(dev, crtc, encoder)
6286                 encoder->disable(encoder);
6287
6288         drm_crtc_vblank_off(crtc);
6289         assert_vblank_disabled(crtc);
6290
6291         intel_disable_pipe(intel_crtc);
6292
6293         i9xx_pfit_disable(intel_crtc);
6294
6295         for_each_encoder_on_crtc(dev, crtc, encoder)
6296                 if (encoder->post_disable)
6297                         encoder->post_disable(encoder);
6298
6299         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6300                 if (IS_CHERRYVIEW(dev))
6301                         chv_disable_pll(dev_priv, pipe);
6302                 else if (IS_VALLEYVIEW(dev))
6303                         vlv_disable_pll(dev_priv, pipe);
6304                 else
6305                         i9xx_disable_pll(intel_crtc);
6306         }
6307
6308         for_each_encoder_on_crtc(dev, crtc, encoder)
6309                 if (encoder->post_pll_disable)
6310                         encoder->post_pll_disable(encoder);
6311
6312         if (!IS_GEN2(dev))
6313                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6314 }
6315
6316 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6317 {
6318         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6319         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6320         enum intel_display_power_domain domain;
6321         unsigned long domains;
6322
6323         if (!intel_crtc->active)
6324                 return;
6325
6326         if (to_intel_plane_state(crtc->primary->state)->visible) {
6327                 intel_crtc_wait_for_pending_flips(crtc);
6328                 intel_pre_disable_primary(crtc);
6329
6330                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6331                 to_intel_plane_state(crtc->primary->state)->visible = false;
6332         }
6333
6334         dev_priv->display.crtc_disable(crtc);
6335         intel_crtc->active = false;
6336         intel_update_watermarks(crtc);
6337         intel_disable_shared_dpll(intel_crtc);
6338
6339         domains = intel_crtc->enabled_power_domains;
6340         for_each_power_domain(domain, domains)
6341                 intel_display_power_put(dev_priv, domain);
6342         intel_crtc->enabled_power_domains = 0;
6343 }
6344
6345 /*
6346  * turn all crtc's off, but do not adjust state
6347  * This has to be paired with a call to intel_modeset_setup_hw_state.
6348  */
6349 int intel_display_suspend(struct drm_device *dev)
6350 {
6351         struct drm_mode_config *config = &dev->mode_config;
6352         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6353         struct drm_atomic_state *state;
6354         struct drm_crtc *crtc;
6355         unsigned crtc_mask = 0;
6356         int ret = 0;
6357
6358         if (WARN_ON(!ctx))
6359                 return 0;
6360
6361         lockdep_assert_held(&ctx->ww_ctx);
6362         state = drm_atomic_state_alloc(dev);
6363         if (WARN_ON(!state))
6364                 return -ENOMEM;
6365
6366         state->acquire_ctx = ctx;
6367         state->allow_modeset = true;
6368
6369         for_each_crtc(dev, crtc) {
6370                 struct drm_crtc_state *crtc_state =
6371                         drm_atomic_get_crtc_state(state, crtc);
6372
6373                 ret = PTR_ERR_OR_ZERO(crtc_state);
6374                 if (ret)
6375                         goto free;
6376
6377                 if (!crtc_state->active)
6378                         continue;
6379
6380                 crtc_state->active = false;
6381                 crtc_mask |= 1 << drm_crtc_index(crtc);
6382         }
6383
6384         if (crtc_mask) {
6385                 ret = drm_atomic_commit(state);
6386
6387                 if (!ret) {
6388                         for_each_crtc(dev, crtc)
6389                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6390                                         crtc->state->active = true;
6391
6392                         return ret;
6393                 }
6394         }
6395
6396 free:
6397         if (ret)
6398                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6399         drm_atomic_state_free(state);
6400         return ret;
6401 }
6402
6403 void intel_encoder_destroy(struct drm_encoder *encoder)
6404 {
6405         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6406
6407         drm_encoder_cleanup(encoder);
6408         kfree(intel_encoder);
6409 }
6410
6411 /* Cross check the actual hw state with our own modeset state tracking (and it's
6412  * internal consistency). */
6413 static void intel_connector_check_state(struct intel_connector *connector)
6414 {
6415         struct drm_crtc *crtc = connector->base.state->crtc;
6416
6417         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6418                       connector->base.base.id,
6419                       connector->base.name);
6420
6421         if (connector->get_hw_state(connector)) {
6422                 struct intel_encoder *encoder = connector->encoder;
6423                 struct drm_connector_state *conn_state = connector->base.state;
6424
6425                 I915_STATE_WARN(!crtc,
6426                          "connector enabled without attached crtc\n");
6427
6428                 if (!crtc)
6429                         return;
6430
6431                 I915_STATE_WARN(!crtc->state->active,
6432                       "connector is active, but attached crtc isn't\n");
6433
6434                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6435                         return;
6436
6437                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6438                         "atomic encoder doesn't match attached encoder\n");
6439
6440                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6441                         "attached encoder crtc differs from connector crtc\n");
6442         } else {
6443                 I915_STATE_WARN(crtc && crtc->state->active,
6444                         "attached crtc is active, but connector isn't\n");
6445                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6446                         "best encoder set without crtc!\n");
6447         }
6448 }
6449
6450 int intel_connector_init(struct intel_connector *connector)
6451 {
6452         struct drm_connector_state *connector_state;
6453
6454         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6455         if (!connector_state)
6456                 return -ENOMEM;
6457
6458         connector->base.state = connector_state;
6459         return 0;
6460 }
6461
6462 struct intel_connector *intel_connector_alloc(void)
6463 {
6464         struct intel_connector *connector;
6465
6466         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6467         if (!connector)
6468                 return NULL;
6469
6470         if (intel_connector_init(connector) < 0) {
6471                 kfree(connector);
6472                 return NULL;
6473         }
6474
6475         return connector;
6476 }
6477
6478 /* Simple connector->get_hw_state implementation for encoders that support only
6479  * one connector and no cloning and hence the encoder state determines the state
6480  * of the connector. */
6481 bool intel_connector_get_hw_state(struct intel_connector *connector)
6482 {
6483         enum pipe pipe = 0;
6484         struct intel_encoder *encoder = connector->encoder;
6485
6486         return encoder->get_hw_state(encoder, &pipe);
6487 }
6488
6489 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6490 {
6491         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6492                 return crtc_state->fdi_lanes;
6493
6494         return 0;
6495 }
6496
6497 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6498                                      struct intel_crtc_state *pipe_config)
6499 {
6500         struct drm_atomic_state *state = pipe_config->base.state;
6501         struct intel_crtc *other_crtc;
6502         struct intel_crtc_state *other_crtc_state;
6503
6504         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6505                       pipe_name(pipe), pipe_config->fdi_lanes);
6506         if (pipe_config->fdi_lanes > 4) {
6507                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6508                               pipe_name(pipe), pipe_config->fdi_lanes);
6509                 return -EINVAL;
6510         }
6511
6512         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6513                 if (pipe_config->fdi_lanes > 2) {
6514                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6515                                       pipe_config->fdi_lanes);
6516                         return -EINVAL;
6517                 } else {
6518                         return 0;
6519                 }
6520         }
6521
6522         if (INTEL_INFO(dev)->num_pipes == 2)
6523                 return 0;
6524
6525         /* Ivybridge 3 pipe is really complicated */
6526         switch (pipe) {
6527         case PIPE_A:
6528                 return 0;
6529         case PIPE_B:
6530                 if (pipe_config->fdi_lanes <= 2)
6531                         return 0;
6532
6533                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6534                 other_crtc_state =
6535                         intel_atomic_get_crtc_state(state, other_crtc);
6536                 if (IS_ERR(other_crtc_state))
6537                         return PTR_ERR(other_crtc_state);
6538
6539                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6540                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6541                                       pipe_name(pipe), pipe_config->fdi_lanes);
6542                         return -EINVAL;
6543                 }
6544                 return 0;
6545         case PIPE_C:
6546                 if (pipe_config->fdi_lanes > 2) {
6547                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6548                                       pipe_name(pipe), pipe_config->fdi_lanes);
6549                         return -EINVAL;
6550                 }
6551
6552                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6553                 other_crtc_state =
6554                         intel_atomic_get_crtc_state(state, other_crtc);
6555                 if (IS_ERR(other_crtc_state))
6556                         return PTR_ERR(other_crtc_state);
6557
6558                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6559                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6560                         return -EINVAL;
6561                 }
6562                 return 0;
6563         default:
6564                 BUG();
6565         }
6566 }
6567
6568 #define RETRY 1
6569 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6570                                        struct intel_crtc_state *pipe_config)
6571 {
6572         struct drm_device *dev = intel_crtc->base.dev;
6573         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6574         int lane, link_bw, fdi_dotclock, ret;
6575         bool needs_recompute = false;
6576
6577 retry:
6578         /* FDI is a binary signal running at ~2.7GHz, encoding
6579          * each output octet as 10 bits. The actual frequency
6580          * is stored as a divider into a 100MHz clock, and the
6581          * mode pixel clock is stored in units of 1KHz.
6582          * Hence the bw of each lane in terms of the mode signal
6583          * is:
6584          */
6585         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6586
6587         fdi_dotclock = adjusted_mode->crtc_clock;
6588
6589         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6590                                            pipe_config->pipe_bpp);
6591
6592         pipe_config->fdi_lanes = lane;
6593
6594         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6595                                link_bw, &pipe_config->fdi_m_n);
6596
6597         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6598                                        intel_crtc->pipe, pipe_config);
6599         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6600                 pipe_config->pipe_bpp -= 2*3;
6601                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6602                               pipe_config->pipe_bpp);
6603                 needs_recompute = true;
6604                 pipe_config->bw_constrained = true;
6605
6606                 goto retry;
6607         }
6608
6609         if (needs_recompute)
6610                 return RETRY;
6611
6612         return ret;
6613 }
6614
6615 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6616                                      struct intel_crtc_state *pipe_config)
6617 {
6618         if (pipe_config->pipe_bpp > 24)
6619                 return false;
6620
6621         /* HSW can handle pixel rate up to cdclk? */
6622         if (IS_HASWELL(dev_priv->dev))
6623                 return true;
6624
6625         /*
6626          * We compare against max which means we must take
6627          * the increased cdclk requirement into account when
6628          * calculating the new cdclk.
6629          *
6630          * Should measure whether using a lower cdclk w/o IPS
6631          */
6632         return ilk_pipe_pixel_rate(pipe_config) <=
6633                 dev_priv->max_cdclk_freq * 95 / 100;
6634 }
6635
6636 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6637                                    struct intel_crtc_state *pipe_config)
6638 {
6639         struct drm_device *dev = crtc->base.dev;
6640         struct drm_i915_private *dev_priv = dev->dev_private;
6641
6642         pipe_config->ips_enabled = i915.enable_ips &&
6643                 hsw_crtc_supports_ips(crtc) &&
6644                 pipe_config_supports_ips(dev_priv, pipe_config);
6645 }
6646
6647 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6648                                      struct intel_crtc_state *pipe_config)
6649 {
6650         struct drm_device *dev = crtc->base.dev;
6651         struct drm_i915_private *dev_priv = dev->dev_private;
6652         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6653
6654         /* FIXME should check pixel clock limits on all platforms */
6655         if (INTEL_INFO(dev)->gen < 4) {
6656                 int clock_limit = dev_priv->max_cdclk_freq;
6657
6658                 /*
6659                  * Enable pixel doubling when the dot clock
6660                  * is > 90% of the (display) core speed.
6661                  *
6662                  * GDG double wide on either pipe,
6663                  * otherwise pipe A only.
6664                  */
6665                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6666                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6667                         clock_limit *= 2;
6668                         pipe_config->double_wide = true;
6669                 }
6670
6671                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6672                         return -EINVAL;
6673         }
6674
6675         /*
6676          * Pipe horizontal size must be even in:
6677          * - DVO ganged mode
6678          * - LVDS dual channel mode
6679          * - Double wide pipe
6680          */
6681         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6682              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6683                 pipe_config->pipe_src_w &= ~1;
6684
6685         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6686          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6687          */
6688         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6689                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6690                 return -EINVAL;
6691
6692         if (HAS_IPS(dev))
6693                 hsw_compute_ips_config(crtc, pipe_config);
6694
6695         if (pipe_config->has_pch_encoder)
6696                 return ironlake_fdi_compute_config(crtc, pipe_config);
6697
6698         return 0;
6699 }
6700
6701 static int skylake_get_display_clock_speed(struct drm_device *dev)
6702 {
6703         struct drm_i915_private *dev_priv = to_i915(dev);
6704         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6705         uint32_t cdctl = I915_READ(CDCLK_CTL);
6706         uint32_t linkrate;
6707
6708         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6709                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6710
6711         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6712                 return 540000;
6713
6714         linkrate = (I915_READ(DPLL_CTRL1) &
6715                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6716
6717         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6718             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6719                 /* vco 8640 */
6720                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6721                 case CDCLK_FREQ_450_432:
6722                         return 432000;
6723                 case CDCLK_FREQ_337_308:
6724                         return 308570;
6725                 case CDCLK_FREQ_675_617:
6726                         return 617140;
6727                 default:
6728                         WARN(1, "Unknown cd freq selection\n");
6729                 }
6730         } else {
6731                 /* vco 8100 */
6732                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6733                 case CDCLK_FREQ_450_432:
6734                         return 450000;
6735                 case CDCLK_FREQ_337_308:
6736                         return 337500;
6737                 case CDCLK_FREQ_675_617:
6738                         return 675000;
6739                 default:
6740                         WARN(1, "Unknown cd freq selection\n");
6741                 }
6742         }
6743
6744         /* error case, do as if DPLL0 isn't enabled */
6745         return 24000;
6746 }
6747
6748 static int broxton_get_display_clock_speed(struct drm_device *dev)
6749 {
6750         struct drm_i915_private *dev_priv = to_i915(dev);
6751         uint32_t cdctl = I915_READ(CDCLK_CTL);
6752         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6753         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6754         int cdclk;
6755
6756         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6757                 return 19200;
6758
6759         cdclk = 19200 * pll_ratio / 2;
6760
6761         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6762         case BXT_CDCLK_CD2X_DIV_SEL_1:
6763                 return cdclk;  /* 576MHz or 624MHz */
6764         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6765                 return cdclk * 2 / 3; /* 384MHz */
6766         case BXT_CDCLK_CD2X_DIV_SEL_2:
6767                 return cdclk / 2; /* 288MHz */
6768         case BXT_CDCLK_CD2X_DIV_SEL_4:
6769                 return cdclk / 4; /* 144MHz */
6770         }
6771
6772         /* error case, do as if DE PLL isn't enabled */
6773         return 19200;
6774 }
6775
6776 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6777 {
6778         struct drm_i915_private *dev_priv = dev->dev_private;
6779         uint32_t lcpll = I915_READ(LCPLL_CTL);
6780         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6781
6782         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6783                 return 800000;
6784         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6785                 return 450000;
6786         else if (freq == LCPLL_CLK_FREQ_450)
6787                 return 450000;
6788         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6789                 return 540000;
6790         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6791                 return 337500;
6792         else
6793                 return 675000;
6794 }
6795
6796 static int haswell_get_display_clock_speed(struct drm_device *dev)
6797 {
6798         struct drm_i915_private *dev_priv = dev->dev_private;
6799         uint32_t lcpll = I915_READ(LCPLL_CTL);
6800         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6801
6802         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6803                 return 800000;
6804         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6805                 return 450000;
6806         else if (freq == LCPLL_CLK_FREQ_450)
6807                 return 450000;
6808         else if (IS_HSW_ULT(dev))
6809                 return 337500;
6810         else
6811                 return 540000;
6812 }
6813
6814 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6815 {
6816         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6817                                       CCK_DISPLAY_CLOCK_CONTROL);
6818 }
6819
6820 static int ilk_get_display_clock_speed(struct drm_device *dev)
6821 {
6822         return 450000;
6823 }
6824
6825 static int i945_get_display_clock_speed(struct drm_device *dev)
6826 {
6827         return 400000;
6828 }
6829
6830 static int i915_get_display_clock_speed(struct drm_device *dev)
6831 {
6832         return 333333;
6833 }
6834
6835 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6836 {
6837         return 200000;
6838 }
6839
6840 static int pnv_get_display_clock_speed(struct drm_device *dev)
6841 {
6842         u16 gcfgc = 0;
6843
6844         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6845
6846         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6847         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6848                 return 266667;
6849         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6850                 return 333333;
6851         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6852                 return 444444;
6853         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6854                 return 200000;
6855         default:
6856                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6857         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6858                 return 133333;
6859         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6860                 return 166667;
6861         }
6862 }
6863
6864 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6865 {
6866         u16 gcfgc = 0;
6867
6868         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6869
6870         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6871                 return 133333;
6872         else {
6873                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6874                 case GC_DISPLAY_CLOCK_333_MHZ:
6875                         return 333333;
6876                 default:
6877                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6878                         return 190000;
6879                 }
6880         }
6881 }
6882
6883 static int i865_get_display_clock_speed(struct drm_device *dev)
6884 {
6885         return 266667;
6886 }
6887
6888 static int i85x_get_display_clock_speed(struct drm_device *dev)
6889 {
6890         u16 hpllcc = 0;
6891
6892         /*
6893          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6894          * encoding is different :(
6895          * FIXME is this the right way to detect 852GM/852GMV?
6896          */
6897         if (dev->pdev->revision == 0x1)
6898                 return 133333;
6899
6900         pci_bus_read_config_word(dev->pdev->bus,
6901                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6902
6903         /* Assume that the hardware is in the high speed state.  This
6904          * should be the default.
6905          */
6906         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6907         case GC_CLOCK_133_200:
6908         case GC_CLOCK_133_200_2:
6909         case GC_CLOCK_100_200:
6910                 return 200000;
6911         case GC_CLOCK_166_250:
6912                 return 250000;
6913         case GC_CLOCK_100_133:
6914                 return 133333;
6915         case GC_CLOCK_133_266:
6916         case GC_CLOCK_133_266_2:
6917         case GC_CLOCK_166_266:
6918                 return 266667;
6919         }
6920
6921         /* Shouldn't happen */
6922         return 0;
6923 }
6924
6925 static int i830_get_display_clock_speed(struct drm_device *dev)
6926 {
6927         return 133333;
6928 }
6929
6930 static unsigned int intel_hpll_vco(struct drm_device *dev)
6931 {
6932         struct drm_i915_private *dev_priv = dev->dev_private;
6933         static const unsigned int blb_vco[8] = {
6934                 [0] = 3200000,
6935                 [1] = 4000000,
6936                 [2] = 5333333,
6937                 [3] = 4800000,
6938                 [4] = 6400000,
6939         };
6940         static const unsigned int pnv_vco[8] = {
6941                 [0] = 3200000,
6942                 [1] = 4000000,
6943                 [2] = 5333333,
6944                 [3] = 4800000,
6945                 [4] = 2666667,
6946         };
6947         static const unsigned int cl_vco[8] = {
6948                 [0] = 3200000,
6949                 [1] = 4000000,
6950                 [2] = 5333333,
6951                 [3] = 6400000,
6952                 [4] = 3333333,
6953                 [5] = 3566667,
6954                 [6] = 4266667,
6955         };
6956         static const unsigned int elk_vco[8] = {
6957                 [0] = 3200000,
6958                 [1] = 4000000,
6959                 [2] = 5333333,
6960                 [3] = 4800000,
6961         };
6962         static const unsigned int ctg_vco[8] = {
6963                 [0] = 3200000,
6964                 [1] = 4000000,
6965                 [2] = 5333333,
6966                 [3] = 6400000,
6967                 [4] = 2666667,
6968                 [5] = 4266667,
6969         };
6970         const unsigned int *vco_table;
6971         unsigned int vco;
6972         uint8_t tmp = 0;
6973
6974         /* FIXME other chipsets? */
6975         if (IS_GM45(dev))
6976                 vco_table = ctg_vco;
6977         else if (IS_G4X(dev))
6978                 vco_table = elk_vco;
6979         else if (IS_CRESTLINE(dev))
6980                 vco_table = cl_vco;
6981         else if (IS_PINEVIEW(dev))
6982                 vco_table = pnv_vco;
6983         else if (IS_G33(dev))
6984                 vco_table = blb_vco;
6985         else
6986                 return 0;
6987
6988         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6989
6990         vco = vco_table[tmp & 0x7];
6991         if (vco == 0)
6992                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6993         else
6994                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6995
6996         return vco;
6997 }
6998
6999 static int gm45_get_display_clock_speed(struct drm_device *dev)
7000 {
7001         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7002         uint16_t tmp = 0;
7003
7004         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7005
7006         cdclk_sel = (tmp >> 12) & 0x1;
7007
7008         switch (vco) {
7009         case 2666667:
7010         case 4000000:
7011         case 5333333:
7012                 return cdclk_sel ? 333333 : 222222;
7013         case 3200000:
7014                 return cdclk_sel ? 320000 : 228571;
7015         default:
7016                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7017                 return 222222;
7018         }
7019 }
7020
7021 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7022 {
7023         static const uint8_t div_3200[] = { 16, 10,  8 };
7024         static const uint8_t div_4000[] = { 20, 12, 10 };
7025         static const uint8_t div_5333[] = { 24, 16, 14 };
7026         const uint8_t *div_table;
7027         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7028         uint16_t tmp = 0;
7029
7030         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7031
7032         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7033
7034         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7035                 goto fail;
7036
7037         switch (vco) {
7038         case 3200000:
7039                 div_table = div_3200;
7040                 break;
7041         case 4000000:
7042                 div_table = div_4000;
7043                 break;
7044         case 5333333:
7045                 div_table = div_5333;
7046                 break;
7047         default:
7048                 goto fail;
7049         }
7050
7051         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7052
7053 fail:
7054         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7055         return 200000;
7056 }
7057
7058 static int g33_get_display_clock_speed(struct drm_device *dev)
7059 {
7060         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7061         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7062         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7063         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7064         const uint8_t *div_table;
7065         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7066         uint16_t tmp = 0;
7067
7068         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7069
7070         cdclk_sel = (tmp >> 4) & 0x7;
7071
7072         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7073                 goto fail;
7074
7075         switch (vco) {
7076         case 3200000:
7077                 div_table = div_3200;
7078                 break;
7079         case 4000000:
7080                 div_table = div_4000;
7081                 break;
7082         case 4800000:
7083                 div_table = div_4800;
7084                 break;
7085         case 5333333:
7086                 div_table = div_5333;
7087                 break;
7088         default:
7089                 goto fail;
7090         }
7091
7092         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7093
7094 fail:
7095         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7096         return 190476;
7097 }
7098
7099 static void
7100 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7101 {
7102         while (*num > DATA_LINK_M_N_MASK ||
7103                *den > DATA_LINK_M_N_MASK) {
7104                 *num >>= 1;
7105                 *den >>= 1;
7106         }
7107 }
7108
7109 static void compute_m_n(unsigned int m, unsigned int n,
7110                         uint32_t *ret_m, uint32_t *ret_n)
7111 {
7112         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7113         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7114         intel_reduce_m_n_ratio(ret_m, ret_n);
7115 }
7116
7117 void
7118 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7119                        int pixel_clock, int link_clock,
7120                        struct intel_link_m_n *m_n)
7121 {
7122         m_n->tu = 64;
7123
7124         compute_m_n(bits_per_pixel * pixel_clock,
7125                     link_clock * nlanes * 8,
7126                     &m_n->gmch_m, &m_n->gmch_n);
7127
7128         compute_m_n(pixel_clock, link_clock,
7129                     &m_n->link_m, &m_n->link_n);
7130 }
7131
7132 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7133 {
7134         if (i915.panel_use_ssc >= 0)
7135                 return i915.panel_use_ssc != 0;
7136         return dev_priv->vbt.lvds_use_ssc
7137                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7138 }
7139
7140 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7141                            int num_connectors)
7142 {
7143         struct drm_device *dev = crtc_state->base.crtc->dev;
7144         struct drm_i915_private *dev_priv = dev->dev_private;
7145         int refclk;
7146
7147         WARN_ON(!crtc_state->base.state);
7148
7149         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7150                 refclk = 100000;
7151         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7152             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7153                 refclk = dev_priv->vbt.lvds_ssc_freq;
7154                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7155         } else if (!IS_GEN2(dev)) {
7156                 refclk = 96000;
7157         } else {
7158                 refclk = 48000;
7159         }
7160
7161         return refclk;
7162 }
7163
7164 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7165 {
7166         return (1 << dpll->n) << 16 | dpll->m2;
7167 }
7168
7169 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7170 {
7171         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7172 }
7173
7174 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7175                                      struct intel_crtc_state *crtc_state,
7176                                      intel_clock_t *reduced_clock)
7177 {
7178         struct drm_device *dev = crtc->base.dev;
7179         u32 fp, fp2 = 0;
7180
7181         if (IS_PINEVIEW(dev)) {
7182                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7183                 if (reduced_clock)
7184                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7185         } else {
7186                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7187                 if (reduced_clock)
7188                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7189         }
7190
7191         crtc_state->dpll_hw_state.fp0 = fp;
7192
7193         crtc->lowfreq_avail = false;
7194         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7195             reduced_clock) {
7196                 crtc_state->dpll_hw_state.fp1 = fp2;
7197                 crtc->lowfreq_avail = true;
7198         } else {
7199                 crtc_state->dpll_hw_state.fp1 = fp;
7200         }
7201 }
7202
7203 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7204                 pipe)
7205 {
7206         u32 reg_val;
7207
7208         /*
7209          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7210          * and set it to a reasonable value instead.
7211          */
7212         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7213         reg_val &= 0xffffff00;
7214         reg_val |= 0x00000030;
7215         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7216
7217         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7218         reg_val &= 0x8cffffff;
7219         reg_val = 0x8c000000;
7220         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7221
7222         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7223         reg_val &= 0xffffff00;
7224         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7225
7226         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7227         reg_val &= 0x00ffffff;
7228         reg_val |= 0xb0000000;
7229         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7230 }
7231
7232 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7233                                          struct intel_link_m_n *m_n)
7234 {
7235         struct drm_device *dev = crtc->base.dev;
7236         struct drm_i915_private *dev_priv = dev->dev_private;
7237         int pipe = crtc->pipe;
7238
7239         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7240         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7241         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7242         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7243 }
7244
7245 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7246                                          struct intel_link_m_n *m_n,
7247                                          struct intel_link_m_n *m2_n2)
7248 {
7249         struct drm_device *dev = crtc->base.dev;
7250         struct drm_i915_private *dev_priv = dev->dev_private;
7251         int pipe = crtc->pipe;
7252         enum transcoder transcoder = crtc->config->cpu_transcoder;
7253
7254         if (INTEL_INFO(dev)->gen >= 5) {
7255                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7256                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7257                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7258                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7259                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7260                  * for gen < 8) and if DRRS is supported (to make sure the
7261                  * registers are not unnecessarily accessed).
7262                  */
7263                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7264                         crtc->config->has_drrs) {
7265                         I915_WRITE(PIPE_DATA_M2(transcoder),
7266                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7267                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7268                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7269                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7270                 }
7271         } else {
7272                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7273                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7274                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7275                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7276         }
7277 }
7278
7279 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7280 {
7281         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7282
7283         if (m_n == M1_N1) {
7284                 dp_m_n = &crtc->config->dp_m_n;
7285                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7286         } else if (m_n == M2_N2) {
7287
7288                 /*
7289                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7290                  * needs to be programmed into M1_N1.
7291                  */
7292                 dp_m_n = &crtc->config->dp_m2_n2;
7293         } else {
7294                 DRM_ERROR("Unsupported divider value\n");
7295                 return;
7296         }
7297
7298         if (crtc->config->has_pch_encoder)
7299                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7300         else
7301                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7302 }
7303
7304 static void vlv_compute_dpll(struct intel_crtc *crtc,
7305                              struct intel_crtc_state *pipe_config)
7306 {
7307         u32 dpll, dpll_md;
7308
7309         /*
7310          * Enable DPIO clock input. We should never disable the reference
7311          * clock for pipe B, since VGA hotplug / manual detection depends
7312          * on it.
7313          */
7314         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7315                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7316         /* We should never disable this, set it here for state tracking */
7317         if (crtc->pipe == PIPE_B)
7318                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7319         dpll |= DPLL_VCO_ENABLE;
7320         pipe_config->dpll_hw_state.dpll = dpll;
7321
7322         dpll_md = (pipe_config->pixel_multiplier - 1)
7323                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7324         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7325 }
7326
7327 static void vlv_prepare_pll(struct intel_crtc *crtc,
7328                             const struct intel_crtc_state *pipe_config)
7329 {
7330         struct drm_device *dev = crtc->base.dev;
7331         struct drm_i915_private *dev_priv = dev->dev_private;
7332         int pipe = crtc->pipe;
7333         u32 mdiv;
7334         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7335         u32 coreclk, reg_val;
7336
7337         mutex_lock(&dev_priv->sb_lock);
7338
7339         bestn = pipe_config->dpll.n;
7340         bestm1 = pipe_config->dpll.m1;
7341         bestm2 = pipe_config->dpll.m2;
7342         bestp1 = pipe_config->dpll.p1;
7343         bestp2 = pipe_config->dpll.p2;
7344
7345         /* See eDP HDMI DPIO driver vbios notes doc */
7346
7347         /* PLL B needs special handling */
7348         if (pipe == PIPE_B)
7349                 vlv_pllb_recal_opamp(dev_priv, pipe);
7350
7351         /* Set up Tx target for periodic Rcomp update */
7352         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7353
7354         /* Disable target IRef on PLL */
7355         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7356         reg_val &= 0x00ffffff;
7357         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7358
7359         /* Disable fast lock */
7360         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7361
7362         /* Set idtafcrecal before PLL is enabled */
7363         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7364         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7365         mdiv |= ((bestn << DPIO_N_SHIFT));
7366         mdiv |= (1 << DPIO_K_SHIFT);
7367
7368         /*
7369          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7370          * but we don't support that).
7371          * Note: don't use the DAC post divider as it seems unstable.
7372          */
7373         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7374         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7375
7376         mdiv |= DPIO_ENABLE_CALIBRATION;
7377         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7378
7379         /* Set HBR and RBR LPF coefficients */
7380         if (pipe_config->port_clock == 162000 ||
7381             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7382             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7383                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7384                                  0x009f0003);
7385         else
7386                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7387                                  0x00d0000f);
7388
7389         if (pipe_config->has_dp_encoder) {
7390                 /* Use SSC source */
7391                 if (pipe == PIPE_A)
7392                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7393                                          0x0df40000);
7394                 else
7395                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7396                                          0x0df70000);
7397         } else { /* HDMI or VGA */
7398                 /* Use bend source */
7399                 if (pipe == PIPE_A)
7400                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7401                                          0x0df70000);
7402                 else
7403                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7404                                          0x0df40000);
7405         }
7406
7407         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7408         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7409         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7410             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7411                 coreclk |= 0x01000000;
7412         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7413
7414         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7415         mutex_unlock(&dev_priv->sb_lock);
7416 }
7417
7418 static void chv_compute_dpll(struct intel_crtc *crtc,
7419                              struct intel_crtc_state *pipe_config)
7420 {
7421         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7422                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7423                 DPLL_VCO_ENABLE;
7424         if (crtc->pipe != PIPE_A)
7425                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7426
7427         pipe_config->dpll_hw_state.dpll_md =
7428                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7429 }
7430
7431 static void chv_prepare_pll(struct intel_crtc *crtc,
7432                             const struct intel_crtc_state *pipe_config)
7433 {
7434         struct drm_device *dev = crtc->base.dev;
7435         struct drm_i915_private *dev_priv = dev->dev_private;
7436         int pipe = crtc->pipe;
7437         int dpll_reg = DPLL(crtc->pipe);
7438         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7439         u32 loopfilter, tribuf_calcntr;
7440         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7441         u32 dpio_val;
7442         int vco;
7443
7444         bestn = pipe_config->dpll.n;
7445         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7446         bestm1 = pipe_config->dpll.m1;
7447         bestm2 = pipe_config->dpll.m2 >> 22;
7448         bestp1 = pipe_config->dpll.p1;
7449         bestp2 = pipe_config->dpll.p2;
7450         vco = pipe_config->dpll.vco;
7451         dpio_val = 0;
7452         loopfilter = 0;
7453
7454         /*
7455          * Enable Refclk and SSC
7456          */
7457         I915_WRITE(dpll_reg,
7458                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7459
7460         mutex_lock(&dev_priv->sb_lock);
7461
7462         /* p1 and p2 divider */
7463         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7464                         5 << DPIO_CHV_S1_DIV_SHIFT |
7465                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7466                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7467                         1 << DPIO_CHV_K_DIV_SHIFT);
7468
7469         /* Feedback post-divider - m2 */
7470         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7471
7472         /* Feedback refclk divider - n and m1 */
7473         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7474                         DPIO_CHV_M1_DIV_BY_2 |
7475                         1 << DPIO_CHV_N_DIV_SHIFT);
7476
7477         /* M2 fraction division */
7478         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7479
7480         /* M2 fraction division enable */
7481         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7482         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7483         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7484         if (bestm2_frac)
7485                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7486         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7487
7488         /* Program digital lock detect threshold */
7489         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7490         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7491                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7492         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7493         if (!bestm2_frac)
7494                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7495         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7496
7497         /* Loop filter */
7498         if (vco == 5400000) {
7499                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7500                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7501                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7502                 tribuf_calcntr = 0x9;
7503         } else if (vco <= 6200000) {
7504                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7505                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7506                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7507                 tribuf_calcntr = 0x9;
7508         } else if (vco <= 6480000) {
7509                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7510                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7511                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7512                 tribuf_calcntr = 0x8;
7513         } else {
7514                 /* Not supported. Apply the same limits as in the max case */
7515                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7516                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7517                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7518                 tribuf_calcntr = 0;
7519         }
7520         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7521
7522         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7523         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7524         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7525         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7526
7527         /* AFC Recal */
7528         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7529                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7530                         DPIO_AFC_RECAL);
7531
7532         mutex_unlock(&dev_priv->sb_lock);
7533 }
7534
7535 /**
7536  * vlv_force_pll_on - forcibly enable just the PLL
7537  * @dev_priv: i915 private structure
7538  * @pipe: pipe PLL to enable
7539  * @dpll: PLL configuration
7540  *
7541  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7542  * in cases where we need the PLL enabled even when @pipe is not going to
7543  * be enabled.
7544  */
7545 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7546                       const struct dpll *dpll)
7547 {
7548         struct intel_crtc *crtc =
7549                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7550         struct intel_crtc_state pipe_config = {
7551                 .base.crtc = &crtc->base,
7552                 .pixel_multiplier = 1,
7553                 .dpll = *dpll,
7554         };
7555
7556         if (IS_CHERRYVIEW(dev)) {
7557                 chv_compute_dpll(crtc, &pipe_config);
7558                 chv_prepare_pll(crtc, &pipe_config);
7559                 chv_enable_pll(crtc, &pipe_config);
7560         } else {
7561                 vlv_compute_dpll(crtc, &pipe_config);
7562                 vlv_prepare_pll(crtc, &pipe_config);
7563                 vlv_enable_pll(crtc, &pipe_config);
7564         }
7565 }
7566
7567 /**
7568  * vlv_force_pll_off - forcibly disable just the PLL
7569  * @dev_priv: i915 private structure
7570  * @pipe: pipe PLL to disable
7571  *
7572  * Disable the PLL for @pipe. To be used in cases where we need
7573  * the PLL enabled even when @pipe is not going to be enabled.
7574  */
7575 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7576 {
7577         if (IS_CHERRYVIEW(dev))
7578                 chv_disable_pll(to_i915(dev), pipe);
7579         else
7580                 vlv_disable_pll(to_i915(dev), pipe);
7581 }
7582
7583 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7584                               struct intel_crtc_state *crtc_state,
7585                               intel_clock_t *reduced_clock,
7586                               int num_connectors)
7587 {
7588         struct drm_device *dev = crtc->base.dev;
7589         struct drm_i915_private *dev_priv = dev->dev_private;
7590         u32 dpll;
7591         bool is_sdvo;
7592         struct dpll *clock = &crtc_state->dpll;
7593
7594         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7595
7596         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7597                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7598
7599         dpll = DPLL_VGA_MODE_DIS;
7600
7601         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7602                 dpll |= DPLLB_MODE_LVDS;
7603         else
7604                 dpll |= DPLLB_MODE_DAC_SERIAL;
7605
7606         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7607                 dpll |= (crtc_state->pixel_multiplier - 1)
7608                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7609         }
7610
7611         if (is_sdvo)
7612                 dpll |= DPLL_SDVO_HIGH_SPEED;
7613
7614         if (crtc_state->has_dp_encoder)
7615                 dpll |= DPLL_SDVO_HIGH_SPEED;
7616
7617         /* compute bitmask from p1 value */
7618         if (IS_PINEVIEW(dev))
7619                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7620         else {
7621                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7622                 if (IS_G4X(dev) && reduced_clock)
7623                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7624         }
7625         switch (clock->p2) {
7626         case 5:
7627                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7628                 break;
7629         case 7:
7630                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7631                 break;
7632         case 10:
7633                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7634                 break;
7635         case 14:
7636                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7637                 break;
7638         }
7639         if (INTEL_INFO(dev)->gen >= 4)
7640                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7641
7642         if (crtc_state->sdvo_tv_clock)
7643                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7644         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7645                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7646                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7647         else
7648                 dpll |= PLL_REF_INPUT_DREFCLK;
7649
7650         dpll |= DPLL_VCO_ENABLE;
7651         crtc_state->dpll_hw_state.dpll = dpll;
7652
7653         if (INTEL_INFO(dev)->gen >= 4) {
7654                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7655                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7656                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7657         }
7658 }
7659
7660 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7661                               struct intel_crtc_state *crtc_state,
7662                               intel_clock_t *reduced_clock,
7663                               int num_connectors)
7664 {
7665         struct drm_device *dev = crtc->base.dev;
7666         struct drm_i915_private *dev_priv = dev->dev_private;
7667         u32 dpll;
7668         struct dpll *clock = &crtc_state->dpll;
7669
7670         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7671
7672         dpll = DPLL_VGA_MODE_DIS;
7673
7674         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7675                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7676         } else {
7677                 if (clock->p1 == 2)
7678                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7679                 else
7680                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7681                 if (clock->p2 == 4)
7682                         dpll |= PLL_P2_DIVIDE_BY_4;
7683         }
7684
7685         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7686                 dpll |= DPLL_DVO_2X_MODE;
7687
7688         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7689                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7690                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7691         else
7692                 dpll |= PLL_REF_INPUT_DREFCLK;
7693
7694         dpll |= DPLL_VCO_ENABLE;
7695         crtc_state->dpll_hw_state.dpll = dpll;
7696 }
7697
7698 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7699 {
7700         struct drm_device *dev = intel_crtc->base.dev;
7701         struct drm_i915_private *dev_priv = dev->dev_private;
7702         enum pipe pipe = intel_crtc->pipe;
7703         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7704         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7705         uint32_t crtc_vtotal, crtc_vblank_end;
7706         int vsyncshift = 0;
7707
7708         /* We need to be careful not to changed the adjusted mode, for otherwise
7709          * the hw state checker will get angry at the mismatch. */
7710         crtc_vtotal = adjusted_mode->crtc_vtotal;
7711         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7712
7713         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7714                 /* the chip adds 2 halflines automatically */
7715                 crtc_vtotal -= 1;
7716                 crtc_vblank_end -= 1;
7717
7718                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7719                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7720                 else
7721                         vsyncshift = adjusted_mode->crtc_hsync_start -
7722                                 adjusted_mode->crtc_htotal / 2;
7723                 if (vsyncshift < 0)
7724                         vsyncshift += adjusted_mode->crtc_htotal;
7725         }
7726
7727         if (INTEL_INFO(dev)->gen > 3)
7728                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7729
7730         I915_WRITE(HTOTAL(cpu_transcoder),
7731                    (adjusted_mode->crtc_hdisplay - 1) |
7732                    ((adjusted_mode->crtc_htotal - 1) << 16));
7733         I915_WRITE(HBLANK(cpu_transcoder),
7734                    (adjusted_mode->crtc_hblank_start - 1) |
7735                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7736         I915_WRITE(HSYNC(cpu_transcoder),
7737                    (adjusted_mode->crtc_hsync_start - 1) |
7738                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7739
7740         I915_WRITE(VTOTAL(cpu_transcoder),
7741                    (adjusted_mode->crtc_vdisplay - 1) |
7742                    ((crtc_vtotal - 1) << 16));
7743         I915_WRITE(VBLANK(cpu_transcoder),
7744                    (adjusted_mode->crtc_vblank_start - 1) |
7745                    ((crtc_vblank_end - 1) << 16));
7746         I915_WRITE(VSYNC(cpu_transcoder),
7747                    (adjusted_mode->crtc_vsync_start - 1) |
7748                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7749
7750         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7751          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7752          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7753          * bits. */
7754         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7755             (pipe == PIPE_B || pipe == PIPE_C))
7756                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7757
7758         /* pipesrc controls the size that is scaled from, which should
7759          * always be the user's requested size.
7760          */
7761         I915_WRITE(PIPESRC(pipe),
7762                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7763                    (intel_crtc->config->pipe_src_h - 1));
7764 }
7765
7766 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7767                                    struct intel_crtc_state *pipe_config)
7768 {
7769         struct drm_device *dev = crtc->base.dev;
7770         struct drm_i915_private *dev_priv = dev->dev_private;
7771         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7772         uint32_t tmp;
7773
7774         tmp = I915_READ(HTOTAL(cpu_transcoder));
7775         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7776         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7777         tmp = I915_READ(HBLANK(cpu_transcoder));
7778         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7779         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7780         tmp = I915_READ(HSYNC(cpu_transcoder));
7781         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7782         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7783
7784         tmp = I915_READ(VTOTAL(cpu_transcoder));
7785         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7786         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7787         tmp = I915_READ(VBLANK(cpu_transcoder));
7788         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7789         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7790         tmp = I915_READ(VSYNC(cpu_transcoder));
7791         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7792         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7793
7794         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7795                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7796                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7797                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7798         }
7799
7800         tmp = I915_READ(PIPESRC(crtc->pipe));
7801         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7802         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7803
7804         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7805         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7806 }
7807
7808 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7809                                  struct intel_crtc_state *pipe_config)
7810 {
7811         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7812         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7813         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7814         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7815
7816         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7817         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7818         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7819         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7820
7821         mode->flags = pipe_config->base.adjusted_mode.flags;
7822         mode->type = DRM_MODE_TYPE_DRIVER;
7823
7824         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7825         mode->flags |= pipe_config->base.adjusted_mode.flags;
7826
7827         mode->hsync = drm_mode_hsync(mode);
7828         mode->vrefresh = drm_mode_vrefresh(mode);
7829         drm_mode_set_name(mode);
7830 }
7831
7832 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7833 {
7834         struct drm_device *dev = intel_crtc->base.dev;
7835         struct drm_i915_private *dev_priv = dev->dev_private;
7836         uint32_t pipeconf;
7837
7838         pipeconf = 0;
7839
7840         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7841             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7842                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7843
7844         if (intel_crtc->config->double_wide)
7845                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7846
7847         /* only g4x and later have fancy bpc/dither controls */
7848         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7849                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7850                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7851                         pipeconf |= PIPECONF_DITHER_EN |
7852                                     PIPECONF_DITHER_TYPE_SP;
7853
7854                 switch (intel_crtc->config->pipe_bpp) {
7855                 case 18:
7856                         pipeconf |= PIPECONF_6BPC;
7857                         break;
7858                 case 24:
7859                         pipeconf |= PIPECONF_8BPC;
7860                         break;
7861                 case 30:
7862                         pipeconf |= PIPECONF_10BPC;
7863                         break;
7864                 default:
7865                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7866                         BUG();
7867                 }
7868         }
7869
7870         if (HAS_PIPE_CXSR(dev)) {
7871                 if (intel_crtc->lowfreq_avail) {
7872                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7873                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7874                 } else {
7875                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7876                 }
7877         }
7878
7879         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7880                 if (INTEL_INFO(dev)->gen < 4 ||
7881                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7882                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7883                 else
7884                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7885         } else
7886                 pipeconf |= PIPECONF_PROGRESSIVE;
7887
7888         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7889                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7890
7891         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7892         POSTING_READ(PIPECONF(intel_crtc->pipe));
7893 }
7894
7895 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7896                                    struct intel_crtc_state *crtc_state)
7897 {
7898         struct drm_device *dev = crtc->base.dev;
7899         struct drm_i915_private *dev_priv = dev->dev_private;
7900         int refclk, num_connectors = 0;
7901         intel_clock_t clock;
7902         bool ok;
7903         bool is_dsi = false;
7904         struct intel_encoder *encoder;
7905         const intel_limit_t *limit;
7906         struct drm_atomic_state *state = crtc_state->base.state;
7907         struct drm_connector *connector;
7908         struct drm_connector_state *connector_state;
7909         int i;
7910
7911         memset(&crtc_state->dpll_hw_state, 0,
7912                sizeof(crtc_state->dpll_hw_state));
7913
7914         for_each_connector_in_state(state, connector, connector_state, i) {
7915                 if (connector_state->crtc != &crtc->base)
7916                         continue;
7917
7918                 encoder = to_intel_encoder(connector_state->best_encoder);
7919
7920                 switch (encoder->type) {
7921                 case INTEL_OUTPUT_DSI:
7922                         is_dsi = true;
7923                         break;
7924                 default:
7925                         break;
7926                 }
7927
7928                 num_connectors++;
7929         }
7930
7931         if (is_dsi)
7932                 return 0;
7933
7934         if (!crtc_state->clock_set) {
7935                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7936
7937                 /*
7938                  * Returns a set of divisors for the desired target clock with
7939                  * the given refclk, or FALSE.  The returned values represent
7940                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7941                  * 2) / p1 / p2.
7942                  */
7943                 limit = intel_limit(crtc_state, refclk);
7944                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7945                                                  crtc_state->port_clock,
7946                                                  refclk, NULL, &clock);
7947                 if (!ok) {
7948                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7949                         return -EINVAL;
7950                 }
7951
7952                 /* Compat-code for transition, will disappear. */
7953                 crtc_state->dpll.n = clock.n;
7954                 crtc_state->dpll.m1 = clock.m1;
7955                 crtc_state->dpll.m2 = clock.m2;
7956                 crtc_state->dpll.p1 = clock.p1;
7957                 crtc_state->dpll.p2 = clock.p2;
7958         }
7959
7960         if (IS_GEN2(dev)) {
7961                 i8xx_compute_dpll(crtc, crtc_state, NULL,
7962                                   num_connectors);
7963         } else if (IS_CHERRYVIEW(dev)) {
7964                 chv_compute_dpll(crtc, crtc_state);
7965         } else if (IS_VALLEYVIEW(dev)) {
7966                 vlv_compute_dpll(crtc, crtc_state);
7967         } else {
7968                 i9xx_compute_dpll(crtc, crtc_state, NULL,
7969                                   num_connectors);
7970         }
7971
7972         return 0;
7973 }
7974
7975 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7976                                  struct intel_crtc_state *pipe_config)
7977 {
7978         struct drm_device *dev = crtc->base.dev;
7979         struct drm_i915_private *dev_priv = dev->dev_private;
7980         uint32_t tmp;
7981
7982         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7983                 return;
7984
7985         tmp = I915_READ(PFIT_CONTROL);
7986         if (!(tmp & PFIT_ENABLE))
7987                 return;
7988
7989         /* Check whether the pfit is attached to our pipe. */
7990         if (INTEL_INFO(dev)->gen < 4) {
7991                 if (crtc->pipe != PIPE_B)
7992                         return;
7993         } else {
7994                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7995                         return;
7996         }
7997
7998         pipe_config->gmch_pfit.control = tmp;
7999         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8000         if (INTEL_INFO(dev)->gen < 5)
8001                 pipe_config->gmch_pfit.lvds_border_bits =
8002                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
8003 }
8004
8005 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8006                                struct intel_crtc_state *pipe_config)
8007 {
8008         struct drm_device *dev = crtc->base.dev;
8009         struct drm_i915_private *dev_priv = dev->dev_private;
8010         int pipe = pipe_config->cpu_transcoder;
8011         intel_clock_t clock;
8012         u32 mdiv;
8013         int refclk = 100000;
8014
8015         /* In case of MIPI DPLL will not even be used */
8016         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8017                 return;
8018
8019         mutex_lock(&dev_priv->sb_lock);
8020         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8021         mutex_unlock(&dev_priv->sb_lock);
8022
8023         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8024         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8025         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8026         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8027         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8028
8029         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8030 }
8031
8032 static void
8033 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8034                               struct intel_initial_plane_config *plane_config)
8035 {
8036         struct drm_device *dev = crtc->base.dev;
8037         struct drm_i915_private *dev_priv = dev->dev_private;
8038         u32 val, base, offset;
8039         int pipe = crtc->pipe, plane = crtc->plane;
8040         int fourcc, pixel_format;
8041         unsigned int aligned_height;
8042         struct drm_framebuffer *fb;
8043         struct intel_framebuffer *intel_fb;
8044
8045         val = I915_READ(DSPCNTR(plane));
8046         if (!(val & DISPLAY_PLANE_ENABLE))
8047                 return;
8048
8049         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8050         if (!intel_fb) {
8051                 DRM_DEBUG_KMS("failed to alloc fb\n");
8052                 return;
8053         }
8054
8055         fb = &intel_fb->base;
8056
8057         if (INTEL_INFO(dev)->gen >= 4) {
8058                 if (val & DISPPLANE_TILED) {
8059                         plane_config->tiling = I915_TILING_X;
8060                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8061                 }
8062         }
8063
8064         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8065         fourcc = i9xx_format_to_fourcc(pixel_format);
8066         fb->pixel_format = fourcc;
8067         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8068
8069         if (INTEL_INFO(dev)->gen >= 4) {
8070                 if (plane_config->tiling)
8071                         offset = I915_READ(DSPTILEOFF(plane));
8072                 else
8073                         offset = I915_READ(DSPLINOFF(plane));
8074                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8075         } else {
8076                 base = I915_READ(DSPADDR(plane));
8077         }
8078         plane_config->base = base;
8079
8080         val = I915_READ(PIPESRC(pipe));
8081         fb->width = ((val >> 16) & 0xfff) + 1;
8082         fb->height = ((val >> 0) & 0xfff) + 1;
8083
8084         val = I915_READ(DSPSTRIDE(pipe));
8085         fb->pitches[0] = val & 0xffffffc0;
8086
8087         aligned_height = intel_fb_align_height(dev, fb->height,
8088                                                fb->pixel_format,
8089                                                fb->modifier[0]);
8090
8091         plane_config->size = fb->pitches[0] * aligned_height;
8092
8093         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8094                       pipe_name(pipe), plane, fb->width, fb->height,
8095                       fb->bits_per_pixel, base, fb->pitches[0],
8096                       plane_config->size);
8097
8098         plane_config->fb = intel_fb;
8099 }
8100
8101 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8102                                struct intel_crtc_state *pipe_config)
8103 {
8104         struct drm_device *dev = crtc->base.dev;
8105         struct drm_i915_private *dev_priv = dev->dev_private;
8106         int pipe = pipe_config->cpu_transcoder;
8107         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8108         intel_clock_t clock;
8109         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8110         int refclk = 100000;
8111
8112         mutex_lock(&dev_priv->sb_lock);
8113         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8114         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8115         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8116         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8117         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8118         mutex_unlock(&dev_priv->sb_lock);
8119
8120         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8121         clock.m2 = (pll_dw0 & 0xff) << 22;
8122         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8123                 clock.m2 |= pll_dw2 & 0x3fffff;
8124         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8125         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8126         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8127
8128         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8129 }
8130
8131 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8132                                  struct intel_crtc_state *pipe_config)
8133 {
8134         struct drm_device *dev = crtc->base.dev;
8135         struct drm_i915_private *dev_priv = dev->dev_private;
8136         uint32_t tmp;
8137
8138         if (!intel_display_power_is_enabled(dev_priv,
8139                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8140                 return false;
8141
8142         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8143         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8144
8145         tmp = I915_READ(PIPECONF(crtc->pipe));
8146         if (!(tmp & PIPECONF_ENABLE))
8147                 return false;
8148
8149         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8150                 switch (tmp & PIPECONF_BPC_MASK) {
8151                 case PIPECONF_6BPC:
8152                         pipe_config->pipe_bpp = 18;
8153                         break;
8154                 case PIPECONF_8BPC:
8155                         pipe_config->pipe_bpp = 24;
8156                         break;
8157                 case PIPECONF_10BPC:
8158                         pipe_config->pipe_bpp = 30;
8159                         break;
8160                 default:
8161                         break;
8162                 }
8163         }
8164
8165         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8166                 pipe_config->limited_color_range = true;
8167
8168         if (INTEL_INFO(dev)->gen < 4)
8169                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8170
8171         intel_get_pipe_timings(crtc, pipe_config);
8172
8173         i9xx_get_pfit_config(crtc, pipe_config);
8174
8175         if (INTEL_INFO(dev)->gen >= 4) {
8176                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8177                 pipe_config->pixel_multiplier =
8178                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8179                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8180                 pipe_config->dpll_hw_state.dpll_md = tmp;
8181         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8182                 tmp = I915_READ(DPLL(crtc->pipe));
8183                 pipe_config->pixel_multiplier =
8184                         ((tmp & SDVO_MULTIPLIER_MASK)
8185                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8186         } else {
8187                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8188                  * port and will be fixed up in the encoder->get_config
8189                  * function. */
8190                 pipe_config->pixel_multiplier = 1;
8191         }
8192         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8193         if (!IS_VALLEYVIEW(dev)) {
8194                 /*
8195                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8196                  * on 830. Filter it out here so that we don't
8197                  * report errors due to that.
8198                  */
8199                 if (IS_I830(dev))
8200                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8201
8202                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8203                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8204         } else {
8205                 /* Mask out read-only status bits. */
8206                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8207                                                      DPLL_PORTC_READY_MASK |
8208                                                      DPLL_PORTB_READY_MASK);
8209         }
8210
8211         if (IS_CHERRYVIEW(dev))
8212                 chv_crtc_clock_get(crtc, pipe_config);
8213         else if (IS_VALLEYVIEW(dev))
8214                 vlv_crtc_clock_get(crtc, pipe_config);
8215         else
8216                 i9xx_crtc_clock_get(crtc, pipe_config);
8217
8218         /*
8219          * Normally the dotclock is filled in by the encoder .get_config()
8220          * but in case the pipe is enabled w/o any ports we need a sane
8221          * default.
8222          */
8223         pipe_config->base.adjusted_mode.crtc_clock =
8224                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8225
8226         return true;
8227 }
8228
8229 static void ironlake_init_pch_refclk(struct drm_device *dev)
8230 {
8231         struct drm_i915_private *dev_priv = dev->dev_private;
8232         struct intel_encoder *encoder;
8233         int i;
8234         u32 val, final;
8235         bool has_lvds = false;
8236         bool has_cpu_edp = false;
8237         bool has_panel = false;
8238         bool has_ck505 = false;
8239         bool can_ssc = false;
8240         bool using_ssc_source = false;
8241
8242         /* We need to take the global config into account */
8243         for_each_intel_encoder(dev, encoder) {
8244                 switch (encoder->type) {
8245                 case INTEL_OUTPUT_LVDS:
8246                         has_panel = true;
8247                         has_lvds = true;
8248                         break;
8249                 case INTEL_OUTPUT_EDP:
8250                         has_panel = true;
8251                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8252                                 has_cpu_edp = true;
8253                         break;
8254                 default:
8255                         break;
8256                 }
8257         }
8258
8259         if (HAS_PCH_IBX(dev)) {
8260                 has_ck505 = dev_priv->vbt.display_clock_mode;
8261                 can_ssc = has_ck505;
8262         } else {
8263                 has_ck505 = false;
8264                 can_ssc = true;
8265         }
8266
8267         /* Check if any DPLLs are using the SSC source */
8268         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8269                 u32 temp = I915_READ(PCH_DPLL(i));
8270
8271                 if (!(temp & DPLL_VCO_ENABLE))
8272                         continue;
8273
8274                 if ((temp & PLL_REF_INPUT_MASK) ==
8275                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8276                         using_ssc_source = true;
8277                         break;
8278                 }
8279         }
8280
8281         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8282                       has_panel, has_lvds, has_ck505, using_ssc_source);
8283
8284         /* Ironlake: try to setup display ref clock before DPLL
8285          * enabling. This is only under driver's control after
8286          * PCH B stepping, previous chipset stepping should be
8287          * ignoring this setting.
8288          */
8289         val = I915_READ(PCH_DREF_CONTROL);
8290
8291         /* As we must carefully and slowly disable/enable each source in turn,
8292          * compute the final state we want first and check if we need to
8293          * make any changes at all.
8294          */
8295         final = val;
8296         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8297         if (has_ck505)
8298                 final |= DREF_NONSPREAD_CK505_ENABLE;
8299         else
8300                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8301
8302         final &= ~DREF_SSC_SOURCE_MASK;
8303         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8304         final &= ~DREF_SSC1_ENABLE;
8305
8306         if (has_panel) {
8307                 final |= DREF_SSC_SOURCE_ENABLE;
8308
8309                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8310                         final |= DREF_SSC1_ENABLE;
8311
8312                 if (has_cpu_edp) {
8313                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8314                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8315                         else
8316                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8317                 } else
8318                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8319         } else if (using_ssc_source) {
8320                 final |= DREF_SSC_SOURCE_ENABLE;
8321                 final |= DREF_SSC1_ENABLE;
8322         }
8323
8324         if (final == val)
8325                 return;
8326
8327         /* Always enable nonspread source */
8328         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8329
8330         if (has_ck505)
8331                 val |= DREF_NONSPREAD_CK505_ENABLE;
8332         else
8333                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8334
8335         if (has_panel) {
8336                 val &= ~DREF_SSC_SOURCE_MASK;
8337                 val |= DREF_SSC_SOURCE_ENABLE;
8338
8339                 /* SSC must be turned on before enabling the CPU output  */
8340                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8341                         DRM_DEBUG_KMS("Using SSC on panel\n");
8342                         val |= DREF_SSC1_ENABLE;
8343                 } else
8344                         val &= ~DREF_SSC1_ENABLE;
8345
8346                 /* Get SSC going before enabling the outputs */
8347                 I915_WRITE(PCH_DREF_CONTROL, val);
8348                 POSTING_READ(PCH_DREF_CONTROL);
8349                 udelay(200);
8350
8351                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8352
8353                 /* Enable CPU source on CPU attached eDP */
8354                 if (has_cpu_edp) {
8355                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8356                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8357                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8358                         } else
8359                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8360                 } else
8361                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8362
8363                 I915_WRITE(PCH_DREF_CONTROL, val);
8364                 POSTING_READ(PCH_DREF_CONTROL);
8365                 udelay(200);
8366         } else {
8367                 DRM_DEBUG_KMS("Disabling CPU source output\n");
8368
8369                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8370
8371                 /* Turn off CPU output */
8372                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8373
8374                 I915_WRITE(PCH_DREF_CONTROL, val);
8375                 POSTING_READ(PCH_DREF_CONTROL);
8376                 udelay(200);
8377
8378                 if (!using_ssc_source) {
8379                         DRM_DEBUG_KMS("Disabling SSC source\n");
8380
8381                         /* Turn off the SSC source */
8382                         val &= ~DREF_SSC_SOURCE_MASK;
8383                         val |= DREF_SSC_SOURCE_DISABLE;
8384
8385                         /* Turn off SSC1 */
8386                         val &= ~DREF_SSC1_ENABLE;
8387
8388                         I915_WRITE(PCH_DREF_CONTROL, val);
8389                         POSTING_READ(PCH_DREF_CONTROL);
8390                         udelay(200);
8391                 }
8392         }
8393
8394         BUG_ON(val != final);
8395 }
8396
8397 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8398 {
8399         uint32_t tmp;
8400
8401         tmp = I915_READ(SOUTH_CHICKEN2);
8402         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8403         I915_WRITE(SOUTH_CHICKEN2, tmp);
8404
8405         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8406                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8407                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8408
8409         tmp = I915_READ(SOUTH_CHICKEN2);
8410         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8411         I915_WRITE(SOUTH_CHICKEN2, tmp);
8412
8413         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8414                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8415                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8416 }
8417
8418 /* WaMPhyProgramming:hsw */
8419 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8420 {
8421         uint32_t tmp;
8422
8423         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8424         tmp &= ~(0xFF << 24);
8425         tmp |= (0x12 << 24);
8426         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8427
8428         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8429         tmp |= (1 << 11);
8430         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8431
8432         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8433         tmp |= (1 << 11);
8434         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8435
8436         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8437         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8438         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8439
8440         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8441         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8442         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8443
8444         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8445         tmp &= ~(7 << 13);
8446         tmp |= (5 << 13);
8447         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8448
8449         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8450         tmp &= ~(7 << 13);
8451         tmp |= (5 << 13);
8452         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8453
8454         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8455         tmp &= ~0xFF;
8456         tmp |= 0x1C;
8457         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8458
8459         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8460         tmp &= ~0xFF;
8461         tmp |= 0x1C;
8462         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8463
8464         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8465         tmp &= ~(0xFF << 16);
8466         tmp |= (0x1C << 16);
8467         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8468
8469         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8470         tmp &= ~(0xFF << 16);
8471         tmp |= (0x1C << 16);
8472         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8473
8474         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8475         tmp |= (1 << 27);
8476         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8477
8478         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8479         tmp |= (1 << 27);
8480         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8481
8482         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8483         tmp &= ~(0xF << 28);
8484         tmp |= (4 << 28);
8485         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8486
8487         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8488         tmp &= ~(0xF << 28);
8489         tmp |= (4 << 28);
8490         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8491 }
8492
8493 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8494  * Programming" based on the parameters passed:
8495  * - Sequence to enable CLKOUT_DP
8496  * - Sequence to enable CLKOUT_DP without spread
8497  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8498  */
8499 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8500                                  bool with_fdi)
8501 {
8502         struct drm_i915_private *dev_priv = dev->dev_private;
8503         uint32_t reg, tmp;
8504
8505         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8506                 with_spread = true;
8507         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8508                 with_fdi = false;
8509
8510         mutex_lock(&dev_priv->sb_lock);
8511
8512         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8513         tmp &= ~SBI_SSCCTL_DISABLE;
8514         tmp |= SBI_SSCCTL_PATHALT;
8515         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8516
8517         udelay(24);
8518
8519         if (with_spread) {
8520                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8521                 tmp &= ~SBI_SSCCTL_PATHALT;
8522                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8523
8524                 if (with_fdi) {
8525                         lpt_reset_fdi_mphy(dev_priv);
8526                         lpt_program_fdi_mphy(dev_priv);
8527                 }
8528         }
8529
8530         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8531         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8532         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8533         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8534
8535         mutex_unlock(&dev_priv->sb_lock);
8536 }
8537
8538 /* Sequence to disable CLKOUT_DP */
8539 static void lpt_disable_clkout_dp(struct drm_device *dev)
8540 {
8541         struct drm_i915_private *dev_priv = dev->dev_private;
8542         uint32_t reg, tmp;
8543
8544         mutex_lock(&dev_priv->sb_lock);
8545
8546         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8547         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8548         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8549         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8550
8551         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8552         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8553                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8554                         tmp |= SBI_SSCCTL_PATHALT;
8555                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8556                         udelay(32);
8557                 }
8558                 tmp |= SBI_SSCCTL_DISABLE;
8559                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8560         }
8561
8562         mutex_unlock(&dev_priv->sb_lock);
8563 }
8564
8565 static void lpt_init_pch_refclk(struct drm_device *dev)
8566 {
8567         struct intel_encoder *encoder;
8568         bool has_vga = false;
8569
8570         for_each_intel_encoder(dev, encoder) {
8571                 switch (encoder->type) {
8572                 case INTEL_OUTPUT_ANALOG:
8573                         has_vga = true;
8574                         break;
8575                 default:
8576                         break;
8577                 }
8578         }
8579
8580         if (has_vga)
8581                 lpt_enable_clkout_dp(dev, true, true);
8582         else
8583                 lpt_disable_clkout_dp(dev);
8584 }
8585
8586 /*
8587  * Initialize reference clocks when the driver loads
8588  */
8589 void intel_init_pch_refclk(struct drm_device *dev)
8590 {
8591         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8592                 ironlake_init_pch_refclk(dev);
8593         else if (HAS_PCH_LPT(dev))
8594                 lpt_init_pch_refclk(dev);
8595 }
8596
8597 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8598 {
8599         struct drm_device *dev = crtc_state->base.crtc->dev;
8600         struct drm_i915_private *dev_priv = dev->dev_private;
8601         struct drm_atomic_state *state = crtc_state->base.state;
8602         struct drm_connector *connector;
8603         struct drm_connector_state *connector_state;
8604         struct intel_encoder *encoder;
8605         int num_connectors = 0, i;
8606         bool is_lvds = false;
8607
8608         for_each_connector_in_state(state, connector, connector_state, i) {
8609                 if (connector_state->crtc != crtc_state->base.crtc)
8610                         continue;
8611
8612                 encoder = to_intel_encoder(connector_state->best_encoder);
8613
8614                 switch (encoder->type) {
8615                 case INTEL_OUTPUT_LVDS:
8616                         is_lvds = true;
8617                         break;
8618                 default:
8619                         break;
8620                 }
8621                 num_connectors++;
8622         }
8623
8624         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8625                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8626                               dev_priv->vbt.lvds_ssc_freq);
8627                 return dev_priv->vbt.lvds_ssc_freq;
8628         }
8629
8630         return 120000;
8631 }
8632
8633 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8634 {
8635         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8636         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8637         int pipe = intel_crtc->pipe;
8638         uint32_t val;
8639
8640         val = 0;
8641
8642         switch (intel_crtc->config->pipe_bpp) {
8643         case 18:
8644                 val |= PIPECONF_6BPC;
8645                 break;
8646         case 24:
8647                 val |= PIPECONF_8BPC;
8648                 break;
8649         case 30:
8650                 val |= PIPECONF_10BPC;
8651                 break;
8652         case 36:
8653                 val |= PIPECONF_12BPC;
8654                 break;
8655         default:
8656                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8657                 BUG();
8658         }
8659
8660         if (intel_crtc->config->dither)
8661                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8662
8663         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8664                 val |= PIPECONF_INTERLACED_ILK;
8665         else
8666                 val |= PIPECONF_PROGRESSIVE;
8667
8668         if (intel_crtc->config->limited_color_range)
8669                 val |= PIPECONF_COLOR_RANGE_SELECT;
8670
8671         I915_WRITE(PIPECONF(pipe), val);
8672         POSTING_READ(PIPECONF(pipe));
8673 }
8674
8675 /*
8676  * Set up the pipe CSC unit.
8677  *
8678  * Currently only full range RGB to limited range RGB conversion
8679  * is supported, but eventually this should handle various
8680  * RGB<->YCbCr scenarios as well.
8681  */
8682 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8683 {
8684         struct drm_device *dev = crtc->dev;
8685         struct drm_i915_private *dev_priv = dev->dev_private;
8686         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8687         int pipe = intel_crtc->pipe;
8688         uint16_t coeff = 0x7800; /* 1.0 */
8689
8690         /*
8691          * TODO: Check what kind of values actually come out of the pipe
8692          * with these coeff/postoff values and adjust to get the best
8693          * accuracy. Perhaps we even need to take the bpc value into
8694          * consideration.
8695          */
8696
8697         if (intel_crtc->config->limited_color_range)
8698                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8699
8700         /*
8701          * GY/GU and RY/RU should be the other way around according
8702          * to BSpec, but reality doesn't agree. Just set them up in
8703          * a way that results in the correct picture.
8704          */
8705         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8706         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8707
8708         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8709         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8710
8711         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8712         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8713
8714         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8715         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8716         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8717
8718         if (INTEL_INFO(dev)->gen > 6) {
8719                 uint16_t postoff = 0;
8720
8721                 if (intel_crtc->config->limited_color_range)
8722                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8723
8724                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8725                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8726                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8727
8728                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8729         } else {
8730                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8731
8732                 if (intel_crtc->config->limited_color_range)
8733                         mode |= CSC_BLACK_SCREEN_OFFSET;
8734
8735                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8736         }
8737 }
8738
8739 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8740 {
8741         struct drm_device *dev = crtc->dev;
8742         struct drm_i915_private *dev_priv = dev->dev_private;
8743         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8744         enum pipe pipe = intel_crtc->pipe;
8745         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8746         uint32_t val;
8747
8748         val = 0;
8749
8750         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8751                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8752
8753         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8754                 val |= PIPECONF_INTERLACED_ILK;
8755         else
8756                 val |= PIPECONF_PROGRESSIVE;
8757
8758         I915_WRITE(PIPECONF(cpu_transcoder), val);
8759         POSTING_READ(PIPECONF(cpu_transcoder));
8760
8761         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8762         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8763
8764         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8765                 val = 0;
8766
8767                 switch (intel_crtc->config->pipe_bpp) {
8768                 case 18:
8769                         val |= PIPEMISC_DITHER_6_BPC;
8770                         break;
8771                 case 24:
8772                         val |= PIPEMISC_DITHER_8_BPC;
8773                         break;
8774                 case 30:
8775                         val |= PIPEMISC_DITHER_10_BPC;
8776                         break;
8777                 case 36:
8778                         val |= PIPEMISC_DITHER_12_BPC;
8779                         break;
8780                 default:
8781                         /* Case prevented by pipe_config_set_bpp. */
8782                         BUG();
8783                 }
8784
8785                 if (intel_crtc->config->dither)
8786                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8787
8788                 I915_WRITE(PIPEMISC(pipe), val);
8789         }
8790 }
8791
8792 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8793                                     struct intel_crtc_state *crtc_state,
8794                                     intel_clock_t *clock,
8795                                     bool *has_reduced_clock,
8796                                     intel_clock_t *reduced_clock)
8797 {
8798         struct drm_device *dev = crtc->dev;
8799         struct drm_i915_private *dev_priv = dev->dev_private;
8800         int refclk;
8801         const intel_limit_t *limit;
8802         bool ret;
8803
8804         refclk = ironlake_get_refclk(crtc_state);
8805
8806         /*
8807          * Returns a set of divisors for the desired target clock with the given
8808          * refclk, or FALSE.  The returned values represent the clock equation:
8809          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8810          */
8811         limit = intel_limit(crtc_state, refclk);
8812         ret = dev_priv->display.find_dpll(limit, crtc_state,
8813                                           crtc_state->port_clock,
8814                                           refclk, NULL, clock);
8815         if (!ret)
8816                 return false;
8817
8818         return true;
8819 }
8820
8821 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8822 {
8823         /*
8824          * Account for spread spectrum to avoid
8825          * oversubscribing the link. Max center spread
8826          * is 2.5%; use 5% for safety's sake.
8827          */
8828         u32 bps = target_clock * bpp * 21 / 20;
8829         return DIV_ROUND_UP(bps, link_bw * 8);
8830 }
8831
8832 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8833 {
8834         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8835 }
8836
8837 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8838                                       struct intel_crtc_state *crtc_state,
8839                                       u32 *fp,
8840                                       intel_clock_t *reduced_clock, u32 *fp2)
8841 {
8842         struct drm_crtc *crtc = &intel_crtc->base;
8843         struct drm_device *dev = crtc->dev;
8844         struct drm_i915_private *dev_priv = dev->dev_private;
8845         struct drm_atomic_state *state = crtc_state->base.state;
8846         struct drm_connector *connector;
8847         struct drm_connector_state *connector_state;
8848         struct intel_encoder *encoder;
8849         uint32_t dpll;
8850         int factor, num_connectors = 0, i;
8851         bool is_lvds = false, is_sdvo = false;
8852
8853         for_each_connector_in_state(state, connector, connector_state, i) {
8854                 if (connector_state->crtc != crtc_state->base.crtc)
8855                         continue;
8856
8857                 encoder = to_intel_encoder(connector_state->best_encoder);
8858
8859                 switch (encoder->type) {
8860                 case INTEL_OUTPUT_LVDS:
8861                         is_lvds = true;
8862                         break;
8863                 case INTEL_OUTPUT_SDVO:
8864                 case INTEL_OUTPUT_HDMI:
8865                         is_sdvo = true;
8866                         break;
8867                 default:
8868                         break;
8869                 }
8870
8871                 num_connectors++;
8872         }
8873
8874         /* Enable autotuning of the PLL clock (if permissible) */
8875         factor = 21;
8876         if (is_lvds) {
8877                 if ((intel_panel_use_ssc(dev_priv) &&
8878                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8879                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8880                         factor = 25;
8881         } else if (crtc_state->sdvo_tv_clock)
8882                 factor = 20;
8883
8884         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8885                 *fp |= FP_CB_TUNE;
8886
8887         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8888                 *fp2 |= FP_CB_TUNE;
8889
8890         dpll = 0;
8891
8892         if (is_lvds)
8893                 dpll |= DPLLB_MODE_LVDS;
8894         else
8895                 dpll |= DPLLB_MODE_DAC_SERIAL;
8896
8897         dpll |= (crtc_state->pixel_multiplier - 1)
8898                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8899
8900         if (is_sdvo)
8901                 dpll |= DPLL_SDVO_HIGH_SPEED;
8902         if (crtc_state->has_dp_encoder)
8903                 dpll |= DPLL_SDVO_HIGH_SPEED;
8904
8905         /* compute bitmask from p1 value */
8906         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8907         /* also FPA1 */
8908         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8909
8910         switch (crtc_state->dpll.p2) {
8911         case 5:
8912                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8913                 break;
8914         case 7:
8915                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8916                 break;
8917         case 10:
8918                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8919                 break;
8920         case 14:
8921                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8922                 break;
8923         }
8924
8925         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8926                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8927         else
8928                 dpll |= PLL_REF_INPUT_DREFCLK;
8929
8930         return dpll | DPLL_VCO_ENABLE;
8931 }
8932
8933 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8934                                        struct intel_crtc_state *crtc_state)
8935 {
8936         struct drm_device *dev = crtc->base.dev;
8937         intel_clock_t clock, reduced_clock;
8938         u32 dpll = 0, fp = 0, fp2 = 0;
8939         bool ok, has_reduced_clock = false;
8940         bool is_lvds = false;
8941         struct intel_shared_dpll *pll;
8942
8943         memset(&crtc_state->dpll_hw_state, 0,
8944                sizeof(crtc_state->dpll_hw_state));
8945
8946         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8947
8948         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8949              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8950
8951         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8952                                      &has_reduced_clock, &reduced_clock);
8953         if (!ok && !crtc_state->clock_set) {
8954                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8955                 return -EINVAL;
8956         }
8957         /* Compat-code for transition, will disappear. */
8958         if (!crtc_state->clock_set) {
8959                 crtc_state->dpll.n = clock.n;
8960                 crtc_state->dpll.m1 = clock.m1;
8961                 crtc_state->dpll.m2 = clock.m2;
8962                 crtc_state->dpll.p1 = clock.p1;
8963                 crtc_state->dpll.p2 = clock.p2;
8964         }
8965
8966         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8967         if (crtc_state->has_pch_encoder) {
8968                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8969                 if (has_reduced_clock)
8970                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8971
8972                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8973                                              &fp, &reduced_clock,
8974                                              has_reduced_clock ? &fp2 : NULL);
8975
8976                 crtc_state->dpll_hw_state.dpll = dpll;
8977                 crtc_state->dpll_hw_state.fp0 = fp;
8978                 if (has_reduced_clock)
8979                         crtc_state->dpll_hw_state.fp1 = fp2;
8980                 else
8981                         crtc_state->dpll_hw_state.fp1 = fp;
8982
8983                 pll = intel_get_shared_dpll(crtc, crtc_state);
8984                 if (pll == NULL) {
8985                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8986                                          pipe_name(crtc->pipe));
8987                         return -EINVAL;
8988                 }
8989         }
8990
8991         if (is_lvds && has_reduced_clock)
8992                 crtc->lowfreq_avail = true;
8993         else
8994                 crtc->lowfreq_avail = false;
8995
8996         return 0;
8997 }
8998
8999 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9000                                          struct intel_link_m_n *m_n)
9001 {
9002         struct drm_device *dev = crtc->base.dev;
9003         struct drm_i915_private *dev_priv = dev->dev_private;
9004         enum pipe pipe = crtc->pipe;
9005
9006         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9007         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9008         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9009                 & ~TU_SIZE_MASK;
9010         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9011         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9012                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9013 }
9014
9015 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9016                                          enum transcoder transcoder,
9017                                          struct intel_link_m_n *m_n,
9018                                          struct intel_link_m_n *m2_n2)
9019 {
9020         struct drm_device *dev = crtc->base.dev;
9021         struct drm_i915_private *dev_priv = dev->dev_private;
9022         enum pipe pipe = crtc->pipe;
9023
9024         if (INTEL_INFO(dev)->gen >= 5) {
9025                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9026                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9027                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9028                         & ~TU_SIZE_MASK;
9029                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9030                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9031                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9032                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9033                  * gen < 8) and if DRRS is supported (to make sure the
9034                  * registers are not unnecessarily read).
9035                  */
9036                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9037                         crtc->config->has_drrs) {
9038                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9039                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9040                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9041                                         & ~TU_SIZE_MASK;
9042                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9043                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9044                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9045                 }
9046         } else {
9047                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9048                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9049                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9050                         & ~TU_SIZE_MASK;
9051                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9052                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9053                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9054         }
9055 }
9056
9057 void intel_dp_get_m_n(struct intel_crtc *crtc,
9058                       struct intel_crtc_state *pipe_config)
9059 {
9060         if (pipe_config->has_pch_encoder)
9061                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9062         else
9063                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9064                                              &pipe_config->dp_m_n,
9065                                              &pipe_config->dp_m2_n2);
9066 }
9067
9068 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9069                                         struct intel_crtc_state *pipe_config)
9070 {
9071         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9072                                      &pipe_config->fdi_m_n, NULL);
9073 }
9074
9075 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9076                                     struct intel_crtc_state *pipe_config)
9077 {
9078         struct drm_device *dev = crtc->base.dev;
9079         struct drm_i915_private *dev_priv = dev->dev_private;
9080         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9081         uint32_t ps_ctrl = 0;
9082         int id = -1;
9083         int i;
9084
9085         /* find scaler attached to this pipe */
9086         for (i = 0; i < crtc->num_scalers; i++) {
9087                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9088                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9089                         id = i;
9090                         pipe_config->pch_pfit.enabled = true;
9091                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9092                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9093                         break;
9094                 }
9095         }
9096
9097         scaler_state->scaler_id = id;
9098         if (id >= 0) {
9099                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9100         } else {
9101                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9102         }
9103 }
9104
9105 static void
9106 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9107                                  struct intel_initial_plane_config *plane_config)
9108 {
9109         struct drm_device *dev = crtc->base.dev;
9110         struct drm_i915_private *dev_priv = dev->dev_private;
9111         u32 val, base, offset, stride_mult, tiling;
9112         int pipe = crtc->pipe;
9113         int fourcc, pixel_format;
9114         unsigned int aligned_height;
9115         struct drm_framebuffer *fb;
9116         struct intel_framebuffer *intel_fb;
9117
9118         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9119         if (!intel_fb) {
9120                 DRM_DEBUG_KMS("failed to alloc fb\n");
9121                 return;
9122         }
9123
9124         fb = &intel_fb->base;
9125
9126         val = I915_READ(PLANE_CTL(pipe, 0));
9127         if (!(val & PLANE_CTL_ENABLE))
9128                 goto error;
9129
9130         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9131         fourcc = skl_format_to_fourcc(pixel_format,
9132                                       val & PLANE_CTL_ORDER_RGBX,
9133                                       val & PLANE_CTL_ALPHA_MASK);
9134         fb->pixel_format = fourcc;
9135         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9136
9137         tiling = val & PLANE_CTL_TILED_MASK;
9138         switch (tiling) {
9139         case PLANE_CTL_TILED_LINEAR:
9140                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9141                 break;
9142         case PLANE_CTL_TILED_X:
9143                 plane_config->tiling = I915_TILING_X;
9144                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9145                 break;
9146         case PLANE_CTL_TILED_Y:
9147                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9148                 break;
9149         case PLANE_CTL_TILED_YF:
9150                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9151                 break;
9152         default:
9153                 MISSING_CASE(tiling);
9154                 goto error;
9155         }
9156
9157         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9158         plane_config->base = base;
9159
9160         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9161
9162         val = I915_READ(PLANE_SIZE(pipe, 0));
9163         fb->height = ((val >> 16) & 0xfff) + 1;
9164         fb->width = ((val >> 0) & 0x1fff) + 1;
9165
9166         val = I915_READ(PLANE_STRIDE(pipe, 0));
9167         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9168                                                 fb->pixel_format);
9169         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9170
9171         aligned_height = intel_fb_align_height(dev, fb->height,
9172                                                fb->pixel_format,
9173                                                fb->modifier[0]);
9174
9175         plane_config->size = fb->pitches[0] * aligned_height;
9176
9177         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9178                       pipe_name(pipe), fb->width, fb->height,
9179                       fb->bits_per_pixel, base, fb->pitches[0],
9180                       plane_config->size);
9181
9182         plane_config->fb = intel_fb;
9183         return;
9184
9185 error:
9186         kfree(fb);
9187 }
9188
9189 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9190                                      struct intel_crtc_state *pipe_config)
9191 {
9192         struct drm_device *dev = crtc->base.dev;
9193         struct drm_i915_private *dev_priv = dev->dev_private;
9194         uint32_t tmp;
9195
9196         tmp = I915_READ(PF_CTL(crtc->pipe));
9197
9198         if (tmp & PF_ENABLE) {
9199                 pipe_config->pch_pfit.enabled = true;
9200                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9201                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9202
9203                 /* We currently do not free assignements of panel fitters on
9204                  * ivb/hsw (since we don't use the higher upscaling modes which
9205                  * differentiates them) so just WARN about this case for now. */
9206                 if (IS_GEN7(dev)) {
9207                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9208                                 PF_PIPE_SEL_IVB(crtc->pipe));
9209                 }
9210         }
9211 }
9212
9213 static void
9214 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9215                                   struct intel_initial_plane_config *plane_config)
9216 {
9217         struct drm_device *dev = crtc->base.dev;
9218         struct drm_i915_private *dev_priv = dev->dev_private;
9219         u32 val, base, offset;
9220         int pipe = crtc->pipe;
9221         int fourcc, pixel_format;
9222         unsigned int aligned_height;
9223         struct drm_framebuffer *fb;
9224         struct intel_framebuffer *intel_fb;
9225
9226         val = I915_READ(DSPCNTR(pipe));
9227         if (!(val & DISPLAY_PLANE_ENABLE))
9228                 return;
9229
9230         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9231         if (!intel_fb) {
9232                 DRM_DEBUG_KMS("failed to alloc fb\n");
9233                 return;
9234         }
9235
9236         fb = &intel_fb->base;
9237
9238         if (INTEL_INFO(dev)->gen >= 4) {
9239                 if (val & DISPPLANE_TILED) {
9240                         plane_config->tiling = I915_TILING_X;
9241                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9242                 }
9243         }
9244
9245         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9246         fourcc = i9xx_format_to_fourcc(pixel_format);
9247         fb->pixel_format = fourcc;
9248         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9249
9250         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9251         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9252                 offset = I915_READ(DSPOFFSET(pipe));
9253         } else {
9254                 if (plane_config->tiling)
9255                         offset = I915_READ(DSPTILEOFF(pipe));
9256                 else
9257                         offset = I915_READ(DSPLINOFF(pipe));
9258         }
9259         plane_config->base = base;
9260
9261         val = I915_READ(PIPESRC(pipe));
9262         fb->width = ((val >> 16) & 0xfff) + 1;
9263         fb->height = ((val >> 0) & 0xfff) + 1;
9264
9265         val = I915_READ(DSPSTRIDE(pipe));
9266         fb->pitches[0] = val & 0xffffffc0;
9267
9268         aligned_height = intel_fb_align_height(dev, fb->height,
9269                                                fb->pixel_format,
9270                                                fb->modifier[0]);
9271
9272         plane_config->size = fb->pitches[0] * aligned_height;
9273
9274         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9275                       pipe_name(pipe), fb->width, fb->height,
9276                       fb->bits_per_pixel, base, fb->pitches[0],
9277                       plane_config->size);
9278
9279         plane_config->fb = intel_fb;
9280 }
9281
9282 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9283                                      struct intel_crtc_state *pipe_config)
9284 {
9285         struct drm_device *dev = crtc->base.dev;
9286         struct drm_i915_private *dev_priv = dev->dev_private;
9287         uint32_t tmp;
9288
9289         if (!intel_display_power_is_enabled(dev_priv,
9290                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9291                 return false;
9292
9293         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9294         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9295
9296         tmp = I915_READ(PIPECONF(crtc->pipe));
9297         if (!(tmp & PIPECONF_ENABLE))
9298                 return false;
9299
9300         switch (tmp & PIPECONF_BPC_MASK) {
9301         case PIPECONF_6BPC:
9302                 pipe_config->pipe_bpp = 18;
9303                 break;
9304         case PIPECONF_8BPC:
9305                 pipe_config->pipe_bpp = 24;
9306                 break;
9307         case PIPECONF_10BPC:
9308                 pipe_config->pipe_bpp = 30;
9309                 break;
9310         case PIPECONF_12BPC:
9311                 pipe_config->pipe_bpp = 36;
9312                 break;
9313         default:
9314                 break;
9315         }
9316
9317         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9318                 pipe_config->limited_color_range = true;
9319
9320         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9321                 struct intel_shared_dpll *pll;
9322
9323                 pipe_config->has_pch_encoder = true;
9324
9325                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9326                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9327                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9328
9329                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9330
9331                 if (HAS_PCH_IBX(dev_priv->dev)) {
9332                         pipe_config->shared_dpll =
9333                                 (enum intel_dpll_id) crtc->pipe;
9334                 } else {
9335                         tmp = I915_READ(PCH_DPLL_SEL);
9336                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9337                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9338                         else
9339                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9340                 }
9341
9342                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9343
9344                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9345                                            &pipe_config->dpll_hw_state));
9346
9347                 tmp = pipe_config->dpll_hw_state.dpll;
9348                 pipe_config->pixel_multiplier =
9349                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9350                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9351
9352                 ironlake_pch_clock_get(crtc, pipe_config);
9353         } else {
9354                 pipe_config->pixel_multiplier = 1;
9355         }
9356
9357         intel_get_pipe_timings(crtc, pipe_config);
9358
9359         ironlake_get_pfit_config(crtc, pipe_config);
9360
9361         return true;
9362 }
9363
9364 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9365 {
9366         struct drm_device *dev = dev_priv->dev;
9367         struct intel_crtc *crtc;
9368
9369         for_each_intel_crtc(dev, crtc)
9370                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9371                      pipe_name(crtc->pipe));
9372
9373         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9374         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9375         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9376         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9377         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9378         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9379              "CPU PWM1 enabled\n");
9380         if (IS_HASWELL(dev))
9381                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9382                      "CPU PWM2 enabled\n");
9383         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9384              "PCH PWM1 enabled\n");
9385         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9386              "Utility pin enabled\n");
9387         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9388
9389         /*
9390          * In theory we can still leave IRQs enabled, as long as only the HPD
9391          * interrupts remain enabled. We used to check for that, but since it's
9392          * gen-specific and since we only disable LCPLL after we fully disable
9393          * the interrupts, the check below should be enough.
9394          */
9395         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9396 }
9397
9398 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9399 {
9400         struct drm_device *dev = dev_priv->dev;
9401
9402         if (IS_HASWELL(dev))
9403                 return I915_READ(D_COMP_HSW);
9404         else
9405                 return I915_READ(D_COMP_BDW);
9406 }
9407
9408 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9409 {
9410         struct drm_device *dev = dev_priv->dev;
9411
9412         if (IS_HASWELL(dev)) {
9413                 mutex_lock(&dev_priv->rps.hw_lock);
9414                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9415                                             val))
9416                         DRM_ERROR("Failed to write to D_COMP\n");
9417                 mutex_unlock(&dev_priv->rps.hw_lock);
9418         } else {
9419                 I915_WRITE(D_COMP_BDW, val);
9420                 POSTING_READ(D_COMP_BDW);
9421         }
9422 }
9423
9424 /*
9425  * This function implements pieces of two sequences from BSpec:
9426  * - Sequence for display software to disable LCPLL
9427  * - Sequence for display software to allow package C8+
9428  * The steps implemented here are just the steps that actually touch the LCPLL
9429  * register. Callers should take care of disabling all the display engine
9430  * functions, doing the mode unset, fixing interrupts, etc.
9431  */
9432 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9433                               bool switch_to_fclk, bool allow_power_down)
9434 {
9435         uint32_t val;
9436
9437         assert_can_disable_lcpll(dev_priv);
9438
9439         val = I915_READ(LCPLL_CTL);
9440
9441         if (switch_to_fclk) {
9442                 val |= LCPLL_CD_SOURCE_FCLK;
9443                 I915_WRITE(LCPLL_CTL, val);
9444
9445                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9446                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9447                         DRM_ERROR("Switching to FCLK failed\n");
9448
9449                 val = I915_READ(LCPLL_CTL);
9450         }
9451
9452         val |= LCPLL_PLL_DISABLE;
9453         I915_WRITE(LCPLL_CTL, val);
9454         POSTING_READ(LCPLL_CTL);
9455
9456         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9457                 DRM_ERROR("LCPLL still locked\n");
9458
9459         val = hsw_read_dcomp(dev_priv);
9460         val |= D_COMP_COMP_DISABLE;
9461         hsw_write_dcomp(dev_priv, val);
9462         ndelay(100);
9463
9464         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9465                      1))
9466                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9467
9468         if (allow_power_down) {
9469                 val = I915_READ(LCPLL_CTL);
9470                 val |= LCPLL_POWER_DOWN_ALLOW;
9471                 I915_WRITE(LCPLL_CTL, val);
9472                 POSTING_READ(LCPLL_CTL);
9473         }
9474 }
9475
9476 /*
9477  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9478  * source.
9479  */
9480 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9481 {
9482         uint32_t val;
9483
9484         val = I915_READ(LCPLL_CTL);
9485
9486         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9487                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9488                 return;
9489
9490         /*
9491          * Make sure we're not on PC8 state before disabling PC8, otherwise
9492          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9493          */
9494         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9495
9496         if (val & LCPLL_POWER_DOWN_ALLOW) {
9497                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9498                 I915_WRITE(LCPLL_CTL, val);
9499                 POSTING_READ(LCPLL_CTL);
9500         }
9501
9502         val = hsw_read_dcomp(dev_priv);
9503         val |= D_COMP_COMP_FORCE;
9504         val &= ~D_COMP_COMP_DISABLE;
9505         hsw_write_dcomp(dev_priv, val);
9506
9507         val = I915_READ(LCPLL_CTL);
9508         val &= ~LCPLL_PLL_DISABLE;
9509         I915_WRITE(LCPLL_CTL, val);
9510
9511         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9512                 DRM_ERROR("LCPLL not locked yet\n");
9513
9514         if (val & LCPLL_CD_SOURCE_FCLK) {
9515                 val = I915_READ(LCPLL_CTL);
9516                 val &= ~LCPLL_CD_SOURCE_FCLK;
9517                 I915_WRITE(LCPLL_CTL, val);
9518
9519                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9520                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9521                         DRM_ERROR("Switching back to LCPLL failed\n");
9522         }
9523
9524         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9525         intel_update_cdclk(dev_priv->dev);
9526 }
9527
9528 /*
9529  * Package states C8 and deeper are really deep PC states that can only be
9530  * reached when all the devices on the system allow it, so even if the graphics
9531  * device allows PC8+, it doesn't mean the system will actually get to these
9532  * states. Our driver only allows PC8+ when going into runtime PM.
9533  *
9534  * The requirements for PC8+ are that all the outputs are disabled, the power
9535  * well is disabled and most interrupts are disabled, and these are also
9536  * requirements for runtime PM. When these conditions are met, we manually do
9537  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9538  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9539  * hang the machine.
9540  *
9541  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9542  * the state of some registers, so when we come back from PC8+ we need to
9543  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9544  * need to take care of the registers kept by RC6. Notice that this happens even
9545  * if we don't put the device in PCI D3 state (which is what currently happens
9546  * because of the runtime PM support).
9547  *
9548  * For more, read "Display Sequences for Package C8" on the hardware
9549  * documentation.
9550  */
9551 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9552 {
9553         struct drm_device *dev = dev_priv->dev;
9554         uint32_t val;
9555
9556         DRM_DEBUG_KMS("Enabling package C8+\n");
9557
9558         if (HAS_PCH_LPT_LP(dev)) {
9559                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9560                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9561                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9562         }
9563
9564         lpt_disable_clkout_dp(dev);
9565         hsw_disable_lcpll(dev_priv, true, true);
9566 }
9567
9568 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9569 {
9570         struct drm_device *dev = dev_priv->dev;
9571         uint32_t val;
9572
9573         DRM_DEBUG_KMS("Disabling package C8+\n");
9574
9575         hsw_restore_lcpll(dev_priv);
9576         lpt_init_pch_refclk(dev);
9577
9578         if (HAS_PCH_LPT_LP(dev)) {
9579                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9580                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9581                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9582         }
9583
9584         intel_prepare_ddi(dev);
9585 }
9586
9587 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9588 {
9589         struct drm_device *dev = old_state->dev;
9590         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9591
9592         broxton_set_cdclk(dev, req_cdclk);
9593 }
9594
9595 /* compute the max rate for new configuration */
9596 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9597 {
9598         struct intel_crtc *intel_crtc;
9599         struct intel_crtc_state *crtc_state;
9600         int max_pixel_rate = 0;
9601
9602         for_each_intel_crtc(state->dev, intel_crtc) {
9603                 int pixel_rate;
9604
9605                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9606                 if (IS_ERR(crtc_state))
9607                         return PTR_ERR(crtc_state);
9608
9609                 if (!crtc_state->base.enable)
9610                         continue;
9611
9612                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9613
9614                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9615                 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9616                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9617
9618                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9619         }
9620
9621         return max_pixel_rate;
9622 }
9623
9624 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9625 {
9626         struct drm_i915_private *dev_priv = dev->dev_private;
9627         uint32_t val, data;
9628         int ret;
9629
9630         if (WARN((I915_READ(LCPLL_CTL) &
9631                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9632                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9633                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9634                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9635                  "trying to change cdclk frequency with cdclk not enabled\n"))
9636                 return;
9637
9638         mutex_lock(&dev_priv->rps.hw_lock);
9639         ret = sandybridge_pcode_write(dev_priv,
9640                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9641         mutex_unlock(&dev_priv->rps.hw_lock);
9642         if (ret) {
9643                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9644                 return;
9645         }
9646
9647         val = I915_READ(LCPLL_CTL);
9648         val |= LCPLL_CD_SOURCE_FCLK;
9649         I915_WRITE(LCPLL_CTL, val);
9650
9651         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9652                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9653                 DRM_ERROR("Switching to FCLK failed\n");
9654
9655         val = I915_READ(LCPLL_CTL);
9656         val &= ~LCPLL_CLK_FREQ_MASK;
9657
9658         switch (cdclk) {
9659         case 450000:
9660                 val |= LCPLL_CLK_FREQ_450;
9661                 data = 0;
9662                 break;
9663         case 540000:
9664                 val |= LCPLL_CLK_FREQ_54O_BDW;
9665                 data = 1;
9666                 break;
9667         case 337500:
9668                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9669                 data = 2;
9670                 break;
9671         case 675000:
9672                 val |= LCPLL_CLK_FREQ_675_BDW;
9673                 data = 3;
9674                 break;
9675         default:
9676                 WARN(1, "invalid cdclk frequency\n");
9677                 return;
9678         }
9679
9680         I915_WRITE(LCPLL_CTL, val);
9681
9682         val = I915_READ(LCPLL_CTL);
9683         val &= ~LCPLL_CD_SOURCE_FCLK;
9684         I915_WRITE(LCPLL_CTL, val);
9685
9686         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9687                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9688                 DRM_ERROR("Switching back to LCPLL failed\n");
9689
9690         mutex_lock(&dev_priv->rps.hw_lock);
9691         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9692         mutex_unlock(&dev_priv->rps.hw_lock);
9693
9694         I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9695
9696         intel_update_cdclk(dev);
9697
9698         WARN(cdclk != dev_priv->cdclk_freq,
9699              "cdclk requested %d kHz but got %d kHz\n",
9700              cdclk, dev_priv->cdclk_freq);
9701 }
9702
9703 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9704 {
9705         struct drm_i915_private *dev_priv = to_i915(state->dev);
9706         int max_pixclk = ilk_max_pixel_rate(state);
9707         int cdclk;
9708
9709         /*
9710          * FIXME should also account for plane ratio
9711          * once 64bpp pixel formats are supported.
9712          */
9713         if (max_pixclk > 540000)
9714                 cdclk = 675000;
9715         else if (max_pixclk > 450000)
9716                 cdclk = 540000;
9717         else if (max_pixclk > 337500)
9718                 cdclk = 450000;
9719         else
9720                 cdclk = 337500;
9721
9722         /*
9723          * FIXME move the cdclk caclulation to
9724          * compute_config() so we can fail gracegully.
9725          */
9726         if (cdclk > dev_priv->max_cdclk_freq) {
9727                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9728                           cdclk, dev_priv->max_cdclk_freq);
9729                 cdclk = dev_priv->max_cdclk_freq;
9730         }
9731
9732         to_intel_atomic_state(state)->cdclk = cdclk;
9733
9734         return 0;
9735 }
9736
9737 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9738 {
9739         struct drm_device *dev = old_state->dev;
9740         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9741
9742         broadwell_set_cdclk(dev, req_cdclk);
9743 }
9744
9745 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9746                                       struct intel_crtc_state *crtc_state)
9747 {
9748         if (!intel_ddi_pll_select(crtc, crtc_state))
9749                 return -EINVAL;
9750
9751         crtc->lowfreq_avail = false;
9752
9753         return 0;
9754 }
9755
9756 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9757                                 enum port port,
9758                                 struct intel_crtc_state *pipe_config)
9759 {
9760         switch (port) {
9761         case PORT_A:
9762                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9763                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9764                 break;
9765         case PORT_B:
9766                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9767                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9768                 break;
9769         case PORT_C:
9770                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9771                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9772                 break;
9773         default:
9774                 DRM_ERROR("Incorrect port type\n");
9775         }
9776 }
9777
9778 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9779                                 enum port port,
9780                                 struct intel_crtc_state *pipe_config)
9781 {
9782         u32 temp, dpll_ctl1;
9783
9784         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9785         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9786
9787         switch (pipe_config->ddi_pll_sel) {
9788         case SKL_DPLL0:
9789                 /*
9790                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9791                  * of the shared DPLL framework and thus needs to be read out
9792                  * separately
9793                  */
9794                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9795                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9796                 break;
9797         case SKL_DPLL1:
9798                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9799                 break;
9800         case SKL_DPLL2:
9801                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9802                 break;
9803         case SKL_DPLL3:
9804                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9805                 break;
9806         }
9807 }
9808
9809 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9810                                 enum port port,
9811                                 struct intel_crtc_state *pipe_config)
9812 {
9813         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9814
9815         switch (pipe_config->ddi_pll_sel) {
9816         case PORT_CLK_SEL_WRPLL1:
9817                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9818                 break;
9819         case PORT_CLK_SEL_WRPLL2:
9820                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9821                 break;
9822         case PORT_CLK_SEL_SPLL:
9823                 pipe_config->shared_dpll = DPLL_ID_SPLL;
9824         }
9825 }
9826
9827 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9828                                        struct intel_crtc_state *pipe_config)
9829 {
9830         struct drm_device *dev = crtc->base.dev;
9831         struct drm_i915_private *dev_priv = dev->dev_private;
9832         struct intel_shared_dpll *pll;
9833         enum port port;
9834         uint32_t tmp;
9835
9836         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9837
9838         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9839
9840         if (IS_SKYLAKE(dev))
9841                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9842         else if (IS_BROXTON(dev))
9843                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9844         else
9845                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9846
9847         if (pipe_config->shared_dpll >= 0) {
9848                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9849
9850                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9851                                            &pipe_config->dpll_hw_state));
9852         }
9853
9854         /*
9855          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9856          * DDI E. So just check whether this pipe is wired to DDI E and whether
9857          * the PCH transcoder is on.
9858          */
9859         if (INTEL_INFO(dev)->gen < 9 &&
9860             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9861                 pipe_config->has_pch_encoder = true;
9862
9863                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9864                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9865                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9866
9867                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9868         }
9869 }
9870
9871 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9872                                     struct intel_crtc_state *pipe_config)
9873 {
9874         struct drm_device *dev = crtc->base.dev;
9875         struct drm_i915_private *dev_priv = dev->dev_private;
9876         enum intel_display_power_domain pfit_domain;
9877         uint32_t tmp;
9878
9879         if (!intel_display_power_is_enabled(dev_priv,
9880                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9881                 return false;
9882
9883         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9884         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9885
9886         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9887         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9888                 enum pipe trans_edp_pipe;
9889                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9890                 default:
9891                         WARN(1, "unknown pipe linked to edp transcoder\n");
9892                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9893                 case TRANS_DDI_EDP_INPUT_A_ON:
9894                         trans_edp_pipe = PIPE_A;
9895                         break;
9896                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9897                         trans_edp_pipe = PIPE_B;
9898                         break;
9899                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9900                         trans_edp_pipe = PIPE_C;
9901                         break;
9902                 }
9903
9904                 if (trans_edp_pipe == crtc->pipe)
9905                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9906         }
9907
9908         if (!intel_display_power_is_enabled(dev_priv,
9909                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9910                 return false;
9911
9912         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9913         if (!(tmp & PIPECONF_ENABLE))
9914                 return false;
9915
9916         haswell_get_ddi_port_state(crtc, pipe_config);
9917
9918         intel_get_pipe_timings(crtc, pipe_config);
9919
9920         if (INTEL_INFO(dev)->gen >= 9) {
9921                 skl_init_scalers(dev, crtc, pipe_config);
9922         }
9923
9924         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9925
9926         if (INTEL_INFO(dev)->gen >= 9) {
9927                 pipe_config->scaler_state.scaler_id = -1;
9928                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9929         }
9930
9931         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9932                 if (INTEL_INFO(dev)->gen >= 9)
9933                         skylake_get_pfit_config(crtc, pipe_config);
9934                 else
9935                         ironlake_get_pfit_config(crtc, pipe_config);
9936         }
9937
9938         if (IS_HASWELL(dev))
9939                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9940                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9941
9942         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9943                 pipe_config->pixel_multiplier =
9944                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9945         } else {
9946                 pipe_config->pixel_multiplier = 1;
9947         }
9948
9949         return true;
9950 }
9951
9952 static void i845_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
9953 {
9954         struct drm_device *dev = crtc->dev;
9955         struct drm_i915_private *dev_priv = dev->dev_private;
9956         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9957         uint32_t cntl = 0, size = 0;
9958
9959         if (on) {
9960                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9961                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9962                 unsigned int stride = roundup_pow_of_two(width) * 4;
9963
9964                 switch (stride) {
9965                 default:
9966                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9967                                   width, stride);
9968                         stride = 256;
9969                         /* fallthrough */
9970                 case 256:
9971                 case 512:
9972                 case 1024:
9973                 case 2048:
9974                         break;
9975                 }
9976
9977                 cntl |= CURSOR_ENABLE |
9978                         CURSOR_GAMMA_ENABLE |
9979                         CURSOR_FORMAT_ARGB |
9980                         CURSOR_STRIDE(stride);
9981
9982                 size = (height << 12) | width;
9983         }
9984
9985         if (intel_crtc->cursor_cntl != 0 &&
9986             (intel_crtc->cursor_base != base ||
9987              intel_crtc->cursor_size != size ||
9988              intel_crtc->cursor_cntl != cntl)) {
9989                 /* On these chipsets we can only modify the base/size/stride
9990                  * whilst the cursor is disabled.
9991                  */
9992                 I915_WRITE(CURCNTR(PIPE_A), 0);
9993                 POSTING_READ(CURCNTR(PIPE_A));
9994                 intel_crtc->cursor_cntl = 0;
9995         }
9996
9997         if (intel_crtc->cursor_base != base) {
9998                 I915_WRITE(CURBASE(PIPE_A), base);
9999                 intel_crtc->cursor_base = base;
10000         }
10001
10002         if (intel_crtc->cursor_size != size) {
10003                 I915_WRITE(CURSIZE, size);
10004                 intel_crtc->cursor_size = size;
10005         }
10006
10007         if (intel_crtc->cursor_cntl != cntl) {
10008                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10009                 POSTING_READ(CURCNTR(PIPE_A));
10010                 intel_crtc->cursor_cntl = cntl;
10011         }
10012 }
10013
10014 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
10015 {
10016         struct drm_device *dev = crtc->dev;
10017         struct drm_i915_private *dev_priv = dev->dev_private;
10018         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10019         int pipe = intel_crtc->pipe;
10020         uint32_t cntl = 0;
10021
10022         if (on) {
10023                 cntl = MCURSOR_GAMMA_ENABLE;
10024                 switch (intel_crtc->base.cursor->state->crtc_w) {
10025                         case 64:
10026                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10027                                 break;
10028                         case 128:
10029                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10030                                 break;
10031                         case 256:
10032                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10033                                 break;
10034                         default:
10035                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10036                                 return;
10037                 }
10038                 cntl |= pipe << 28; /* Connect to correct pipe */
10039
10040                 if (HAS_DDI(dev))
10041                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10042         }
10043
10044         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10045                 cntl |= CURSOR_ROTATE_180;
10046
10047         if (intel_crtc->cursor_cntl != cntl) {
10048                 I915_WRITE(CURCNTR(pipe), cntl);
10049                 POSTING_READ(CURCNTR(pipe));
10050                 intel_crtc->cursor_cntl = cntl;
10051         }
10052
10053         /* and commit changes on next vblank */
10054         I915_WRITE(CURBASE(pipe), base);
10055         POSTING_READ(CURBASE(pipe));
10056
10057         intel_crtc->cursor_base = base;
10058 }
10059
10060 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10061 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10062                                      bool on)
10063 {
10064         struct drm_device *dev = crtc->dev;
10065         struct drm_i915_private *dev_priv = dev->dev_private;
10066         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10067         int pipe = intel_crtc->pipe;
10068         struct drm_plane_state *cursor_state = crtc->cursor->state;
10069         int x = cursor_state->crtc_x;
10070         int y = cursor_state->crtc_y;
10071         u32 base = 0, pos = 0;
10072
10073         base = intel_crtc->cursor_addr;
10074
10075         if (x >= intel_crtc->config->pipe_src_w)
10076                 on = false;
10077
10078         if (y >= intel_crtc->config->pipe_src_h)
10079                 on = false;
10080
10081         if (x < 0) {
10082                 if (x + cursor_state->crtc_w <= 0)
10083                         on = false;
10084
10085                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10086                 x = -x;
10087         }
10088         pos |= x << CURSOR_X_SHIFT;
10089
10090         if (y < 0) {
10091                 if (y + cursor_state->crtc_h <= 0)
10092                         on = false;
10093
10094                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10095                 y = -y;
10096         }
10097         pos |= y << CURSOR_Y_SHIFT;
10098
10099         I915_WRITE(CURPOS(pipe), pos);
10100
10101         /* ILK+ do this automagically */
10102         if (HAS_GMCH_DISPLAY(dev) &&
10103             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10104                 base += (cursor_state->crtc_h *
10105                          cursor_state->crtc_w - 1) * 4;
10106         }
10107
10108         if (IS_845G(dev) || IS_I865G(dev))
10109                 i845_update_cursor(crtc, base, on);
10110         else
10111                 i9xx_update_cursor(crtc, base, on);
10112 }
10113
10114 static bool cursor_size_ok(struct drm_device *dev,
10115                            uint32_t width, uint32_t height)
10116 {
10117         if (width == 0 || height == 0)
10118                 return false;
10119
10120         /*
10121          * 845g/865g are special in that they are only limited by
10122          * the width of their cursors, the height is arbitrary up to
10123          * the precision of the register. Everything else requires
10124          * square cursors, limited to a few power-of-two sizes.
10125          */
10126         if (IS_845G(dev) || IS_I865G(dev)) {
10127                 if ((width & 63) != 0)
10128                         return false;
10129
10130                 if (width > (IS_845G(dev) ? 64 : 512))
10131                         return false;
10132
10133                 if (height > 1023)
10134                         return false;
10135         } else {
10136                 switch (width | height) {
10137                 case 256:
10138                 case 128:
10139                         if (IS_GEN2(dev))
10140                                 return false;
10141                 case 64:
10142                         break;
10143                 default:
10144                         return false;
10145                 }
10146         }
10147
10148         return true;
10149 }
10150
10151 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10152                                  u16 *blue, uint32_t start, uint32_t size)
10153 {
10154         int end = (start + size > 256) ? 256 : start + size, i;
10155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10156
10157         for (i = start; i < end; i++) {
10158                 intel_crtc->lut_r[i] = red[i] >> 8;
10159                 intel_crtc->lut_g[i] = green[i] >> 8;
10160                 intel_crtc->lut_b[i] = blue[i] >> 8;
10161         }
10162
10163         intel_crtc_load_lut(crtc);
10164 }
10165
10166 /* VESA 640x480x72Hz mode to set on the pipe */
10167 static struct drm_display_mode load_detect_mode = {
10168         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10169                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10170 };
10171
10172 struct drm_framebuffer *
10173 __intel_framebuffer_create(struct drm_device *dev,
10174                            struct drm_mode_fb_cmd2 *mode_cmd,
10175                            struct drm_i915_gem_object *obj)
10176 {
10177         struct intel_framebuffer *intel_fb;
10178         int ret;
10179
10180         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10181         if (!intel_fb) {
10182                 drm_gem_object_unreference(&obj->base);
10183                 return ERR_PTR(-ENOMEM);
10184         }
10185
10186         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10187         if (ret)
10188                 goto err;
10189
10190         return &intel_fb->base;
10191 err:
10192         drm_gem_object_unreference(&obj->base);
10193         kfree(intel_fb);
10194
10195         return ERR_PTR(ret);
10196 }
10197
10198 static struct drm_framebuffer *
10199 intel_framebuffer_create(struct drm_device *dev,
10200                          struct drm_mode_fb_cmd2 *mode_cmd,
10201                          struct drm_i915_gem_object *obj)
10202 {
10203         struct drm_framebuffer *fb;
10204         int ret;
10205
10206         ret = i915_mutex_lock_interruptible(dev);
10207         if (ret)
10208                 return ERR_PTR(ret);
10209         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10210         mutex_unlock(&dev->struct_mutex);
10211
10212         return fb;
10213 }
10214
10215 static u32
10216 intel_framebuffer_pitch_for_width(int width, int bpp)
10217 {
10218         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10219         return ALIGN(pitch, 64);
10220 }
10221
10222 static u32
10223 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10224 {
10225         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10226         return PAGE_ALIGN(pitch * mode->vdisplay);
10227 }
10228
10229 static struct drm_framebuffer *
10230 intel_framebuffer_create_for_mode(struct drm_device *dev,
10231                                   struct drm_display_mode *mode,
10232                                   int depth, int bpp)
10233 {
10234         struct drm_i915_gem_object *obj;
10235         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10236
10237         obj = i915_gem_alloc_object(dev,
10238                                     intel_framebuffer_size_for_mode(mode, bpp));
10239         if (obj == NULL)
10240                 return ERR_PTR(-ENOMEM);
10241
10242         mode_cmd.width = mode->hdisplay;
10243         mode_cmd.height = mode->vdisplay;
10244         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10245                                                                 bpp);
10246         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10247
10248         return intel_framebuffer_create(dev, &mode_cmd, obj);
10249 }
10250
10251 static struct drm_framebuffer *
10252 mode_fits_in_fbdev(struct drm_device *dev,
10253                    struct drm_display_mode *mode)
10254 {
10255 #ifdef CONFIG_DRM_FBDEV_EMULATION
10256         struct drm_i915_private *dev_priv = dev->dev_private;
10257         struct drm_i915_gem_object *obj;
10258         struct drm_framebuffer *fb;
10259
10260         if (!dev_priv->fbdev)
10261                 return NULL;
10262
10263         if (!dev_priv->fbdev->fb)
10264                 return NULL;
10265
10266         obj = dev_priv->fbdev->fb->obj;
10267         BUG_ON(!obj);
10268
10269         fb = &dev_priv->fbdev->fb->base;
10270         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10271                                                                fb->bits_per_pixel))
10272                 return NULL;
10273
10274         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10275                 return NULL;
10276
10277         return fb;
10278 #else
10279         return NULL;
10280 #endif
10281 }
10282
10283 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10284                                            struct drm_crtc *crtc,
10285                                            struct drm_display_mode *mode,
10286                                            struct drm_framebuffer *fb,
10287                                            int x, int y)
10288 {
10289         struct drm_plane_state *plane_state;
10290         int hdisplay, vdisplay;
10291         int ret;
10292
10293         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10294         if (IS_ERR(plane_state))
10295                 return PTR_ERR(plane_state);
10296
10297         if (mode)
10298                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10299         else
10300                 hdisplay = vdisplay = 0;
10301
10302         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10303         if (ret)
10304                 return ret;
10305         drm_atomic_set_fb_for_plane(plane_state, fb);
10306         plane_state->crtc_x = 0;
10307         plane_state->crtc_y = 0;
10308         plane_state->crtc_w = hdisplay;
10309         plane_state->crtc_h = vdisplay;
10310         plane_state->src_x = x << 16;
10311         plane_state->src_y = y << 16;
10312         plane_state->src_w = hdisplay << 16;
10313         plane_state->src_h = vdisplay << 16;
10314
10315         return 0;
10316 }
10317
10318 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10319                                 struct drm_display_mode *mode,
10320                                 struct intel_load_detect_pipe *old,
10321                                 struct drm_modeset_acquire_ctx *ctx)
10322 {
10323         struct intel_crtc *intel_crtc;
10324         struct intel_encoder *intel_encoder =
10325                 intel_attached_encoder(connector);
10326         struct drm_crtc *possible_crtc;
10327         struct drm_encoder *encoder = &intel_encoder->base;
10328         struct drm_crtc *crtc = NULL;
10329         struct drm_device *dev = encoder->dev;
10330         struct drm_framebuffer *fb;
10331         struct drm_mode_config *config = &dev->mode_config;
10332         struct drm_atomic_state *state = NULL;
10333         struct drm_connector_state *connector_state;
10334         struct intel_crtc_state *crtc_state;
10335         int ret, i = -1;
10336
10337         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10338                       connector->base.id, connector->name,
10339                       encoder->base.id, encoder->name);
10340
10341 retry:
10342         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10343         if (ret)
10344                 goto fail;
10345
10346         /*
10347          * Algorithm gets a little messy:
10348          *
10349          *   - if the connector already has an assigned crtc, use it (but make
10350          *     sure it's on first)
10351          *
10352          *   - try to find the first unused crtc that can drive this connector,
10353          *     and use that if we find one
10354          */
10355
10356         /* See if we already have a CRTC for this connector */
10357         if (encoder->crtc) {
10358                 crtc = encoder->crtc;
10359
10360                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10361                 if (ret)
10362                         goto fail;
10363                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10364                 if (ret)
10365                         goto fail;
10366
10367                 old->dpms_mode = connector->dpms;
10368                 old->load_detect_temp = false;
10369
10370                 /* Make sure the crtc and connector are running */
10371                 if (connector->dpms != DRM_MODE_DPMS_ON)
10372                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10373
10374                 return true;
10375         }
10376
10377         /* Find an unused one (if possible) */
10378         for_each_crtc(dev, possible_crtc) {
10379                 i++;
10380                 if (!(encoder->possible_crtcs & (1 << i)))
10381                         continue;
10382                 if (possible_crtc->state->enable)
10383                         continue;
10384
10385                 crtc = possible_crtc;
10386                 break;
10387         }
10388
10389         /*
10390          * If we didn't find an unused CRTC, don't use any.
10391          */
10392         if (!crtc) {
10393                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10394                 goto fail;
10395         }
10396
10397         ret = drm_modeset_lock(&crtc->mutex, ctx);
10398         if (ret)
10399                 goto fail;
10400         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10401         if (ret)
10402                 goto fail;
10403
10404         intel_crtc = to_intel_crtc(crtc);
10405         old->dpms_mode = connector->dpms;
10406         old->load_detect_temp = true;
10407         old->release_fb = NULL;
10408
10409         state = drm_atomic_state_alloc(dev);
10410         if (!state)
10411                 return false;
10412
10413         state->acquire_ctx = ctx;
10414
10415         connector_state = drm_atomic_get_connector_state(state, connector);
10416         if (IS_ERR(connector_state)) {
10417                 ret = PTR_ERR(connector_state);
10418                 goto fail;
10419         }
10420
10421         connector_state->crtc = crtc;
10422         connector_state->best_encoder = &intel_encoder->base;
10423
10424         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10425         if (IS_ERR(crtc_state)) {
10426                 ret = PTR_ERR(crtc_state);
10427                 goto fail;
10428         }
10429
10430         crtc_state->base.active = crtc_state->base.enable = true;
10431
10432         if (!mode)
10433                 mode = &load_detect_mode;
10434
10435         /* We need a framebuffer large enough to accommodate all accesses
10436          * that the plane may generate whilst we perform load detection.
10437          * We can not rely on the fbcon either being present (we get called
10438          * during its initialisation to detect all boot displays, or it may
10439          * not even exist) or that it is large enough to satisfy the
10440          * requested mode.
10441          */
10442         fb = mode_fits_in_fbdev(dev, mode);
10443         if (fb == NULL) {
10444                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10445                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10446                 old->release_fb = fb;
10447         } else
10448                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10449         if (IS_ERR(fb)) {
10450                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10451                 goto fail;
10452         }
10453
10454         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10455         if (ret)
10456                 goto fail;
10457
10458         drm_mode_copy(&crtc_state->base.mode, mode);
10459
10460         if (drm_atomic_commit(state)) {
10461                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10462                 if (old->release_fb)
10463                         old->release_fb->funcs->destroy(old->release_fb);
10464                 goto fail;
10465         }
10466         crtc->primary->crtc = crtc;
10467
10468         /* let the connector get through one full cycle before testing */
10469         intel_wait_for_vblank(dev, intel_crtc->pipe);
10470         return true;
10471
10472 fail:
10473         drm_atomic_state_free(state);
10474         state = NULL;
10475
10476         if (ret == -EDEADLK) {
10477                 drm_modeset_backoff(ctx);
10478                 goto retry;
10479         }
10480
10481         return false;
10482 }
10483
10484 void intel_release_load_detect_pipe(struct drm_connector *connector,
10485                                     struct intel_load_detect_pipe *old,
10486                                     struct drm_modeset_acquire_ctx *ctx)
10487 {
10488         struct drm_device *dev = connector->dev;
10489         struct intel_encoder *intel_encoder =
10490                 intel_attached_encoder(connector);
10491         struct drm_encoder *encoder = &intel_encoder->base;
10492         struct drm_crtc *crtc = encoder->crtc;
10493         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10494         struct drm_atomic_state *state;
10495         struct drm_connector_state *connector_state;
10496         struct intel_crtc_state *crtc_state;
10497         int ret;
10498
10499         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10500                       connector->base.id, connector->name,
10501                       encoder->base.id, encoder->name);
10502
10503         if (old->load_detect_temp) {
10504                 state = drm_atomic_state_alloc(dev);
10505                 if (!state)
10506                         goto fail;
10507
10508                 state->acquire_ctx = ctx;
10509
10510                 connector_state = drm_atomic_get_connector_state(state, connector);
10511                 if (IS_ERR(connector_state))
10512                         goto fail;
10513
10514                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10515                 if (IS_ERR(crtc_state))
10516                         goto fail;
10517
10518                 connector_state->best_encoder = NULL;
10519                 connector_state->crtc = NULL;
10520
10521                 crtc_state->base.enable = crtc_state->base.active = false;
10522
10523                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10524                                                       0, 0);
10525                 if (ret)
10526                         goto fail;
10527
10528                 ret = drm_atomic_commit(state);
10529                 if (ret)
10530                         goto fail;
10531
10532                 if (old->release_fb) {
10533                         drm_framebuffer_unregister_private(old->release_fb);
10534                         drm_framebuffer_unreference(old->release_fb);
10535                 }
10536
10537                 return;
10538         }
10539
10540         /* Switch crtc and encoder back off if necessary */
10541         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10542                 connector->funcs->dpms(connector, old->dpms_mode);
10543
10544         return;
10545 fail:
10546         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10547         drm_atomic_state_free(state);
10548 }
10549
10550 static int i9xx_pll_refclk(struct drm_device *dev,
10551                            const struct intel_crtc_state *pipe_config)
10552 {
10553         struct drm_i915_private *dev_priv = dev->dev_private;
10554         u32 dpll = pipe_config->dpll_hw_state.dpll;
10555
10556         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10557                 return dev_priv->vbt.lvds_ssc_freq;
10558         else if (HAS_PCH_SPLIT(dev))
10559                 return 120000;
10560         else if (!IS_GEN2(dev))
10561                 return 96000;
10562         else
10563                 return 48000;
10564 }
10565
10566 /* Returns the clock of the currently programmed mode of the given pipe. */
10567 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10568                                 struct intel_crtc_state *pipe_config)
10569 {
10570         struct drm_device *dev = crtc->base.dev;
10571         struct drm_i915_private *dev_priv = dev->dev_private;
10572         int pipe = pipe_config->cpu_transcoder;
10573         u32 dpll = pipe_config->dpll_hw_state.dpll;
10574         u32 fp;
10575         intel_clock_t clock;
10576         int port_clock;
10577         int refclk = i9xx_pll_refclk(dev, pipe_config);
10578
10579         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10580                 fp = pipe_config->dpll_hw_state.fp0;
10581         else
10582                 fp = pipe_config->dpll_hw_state.fp1;
10583
10584         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10585         if (IS_PINEVIEW(dev)) {
10586                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10587                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10588         } else {
10589                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10590                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10591         }
10592
10593         if (!IS_GEN2(dev)) {
10594                 if (IS_PINEVIEW(dev))
10595                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10596                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10597                 else
10598                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10599                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10600
10601                 switch (dpll & DPLL_MODE_MASK) {
10602                 case DPLLB_MODE_DAC_SERIAL:
10603                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10604                                 5 : 10;
10605                         break;
10606                 case DPLLB_MODE_LVDS:
10607                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10608                                 7 : 14;
10609                         break;
10610                 default:
10611                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10612                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10613                         return;
10614                 }
10615
10616                 if (IS_PINEVIEW(dev))
10617                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10618                 else
10619                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10620         } else {
10621                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10622                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10623
10624                 if (is_lvds) {
10625                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10626                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10627
10628                         if (lvds & LVDS_CLKB_POWER_UP)
10629                                 clock.p2 = 7;
10630                         else
10631                                 clock.p2 = 14;
10632                 } else {
10633                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10634                                 clock.p1 = 2;
10635                         else {
10636                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10637                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10638                         }
10639                         if (dpll & PLL_P2_DIVIDE_BY_4)
10640                                 clock.p2 = 4;
10641                         else
10642                                 clock.p2 = 2;
10643                 }
10644
10645                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10646         }
10647
10648         /*
10649          * This value includes pixel_multiplier. We will use
10650          * port_clock to compute adjusted_mode.crtc_clock in the
10651          * encoder's get_config() function.
10652          */
10653         pipe_config->port_clock = port_clock;
10654 }
10655
10656 int intel_dotclock_calculate(int link_freq,
10657                              const struct intel_link_m_n *m_n)
10658 {
10659         /*
10660          * The calculation for the data clock is:
10661          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10662          * But we want to avoid losing precison if possible, so:
10663          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10664          *
10665          * and the link clock is simpler:
10666          * link_clock = (m * link_clock) / n
10667          */
10668
10669         if (!m_n->link_n)
10670                 return 0;
10671
10672         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10673 }
10674
10675 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10676                                    struct intel_crtc_state *pipe_config)
10677 {
10678         struct drm_device *dev = crtc->base.dev;
10679
10680         /* read out port_clock from the DPLL */
10681         i9xx_crtc_clock_get(crtc, pipe_config);
10682
10683         /*
10684          * This value does not include pixel_multiplier.
10685          * We will check that port_clock and adjusted_mode.crtc_clock
10686          * agree once we know their relationship in the encoder's
10687          * get_config() function.
10688          */
10689         pipe_config->base.adjusted_mode.crtc_clock =
10690                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10691                                          &pipe_config->fdi_m_n);
10692 }
10693
10694 /** Returns the currently programmed mode of the given pipe. */
10695 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10696                                              struct drm_crtc *crtc)
10697 {
10698         struct drm_i915_private *dev_priv = dev->dev_private;
10699         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10700         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10701         struct drm_display_mode *mode;
10702         struct intel_crtc_state pipe_config;
10703         int htot = I915_READ(HTOTAL(cpu_transcoder));
10704         int hsync = I915_READ(HSYNC(cpu_transcoder));
10705         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10706         int vsync = I915_READ(VSYNC(cpu_transcoder));
10707         enum pipe pipe = intel_crtc->pipe;
10708
10709         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10710         if (!mode)
10711                 return NULL;
10712
10713         /*
10714          * Construct a pipe_config sufficient for getting the clock info
10715          * back out of crtc_clock_get.
10716          *
10717          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10718          * to use a real value here instead.
10719          */
10720         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10721         pipe_config.pixel_multiplier = 1;
10722         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10723         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10724         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10725         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10726
10727         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10728         mode->hdisplay = (htot & 0xffff) + 1;
10729         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10730         mode->hsync_start = (hsync & 0xffff) + 1;
10731         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10732         mode->vdisplay = (vtot & 0xffff) + 1;
10733         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10734         mode->vsync_start = (vsync & 0xffff) + 1;
10735         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10736
10737         drm_mode_set_name(mode);
10738
10739         return mode;
10740 }
10741
10742 void intel_mark_busy(struct drm_device *dev)
10743 {
10744         struct drm_i915_private *dev_priv = dev->dev_private;
10745
10746         if (dev_priv->mm.busy)
10747                 return;
10748
10749         intel_runtime_pm_get(dev_priv);
10750         i915_update_gfx_val(dev_priv);
10751         if (INTEL_INFO(dev)->gen >= 6)
10752                 gen6_rps_busy(dev_priv);
10753         dev_priv->mm.busy = true;
10754 }
10755
10756 void intel_mark_idle(struct drm_device *dev)
10757 {
10758         struct drm_i915_private *dev_priv = dev->dev_private;
10759
10760         if (!dev_priv->mm.busy)
10761                 return;
10762
10763         dev_priv->mm.busy = false;
10764
10765         if (INTEL_INFO(dev)->gen >= 6)
10766                 gen6_rps_idle(dev->dev_private);
10767
10768         intel_runtime_pm_put(dev_priv);
10769 }
10770
10771 static void intel_crtc_destroy(struct drm_crtc *crtc)
10772 {
10773         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10774         struct drm_device *dev = crtc->dev;
10775         struct intel_unpin_work *work;
10776
10777         spin_lock_irq(&dev->event_lock);
10778         work = intel_crtc->unpin_work;
10779         intel_crtc->unpin_work = NULL;
10780         spin_unlock_irq(&dev->event_lock);
10781
10782         if (work) {
10783                 cancel_work_sync(&work->work);
10784                 kfree(work);
10785         }
10786
10787         drm_crtc_cleanup(crtc);
10788
10789         kfree(intel_crtc);
10790 }
10791
10792 static void intel_unpin_work_fn(struct work_struct *__work)
10793 {
10794         struct intel_unpin_work *work =
10795                 container_of(__work, struct intel_unpin_work, work);
10796         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10797         struct drm_device *dev = crtc->base.dev;
10798         struct drm_plane *primary = crtc->base.primary;
10799
10800         mutex_lock(&dev->struct_mutex);
10801         intel_unpin_fb_obj(work->old_fb, primary->state);
10802         drm_gem_object_unreference(&work->pending_flip_obj->base);
10803
10804         if (work->flip_queued_req)
10805                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10806         mutex_unlock(&dev->struct_mutex);
10807
10808         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10809         drm_framebuffer_unreference(work->old_fb);
10810
10811         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10812         atomic_dec(&crtc->unpin_work_count);
10813
10814         kfree(work);
10815 }
10816
10817 static void do_intel_finish_page_flip(struct drm_device *dev,
10818                                       struct drm_crtc *crtc)
10819 {
10820         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10821         struct intel_unpin_work *work;
10822         unsigned long flags;
10823
10824         /* Ignore early vblank irqs */
10825         if (intel_crtc == NULL)
10826                 return;
10827
10828         /*
10829          * This is called both by irq handlers and the reset code (to complete
10830          * lost pageflips) so needs the full irqsave spinlocks.
10831          */
10832         spin_lock_irqsave(&dev->event_lock, flags);
10833         work = intel_crtc->unpin_work;
10834
10835         /* Ensure we don't miss a work->pending update ... */
10836         smp_rmb();
10837
10838         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10839                 spin_unlock_irqrestore(&dev->event_lock, flags);
10840                 return;
10841         }
10842
10843         page_flip_completed(intel_crtc);
10844
10845         spin_unlock_irqrestore(&dev->event_lock, flags);
10846 }
10847
10848 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10849 {
10850         struct drm_i915_private *dev_priv = dev->dev_private;
10851         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10852
10853         do_intel_finish_page_flip(dev, crtc);
10854 }
10855
10856 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10857 {
10858         struct drm_i915_private *dev_priv = dev->dev_private;
10859         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10860
10861         do_intel_finish_page_flip(dev, crtc);
10862 }
10863
10864 /* Is 'a' after or equal to 'b'? */
10865 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10866 {
10867         return !((a - b) & 0x80000000);
10868 }
10869
10870 static bool page_flip_finished(struct intel_crtc *crtc)
10871 {
10872         struct drm_device *dev = crtc->base.dev;
10873         struct drm_i915_private *dev_priv = dev->dev_private;
10874
10875         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10876             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10877                 return true;
10878
10879         /*
10880          * The relevant registers doen't exist on pre-ctg.
10881          * As the flip done interrupt doesn't trigger for mmio
10882          * flips on gmch platforms, a flip count check isn't
10883          * really needed there. But since ctg has the registers,
10884          * include it in the check anyway.
10885          */
10886         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10887                 return true;
10888
10889         /*
10890          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10891          * used the same base address. In that case the mmio flip might
10892          * have completed, but the CS hasn't even executed the flip yet.
10893          *
10894          * A flip count check isn't enough as the CS might have updated
10895          * the base address just after start of vblank, but before we
10896          * managed to process the interrupt. This means we'd complete the
10897          * CS flip too soon.
10898          *
10899          * Combining both checks should get us a good enough result. It may
10900          * still happen that the CS flip has been executed, but has not
10901          * yet actually completed. But in case the base address is the same
10902          * anyway, we don't really care.
10903          */
10904         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10905                 crtc->unpin_work->gtt_offset &&
10906                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10907                                     crtc->unpin_work->flip_count);
10908 }
10909
10910 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10911 {
10912         struct drm_i915_private *dev_priv = dev->dev_private;
10913         struct intel_crtc *intel_crtc =
10914                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10915         unsigned long flags;
10916
10917
10918         /*
10919          * This is called both by irq handlers and the reset code (to complete
10920          * lost pageflips) so needs the full irqsave spinlocks.
10921          *
10922          * NB: An MMIO update of the plane base pointer will also
10923          * generate a page-flip completion irq, i.e. every modeset
10924          * is also accompanied by a spurious intel_prepare_page_flip().
10925          */
10926         spin_lock_irqsave(&dev->event_lock, flags);
10927         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10928                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10929         spin_unlock_irqrestore(&dev->event_lock, flags);
10930 }
10931
10932 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10933 {
10934         /* Ensure that the work item is consistent when activating it ... */
10935         smp_wmb();
10936         atomic_set(&work->pending, INTEL_FLIP_PENDING);
10937         /* and that it is marked active as soon as the irq could fire. */
10938         smp_wmb();
10939 }
10940
10941 static int intel_gen2_queue_flip(struct drm_device *dev,
10942                                  struct drm_crtc *crtc,
10943                                  struct drm_framebuffer *fb,
10944                                  struct drm_i915_gem_object *obj,
10945                                  struct drm_i915_gem_request *req,
10946                                  uint32_t flags)
10947 {
10948         struct intel_engine_cs *ring = req->ring;
10949         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10950         u32 flip_mask;
10951         int ret;
10952
10953         ret = intel_ring_begin(req, 6);
10954         if (ret)
10955                 return ret;
10956
10957         /* Can't queue multiple flips, so wait for the previous
10958          * one to finish before executing the next.
10959          */
10960         if (intel_crtc->plane)
10961                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10962         else
10963                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10964         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10965         intel_ring_emit(ring, MI_NOOP);
10966         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10967                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10968         intel_ring_emit(ring, fb->pitches[0]);
10969         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10970         intel_ring_emit(ring, 0); /* aux display base address, unused */
10971
10972         intel_mark_page_flip_active(intel_crtc->unpin_work);
10973         return 0;
10974 }
10975
10976 static int intel_gen3_queue_flip(struct drm_device *dev,
10977                                  struct drm_crtc *crtc,
10978                                  struct drm_framebuffer *fb,
10979                                  struct drm_i915_gem_object *obj,
10980                                  struct drm_i915_gem_request *req,
10981                                  uint32_t flags)
10982 {
10983         struct intel_engine_cs *ring = req->ring;
10984         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10985         u32 flip_mask;
10986         int ret;
10987
10988         ret = intel_ring_begin(req, 6);
10989         if (ret)
10990                 return ret;
10991
10992         if (intel_crtc->plane)
10993                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10994         else
10995                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10996         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10997         intel_ring_emit(ring, MI_NOOP);
10998         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10999                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11000         intel_ring_emit(ring, fb->pitches[0]);
11001         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11002         intel_ring_emit(ring, MI_NOOP);
11003
11004         intel_mark_page_flip_active(intel_crtc->unpin_work);
11005         return 0;
11006 }
11007
11008 static int intel_gen4_queue_flip(struct drm_device *dev,
11009                                  struct drm_crtc *crtc,
11010                                  struct drm_framebuffer *fb,
11011                                  struct drm_i915_gem_object *obj,
11012                                  struct drm_i915_gem_request *req,
11013                                  uint32_t flags)
11014 {
11015         struct intel_engine_cs *ring = req->ring;
11016         struct drm_i915_private *dev_priv = dev->dev_private;
11017         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11018         uint32_t pf, pipesrc;
11019         int ret;
11020
11021         ret = intel_ring_begin(req, 4);
11022         if (ret)
11023                 return ret;
11024
11025         /* i965+ uses the linear or tiled offsets from the
11026          * Display Registers (which do not change across a page-flip)
11027          * so we need only reprogram the base address.
11028          */
11029         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11030                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11031         intel_ring_emit(ring, fb->pitches[0]);
11032         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11033                         obj->tiling_mode);
11034
11035         /* XXX Enabling the panel-fitter across page-flip is so far
11036          * untested on non-native modes, so ignore it for now.
11037          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11038          */
11039         pf = 0;
11040         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11041         intel_ring_emit(ring, pf | pipesrc);
11042
11043         intel_mark_page_flip_active(intel_crtc->unpin_work);
11044         return 0;
11045 }
11046
11047 static int intel_gen6_queue_flip(struct drm_device *dev,
11048                                  struct drm_crtc *crtc,
11049                                  struct drm_framebuffer *fb,
11050                                  struct drm_i915_gem_object *obj,
11051                                  struct drm_i915_gem_request *req,
11052                                  uint32_t flags)
11053 {
11054         struct intel_engine_cs *ring = req->ring;
11055         struct drm_i915_private *dev_priv = dev->dev_private;
11056         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11057         uint32_t pf, pipesrc;
11058         int ret;
11059
11060         ret = intel_ring_begin(req, 4);
11061         if (ret)
11062                 return ret;
11063
11064         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11065                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11066         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11067         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11068
11069         /* Contrary to the suggestions in the documentation,
11070          * "Enable Panel Fitter" does not seem to be required when page
11071          * flipping with a non-native mode, and worse causes a normal
11072          * modeset to fail.
11073          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11074          */
11075         pf = 0;
11076         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11077         intel_ring_emit(ring, pf | pipesrc);
11078
11079         intel_mark_page_flip_active(intel_crtc->unpin_work);
11080         return 0;
11081 }
11082
11083 static int intel_gen7_queue_flip(struct drm_device *dev,
11084                                  struct drm_crtc *crtc,
11085                                  struct drm_framebuffer *fb,
11086                                  struct drm_i915_gem_object *obj,
11087                                  struct drm_i915_gem_request *req,
11088                                  uint32_t flags)
11089 {
11090         struct intel_engine_cs *ring = req->ring;
11091         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11092         uint32_t plane_bit = 0;
11093         int len, ret;
11094
11095         switch (intel_crtc->plane) {
11096         case PLANE_A:
11097                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11098                 break;
11099         case PLANE_B:
11100                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11101                 break;
11102         case PLANE_C:
11103                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11104                 break;
11105         default:
11106                 WARN_ONCE(1, "unknown plane in flip command\n");
11107                 return -ENODEV;
11108         }
11109
11110         len = 4;
11111         if (ring->id == RCS) {
11112                 len += 6;
11113                 /*
11114                  * On Gen 8, SRM is now taking an extra dword to accommodate
11115                  * 48bits addresses, and we need a NOOP for the batch size to
11116                  * stay even.
11117                  */
11118                 if (IS_GEN8(dev))
11119                         len += 2;
11120         }
11121
11122         /*
11123          * BSpec MI_DISPLAY_FLIP for IVB:
11124          * "The full packet must be contained within the same cache line."
11125          *
11126          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11127          * cacheline, if we ever start emitting more commands before
11128          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11129          * then do the cacheline alignment, and finally emit the
11130          * MI_DISPLAY_FLIP.
11131          */
11132         ret = intel_ring_cacheline_align(req);
11133         if (ret)
11134                 return ret;
11135
11136         ret = intel_ring_begin(req, len);
11137         if (ret)
11138                 return ret;
11139
11140         /* Unmask the flip-done completion message. Note that the bspec says that
11141          * we should do this for both the BCS and RCS, and that we must not unmask
11142          * more than one flip event at any time (or ensure that one flip message
11143          * can be sent by waiting for flip-done prior to queueing new flips).
11144          * Experimentation says that BCS works despite DERRMR masking all
11145          * flip-done completion events and that unmasking all planes at once
11146          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11147          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11148          */
11149         if (ring->id == RCS) {
11150                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11151                 intel_ring_emit(ring, DERRMR);
11152                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11153                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11154                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11155                 if (IS_GEN8(dev))
11156                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11157                                               MI_SRM_LRM_GLOBAL_GTT);
11158                 else
11159                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11160                                               MI_SRM_LRM_GLOBAL_GTT);
11161                 intel_ring_emit(ring, DERRMR);
11162                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11163                 if (IS_GEN8(dev)) {
11164                         intel_ring_emit(ring, 0);
11165                         intel_ring_emit(ring, MI_NOOP);
11166                 }
11167         }
11168
11169         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11170         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11171         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11172         intel_ring_emit(ring, (MI_NOOP));
11173
11174         intel_mark_page_flip_active(intel_crtc->unpin_work);
11175         return 0;
11176 }
11177
11178 static bool use_mmio_flip(struct intel_engine_cs *ring,
11179                           struct drm_i915_gem_object *obj)
11180 {
11181         /*
11182          * This is not being used for older platforms, because
11183          * non-availability of flip done interrupt forces us to use
11184          * CS flips. Older platforms derive flip done using some clever
11185          * tricks involving the flip_pending status bits and vblank irqs.
11186          * So using MMIO flips there would disrupt this mechanism.
11187          */
11188
11189         if (ring == NULL)
11190                 return true;
11191
11192         if (INTEL_INFO(ring->dev)->gen < 5)
11193                 return false;
11194
11195         if (i915.use_mmio_flip < 0)
11196                 return false;
11197         else if (i915.use_mmio_flip > 0)
11198                 return true;
11199         else if (i915.enable_execlists)
11200                 return true;
11201         else
11202                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11203 }
11204
11205 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11206                              struct intel_unpin_work *work)
11207 {
11208         struct drm_device *dev = intel_crtc->base.dev;
11209         struct drm_i915_private *dev_priv = dev->dev_private;
11210         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11211         const enum pipe pipe = intel_crtc->pipe;
11212         u32 ctl, stride;
11213
11214         ctl = I915_READ(PLANE_CTL(pipe, 0));
11215         ctl &= ~PLANE_CTL_TILED_MASK;
11216         switch (fb->modifier[0]) {
11217         case DRM_FORMAT_MOD_NONE:
11218                 break;
11219         case I915_FORMAT_MOD_X_TILED:
11220                 ctl |= PLANE_CTL_TILED_X;
11221                 break;
11222         case I915_FORMAT_MOD_Y_TILED:
11223                 ctl |= PLANE_CTL_TILED_Y;
11224                 break;
11225         case I915_FORMAT_MOD_Yf_TILED:
11226                 ctl |= PLANE_CTL_TILED_YF;
11227                 break;
11228         default:
11229                 MISSING_CASE(fb->modifier[0]);
11230         }
11231
11232         /*
11233          * The stride is either expressed as a multiple of 64 bytes chunks for
11234          * linear buffers or in number of tiles for tiled buffers.
11235          */
11236         stride = fb->pitches[0] /
11237                  intel_fb_stride_alignment(dev, fb->modifier[0],
11238                                            fb->pixel_format);
11239
11240         /*
11241          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11242          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11243          */
11244         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11245         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11246
11247         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11248         POSTING_READ(PLANE_SURF(pipe, 0));
11249 }
11250
11251 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11252                              struct intel_unpin_work *work)
11253 {
11254         struct drm_device *dev = intel_crtc->base.dev;
11255         struct drm_i915_private *dev_priv = dev->dev_private;
11256         struct intel_framebuffer *intel_fb =
11257                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11258         struct drm_i915_gem_object *obj = intel_fb->obj;
11259         u32 dspcntr;
11260         u32 reg;
11261
11262         reg = DSPCNTR(intel_crtc->plane);
11263         dspcntr = I915_READ(reg);
11264
11265         if (obj->tiling_mode != I915_TILING_NONE)
11266                 dspcntr |= DISPPLANE_TILED;
11267         else
11268                 dspcntr &= ~DISPPLANE_TILED;
11269
11270         I915_WRITE(reg, dspcntr);
11271
11272         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11273         POSTING_READ(DSPSURF(intel_crtc->plane));
11274 }
11275
11276 /*
11277  * XXX: This is the temporary way to update the plane registers until we get
11278  * around to using the usual plane update functions for MMIO flips
11279  */
11280 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11281 {
11282         struct intel_crtc *crtc = mmio_flip->crtc;
11283         struct intel_unpin_work *work;
11284
11285         spin_lock_irq(&crtc->base.dev->event_lock);
11286         work = crtc->unpin_work;
11287         spin_unlock_irq(&crtc->base.dev->event_lock);
11288         if (work == NULL)
11289                 return;
11290
11291         intel_mark_page_flip_active(work);
11292
11293         intel_pipe_update_start(crtc);
11294
11295         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11296                 skl_do_mmio_flip(crtc, work);
11297         else
11298                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11299                 ilk_do_mmio_flip(crtc, work);
11300
11301         intel_pipe_update_end(crtc);
11302 }
11303
11304 static void intel_mmio_flip_work_func(struct work_struct *work)
11305 {
11306         struct intel_mmio_flip *mmio_flip =
11307                 container_of(work, struct intel_mmio_flip, work);
11308
11309         if (mmio_flip->req) {
11310                 WARN_ON(__i915_wait_request(mmio_flip->req,
11311                                             mmio_flip->crtc->reset_counter,
11312                                             false, NULL,
11313                                             &mmio_flip->i915->rps.mmioflips));
11314                 i915_gem_request_unreference__unlocked(mmio_flip->req);
11315         }
11316
11317         intel_do_mmio_flip(mmio_flip);
11318         kfree(mmio_flip);
11319 }
11320
11321 static int intel_queue_mmio_flip(struct drm_device *dev,
11322                                  struct drm_crtc *crtc,
11323                                  struct drm_framebuffer *fb,
11324                                  struct drm_i915_gem_object *obj,
11325                                  struct intel_engine_cs *ring,
11326                                  uint32_t flags)
11327 {
11328         struct intel_mmio_flip *mmio_flip;
11329
11330         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11331         if (mmio_flip == NULL)
11332                 return -ENOMEM;
11333
11334         mmio_flip->i915 = to_i915(dev);
11335         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11336         mmio_flip->crtc = to_intel_crtc(crtc);
11337
11338         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11339         schedule_work(&mmio_flip->work);
11340
11341         return 0;
11342 }
11343
11344 static int intel_default_queue_flip(struct drm_device *dev,
11345                                     struct drm_crtc *crtc,
11346                                     struct drm_framebuffer *fb,
11347                                     struct drm_i915_gem_object *obj,
11348                                     struct drm_i915_gem_request *req,
11349                                     uint32_t flags)
11350 {
11351         return -ENODEV;
11352 }
11353
11354 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11355                                          struct drm_crtc *crtc)
11356 {
11357         struct drm_i915_private *dev_priv = dev->dev_private;
11358         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11359         struct intel_unpin_work *work = intel_crtc->unpin_work;
11360         u32 addr;
11361
11362         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11363                 return true;
11364
11365         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11366                 return false;
11367
11368         if (!work->enable_stall_check)
11369                 return false;
11370
11371         if (work->flip_ready_vblank == 0) {
11372                 if (work->flip_queued_req &&
11373                     !i915_gem_request_completed(work->flip_queued_req, true))
11374                         return false;
11375
11376                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11377         }
11378
11379         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11380                 return false;
11381
11382         /* Potential stall - if we see that the flip has happened,
11383          * assume a missed interrupt. */
11384         if (INTEL_INFO(dev)->gen >= 4)
11385                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11386         else
11387                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11388
11389         /* There is a potential issue here with a false positive after a flip
11390          * to the same address. We could address this by checking for a
11391          * non-incrementing frame counter.
11392          */
11393         return addr == work->gtt_offset;
11394 }
11395
11396 void intel_check_page_flip(struct drm_device *dev, int pipe)
11397 {
11398         struct drm_i915_private *dev_priv = dev->dev_private;
11399         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11400         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11401         struct intel_unpin_work *work;
11402
11403         WARN_ON(!in_interrupt());
11404
11405         if (crtc == NULL)
11406                 return;
11407
11408         spin_lock(&dev->event_lock);
11409         work = intel_crtc->unpin_work;
11410         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11411                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11412                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11413                 page_flip_completed(intel_crtc);
11414                 work = NULL;
11415         }
11416         if (work != NULL &&
11417             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11418                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11419         spin_unlock(&dev->event_lock);
11420 }
11421
11422 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11423                                 struct drm_framebuffer *fb,
11424                                 struct drm_pending_vblank_event *event,
11425                                 uint32_t page_flip_flags)
11426 {
11427         struct drm_device *dev = crtc->dev;
11428         struct drm_i915_private *dev_priv = dev->dev_private;
11429         struct drm_framebuffer *old_fb = crtc->primary->fb;
11430         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11431         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11432         struct drm_plane *primary = crtc->primary;
11433         enum pipe pipe = intel_crtc->pipe;
11434         struct intel_unpin_work *work;
11435         struct intel_engine_cs *ring;
11436         bool mmio_flip;
11437         struct drm_i915_gem_request *request = NULL;
11438         int ret;
11439
11440         /*
11441          * drm_mode_page_flip_ioctl() should already catch this, but double
11442          * check to be safe.  In the future we may enable pageflipping from
11443          * a disabled primary plane.
11444          */
11445         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11446                 return -EBUSY;
11447
11448         /* Can't change pixel format via MI display flips. */
11449         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11450                 return -EINVAL;
11451
11452         /*
11453          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11454          * Note that pitch changes could also affect these register.
11455          */
11456         if (INTEL_INFO(dev)->gen > 3 &&
11457             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11458              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11459                 return -EINVAL;
11460
11461         if (i915_terminally_wedged(&dev_priv->gpu_error))
11462                 goto out_hang;
11463
11464         work = kzalloc(sizeof(*work), GFP_KERNEL);
11465         if (work == NULL)
11466                 return -ENOMEM;
11467
11468         work->event = event;
11469         work->crtc = crtc;
11470         work->old_fb = old_fb;
11471         INIT_WORK(&work->work, intel_unpin_work_fn);
11472
11473         ret = drm_crtc_vblank_get(crtc);
11474         if (ret)
11475                 goto free_work;
11476
11477         /* We borrow the event spin lock for protecting unpin_work */
11478         spin_lock_irq(&dev->event_lock);
11479         if (intel_crtc->unpin_work) {
11480                 /* Before declaring the flip queue wedged, check if
11481                  * the hardware completed the operation behind our backs.
11482                  */
11483                 if (__intel_pageflip_stall_check(dev, crtc)) {
11484                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11485                         page_flip_completed(intel_crtc);
11486                 } else {
11487                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11488                         spin_unlock_irq(&dev->event_lock);
11489
11490                         drm_crtc_vblank_put(crtc);
11491                         kfree(work);
11492                         return -EBUSY;
11493                 }
11494         }
11495         intel_crtc->unpin_work = work;
11496         spin_unlock_irq(&dev->event_lock);
11497
11498         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11499                 flush_workqueue(dev_priv->wq);
11500
11501         /* Reference the objects for the scheduled work. */
11502         drm_framebuffer_reference(work->old_fb);
11503         drm_gem_object_reference(&obj->base);
11504
11505         crtc->primary->fb = fb;
11506         update_state_fb(crtc->primary);
11507
11508         work->pending_flip_obj = obj;
11509
11510         ret = i915_mutex_lock_interruptible(dev);
11511         if (ret)
11512                 goto cleanup;
11513
11514         atomic_inc(&intel_crtc->unpin_work_count);
11515         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11516
11517         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11518                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11519
11520         if (IS_VALLEYVIEW(dev)) {
11521                 ring = &dev_priv->ring[BCS];
11522                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11523                         /* vlv: DISPLAY_FLIP fails to change tiling */
11524                         ring = NULL;
11525         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11526                 ring = &dev_priv->ring[BCS];
11527         } else if (INTEL_INFO(dev)->gen >= 7) {
11528                 ring = i915_gem_request_get_ring(obj->last_write_req);
11529                 if (ring == NULL || ring->id != RCS)
11530                         ring = &dev_priv->ring[BCS];
11531         } else {
11532                 ring = &dev_priv->ring[RCS];
11533         }
11534
11535         mmio_flip = use_mmio_flip(ring, obj);
11536
11537         /* When using CS flips, we want to emit semaphores between rings.
11538          * However, when using mmio flips we will create a task to do the
11539          * synchronisation, so all we want here is to pin the framebuffer
11540          * into the display plane and skip any waits.
11541          */
11542         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11543                                          crtc->primary->state,
11544                                          mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11545         if (ret)
11546                 goto cleanup_pending;
11547
11548         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11549                                                   obj, 0);
11550         work->gtt_offset += intel_crtc->dspaddr_offset;
11551
11552         if (mmio_flip) {
11553                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11554                                             page_flip_flags);
11555                 if (ret)
11556                         goto cleanup_unpin;
11557
11558                 i915_gem_request_assign(&work->flip_queued_req,
11559                                         obj->last_write_req);
11560         } else {
11561                 if (!request) {
11562                         ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11563                         if (ret)
11564                                 goto cleanup_unpin;
11565                 }
11566
11567                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11568                                                    page_flip_flags);
11569                 if (ret)
11570                         goto cleanup_unpin;
11571
11572                 i915_gem_request_assign(&work->flip_queued_req, request);
11573         }
11574
11575         if (request)
11576                 i915_add_request_no_flush(request);
11577
11578         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11579         work->enable_stall_check = true;
11580
11581         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11582                           to_intel_plane(primary)->frontbuffer_bit);
11583         mutex_unlock(&dev->struct_mutex);
11584
11585         intel_fbc_disable_crtc(intel_crtc);
11586         intel_frontbuffer_flip_prepare(dev,
11587                                        to_intel_plane(primary)->frontbuffer_bit);
11588
11589         trace_i915_flip_request(intel_crtc->plane, obj);
11590
11591         return 0;
11592
11593 cleanup_unpin:
11594         intel_unpin_fb_obj(fb, crtc->primary->state);
11595 cleanup_pending:
11596         if (request)
11597                 i915_gem_request_cancel(request);
11598         atomic_dec(&intel_crtc->unpin_work_count);
11599         mutex_unlock(&dev->struct_mutex);
11600 cleanup:
11601         crtc->primary->fb = old_fb;
11602         update_state_fb(crtc->primary);
11603
11604         drm_gem_object_unreference_unlocked(&obj->base);
11605         drm_framebuffer_unreference(work->old_fb);
11606
11607         spin_lock_irq(&dev->event_lock);
11608         intel_crtc->unpin_work = NULL;
11609         spin_unlock_irq(&dev->event_lock);
11610
11611         drm_crtc_vblank_put(crtc);
11612 free_work:
11613         kfree(work);
11614
11615         if (ret == -EIO) {
11616                 struct drm_atomic_state *state;
11617                 struct drm_plane_state *plane_state;
11618
11619 out_hang:
11620                 state = drm_atomic_state_alloc(dev);
11621                 if (!state)
11622                         return -ENOMEM;
11623                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11624
11625 retry:
11626                 plane_state = drm_atomic_get_plane_state(state, primary);
11627                 ret = PTR_ERR_OR_ZERO(plane_state);
11628                 if (!ret) {
11629                         drm_atomic_set_fb_for_plane(plane_state, fb);
11630
11631                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11632                         if (!ret)
11633                                 ret = drm_atomic_commit(state);
11634                 }
11635
11636                 if (ret == -EDEADLK) {
11637                         drm_modeset_backoff(state->acquire_ctx);
11638                         drm_atomic_state_clear(state);
11639                         goto retry;
11640                 }
11641
11642                 if (ret)
11643                         drm_atomic_state_free(state);
11644
11645                 if (ret == 0 && event) {
11646                         spin_lock_irq(&dev->event_lock);
11647                         drm_send_vblank_event(dev, pipe, event);
11648                         spin_unlock_irq(&dev->event_lock);
11649                 }
11650         }
11651         return ret;
11652 }
11653
11654
11655 /**
11656  * intel_wm_need_update - Check whether watermarks need updating
11657  * @plane: drm plane
11658  * @state: new plane state
11659  *
11660  * Check current plane state versus the new one to determine whether
11661  * watermarks need to be recalculated.
11662  *
11663  * Returns true or false.
11664  */
11665 static bool intel_wm_need_update(struct drm_plane *plane,
11666                                  struct drm_plane_state *state)
11667 {
11668         /* Update watermarks on tiling changes. */
11669         if (!plane->state->fb || !state->fb ||
11670             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11671             plane->state->rotation != state->rotation)
11672                 return true;
11673
11674         if (plane->state->crtc_w != state->crtc_w)
11675                 return true;
11676
11677         return false;
11678 }
11679
11680 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11681                                     struct drm_plane_state *plane_state)
11682 {
11683         struct drm_crtc *crtc = crtc_state->crtc;
11684         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11685         struct drm_plane *plane = plane_state->plane;
11686         struct drm_device *dev = crtc->dev;
11687         struct drm_i915_private *dev_priv = dev->dev_private;
11688         struct intel_plane_state *old_plane_state =
11689                 to_intel_plane_state(plane->state);
11690         int idx = intel_crtc->base.base.id, ret;
11691         int i = drm_plane_index(plane);
11692         bool mode_changed = needs_modeset(crtc_state);
11693         bool was_crtc_enabled = crtc->state->active;
11694         bool is_crtc_enabled = crtc_state->active;
11695
11696         bool turn_off, turn_on, visible, was_visible;
11697         struct drm_framebuffer *fb = plane_state->fb;
11698
11699         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11700             plane->type != DRM_PLANE_TYPE_CURSOR) {
11701                 ret = skl_update_scaler_plane(
11702                         to_intel_crtc_state(crtc_state),
11703                         to_intel_plane_state(plane_state));
11704                 if (ret)
11705                         return ret;
11706         }
11707
11708         /*
11709          * Disabling a plane is always okay; we just need to update
11710          * fb tracking in a special way since cleanup_fb() won't
11711          * get called by the plane helpers.
11712          */
11713         if (old_plane_state->base.fb && !fb)
11714                 intel_crtc->atomic.disabled_planes |= 1 << i;
11715
11716         was_visible = old_plane_state->visible;
11717         visible = to_intel_plane_state(plane_state)->visible;
11718
11719         if (!was_crtc_enabled && WARN_ON(was_visible))
11720                 was_visible = false;
11721
11722         if (!is_crtc_enabled && WARN_ON(visible))
11723                 visible = false;
11724
11725         if (!was_visible && !visible)
11726                 return 0;
11727
11728         turn_off = was_visible && (!visible || mode_changed);
11729         turn_on = visible && (!was_visible || mode_changed);
11730
11731         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11732                          plane->base.id, fb ? fb->base.id : -1);
11733
11734         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11735                          plane->base.id, was_visible, visible,
11736                          turn_off, turn_on, mode_changed);
11737
11738         if (turn_on) {
11739                 intel_crtc->atomic.update_wm_pre = true;
11740                 /* must disable cxsr around plane enable/disable */
11741                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11742                         intel_crtc->atomic.disable_cxsr = true;
11743                         /* to potentially re-enable cxsr */
11744                         intel_crtc->atomic.wait_vblank = true;
11745                         intel_crtc->atomic.update_wm_post = true;
11746                 }
11747         } else if (turn_off) {
11748                 intel_crtc->atomic.update_wm_post = true;
11749                 /* must disable cxsr around plane enable/disable */
11750                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11751                         if (is_crtc_enabled)
11752                                 intel_crtc->atomic.wait_vblank = true;
11753                         intel_crtc->atomic.disable_cxsr = true;
11754                 }
11755         } else if (intel_wm_need_update(plane, plane_state)) {
11756                 intel_crtc->atomic.update_wm_pre = true;
11757         }
11758
11759         if (visible || was_visible)
11760                 intel_crtc->atomic.fb_bits |=
11761                         to_intel_plane(plane)->frontbuffer_bit;
11762
11763         switch (plane->type) {
11764         case DRM_PLANE_TYPE_PRIMARY:
11765                 intel_crtc->atomic.wait_for_flips = true;
11766                 intel_crtc->atomic.pre_disable_primary = turn_off;
11767                 intel_crtc->atomic.post_enable_primary = turn_on;
11768
11769                 if (turn_off) {
11770                         /*
11771                          * FIXME: Actually if we will still have any other
11772                          * plane enabled on the pipe we could let IPS enabled
11773                          * still, but for now lets consider that when we make
11774                          * primary invisible by setting DSPCNTR to 0 on
11775                          * update_primary_plane function IPS needs to be
11776                          * disable.
11777                          */
11778                         intel_crtc->atomic.disable_ips = true;
11779
11780                         intel_crtc->atomic.disable_fbc = true;
11781                 }
11782
11783                 /*
11784                  * FBC does not work on some platforms for rotated
11785                  * planes, so disable it when rotation is not 0 and
11786                  * update it when rotation is set back to 0.
11787                  *
11788                  * FIXME: This is redundant with the fbc update done in
11789                  * the primary plane enable function except that that
11790                  * one is done too late. We eventually need to unify
11791                  * this.
11792                  */
11793
11794                 if (visible &&
11795                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11796                     dev_priv->fbc.crtc == intel_crtc &&
11797                     plane_state->rotation != BIT(DRM_ROTATE_0))
11798                         intel_crtc->atomic.disable_fbc = true;
11799
11800                 /*
11801                  * BDW signals flip done immediately if the plane
11802                  * is disabled, even if the plane enable is already
11803                  * armed to occur at the next vblank :(
11804                  */
11805                 if (turn_on && IS_BROADWELL(dev))
11806                         intel_crtc->atomic.wait_vblank = true;
11807
11808                 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11809                 break;
11810         case DRM_PLANE_TYPE_CURSOR:
11811                 break;
11812         case DRM_PLANE_TYPE_OVERLAY:
11813                 if (turn_off && !mode_changed) {
11814                         intel_crtc->atomic.wait_vblank = true;
11815                         intel_crtc->atomic.update_sprite_watermarks |=
11816                                 1 << i;
11817                 }
11818         }
11819         return 0;
11820 }
11821
11822 static bool encoders_cloneable(const struct intel_encoder *a,
11823                                const struct intel_encoder *b)
11824 {
11825         /* masks could be asymmetric, so check both ways */
11826         return a == b || (a->cloneable & (1 << b->type) &&
11827                           b->cloneable & (1 << a->type));
11828 }
11829
11830 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11831                                          struct intel_crtc *crtc,
11832                                          struct intel_encoder *encoder)
11833 {
11834         struct intel_encoder *source_encoder;
11835         struct drm_connector *connector;
11836         struct drm_connector_state *connector_state;
11837         int i;
11838
11839         for_each_connector_in_state(state, connector, connector_state, i) {
11840                 if (connector_state->crtc != &crtc->base)
11841                         continue;
11842
11843                 source_encoder =
11844                         to_intel_encoder(connector_state->best_encoder);
11845                 if (!encoders_cloneable(encoder, source_encoder))
11846                         return false;
11847         }
11848
11849         return true;
11850 }
11851
11852 static bool check_encoder_cloning(struct drm_atomic_state *state,
11853                                   struct intel_crtc *crtc)
11854 {
11855         struct intel_encoder *encoder;
11856         struct drm_connector *connector;
11857         struct drm_connector_state *connector_state;
11858         int i;
11859
11860         for_each_connector_in_state(state, connector, connector_state, i) {
11861                 if (connector_state->crtc != &crtc->base)
11862                         continue;
11863
11864                 encoder = to_intel_encoder(connector_state->best_encoder);
11865                 if (!check_single_encoder_cloning(state, crtc, encoder))
11866                         return false;
11867         }
11868
11869         return true;
11870 }
11871
11872 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11873                                    struct drm_crtc_state *crtc_state)
11874 {
11875         struct drm_device *dev = crtc->dev;
11876         struct drm_i915_private *dev_priv = dev->dev_private;
11877         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11878         struct intel_crtc_state *pipe_config =
11879                 to_intel_crtc_state(crtc_state);
11880         struct drm_atomic_state *state = crtc_state->state;
11881         int ret;
11882         bool mode_changed = needs_modeset(crtc_state);
11883
11884         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11885                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11886                 return -EINVAL;
11887         }
11888
11889         if (mode_changed && !crtc_state->active)
11890                 intel_crtc->atomic.update_wm_post = true;
11891
11892         if (mode_changed && crtc_state->enable &&
11893             dev_priv->display.crtc_compute_clock &&
11894             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11895                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11896                                                            pipe_config);
11897                 if (ret)
11898                         return ret;
11899         }
11900
11901         ret = 0;
11902         if (INTEL_INFO(dev)->gen >= 9) {
11903                 if (mode_changed)
11904                         ret = skl_update_scaler_crtc(pipe_config);
11905
11906                 if (!ret)
11907                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
11908                                                          pipe_config);
11909         }
11910
11911         return ret;
11912 }
11913
11914 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11915         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11916         .load_lut = intel_crtc_load_lut,
11917         .atomic_begin = intel_begin_crtc_commit,
11918         .atomic_flush = intel_finish_crtc_commit,
11919         .atomic_check = intel_crtc_atomic_check,
11920 };
11921
11922 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11923 {
11924         struct intel_connector *connector;
11925
11926         for_each_intel_connector(dev, connector) {
11927                 if (connector->base.encoder) {
11928                         connector->base.state->best_encoder =
11929                                 connector->base.encoder;
11930                         connector->base.state->crtc =
11931                                 connector->base.encoder->crtc;
11932                 } else {
11933                         connector->base.state->best_encoder = NULL;
11934                         connector->base.state->crtc = NULL;
11935                 }
11936         }
11937 }
11938
11939 static void
11940 connected_sink_compute_bpp(struct intel_connector *connector,
11941                            struct intel_crtc_state *pipe_config)
11942 {
11943         int bpp = pipe_config->pipe_bpp;
11944
11945         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11946                 connector->base.base.id,
11947                 connector->base.name);
11948
11949         /* Don't use an invalid EDID bpc value */
11950         if (connector->base.display_info.bpc &&
11951             connector->base.display_info.bpc * 3 < bpp) {
11952                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11953                               bpp, connector->base.display_info.bpc*3);
11954                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11955         }
11956
11957         /* Clamp bpp to 8 on screens without EDID 1.4 */
11958         if (connector->base.display_info.bpc == 0 && bpp > 24) {
11959                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11960                               bpp);
11961                 pipe_config->pipe_bpp = 24;
11962         }
11963 }
11964
11965 static int
11966 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11967                           struct intel_crtc_state *pipe_config)
11968 {
11969         struct drm_device *dev = crtc->base.dev;
11970         struct drm_atomic_state *state;
11971         struct drm_connector *connector;
11972         struct drm_connector_state *connector_state;
11973         int bpp, i;
11974
11975         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11976                 bpp = 10*3;
11977         else if (INTEL_INFO(dev)->gen >= 5)
11978                 bpp = 12*3;
11979         else
11980                 bpp = 8*3;
11981
11982
11983         pipe_config->pipe_bpp = bpp;
11984
11985         state = pipe_config->base.state;
11986
11987         /* Clamp display bpp to EDID value */
11988         for_each_connector_in_state(state, connector, connector_state, i) {
11989                 if (connector_state->crtc != &crtc->base)
11990                         continue;
11991
11992                 connected_sink_compute_bpp(to_intel_connector(connector),
11993                                            pipe_config);
11994         }
11995
11996         return bpp;
11997 }
11998
11999 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12000 {
12001         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12002                         "type: 0x%x flags: 0x%x\n",
12003                 mode->crtc_clock,
12004                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12005                 mode->crtc_hsync_end, mode->crtc_htotal,
12006                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12007                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12008 }
12009
12010 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12011                                    struct intel_crtc_state *pipe_config,
12012                                    const char *context)
12013 {
12014         struct drm_device *dev = crtc->base.dev;
12015         struct drm_plane *plane;
12016         struct intel_plane *intel_plane;
12017         struct intel_plane_state *state;
12018         struct drm_framebuffer *fb;
12019
12020         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12021                       context, pipe_config, pipe_name(crtc->pipe));
12022
12023         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12024         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12025                       pipe_config->pipe_bpp, pipe_config->dither);
12026         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12027                       pipe_config->has_pch_encoder,
12028                       pipe_config->fdi_lanes,
12029                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12030                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12031                       pipe_config->fdi_m_n.tu);
12032         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12033                       pipe_config->has_dp_encoder,
12034                       pipe_config->lane_count,
12035                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12036                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12037                       pipe_config->dp_m_n.tu);
12038
12039         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12040                       pipe_config->has_dp_encoder,
12041                       pipe_config->lane_count,
12042                       pipe_config->dp_m2_n2.gmch_m,
12043                       pipe_config->dp_m2_n2.gmch_n,
12044                       pipe_config->dp_m2_n2.link_m,
12045                       pipe_config->dp_m2_n2.link_n,
12046                       pipe_config->dp_m2_n2.tu);
12047
12048         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12049                       pipe_config->has_audio,
12050                       pipe_config->has_infoframe);
12051
12052         DRM_DEBUG_KMS("requested mode:\n");
12053         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12054         DRM_DEBUG_KMS("adjusted mode:\n");
12055         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12056         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12057         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12058         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12059                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12060         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12061                       crtc->num_scalers,
12062                       pipe_config->scaler_state.scaler_users,
12063                       pipe_config->scaler_state.scaler_id);
12064         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12065                       pipe_config->gmch_pfit.control,
12066                       pipe_config->gmch_pfit.pgm_ratios,
12067                       pipe_config->gmch_pfit.lvds_border_bits);
12068         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12069                       pipe_config->pch_pfit.pos,
12070                       pipe_config->pch_pfit.size,
12071                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12072         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12073         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12074
12075         if (IS_BROXTON(dev)) {
12076                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12077                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12078                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12079                               pipe_config->ddi_pll_sel,
12080                               pipe_config->dpll_hw_state.ebb0,
12081                               pipe_config->dpll_hw_state.ebb4,
12082                               pipe_config->dpll_hw_state.pll0,
12083                               pipe_config->dpll_hw_state.pll1,
12084                               pipe_config->dpll_hw_state.pll2,
12085                               pipe_config->dpll_hw_state.pll3,
12086                               pipe_config->dpll_hw_state.pll6,
12087                               pipe_config->dpll_hw_state.pll8,
12088                               pipe_config->dpll_hw_state.pll9,
12089                               pipe_config->dpll_hw_state.pll10,
12090                               pipe_config->dpll_hw_state.pcsdw12);
12091         } else if (IS_SKYLAKE(dev)) {
12092                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12093                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12094                               pipe_config->ddi_pll_sel,
12095                               pipe_config->dpll_hw_state.ctrl1,
12096                               pipe_config->dpll_hw_state.cfgcr1,
12097                               pipe_config->dpll_hw_state.cfgcr2);
12098         } else if (HAS_DDI(dev)) {
12099                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12100                               pipe_config->ddi_pll_sel,
12101                               pipe_config->dpll_hw_state.wrpll,
12102                               pipe_config->dpll_hw_state.spll);
12103         } else {
12104                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12105                               "fp0: 0x%x, fp1: 0x%x\n",
12106                               pipe_config->dpll_hw_state.dpll,
12107                               pipe_config->dpll_hw_state.dpll_md,
12108                               pipe_config->dpll_hw_state.fp0,
12109                               pipe_config->dpll_hw_state.fp1);
12110         }
12111
12112         DRM_DEBUG_KMS("planes on this crtc\n");
12113         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12114                 intel_plane = to_intel_plane(plane);
12115                 if (intel_plane->pipe != crtc->pipe)
12116                         continue;
12117
12118                 state = to_intel_plane_state(plane->state);
12119                 fb = state->base.fb;
12120                 if (!fb) {
12121                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12122                                 "disabled, scaler_id = %d\n",
12123                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12124                                 plane->base.id, intel_plane->pipe,
12125                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12126                                 drm_plane_index(plane), state->scaler_id);
12127                         continue;
12128                 }
12129
12130                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12131                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12132                         plane->base.id, intel_plane->pipe,
12133                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12134                         drm_plane_index(plane));
12135                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12136                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12137                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12138                         state->scaler_id,
12139                         state->src.x1 >> 16, state->src.y1 >> 16,
12140                         drm_rect_width(&state->src) >> 16,
12141                         drm_rect_height(&state->src) >> 16,
12142                         state->dst.x1, state->dst.y1,
12143                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12144         }
12145 }
12146
12147 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12148 {
12149         struct drm_device *dev = state->dev;
12150         struct drm_connector *connector;
12151         unsigned int used_ports = 0;
12152
12153         /*
12154          * Walk the connector list instead of the encoder
12155          * list to detect the problem on ddi platforms
12156          * where there's just one encoder per digital port.
12157          */
12158         drm_for_each_connector(connector, dev) {
12159                 struct drm_connector_state *connector_state;
12160                 struct intel_encoder *encoder;
12161
12162                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12163                 if (!connector_state)
12164                         connector_state = connector->state;
12165
12166                 if (!connector_state->best_encoder)
12167                         continue;
12168
12169                 encoder = to_intel_encoder(connector_state->best_encoder);
12170
12171                 WARN_ON(!connector_state->crtc);
12172
12173                 switch (encoder->type) {
12174                         unsigned int port_mask;
12175                 case INTEL_OUTPUT_UNKNOWN:
12176                         if (WARN_ON(!HAS_DDI(dev)))
12177                                 break;
12178                 case INTEL_OUTPUT_DISPLAYPORT:
12179                 case INTEL_OUTPUT_HDMI:
12180                 case INTEL_OUTPUT_EDP:
12181                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12182
12183                         /* the same port mustn't appear more than once */
12184                         if (used_ports & port_mask)
12185                                 return false;
12186
12187                         used_ports |= port_mask;
12188                 default:
12189                         break;
12190                 }
12191         }
12192
12193         return true;
12194 }
12195
12196 static void
12197 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12198 {
12199         struct drm_crtc_state tmp_state;
12200         struct intel_crtc_scaler_state scaler_state;
12201         struct intel_dpll_hw_state dpll_hw_state;
12202         enum intel_dpll_id shared_dpll;
12203         uint32_t ddi_pll_sel;
12204         bool force_thru;
12205
12206         /* FIXME: before the switch to atomic started, a new pipe_config was
12207          * kzalloc'd. Code that depends on any field being zero should be
12208          * fixed, so that the crtc_state can be safely duplicated. For now,
12209          * only fields that are know to not cause problems are preserved. */
12210
12211         tmp_state = crtc_state->base;
12212         scaler_state = crtc_state->scaler_state;
12213         shared_dpll = crtc_state->shared_dpll;
12214         dpll_hw_state = crtc_state->dpll_hw_state;
12215         ddi_pll_sel = crtc_state->ddi_pll_sel;
12216         force_thru = crtc_state->pch_pfit.force_thru;
12217
12218         memset(crtc_state, 0, sizeof *crtc_state);
12219
12220         crtc_state->base = tmp_state;
12221         crtc_state->scaler_state = scaler_state;
12222         crtc_state->shared_dpll = shared_dpll;
12223         crtc_state->dpll_hw_state = dpll_hw_state;
12224         crtc_state->ddi_pll_sel = ddi_pll_sel;
12225         crtc_state->pch_pfit.force_thru = force_thru;
12226 }
12227
12228 static int
12229 intel_modeset_pipe_config(struct drm_crtc *crtc,
12230                           struct intel_crtc_state *pipe_config)
12231 {
12232         struct drm_atomic_state *state = pipe_config->base.state;
12233         struct intel_encoder *encoder;
12234         struct drm_connector *connector;
12235         struct drm_connector_state *connector_state;
12236         int base_bpp, ret = -EINVAL;
12237         int i;
12238         bool retry = true;
12239
12240         clear_intel_crtc_state(pipe_config);
12241
12242         pipe_config->cpu_transcoder =
12243                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12244
12245         /*
12246          * Sanitize sync polarity flags based on requested ones. If neither
12247          * positive or negative polarity is requested, treat this as meaning
12248          * negative polarity.
12249          */
12250         if (!(pipe_config->base.adjusted_mode.flags &
12251               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12252                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12253
12254         if (!(pipe_config->base.adjusted_mode.flags &
12255               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12256                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12257
12258         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12259                                              pipe_config);
12260         if (base_bpp < 0)
12261                 goto fail;
12262
12263         /*
12264          * Determine the real pipe dimensions. Note that stereo modes can
12265          * increase the actual pipe size due to the frame doubling and
12266          * insertion of additional space for blanks between the frame. This
12267          * is stored in the crtc timings. We use the requested mode to do this
12268          * computation to clearly distinguish it from the adjusted mode, which
12269          * can be changed by the connectors in the below retry loop.
12270          */
12271         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12272                                &pipe_config->pipe_src_w,
12273                                &pipe_config->pipe_src_h);
12274
12275 encoder_retry:
12276         /* Ensure the port clock defaults are reset when retrying. */
12277         pipe_config->port_clock = 0;
12278         pipe_config->pixel_multiplier = 1;
12279
12280         /* Fill in default crtc timings, allow encoders to overwrite them. */
12281         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12282                               CRTC_STEREO_DOUBLE);
12283
12284         /* Pass our mode to the connectors and the CRTC to give them a chance to
12285          * adjust it according to limitations or connector properties, and also
12286          * a chance to reject the mode entirely.
12287          */
12288         for_each_connector_in_state(state, connector, connector_state, i) {
12289                 if (connector_state->crtc != crtc)
12290                         continue;
12291
12292                 encoder = to_intel_encoder(connector_state->best_encoder);
12293
12294                 if (!(encoder->compute_config(encoder, pipe_config))) {
12295                         DRM_DEBUG_KMS("Encoder config failure\n");
12296                         goto fail;
12297                 }
12298         }
12299
12300         /* Set default port clock if not overwritten by the encoder. Needs to be
12301          * done afterwards in case the encoder adjusts the mode. */
12302         if (!pipe_config->port_clock)
12303                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12304                         * pipe_config->pixel_multiplier;
12305
12306         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12307         if (ret < 0) {
12308                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12309                 goto fail;
12310         }
12311
12312         if (ret == RETRY) {
12313                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12314                         ret = -EINVAL;
12315                         goto fail;
12316                 }
12317
12318                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12319                 retry = false;
12320                 goto encoder_retry;
12321         }
12322
12323         /* Dithering seems to not pass-through bits correctly when it should, so
12324          * only enable it on 6bpc panels. */
12325         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12326         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12327                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12328
12329 fail:
12330         return ret;
12331 }
12332
12333 static void
12334 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12335 {
12336         struct drm_crtc *crtc;
12337         struct drm_crtc_state *crtc_state;
12338         int i;
12339
12340         /* Double check state. */
12341         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12342                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12343
12344                 /* Update hwmode for vblank functions */
12345                 if (crtc->state->active)
12346                         crtc->hwmode = crtc->state->adjusted_mode;
12347                 else
12348                         crtc->hwmode.crtc_clock = 0;
12349         }
12350 }
12351
12352 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12353 {
12354         int diff;
12355
12356         if (clock1 == clock2)
12357                 return true;
12358
12359         if (!clock1 || !clock2)
12360                 return false;
12361
12362         diff = abs(clock1 - clock2);
12363
12364         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12365                 return true;
12366
12367         return false;
12368 }
12369
12370 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12371         list_for_each_entry((intel_crtc), \
12372                             &(dev)->mode_config.crtc_list, \
12373                             base.head) \
12374                 if (mask & (1 <<(intel_crtc)->pipe))
12375
12376 static bool
12377 intel_compare_m_n(unsigned int m, unsigned int n,
12378                   unsigned int m2, unsigned int n2,
12379                   bool exact)
12380 {
12381         if (m == m2 && n == n2)
12382                 return true;
12383
12384         if (exact || !m || !n || !m2 || !n2)
12385                 return false;
12386
12387         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12388
12389         if (m > m2) {
12390                 while (m > m2) {
12391                         m2 <<= 1;
12392                         n2 <<= 1;
12393                 }
12394         } else if (m < m2) {
12395                 while (m < m2) {
12396                         m <<= 1;
12397                         n <<= 1;
12398                 }
12399         }
12400
12401         return m == m2 && n == n2;
12402 }
12403
12404 static bool
12405 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12406                        struct intel_link_m_n *m2_n2,
12407                        bool adjust)
12408 {
12409         if (m_n->tu == m2_n2->tu &&
12410             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12411                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12412             intel_compare_m_n(m_n->link_m, m_n->link_n,
12413                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12414                 if (adjust)
12415                         *m2_n2 = *m_n;
12416
12417                 return true;
12418         }
12419
12420         return false;
12421 }
12422
12423 static bool
12424 intel_pipe_config_compare(struct drm_device *dev,
12425                           struct intel_crtc_state *current_config,
12426                           struct intel_crtc_state *pipe_config,
12427                           bool adjust)
12428 {
12429         bool ret = true;
12430
12431 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12432         do { \
12433                 if (!adjust) \
12434                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12435                 else \
12436                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12437         } while (0)
12438
12439 #define PIPE_CONF_CHECK_X(name) \
12440         if (current_config->name != pipe_config->name) { \
12441                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12442                           "(expected 0x%08x, found 0x%08x)\n", \
12443                           current_config->name, \
12444                           pipe_config->name); \
12445                 ret = false; \
12446         }
12447
12448 #define PIPE_CONF_CHECK_I(name) \
12449         if (current_config->name != pipe_config->name) { \
12450                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12451                           "(expected %i, found %i)\n", \
12452                           current_config->name, \
12453                           pipe_config->name); \
12454                 ret = false; \
12455         }
12456
12457 #define PIPE_CONF_CHECK_M_N(name) \
12458         if (!intel_compare_link_m_n(&current_config->name, \
12459                                     &pipe_config->name,\
12460                                     adjust)) { \
12461                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12462                           "(expected tu %i gmch %i/%i link %i/%i, " \
12463                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12464                           current_config->name.tu, \
12465                           current_config->name.gmch_m, \
12466                           current_config->name.gmch_n, \
12467                           current_config->name.link_m, \
12468                           current_config->name.link_n, \
12469                           pipe_config->name.tu, \
12470                           pipe_config->name.gmch_m, \
12471                           pipe_config->name.gmch_n, \
12472                           pipe_config->name.link_m, \
12473                           pipe_config->name.link_n); \
12474                 ret = false; \
12475         }
12476
12477 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12478         if (!intel_compare_link_m_n(&current_config->name, \
12479                                     &pipe_config->name, adjust) && \
12480             !intel_compare_link_m_n(&current_config->alt_name, \
12481                                     &pipe_config->name, adjust)) { \
12482                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12483                           "(expected tu %i gmch %i/%i link %i/%i, " \
12484                           "or tu %i gmch %i/%i link %i/%i, " \
12485                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12486                           current_config->name.tu, \
12487                           current_config->name.gmch_m, \
12488                           current_config->name.gmch_n, \
12489                           current_config->name.link_m, \
12490                           current_config->name.link_n, \
12491                           current_config->alt_name.tu, \
12492                           current_config->alt_name.gmch_m, \
12493                           current_config->alt_name.gmch_n, \
12494                           current_config->alt_name.link_m, \
12495                           current_config->alt_name.link_n, \
12496                           pipe_config->name.tu, \
12497                           pipe_config->name.gmch_m, \
12498                           pipe_config->name.gmch_n, \
12499                           pipe_config->name.link_m, \
12500                           pipe_config->name.link_n); \
12501                 ret = false; \
12502         }
12503
12504 /* This is required for BDW+ where there is only one set of registers for
12505  * switching between high and low RR.
12506  * This macro can be used whenever a comparison has to be made between one
12507  * hw state and multiple sw state variables.
12508  */
12509 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12510         if ((current_config->name != pipe_config->name) && \
12511                 (current_config->alt_name != pipe_config->name)) { \
12512                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12513                                   "(expected %i or %i, found %i)\n", \
12514                                   current_config->name, \
12515                                   current_config->alt_name, \
12516                                   pipe_config->name); \
12517                         ret = false; \
12518         }
12519
12520 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12521         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12522                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12523                           "(expected %i, found %i)\n", \
12524                           current_config->name & (mask), \
12525                           pipe_config->name & (mask)); \
12526                 ret = false; \
12527         }
12528
12529 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12530         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12531                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12532                           "(expected %i, found %i)\n", \
12533                           current_config->name, \
12534                           pipe_config->name); \
12535                 ret = false; \
12536         }
12537
12538 #define PIPE_CONF_QUIRK(quirk)  \
12539         ((current_config->quirks | pipe_config->quirks) & (quirk))
12540
12541         PIPE_CONF_CHECK_I(cpu_transcoder);
12542
12543         PIPE_CONF_CHECK_I(has_pch_encoder);
12544         PIPE_CONF_CHECK_I(fdi_lanes);
12545         PIPE_CONF_CHECK_M_N(fdi_m_n);
12546
12547         PIPE_CONF_CHECK_I(has_dp_encoder);
12548         PIPE_CONF_CHECK_I(lane_count);
12549
12550         if (INTEL_INFO(dev)->gen < 8) {
12551                 PIPE_CONF_CHECK_M_N(dp_m_n);
12552
12553                 if (current_config->has_drrs)
12554                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12555         } else
12556                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12557
12558         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12559         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12560         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12561         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12562         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12563         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12564
12565         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12566         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12567         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12568         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12569         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12570         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12571
12572         PIPE_CONF_CHECK_I(pixel_multiplier);
12573         PIPE_CONF_CHECK_I(has_hdmi_sink);
12574         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12575             IS_VALLEYVIEW(dev))
12576                 PIPE_CONF_CHECK_I(limited_color_range);
12577         PIPE_CONF_CHECK_I(has_infoframe);
12578
12579         PIPE_CONF_CHECK_I(has_audio);
12580
12581         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12582                               DRM_MODE_FLAG_INTERLACE);
12583
12584         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12585                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12586                                       DRM_MODE_FLAG_PHSYNC);
12587                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12588                                       DRM_MODE_FLAG_NHSYNC);
12589                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12590                                       DRM_MODE_FLAG_PVSYNC);
12591                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12592                                       DRM_MODE_FLAG_NVSYNC);
12593         }
12594
12595         PIPE_CONF_CHECK_X(gmch_pfit.control);
12596         /* pfit ratios are autocomputed by the hw on gen4+ */
12597         if (INTEL_INFO(dev)->gen < 4)
12598                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12599         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12600
12601         if (!adjust) {
12602                 PIPE_CONF_CHECK_I(pipe_src_w);
12603                 PIPE_CONF_CHECK_I(pipe_src_h);
12604
12605                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12606                 if (current_config->pch_pfit.enabled) {
12607                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12608                         PIPE_CONF_CHECK_X(pch_pfit.size);
12609                 }
12610
12611                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12612         }
12613
12614         /* BDW+ don't expose a synchronous way to read the state */
12615         if (IS_HASWELL(dev))
12616                 PIPE_CONF_CHECK_I(ips_enabled);
12617
12618         PIPE_CONF_CHECK_I(double_wide);
12619
12620         PIPE_CONF_CHECK_X(ddi_pll_sel);
12621
12622         PIPE_CONF_CHECK_I(shared_dpll);
12623         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12624         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12625         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12626         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12627         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12628         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12629         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12630         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12631         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12632
12633         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12634                 PIPE_CONF_CHECK_I(pipe_bpp);
12635
12636         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12637         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12638
12639 #undef PIPE_CONF_CHECK_X
12640 #undef PIPE_CONF_CHECK_I
12641 #undef PIPE_CONF_CHECK_I_ALT
12642 #undef PIPE_CONF_CHECK_FLAGS
12643 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12644 #undef PIPE_CONF_QUIRK
12645 #undef INTEL_ERR_OR_DBG_KMS
12646
12647         return ret;
12648 }
12649
12650 static void check_wm_state(struct drm_device *dev)
12651 {
12652         struct drm_i915_private *dev_priv = dev->dev_private;
12653         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12654         struct intel_crtc *intel_crtc;
12655         int plane;
12656
12657         if (INTEL_INFO(dev)->gen < 9)
12658                 return;
12659
12660         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12661         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12662
12663         for_each_intel_crtc(dev, intel_crtc) {
12664                 struct skl_ddb_entry *hw_entry, *sw_entry;
12665                 const enum pipe pipe = intel_crtc->pipe;
12666
12667                 if (!intel_crtc->active)
12668                         continue;
12669
12670                 /* planes */
12671                 for_each_plane(dev_priv, pipe, plane) {
12672                         hw_entry = &hw_ddb.plane[pipe][plane];
12673                         sw_entry = &sw_ddb->plane[pipe][plane];
12674
12675                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12676                                 continue;
12677
12678                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12679                                   "(expected (%u,%u), found (%u,%u))\n",
12680                                   pipe_name(pipe), plane + 1,
12681                                   sw_entry->start, sw_entry->end,
12682                                   hw_entry->start, hw_entry->end);
12683                 }
12684
12685                 /* cursor */
12686                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12687                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12688
12689                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12690                         continue;
12691
12692                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12693                           "(expected (%u,%u), found (%u,%u))\n",
12694                           pipe_name(pipe),
12695                           sw_entry->start, sw_entry->end,
12696                           hw_entry->start, hw_entry->end);
12697         }
12698 }
12699
12700 static void
12701 check_connector_state(struct drm_device *dev,
12702                       struct drm_atomic_state *old_state)
12703 {
12704         struct drm_connector_state *old_conn_state;
12705         struct drm_connector *connector;
12706         int i;
12707
12708         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12709                 struct drm_encoder *encoder = connector->encoder;
12710                 struct drm_connector_state *state = connector->state;
12711
12712                 /* This also checks the encoder/connector hw state with the
12713                  * ->get_hw_state callbacks. */
12714                 intel_connector_check_state(to_intel_connector(connector));
12715
12716                 I915_STATE_WARN(state->best_encoder != encoder,
12717                      "connector's atomic encoder doesn't match legacy encoder\n");
12718         }
12719 }
12720
12721 static void
12722 check_encoder_state(struct drm_device *dev)
12723 {
12724         struct intel_encoder *encoder;
12725         struct intel_connector *connector;
12726
12727         for_each_intel_encoder(dev, encoder) {
12728                 bool enabled = false;
12729                 enum pipe pipe;
12730
12731                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12732                               encoder->base.base.id,
12733                               encoder->base.name);
12734
12735                 for_each_intel_connector(dev, connector) {
12736                         if (connector->base.state->best_encoder != &encoder->base)
12737                                 continue;
12738                         enabled = true;
12739
12740                         I915_STATE_WARN(connector->base.state->crtc !=
12741                                         encoder->base.crtc,
12742                              "connector's crtc doesn't match encoder crtc\n");
12743                 }
12744
12745                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12746                      "encoder's enabled state mismatch "
12747                      "(expected %i, found %i)\n",
12748                      !!encoder->base.crtc, enabled);
12749
12750                 if (!encoder->base.crtc) {
12751                         bool active;
12752
12753                         active = encoder->get_hw_state(encoder, &pipe);
12754                         I915_STATE_WARN(active,
12755                              "encoder detached but still enabled on pipe %c.\n",
12756                              pipe_name(pipe));
12757                 }
12758         }
12759 }
12760
12761 static void
12762 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12763 {
12764         struct drm_i915_private *dev_priv = dev->dev_private;
12765         struct intel_encoder *encoder;
12766         struct drm_crtc_state *old_crtc_state;
12767         struct drm_crtc *crtc;
12768         int i;
12769
12770         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12771                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12772                 struct intel_crtc_state *pipe_config, *sw_config;
12773                 bool active;
12774
12775                 if (!needs_modeset(crtc->state) &&
12776                     !to_intel_crtc_state(crtc->state)->update_pipe)
12777                         continue;
12778
12779                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12780                 pipe_config = to_intel_crtc_state(old_crtc_state);
12781                 memset(pipe_config, 0, sizeof(*pipe_config));
12782                 pipe_config->base.crtc = crtc;
12783                 pipe_config->base.state = old_state;
12784
12785                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12786                               crtc->base.id);
12787
12788                 active = dev_priv->display.get_pipe_config(intel_crtc,
12789                                                            pipe_config);
12790
12791                 /* hw state is inconsistent with the pipe quirk */
12792                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12793                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12794                         active = crtc->state->active;
12795
12796                 I915_STATE_WARN(crtc->state->active != active,
12797                      "crtc active state doesn't match with hw state "
12798                      "(expected %i, found %i)\n", crtc->state->active, active);
12799
12800                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12801                      "transitional active state does not match atomic hw state "
12802                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12803
12804                 for_each_encoder_on_crtc(dev, crtc, encoder) {
12805                         enum pipe pipe;
12806
12807                         active = encoder->get_hw_state(encoder, &pipe);
12808                         I915_STATE_WARN(active != crtc->state->active,
12809                                 "[ENCODER:%i] active %i with crtc active %i\n",
12810                                 encoder->base.base.id, active, crtc->state->active);
12811
12812                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12813                                         "Encoder connected to wrong pipe %c\n",
12814                                         pipe_name(pipe));
12815
12816                         if (active)
12817                                 encoder->get_config(encoder, pipe_config);
12818                 }
12819
12820                 if (!crtc->state->active)
12821                         continue;
12822
12823                 sw_config = to_intel_crtc_state(crtc->state);
12824                 if (!intel_pipe_config_compare(dev, sw_config,
12825                                                pipe_config, false)) {
12826                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12827                         intel_dump_pipe_config(intel_crtc, pipe_config,
12828                                                "[hw state]");
12829                         intel_dump_pipe_config(intel_crtc, sw_config,
12830                                                "[sw state]");
12831                 }
12832         }
12833 }
12834
12835 static void
12836 check_shared_dpll_state(struct drm_device *dev)
12837 {
12838         struct drm_i915_private *dev_priv = dev->dev_private;
12839         struct intel_crtc *crtc;
12840         struct intel_dpll_hw_state dpll_hw_state;
12841         int i;
12842
12843         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12844                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12845                 int enabled_crtcs = 0, active_crtcs = 0;
12846                 bool active;
12847
12848                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12849
12850                 DRM_DEBUG_KMS("%s\n", pll->name);
12851
12852                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12853
12854                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12855                      "more active pll users than references: %i vs %i\n",
12856                      pll->active, hweight32(pll->config.crtc_mask));
12857                 I915_STATE_WARN(pll->active && !pll->on,
12858                      "pll in active use but not on in sw tracking\n");
12859                 I915_STATE_WARN(pll->on && !pll->active,
12860                      "pll in on but not on in use in sw tracking\n");
12861                 I915_STATE_WARN(pll->on != active,
12862                      "pll on state mismatch (expected %i, found %i)\n",
12863                      pll->on, active);
12864
12865                 for_each_intel_crtc(dev, crtc) {
12866                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12867                                 enabled_crtcs++;
12868                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12869                                 active_crtcs++;
12870                 }
12871                 I915_STATE_WARN(pll->active != active_crtcs,
12872                      "pll active crtcs mismatch (expected %i, found %i)\n",
12873                      pll->active, active_crtcs);
12874                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12875                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12876                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12877
12878                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12879                                        sizeof(dpll_hw_state)),
12880                      "pll hw state mismatch\n");
12881         }
12882 }
12883
12884 static void
12885 intel_modeset_check_state(struct drm_device *dev,
12886                           struct drm_atomic_state *old_state)
12887 {
12888         check_wm_state(dev);
12889         check_connector_state(dev, old_state);
12890         check_encoder_state(dev);
12891         check_crtc_state(dev, old_state);
12892         check_shared_dpll_state(dev);
12893 }
12894
12895 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12896                                      int dotclock)
12897 {
12898         /*
12899          * FDI already provided one idea for the dotclock.
12900          * Yell if the encoder disagrees.
12901          */
12902         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12903              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12904              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12905 }
12906
12907 static void update_scanline_offset(struct intel_crtc *crtc)
12908 {
12909         struct drm_device *dev = crtc->base.dev;
12910
12911         /*
12912          * The scanline counter increments at the leading edge of hsync.
12913          *
12914          * On most platforms it starts counting from vtotal-1 on the
12915          * first active line. That means the scanline counter value is
12916          * always one less than what we would expect. Ie. just after
12917          * start of vblank, which also occurs at start of hsync (on the
12918          * last active line), the scanline counter will read vblank_start-1.
12919          *
12920          * On gen2 the scanline counter starts counting from 1 instead
12921          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12922          * to keep the value positive), instead of adding one.
12923          *
12924          * On HSW+ the behaviour of the scanline counter depends on the output
12925          * type. For DP ports it behaves like most other platforms, but on HDMI
12926          * there's an extra 1 line difference. So we need to add two instead of
12927          * one to the value.
12928          */
12929         if (IS_GEN2(dev)) {
12930                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12931                 int vtotal;
12932
12933                 vtotal = adjusted_mode->crtc_vtotal;
12934                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12935                         vtotal /= 2;
12936
12937                 crtc->scanline_offset = vtotal - 1;
12938         } else if (HAS_DDI(dev) &&
12939                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12940                 crtc->scanline_offset = 2;
12941         } else
12942                 crtc->scanline_offset = 1;
12943 }
12944
12945 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12946 {
12947         struct drm_device *dev = state->dev;
12948         struct drm_i915_private *dev_priv = to_i915(dev);
12949         struct intel_shared_dpll_config *shared_dpll = NULL;
12950         struct intel_crtc *intel_crtc;
12951         struct intel_crtc_state *intel_crtc_state;
12952         struct drm_crtc *crtc;
12953         struct drm_crtc_state *crtc_state;
12954         int i;
12955
12956         if (!dev_priv->display.crtc_compute_clock)
12957                 return;
12958
12959         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12960                 int dpll;
12961
12962                 intel_crtc = to_intel_crtc(crtc);
12963                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12964                 dpll = intel_crtc_state->shared_dpll;
12965
12966                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12967                         continue;
12968
12969                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12970
12971                 if (!shared_dpll)
12972                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
12973
12974                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12975         }
12976 }
12977
12978 /*
12979  * This implements the workaround described in the "notes" section of the mode
12980  * set sequence documentation. When going from no pipes or single pipe to
12981  * multiple pipes, and planes are enabled after the pipe, we need to wait at
12982  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12983  */
12984 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12985 {
12986         struct drm_crtc_state *crtc_state;
12987         struct intel_crtc *intel_crtc;
12988         struct drm_crtc *crtc;
12989         struct intel_crtc_state *first_crtc_state = NULL;
12990         struct intel_crtc_state *other_crtc_state = NULL;
12991         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12992         int i;
12993
12994         /* look at all crtc's that are going to be enabled in during modeset */
12995         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12996                 intel_crtc = to_intel_crtc(crtc);
12997
12998                 if (!crtc_state->active || !needs_modeset(crtc_state))
12999                         continue;
13000
13001                 if (first_crtc_state) {
13002                         other_crtc_state = to_intel_crtc_state(crtc_state);
13003                         break;
13004                 } else {
13005                         first_crtc_state = to_intel_crtc_state(crtc_state);
13006                         first_pipe = intel_crtc->pipe;
13007                 }
13008         }
13009
13010         /* No workaround needed? */
13011         if (!first_crtc_state)
13012                 return 0;
13013
13014         /* w/a possibly needed, check how many crtc's are already enabled. */
13015         for_each_intel_crtc(state->dev, intel_crtc) {
13016                 struct intel_crtc_state *pipe_config;
13017
13018                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13019                 if (IS_ERR(pipe_config))
13020                         return PTR_ERR(pipe_config);
13021
13022                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13023
13024                 if (!pipe_config->base.active ||
13025                     needs_modeset(&pipe_config->base))
13026                         continue;
13027
13028                 /* 2 or more enabled crtcs means no need for w/a */
13029                 if (enabled_pipe != INVALID_PIPE)
13030                         return 0;
13031
13032                 enabled_pipe = intel_crtc->pipe;
13033         }
13034
13035         if (enabled_pipe != INVALID_PIPE)
13036                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13037         else if (other_crtc_state)
13038                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13039
13040         return 0;
13041 }
13042
13043 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13044 {
13045         struct drm_crtc *crtc;
13046         struct drm_crtc_state *crtc_state;
13047         int ret = 0;
13048
13049         /* add all active pipes to the state */
13050         for_each_crtc(state->dev, crtc) {
13051                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13052                 if (IS_ERR(crtc_state))
13053                         return PTR_ERR(crtc_state);
13054
13055                 if (!crtc_state->active || needs_modeset(crtc_state))
13056                         continue;
13057
13058                 crtc_state->mode_changed = true;
13059
13060                 ret = drm_atomic_add_affected_connectors(state, crtc);
13061                 if (ret)
13062                         break;
13063
13064                 ret = drm_atomic_add_affected_planes(state, crtc);
13065                 if (ret)
13066                         break;
13067         }
13068
13069         return ret;
13070 }
13071
13072 static int intel_modeset_checks(struct drm_atomic_state *state)
13073 {
13074         struct drm_device *dev = state->dev;
13075         struct drm_i915_private *dev_priv = dev->dev_private;
13076         int ret;
13077
13078         if (!check_digital_port_conflicts(state)) {
13079                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13080                 return -EINVAL;
13081         }
13082
13083         /*
13084          * See if the config requires any additional preparation, e.g.
13085          * to adjust global state with pipes off.  We need to do this
13086          * here so we can get the modeset_pipe updated config for the new
13087          * mode set on this crtc.  For other crtcs we need to use the
13088          * adjusted_mode bits in the crtc directly.
13089          */
13090         if (dev_priv->display.modeset_calc_cdclk) {
13091                 unsigned int cdclk;
13092
13093                 ret = dev_priv->display.modeset_calc_cdclk(state);
13094
13095                 cdclk = to_intel_atomic_state(state)->cdclk;
13096                 if (!ret && cdclk != dev_priv->cdclk_freq)
13097                         ret = intel_modeset_all_pipes(state);
13098
13099                 if (ret < 0)
13100                         return ret;
13101         } else
13102                 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13103
13104         intel_modeset_clear_plls(state);
13105
13106         if (IS_HASWELL(dev))
13107                 return haswell_mode_set_planes_workaround(state);
13108
13109         return 0;
13110 }
13111
13112 /**
13113  * intel_atomic_check - validate state object
13114  * @dev: drm device
13115  * @state: state to validate
13116  */
13117 static int intel_atomic_check(struct drm_device *dev,
13118                               struct drm_atomic_state *state)
13119 {
13120         struct drm_crtc *crtc;
13121         struct drm_crtc_state *crtc_state;
13122         int ret, i;
13123         bool any_ms = false;
13124
13125         ret = drm_atomic_helper_check_modeset(dev, state);
13126         if (ret)
13127                 return ret;
13128
13129         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13130                 struct intel_crtc_state *pipe_config =
13131                         to_intel_crtc_state(crtc_state);
13132
13133                 memset(&to_intel_crtc(crtc)->atomic, 0,
13134                        sizeof(struct intel_crtc_atomic_commit));
13135
13136                 /* Catch I915_MODE_FLAG_INHERITED */
13137                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13138                         crtc_state->mode_changed = true;
13139
13140                 if (!crtc_state->enable) {
13141                         if (needs_modeset(crtc_state))
13142                                 any_ms = true;
13143                         continue;
13144                 }
13145
13146                 if (!needs_modeset(crtc_state))
13147                         continue;
13148
13149                 /* FIXME: For only active_changed we shouldn't need to do any
13150                  * state recomputation at all. */
13151
13152                 ret = drm_atomic_add_affected_connectors(state, crtc);
13153                 if (ret)
13154                         return ret;
13155
13156                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13157                 if (ret)
13158                         return ret;
13159
13160                 if (i915.fastboot &&
13161                     intel_pipe_config_compare(state->dev,
13162                                         to_intel_crtc_state(crtc->state),
13163                                         pipe_config, true)) {
13164                         crtc_state->mode_changed = false;
13165                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13166                 }
13167
13168                 if (needs_modeset(crtc_state)) {
13169                         any_ms = true;
13170
13171                         ret = drm_atomic_add_affected_planes(state, crtc);
13172                         if (ret)
13173                                 return ret;
13174                 }
13175
13176                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13177                                        needs_modeset(crtc_state) ?
13178                                        "[modeset]" : "[fastset]");
13179         }
13180
13181         if (any_ms) {
13182                 ret = intel_modeset_checks(state);
13183
13184                 if (ret)
13185                         return ret;
13186         } else
13187                 to_intel_atomic_state(state)->cdclk =
13188                         to_i915(state->dev)->cdclk_freq;
13189
13190         return drm_atomic_helper_check_planes(state->dev, state);
13191 }
13192
13193 /**
13194  * intel_atomic_commit - commit validated state object
13195  * @dev: DRM device
13196  * @state: the top-level driver state object
13197  * @async: asynchronous commit
13198  *
13199  * This function commits a top-level state object that has been validated
13200  * with drm_atomic_helper_check().
13201  *
13202  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13203  * we can only handle plane-related operations and do not yet support
13204  * asynchronous commit.
13205  *
13206  * RETURNS
13207  * Zero for success or -errno.
13208  */
13209 static int intel_atomic_commit(struct drm_device *dev,
13210                                struct drm_atomic_state *state,
13211                                bool async)
13212 {
13213         struct drm_i915_private *dev_priv = dev->dev_private;
13214         struct drm_crtc *crtc;
13215         struct drm_crtc_state *crtc_state;
13216         int ret = 0;
13217         int i;
13218         bool any_ms = false;
13219
13220         if (async) {
13221                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13222                 return -EINVAL;
13223         }
13224
13225         ret = drm_atomic_helper_prepare_planes(dev, state);
13226         if (ret)
13227                 return ret;
13228
13229         drm_atomic_helper_swap_state(dev, state);
13230
13231         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13232                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13233
13234                 if (!needs_modeset(crtc->state))
13235                         continue;
13236
13237                 any_ms = true;
13238                 intel_pre_plane_update(intel_crtc);
13239
13240                 if (crtc_state->active) {
13241                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13242                         dev_priv->display.crtc_disable(crtc);
13243                         intel_crtc->active = false;
13244                         intel_disable_shared_dpll(intel_crtc);
13245                 }
13246         }
13247
13248         /* Only after disabling all output pipelines that will be changed can we
13249          * update the the output configuration. */
13250         intel_modeset_update_crtc_state(state);
13251
13252         if (any_ms) {
13253                 intel_shared_dpll_commit(state);
13254
13255                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13256                 modeset_update_crtc_power_domains(state);
13257         }
13258
13259         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13260         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13261                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13262                 bool modeset = needs_modeset(crtc->state);
13263                 bool update_pipe = !modeset &&
13264                         to_intel_crtc_state(crtc->state)->update_pipe;
13265                 unsigned long put_domains = 0;
13266
13267                 if (modeset && crtc->state->active) {
13268                         update_scanline_offset(to_intel_crtc(crtc));
13269                         dev_priv->display.crtc_enable(crtc);
13270                 }
13271
13272                 if (update_pipe) {
13273                         put_domains = modeset_get_crtc_power_domains(crtc);
13274
13275                         /* make sure intel_modeset_check_state runs */
13276                         any_ms = true;
13277                 }
13278
13279                 if (!modeset)
13280                         intel_pre_plane_update(intel_crtc);
13281
13282                 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13283
13284                 if (put_domains)
13285                         modeset_put_power_domains(dev_priv, put_domains);
13286
13287                 intel_post_plane_update(intel_crtc);
13288         }
13289
13290         /* FIXME: add subpixel order */
13291
13292         drm_atomic_helper_wait_for_vblanks(dev, state);
13293         drm_atomic_helper_cleanup_planes(dev, state);
13294
13295         if (any_ms)
13296                 intel_modeset_check_state(dev, state);
13297
13298         drm_atomic_state_free(state);
13299
13300         return 0;
13301 }
13302
13303 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13304 {
13305         struct drm_device *dev = crtc->dev;
13306         struct drm_atomic_state *state;
13307         struct drm_crtc_state *crtc_state;
13308         int ret;
13309
13310         state = drm_atomic_state_alloc(dev);
13311         if (!state) {
13312                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13313                               crtc->base.id);
13314                 return;
13315         }
13316
13317         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13318
13319 retry:
13320         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13321         ret = PTR_ERR_OR_ZERO(crtc_state);
13322         if (!ret) {
13323                 if (!crtc_state->active)
13324                         goto out;
13325
13326                 crtc_state->mode_changed = true;
13327                 ret = drm_atomic_commit(state);
13328         }
13329
13330         if (ret == -EDEADLK) {
13331                 drm_atomic_state_clear(state);
13332                 drm_modeset_backoff(state->acquire_ctx);
13333                 goto retry;
13334         }
13335
13336         if (ret)
13337 out:
13338                 drm_atomic_state_free(state);
13339 }
13340
13341 #undef for_each_intel_crtc_masked
13342
13343 static const struct drm_crtc_funcs intel_crtc_funcs = {
13344         .gamma_set = intel_crtc_gamma_set,
13345         .set_config = drm_atomic_helper_set_config,
13346         .destroy = intel_crtc_destroy,
13347         .page_flip = intel_crtc_page_flip,
13348         .atomic_duplicate_state = intel_crtc_duplicate_state,
13349         .atomic_destroy_state = intel_crtc_destroy_state,
13350 };
13351
13352 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13353                                       struct intel_shared_dpll *pll,
13354                                       struct intel_dpll_hw_state *hw_state)
13355 {
13356         uint32_t val;
13357
13358         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13359                 return false;
13360
13361         val = I915_READ(PCH_DPLL(pll->id));
13362         hw_state->dpll = val;
13363         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13364         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13365
13366         return val & DPLL_VCO_ENABLE;
13367 }
13368
13369 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13370                                   struct intel_shared_dpll *pll)
13371 {
13372         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13373         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13374 }
13375
13376 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13377                                 struct intel_shared_dpll *pll)
13378 {
13379         /* PCH refclock must be enabled first */
13380         ibx_assert_pch_refclk_enabled(dev_priv);
13381
13382         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13383
13384         /* Wait for the clocks to stabilize. */
13385         POSTING_READ(PCH_DPLL(pll->id));
13386         udelay(150);
13387
13388         /* The pixel multiplier can only be updated once the
13389          * DPLL is enabled and the clocks are stable.
13390          *
13391          * So write it again.
13392          */
13393         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13394         POSTING_READ(PCH_DPLL(pll->id));
13395         udelay(200);
13396 }
13397
13398 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13399                                  struct intel_shared_dpll *pll)
13400 {
13401         struct drm_device *dev = dev_priv->dev;
13402         struct intel_crtc *crtc;
13403
13404         /* Make sure no transcoder isn't still depending on us. */
13405         for_each_intel_crtc(dev, crtc) {
13406                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13407                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13408         }
13409
13410         I915_WRITE(PCH_DPLL(pll->id), 0);
13411         POSTING_READ(PCH_DPLL(pll->id));
13412         udelay(200);
13413 }
13414
13415 static char *ibx_pch_dpll_names[] = {
13416         "PCH DPLL A",
13417         "PCH DPLL B",
13418 };
13419
13420 static void ibx_pch_dpll_init(struct drm_device *dev)
13421 {
13422         struct drm_i915_private *dev_priv = dev->dev_private;
13423         int i;
13424
13425         dev_priv->num_shared_dpll = 2;
13426
13427         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13428                 dev_priv->shared_dplls[i].id = i;
13429                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13430                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13431                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13432                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13433                 dev_priv->shared_dplls[i].get_hw_state =
13434                         ibx_pch_dpll_get_hw_state;
13435         }
13436 }
13437
13438 static void intel_shared_dpll_init(struct drm_device *dev)
13439 {
13440         struct drm_i915_private *dev_priv = dev->dev_private;
13441
13442         if (HAS_DDI(dev))
13443                 intel_ddi_pll_init(dev);
13444         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13445                 ibx_pch_dpll_init(dev);
13446         else
13447                 dev_priv->num_shared_dpll = 0;
13448
13449         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13450 }
13451
13452 /**
13453  * intel_prepare_plane_fb - Prepare fb for usage on plane
13454  * @plane: drm plane to prepare for
13455  * @fb: framebuffer to prepare for presentation
13456  *
13457  * Prepares a framebuffer for usage on a display plane.  Generally this
13458  * involves pinning the underlying object and updating the frontbuffer tracking
13459  * bits.  Some older platforms need special physical address handling for
13460  * cursor planes.
13461  *
13462  * Returns 0 on success, negative error code on failure.
13463  */
13464 int
13465 intel_prepare_plane_fb(struct drm_plane *plane,
13466                        const struct drm_plane_state *new_state)
13467 {
13468         struct drm_device *dev = plane->dev;
13469         struct drm_framebuffer *fb = new_state->fb;
13470         struct intel_plane *intel_plane = to_intel_plane(plane);
13471         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13472         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13473         int ret = 0;
13474
13475         if (!obj)
13476                 return 0;
13477
13478         mutex_lock(&dev->struct_mutex);
13479
13480         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13481             INTEL_INFO(dev)->cursor_needs_physical) {
13482                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13483                 ret = i915_gem_object_attach_phys(obj, align);
13484                 if (ret)
13485                         DRM_DEBUG_KMS("failed to attach phys object\n");
13486         } else {
13487                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13488         }
13489
13490         if (ret == 0)
13491                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13492
13493         mutex_unlock(&dev->struct_mutex);
13494
13495         return ret;
13496 }
13497
13498 /**
13499  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13500  * @plane: drm plane to clean up for
13501  * @fb: old framebuffer that was on plane
13502  *
13503  * Cleans up a framebuffer that has just been removed from a plane.
13504  */
13505 void
13506 intel_cleanup_plane_fb(struct drm_plane *plane,
13507                        const struct drm_plane_state *old_state)
13508 {
13509         struct drm_device *dev = plane->dev;
13510         struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
13511
13512         if (!obj)
13513                 return;
13514
13515         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13516             !INTEL_INFO(dev)->cursor_needs_physical) {
13517                 mutex_lock(&dev->struct_mutex);
13518                 intel_unpin_fb_obj(old_state->fb, old_state);
13519                 mutex_unlock(&dev->struct_mutex);
13520         }
13521 }
13522
13523 int
13524 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13525 {
13526         int max_scale;
13527         struct drm_device *dev;
13528         struct drm_i915_private *dev_priv;
13529         int crtc_clock, cdclk;
13530
13531         if (!intel_crtc || !crtc_state)
13532                 return DRM_PLANE_HELPER_NO_SCALING;
13533
13534         dev = intel_crtc->base.dev;
13535         dev_priv = dev->dev_private;
13536         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13537         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13538
13539         if (!crtc_clock || !cdclk)
13540                 return DRM_PLANE_HELPER_NO_SCALING;
13541
13542         /*
13543          * skl max scale is lower of:
13544          *    close to 3 but not 3, -1 is for that purpose
13545          *            or
13546          *    cdclk/crtc_clock
13547          */
13548         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13549
13550         return max_scale;
13551 }
13552
13553 static int
13554 intel_check_primary_plane(struct drm_plane *plane,
13555                           struct intel_crtc_state *crtc_state,
13556                           struct intel_plane_state *state)
13557 {
13558         struct drm_crtc *crtc = state->base.crtc;
13559         struct drm_framebuffer *fb = state->base.fb;
13560         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13561         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13562         bool can_position = false;
13563
13564         if (INTEL_INFO(plane->dev)->gen >= 9) {
13565                 /* use scaler when colorkey is not required */
13566                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13567                         min_scale = 1;
13568                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13569                 }
13570                 can_position = true;
13571         }
13572
13573         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13574                                              &state->dst, &state->clip,
13575                                              min_scale, max_scale,
13576                                              can_position, true,
13577                                              &state->visible);
13578 }
13579
13580 static void
13581 intel_commit_primary_plane(struct drm_plane *plane,
13582                            struct intel_plane_state *state)
13583 {
13584         struct drm_crtc *crtc = state->base.crtc;
13585         struct drm_framebuffer *fb = state->base.fb;
13586         struct drm_device *dev = plane->dev;
13587         struct drm_i915_private *dev_priv = dev->dev_private;
13588         struct intel_crtc *intel_crtc;
13589         struct drm_rect *src = &state->src;
13590
13591         crtc = crtc ? crtc : plane->crtc;
13592         intel_crtc = to_intel_crtc(crtc);
13593
13594         plane->fb = fb;
13595         crtc->x = src->x1 >> 16;
13596         crtc->y = src->y1 >> 16;
13597
13598         if (!crtc->state->active)
13599                 return;
13600
13601         dev_priv->display.update_primary_plane(crtc, fb,
13602                                                state->src.x1 >> 16,
13603                                                state->src.y1 >> 16);
13604 }
13605
13606 static void
13607 intel_disable_primary_plane(struct drm_plane *plane,
13608                             struct drm_crtc *crtc)
13609 {
13610         struct drm_device *dev = plane->dev;
13611         struct drm_i915_private *dev_priv = dev->dev_private;
13612
13613         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13614 }
13615
13616 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13617                                     struct drm_crtc_state *old_crtc_state)
13618 {
13619         struct drm_device *dev = crtc->dev;
13620         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13621         struct intel_crtc_state *old_intel_state =
13622                 to_intel_crtc_state(old_crtc_state);
13623         bool modeset = needs_modeset(crtc->state);
13624
13625         if (intel_crtc->atomic.update_wm_pre)
13626                 intel_update_watermarks(crtc);
13627
13628         /* Perform vblank evasion around commit operation */
13629         if (crtc->state->active)
13630                 intel_pipe_update_start(intel_crtc);
13631
13632         if (modeset)
13633                 return;
13634
13635         if (to_intel_crtc_state(crtc->state)->update_pipe)
13636                 intel_update_pipe_config(intel_crtc, old_intel_state);
13637         else if (INTEL_INFO(dev)->gen >= 9)
13638                 skl_detach_scalers(intel_crtc);
13639 }
13640
13641 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13642                                      struct drm_crtc_state *old_crtc_state)
13643 {
13644         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13645
13646         if (crtc->state->active)
13647                 intel_pipe_update_end(intel_crtc);
13648 }
13649
13650 /**
13651  * intel_plane_destroy - destroy a plane
13652  * @plane: plane to destroy
13653  *
13654  * Common destruction function for all types of planes (primary, cursor,
13655  * sprite).
13656  */
13657 void intel_plane_destroy(struct drm_plane *plane)
13658 {
13659         struct intel_plane *intel_plane = to_intel_plane(plane);
13660         drm_plane_cleanup(plane);
13661         kfree(intel_plane);
13662 }
13663
13664 const struct drm_plane_funcs intel_plane_funcs = {
13665         .update_plane = drm_atomic_helper_update_plane,
13666         .disable_plane = drm_atomic_helper_disable_plane,
13667         .destroy = intel_plane_destroy,
13668         .set_property = drm_atomic_helper_plane_set_property,
13669         .atomic_get_property = intel_plane_atomic_get_property,
13670         .atomic_set_property = intel_plane_atomic_set_property,
13671         .atomic_duplicate_state = intel_plane_duplicate_state,
13672         .atomic_destroy_state = intel_plane_destroy_state,
13673
13674 };
13675
13676 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13677                                                     int pipe)
13678 {
13679         struct intel_plane *primary;
13680         struct intel_plane_state *state;
13681         const uint32_t *intel_primary_formats;
13682         unsigned int num_formats;
13683
13684         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13685         if (primary == NULL)
13686                 return NULL;
13687
13688         state = intel_create_plane_state(&primary->base);
13689         if (!state) {
13690                 kfree(primary);
13691                 return NULL;
13692         }
13693         primary->base.state = &state->base;
13694
13695         primary->can_scale = false;
13696         primary->max_downscale = 1;
13697         if (INTEL_INFO(dev)->gen >= 9) {
13698                 primary->can_scale = true;
13699                 state->scaler_id = -1;
13700         }
13701         primary->pipe = pipe;
13702         primary->plane = pipe;
13703         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13704         primary->check_plane = intel_check_primary_plane;
13705         primary->commit_plane = intel_commit_primary_plane;
13706         primary->disable_plane = intel_disable_primary_plane;
13707         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13708                 primary->plane = !pipe;
13709
13710         if (INTEL_INFO(dev)->gen >= 9) {
13711                 intel_primary_formats = skl_primary_formats;
13712                 num_formats = ARRAY_SIZE(skl_primary_formats);
13713         } else if (INTEL_INFO(dev)->gen >= 4) {
13714                 intel_primary_formats = i965_primary_formats;
13715                 num_formats = ARRAY_SIZE(i965_primary_formats);
13716         } else {
13717                 intel_primary_formats = i8xx_primary_formats;
13718                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13719         }
13720
13721         drm_universal_plane_init(dev, &primary->base, 0,
13722                                  &intel_plane_funcs,
13723                                  intel_primary_formats, num_formats,
13724                                  DRM_PLANE_TYPE_PRIMARY, NULL);
13725
13726         if (INTEL_INFO(dev)->gen >= 4)
13727                 intel_create_rotation_property(dev, primary);
13728
13729         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13730
13731         return &primary->base;
13732 }
13733
13734 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13735 {
13736         if (!dev->mode_config.rotation_property) {
13737                 unsigned long flags = BIT(DRM_ROTATE_0) |
13738                         BIT(DRM_ROTATE_180);
13739
13740                 if (INTEL_INFO(dev)->gen >= 9)
13741                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13742
13743                 dev->mode_config.rotation_property =
13744                         drm_mode_create_rotation_property(dev, flags);
13745         }
13746         if (dev->mode_config.rotation_property)
13747                 drm_object_attach_property(&plane->base.base,
13748                                 dev->mode_config.rotation_property,
13749                                 plane->base.state->rotation);
13750 }
13751
13752 static int
13753 intel_check_cursor_plane(struct drm_plane *plane,
13754                          struct intel_crtc_state *crtc_state,
13755                          struct intel_plane_state *state)
13756 {
13757         struct drm_crtc *crtc = crtc_state->base.crtc;
13758         struct drm_framebuffer *fb = state->base.fb;
13759         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13760         enum pipe pipe = to_intel_plane(plane)->pipe;
13761         unsigned stride;
13762         int ret;
13763
13764         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13765                                             &state->dst, &state->clip,
13766                                             DRM_PLANE_HELPER_NO_SCALING,
13767                                             DRM_PLANE_HELPER_NO_SCALING,
13768                                             true, true, &state->visible);
13769         if (ret)
13770                 return ret;
13771
13772         /* if we want to turn off the cursor ignore width and height */
13773         if (!obj)
13774                 return 0;
13775
13776         /* Check for which cursor types we support */
13777         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13778                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13779                           state->base.crtc_w, state->base.crtc_h);
13780                 return -EINVAL;
13781         }
13782
13783         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13784         if (obj->base.size < stride * state->base.crtc_h) {
13785                 DRM_DEBUG_KMS("buffer is too small\n");
13786                 return -ENOMEM;
13787         }
13788
13789         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13790                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13791                 return -EINVAL;
13792         }
13793
13794         /*
13795          * There's something wrong with the cursor on CHV pipe C.
13796          * If it straddles the left edge of the screen then
13797          * moving it away from the edge or disabling it often
13798          * results in a pipe underrun, and often that can lead to
13799          * dead pipe (constant underrun reported, and it scans
13800          * out just a solid color). To recover from that, the
13801          * display power well must be turned off and on again.
13802          * Refuse the put the cursor into that compromised position.
13803          */
13804         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
13805             state->visible && state->base.crtc_x < 0) {
13806                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
13807                 return -EINVAL;
13808         }
13809
13810         return 0;
13811 }
13812
13813 static void
13814 intel_disable_cursor_plane(struct drm_plane *plane,
13815                            struct drm_crtc *crtc)
13816 {
13817         intel_crtc_update_cursor(crtc, false);
13818 }
13819
13820 static void
13821 intel_commit_cursor_plane(struct drm_plane *plane,
13822                           struct intel_plane_state *state)
13823 {
13824         struct drm_crtc *crtc = state->base.crtc;
13825         struct drm_device *dev = plane->dev;
13826         struct intel_crtc *intel_crtc;
13827         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13828         uint32_t addr;
13829
13830         crtc = crtc ? crtc : plane->crtc;
13831         intel_crtc = to_intel_crtc(crtc);
13832
13833         if (!obj)
13834                 addr = 0;
13835         else if (!INTEL_INFO(dev)->cursor_needs_physical)
13836                 addr = i915_gem_obj_ggtt_offset(obj);
13837         else
13838                 addr = obj->phys_handle->busaddr;
13839
13840         intel_crtc->cursor_addr = addr;
13841
13842         if (crtc->state->active)
13843                 intel_crtc_update_cursor(crtc, state->visible);
13844 }
13845
13846 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13847                                                    int pipe)
13848 {
13849         struct intel_plane *cursor;
13850         struct intel_plane_state *state;
13851
13852         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13853         if (cursor == NULL)
13854                 return NULL;
13855
13856         state = intel_create_plane_state(&cursor->base);
13857         if (!state) {
13858                 kfree(cursor);
13859                 return NULL;
13860         }
13861         cursor->base.state = &state->base;
13862
13863         cursor->can_scale = false;
13864         cursor->max_downscale = 1;
13865         cursor->pipe = pipe;
13866         cursor->plane = pipe;
13867         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13868         cursor->check_plane = intel_check_cursor_plane;
13869         cursor->commit_plane = intel_commit_cursor_plane;
13870         cursor->disable_plane = intel_disable_cursor_plane;
13871
13872         drm_universal_plane_init(dev, &cursor->base, 0,
13873                                  &intel_plane_funcs,
13874                                  intel_cursor_formats,
13875                                  ARRAY_SIZE(intel_cursor_formats),
13876                                  DRM_PLANE_TYPE_CURSOR, NULL);
13877
13878         if (INTEL_INFO(dev)->gen >= 4) {
13879                 if (!dev->mode_config.rotation_property)
13880                         dev->mode_config.rotation_property =
13881                                 drm_mode_create_rotation_property(dev,
13882                                                         BIT(DRM_ROTATE_0) |
13883                                                         BIT(DRM_ROTATE_180));
13884                 if (dev->mode_config.rotation_property)
13885                         drm_object_attach_property(&cursor->base.base,
13886                                 dev->mode_config.rotation_property,
13887                                 state->base.rotation);
13888         }
13889
13890         if (INTEL_INFO(dev)->gen >=9)
13891                 state->scaler_id = -1;
13892
13893         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13894
13895         return &cursor->base;
13896 }
13897
13898 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13899         struct intel_crtc_state *crtc_state)
13900 {
13901         int i;
13902         struct intel_scaler *intel_scaler;
13903         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13904
13905         for (i = 0; i < intel_crtc->num_scalers; i++) {
13906                 intel_scaler = &scaler_state->scalers[i];
13907                 intel_scaler->in_use = 0;
13908                 intel_scaler->mode = PS_SCALER_MODE_DYN;
13909         }
13910
13911         scaler_state->scaler_id = -1;
13912 }
13913
13914 static void intel_crtc_init(struct drm_device *dev, int pipe)
13915 {
13916         struct drm_i915_private *dev_priv = dev->dev_private;
13917         struct intel_crtc *intel_crtc;
13918         struct intel_crtc_state *crtc_state = NULL;
13919         struct drm_plane *primary = NULL;
13920         struct drm_plane *cursor = NULL;
13921         int i, ret;
13922
13923         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13924         if (intel_crtc == NULL)
13925                 return;
13926
13927         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13928         if (!crtc_state)
13929                 goto fail;
13930         intel_crtc->config = crtc_state;
13931         intel_crtc->base.state = &crtc_state->base;
13932         crtc_state->base.crtc = &intel_crtc->base;
13933
13934         /* initialize shared scalers */
13935         if (INTEL_INFO(dev)->gen >= 9) {
13936                 if (pipe == PIPE_C)
13937                         intel_crtc->num_scalers = 1;
13938                 else
13939                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
13940
13941                 skl_init_scalers(dev, intel_crtc, crtc_state);
13942         }
13943
13944         primary = intel_primary_plane_create(dev, pipe);
13945         if (!primary)
13946                 goto fail;
13947
13948         cursor = intel_cursor_plane_create(dev, pipe);
13949         if (!cursor)
13950                 goto fail;
13951
13952         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13953                                         cursor, &intel_crtc_funcs, NULL);
13954         if (ret)
13955                 goto fail;
13956
13957         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13958         for (i = 0; i < 256; i++) {
13959                 intel_crtc->lut_r[i] = i;
13960                 intel_crtc->lut_g[i] = i;
13961                 intel_crtc->lut_b[i] = i;
13962         }
13963
13964         /*
13965          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13966          * is hooked to pipe B. Hence we want plane A feeding pipe B.
13967          */
13968         intel_crtc->pipe = pipe;
13969         intel_crtc->plane = pipe;
13970         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13971                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13972                 intel_crtc->plane = !pipe;
13973         }
13974
13975         intel_crtc->cursor_base = ~0;
13976         intel_crtc->cursor_cntl = ~0;
13977         intel_crtc->cursor_size = ~0;
13978
13979         intel_crtc->wm.cxsr_allowed = true;
13980
13981         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13982                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13983         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13984         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13985
13986         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13987
13988         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13989         return;
13990
13991 fail:
13992         if (primary)
13993                 drm_plane_cleanup(primary);
13994         if (cursor)
13995                 drm_plane_cleanup(cursor);
13996         kfree(crtc_state);
13997         kfree(intel_crtc);
13998 }
13999
14000 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14001 {
14002         struct drm_encoder *encoder = connector->base.encoder;
14003         struct drm_device *dev = connector->base.dev;
14004
14005         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14006
14007         if (!encoder || WARN_ON(!encoder->crtc))
14008                 return INVALID_PIPE;
14009
14010         return to_intel_crtc(encoder->crtc)->pipe;
14011 }
14012
14013 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14014                                 struct drm_file *file)
14015 {
14016         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14017         struct drm_crtc *drmmode_crtc;
14018         struct intel_crtc *crtc;
14019
14020         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14021
14022         if (!drmmode_crtc) {
14023                 DRM_ERROR("no such CRTC id\n");
14024                 return -ENOENT;
14025         }
14026
14027         crtc = to_intel_crtc(drmmode_crtc);
14028         pipe_from_crtc_id->pipe = crtc->pipe;
14029
14030         return 0;
14031 }
14032
14033 static int intel_encoder_clones(struct intel_encoder *encoder)
14034 {
14035         struct drm_device *dev = encoder->base.dev;
14036         struct intel_encoder *source_encoder;
14037         int index_mask = 0;
14038         int entry = 0;
14039
14040         for_each_intel_encoder(dev, source_encoder) {
14041                 if (encoders_cloneable(encoder, source_encoder))
14042                         index_mask |= (1 << entry);
14043
14044                 entry++;
14045         }
14046
14047         return index_mask;
14048 }
14049
14050 static bool has_edp_a(struct drm_device *dev)
14051 {
14052         struct drm_i915_private *dev_priv = dev->dev_private;
14053
14054         if (!IS_MOBILE(dev))
14055                 return false;
14056
14057         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14058                 return false;
14059
14060         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14061                 return false;
14062
14063         return true;
14064 }
14065
14066 static bool intel_crt_present(struct drm_device *dev)
14067 {
14068         struct drm_i915_private *dev_priv = dev->dev_private;
14069
14070         if (INTEL_INFO(dev)->gen >= 9)
14071                 return false;
14072
14073         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14074                 return false;
14075
14076         if (IS_CHERRYVIEW(dev))
14077                 return false;
14078
14079         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14080                 return false;
14081
14082         return true;
14083 }
14084
14085 static void intel_setup_outputs(struct drm_device *dev)
14086 {
14087         struct drm_i915_private *dev_priv = dev->dev_private;
14088         struct intel_encoder *encoder;
14089         bool dpd_is_edp = false;
14090
14091         intel_lvds_init(dev);
14092
14093         if (intel_crt_present(dev))
14094                 intel_crt_init(dev);
14095
14096         if (IS_BROXTON(dev)) {
14097                 /*
14098                  * FIXME: Broxton doesn't support port detection via the
14099                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14100                  * detect the ports.
14101                  */
14102                 intel_ddi_init(dev, PORT_A);
14103                 intel_ddi_init(dev, PORT_B);
14104                 intel_ddi_init(dev, PORT_C);
14105         } else if (HAS_DDI(dev)) {
14106                 int found;
14107
14108                 /*
14109                  * Haswell uses DDI functions to detect digital outputs.
14110                  * On SKL pre-D0 the strap isn't connected, so we assume
14111                  * it's there.
14112                  */
14113                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14114                 /* WaIgnoreDDIAStrap: skl */
14115                 if (found || IS_SKYLAKE(dev))
14116                         intel_ddi_init(dev, PORT_A);
14117
14118                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14119                  * register */
14120                 found = I915_READ(SFUSE_STRAP);
14121
14122                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14123                         intel_ddi_init(dev, PORT_B);
14124                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14125                         intel_ddi_init(dev, PORT_C);
14126                 if (found & SFUSE_STRAP_DDID_DETECTED)
14127                         intel_ddi_init(dev, PORT_D);
14128                 /*
14129                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14130                  */
14131                 if (IS_SKYLAKE(dev) &&
14132                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14133                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14134                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14135                         intel_ddi_init(dev, PORT_E);
14136
14137         } else if (HAS_PCH_SPLIT(dev)) {
14138                 int found;
14139                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14140
14141                 if (has_edp_a(dev))
14142                         intel_dp_init(dev, DP_A, PORT_A);
14143
14144                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14145                         /* PCH SDVOB multiplex with HDMIB */
14146                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
14147                         if (!found)
14148                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14149                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14150                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14151                 }
14152
14153                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14154                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14155
14156                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14157                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14158
14159                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14160                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14161
14162                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14163                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14164         } else if (IS_VALLEYVIEW(dev)) {
14165                 bool has_edp, has_port;
14166
14167                 /*
14168                  * The DP_DETECTED bit is the latched state of the DDC
14169                  * SDA pin at boot. However since eDP doesn't require DDC
14170                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14171                  * eDP ports may have been muxed to an alternate function.
14172                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14173                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14174                  * detect eDP ports.
14175                  *
14176                  * Sadly the straps seem to be missing sometimes even for HDMI
14177                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14178                  * and VBT for the presence of the port. Additionally we can't
14179                  * trust the port type the VBT declares as we've seen at least
14180                  * HDMI ports that the VBT claim are DP or eDP.
14181                  */
14182                 has_edp = intel_dp_is_edp(dev, PORT_B);
14183                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14184                 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14185                         has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
14186                 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14187                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14188
14189                 has_edp = intel_dp_is_edp(dev, PORT_C);
14190                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14191                 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14192                         has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
14193                 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14194                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14195
14196                 if (IS_CHERRYVIEW(dev)) {
14197                         /*
14198                          * eDP not supported on port D,
14199                          * so no need to worry about it
14200                          */
14201                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14202                         if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14203                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14204                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14205                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14206                 }
14207
14208                 intel_dsi_init(dev);
14209         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14210                 bool found = false;
14211
14212                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14213                         DRM_DEBUG_KMS("probing SDVOB\n");
14214                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14215                         if (!found && IS_G4X(dev)) {
14216                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14217                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14218                         }
14219
14220                         if (!found && IS_G4X(dev))
14221                                 intel_dp_init(dev, DP_B, PORT_B);
14222                 }
14223
14224                 /* Before G4X SDVOC doesn't have its own detect register */
14225
14226                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14227                         DRM_DEBUG_KMS("probing SDVOC\n");
14228                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14229                 }
14230
14231                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14232
14233                         if (IS_G4X(dev)) {
14234                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14235                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14236                         }
14237                         if (IS_G4X(dev))
14238                                 intel_dp_init(dev, DP_C, PORT_C);
14239                 }
14240
14241                 if (IS_G4X(dev) &&
14242                     (I915_READ(DP_D) & DP_DETECTED))
14243                         intel_dp_init(dev, DP_D, PORT_D);
14244         } else if (IS_GEN2(dev))
14245                 intel_dvo_init(dev);
14246
14247         if (SUPPORTS_TV(dev))
14248                 intel_tv_init(dev);
14249
14250         intel_psr_init(dev);
14251
14252         for_each_intel_encoder(dev, encoder) {
14253                 encoder->base.possible_crtcs = encoder->crtc_mask;
14254                 encoder->base.possible_clones =
14255                         intel_encoder_clones(encoder);
14256         }
14257
14258         intel_init_pch_refclk(dev);
14259
14260         drm_helper_move_panel_connectors_to_head(dev);
14261 }
14262
14263 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14264 {
14265         struct drm_device *dev = fb->dev;
14266         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14267
14268         drm_framebuffer_cleanup(fb);
14269         mutex_lock(&dev->struct_mutex);
14270         WARN_ON(!intel_fb->obj->framebuffer_references--);
14271         drm_gem_object_unreference(&intel_fb->obj->base);
14272         mutex_unlock(&dev->struct_mutex);
14273         kfree(intel_fb);
14274 }
14275
14276 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14277                                                 struct drm_file *file,
14278                                                 unsigned int *handle)
14279 {
14280         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14281         struct drm_i915_gem_object *obj = intel_fb->obj;
14282
14283         if (obj->userptr.mm) {
14284                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14285                 return -EINVAL;
14286         }
14287
14288         return drm_gem_handle_create(file, &obj->base, handle);
14289 }
14290
14291 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14292                                         struct drm_file *file,
14293                                         unsigned flags, unsigned color,
14294                                         struct drm_clip_rect *clips,
14295                                         unsigned num_clips)
14296 {
14297         struct drm_device *dev = fb->dev;
14298         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14299         struct drm_i915_gem_object *obj = intel_fb->obj;
14300
14301         mutex_lock(&dev->struct_mutex);
14302         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14303         mutex_unlock(&dev->struct_mutex);
14304
14305         return 0;
14306 }
14307
14308 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14309         .destroy = intel_user_framebuffer_destroy,
14310         .create_handle = intel_user_framebuffer_create_handle,
14311         .dirty = intel_user_framebuffer_dirty,
14312 };
14313
14314 static
14315 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14316                          uint32_t pixel_format)
14317 {
14318         u32 gen = INTEL_INFO(dev)->gen;
14319
14320         if (gen >= 9) {
14321                 /* "The stride in bytes must not exceed the of the size of 8K
14322                  *  pixels and 32K bytes."
14323                  */
14324                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14325         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14326                 return 32*1024;
14327         } else if (gen >= 4) {
14328                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14329                         return 16*1024;
14330                 else
14331                         return 32*1024;
14332         } else if (gen >= 3) {
14333                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14334                         return 8*1024;
14335                 else
14336                         return 16*1024;
14337         } else {
14338                 /* XXX DSPC is limited to 4k tiled */
14339                 return 8*1024;
14340         }
14341 }
14342
14343 static int intel_framebuffer_init(struct drm_device *dev,
14344                                   struct intel_framebuffer *intel_fb,
14345                                   struct drm_mode_fb_cmd2 *mode_cmd,
14346                                   struct drm_i915_gem_object *obj)
14347 {
14348         unsigned int aligned_height;
14349         int ret;
14350         u32 pitch_limit, stride_alignment;
14351
14352         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14353
14354         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14355                 /* Enforce that fb modifier and tiling mode match, but only for
14356                  * X-tiled. This is needed for FBC. */
14357                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14358                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14359                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14360                         return -EINVAL;
14361                 }
14362         } else {
14363                 if (obj->tiling_mode == I915_TILING_X)
14364                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14365                 else if (obj->tiling_mode == I915_TILING_Y) {
14366                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14367                         return -EINVAL;
14368                 }
14369         }
14370
14371         /* Passed in modifier sanity checking. */
14372         switch (mode_cmd->modifier[0]) {
14373         case I915_FORMAT_MOD_Y_TILED:
14374         case I915_FORMAT_MOD_Yf_TILED:
14375                 if (INTEL_INFO(dev)->gen < 9) {
14376                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14377                                   mode_cmd->modifier[0]);
14378                         return -EINVAL;
14379                 }
14380         case DRM_FORMAT_MOD_NONE:
14381         case I915_FORMAT_MOD_X_TILED:
14382                 break;
14383         default:
14384                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14385                           mode_cmd->modifier[0]);
14386                 return -EINVAL;
14387         }
14388
14389         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14390                                                      mode_cmd->pixel_format);
14391         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14392                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14393                           mode_cmd->pitches[0], stride_alignment);
14394                 return -EINVAL;
14395         }
14396
14397         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14398                                            mode_cmd->pixel_format);
14399         if (mode_cmd->pitches[0] > pitch_limit) {
14400                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14401                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14402                           "tiled" : "linear",
14403                           mode_cmd->pitches[0], pitch_limit);
14404                 return -EINVAL;
14405         }
14406
14407         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14408             mode_cmd->pitches[0] != obj->stride) {
14409                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14410                           mode_cmd->pitches[0], obj->stride);
14411                 return -EINVAL;
14412         }
14413
14414         /* Reject formats not supported by any plane early. */
14415         switch (mode_cmd->pixel_format) {
14416         case DRM_FORMAT_C8:
14417         case DRM_FORMAT_RGB565:
14418         case DRM_FORMAT_XRGB8888:
14419         case DRM_FORMAT_ARGB8888:
14420                 break;
14421         case DRM_FORMAT_XRGB1555:
14422                 if (INTEL_INFO(dev)->gen > 3) {
14423                         DRM_DEBUG("unsupported pixel format: %s\n",
14424                                   drm_get_format_name(mode_cmd->pixel_format));
14425                         return -EINVAL;
14426                 }
14427                 break;
14428         case DRM_FORMAT_ABGR8888:
14429                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14430                         DRM_DEBUG("unsupported pixel format: %s\n",
14431                                   drm_get_format_name(mode_cmd->pixel_format));
14432                         return -EINVAL;
14433                 }
14434                 break;
14435         case DRM_FORMAT_XBGR8888:
14436         case DRM_FORMAT_XRGB2101010:
14437         case DRM_FORMAT_XBGR2101010:
14438                 if (INTEL_INFO(dev)->gen < 4) {
14439                         DRM_DEBUG("unsupported pixel format: %s\n",
14440                                   drm_get_format_name(mode_cmd->pixel_format));
14441                         return -EINVAL;
14442                 }
14443                 break;
14444         case DRM_FORMAT_ABGR2101010:
14445                 if (!IS_VALLEYVIEW(dev)) {
14446                         DRM_DEBUG("unsupported pixel format: %s\n",
14447                                   drm_get_format_name(mode_cmd->pixel_format));
14448                         return -EINVAL;
14449                 }
14450                 break;
14451         case DRM_FORMAT_YUYV:
14452         case DRM_FORMAT_UYVY:
14453         case DRM_FORMAT_YVYU:
14454         case DRM_FORMAT_VYUY:
14455                 if (INTEL_INFO(dev)->gen < 5) {
14456                         DRM_DEBUG("unsupported pixel format: %s\n",
14457                                   drm_get_format_name(mode_cmd->pixel_format));
14458                         return -EINVAL;
14459                 }
14460                 break;
14461         default:
14462                 DRM_DEBUG("unsupported pixel format: %s\n",
14463                           drm_get_format_name(mode_cmd->pixel_format));
14464                 return -EINVAL;
14465         }
14466
14467         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14468         if (mode_cmd->offsets[0] != 0)
14469                 return -EINVAL;
14470
14471         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14472                                                mode_cmd->pixel_format,
14473                                                mode_cmd->modifier[0]);
14474         /* FIXME drm helper for size checks (especially planar formats)? */
14475         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14476                 return -EINVAL;
14477
14478         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14479         intel_fb->obj = obj;
14480         intel_fb->obj->framebuffer_references++;
14481
14482         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14483         if (ret) {
14484                 DRM_ERROR("framebuffer init failed %d\n", ret);
14485                 return ret;
14486         }
14487
14488         return 0;
14489 }
14490
14491 static struct drm_framebuffer *
14492 intel_user_framebuffer_create(struct drm_device *dev,
14493                               struct drm_file *filp,
14494                               struct drm_mode_fb_cmd2 *user_mode_cmd)
14495 {
14496         struct drm_i915_gem_object *obj;
14497         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14498
14499         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14500                                                 mode_cmd.handles[0]));
14501         if (&obj->base == NULL)
14502                 return ERR_PTR(-ENOENT);
14503
14504         return intel_framebuffer_create(dev, &mode_cmd, obj);
14505 }
14506
14507 #ifndef CONFIG_DRM_FBDEV_EMULATION
14508 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14509 {
14510 }
14511 #endif
14512
14513 static const struct drm_mode_config_funcs intel_mode_funcs = {
14514         .fb_create = intel_user_framebuffer_create,
14515         .output_poll_changed = intel_fbdev_output_poll_changed,
14516         .atomic_check = intel_atomic_check,
14517         .atomic_commit = intel_atomic_commit,
14518         .atomic_state_alloc = intel_atomic_state_alloc,
14519         .atomic_state_clear = intel_atomic_state_clear,
14520 };
14521
14522 /* Set up chip specific display functions */
14523 static void intel_init_display(struct drm_device *dev)
14524 {
14525         struct drm_i915_private *dev_priv = dev->dev_private;
14526
14527         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14528                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14529         else if (IS_CHERRYVIEW(dev))
14530                 dev_priv->display.find_dpll = chv_find_best_dpll;
14531         else if (IS_VALLEYVIEW(dev))
14532                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14533         else if (IS_PINEVIEW(dev))
14534                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14535         else
14536                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14537
14538         if (INTEL_INFO(dev)->gen >= 9) {
14539                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14540                 dev_priv->display.get_initial_plane_config =
14541                         skylake_get_initial_plane_config;
14542                 dev_priv->display.crtc_compute_clock =
14543                         haswell_crtc_compute_clock;
14544                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14545                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14546                 dev_priv->display.update_primary_plane =
14547                         skylake_update_primary_plane;
14548         } else if (HAS_DDI(dev)) {
14549                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14550                 dev_priv->display.get_initial_plane_config =
14551                         ironlake_get_initial_plane_config;
14552                 dev_priv->display.crtc_compute_clock =
14553                         haswell_crtc_compute_clock;
14554                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14555                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14556                 dev_priv->display.update_primary_plane =
14557                         ironlake_update_primary_plane;
14558         } else if (HAS_PCH_SPLIT(dev)) {
14559                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14560                 dev_priv->display.get_initial_plane_config =
14561                         ironlake_get_initial_plane_config;
14562                 dev_priv->display.crtc_compute_clock =
14563                         ironlake_crtc_compute_clock;
14564                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14565                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14566                 dev_priv->display.update_primary_plane =
14567                         ironlake_update_primary_plane;
14568         } else if (IS_VALLEYVIEW(dev)) {
14569                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14570                 dev_priv->display.get_initial_plane_config =
14571                         i9xx_get_initial_plane_config;
14572                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14573                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14574                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14575                 dev_priv->display.update_primary_plane =
14576                         i9xx_update_primary_plane;
14577         } else {
14578                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14579                 dev_priv->display.get_initial_plane_config =
14580                         i9xx_get_initial_plane_config;
14581                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14582                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14583                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14584                 dev_priv->display.update_primary_plane =
14585                         i9xx_update_primary_plane;
14586         }
14587
14588         /* Returns the core display clock speed */
14589         if (IS_SKYLAKE(dev))
14590                 dev_priv->display.get_display_clock_speed =
14591                         skylake_get_display_clock_speed;
14592         else if (IS_BROXTON(dev))
14593                 dev_priv->display.get_display_clock_speed =
14594                         broxton_get_display_clock_speed;
14595         else if (IS_BROADWELL(dev))
14596                 dev_priv->display.get_display_clock_speed =
14597                         broadwell_get_display_clock_speed;
14598         else if (IS_HASWELL(dev))
14599                 dev_priv->display.get_display_clock_speed =
14600                         haswell_get_display_clock_speed;
14601         else if (IS_VALLEYVIEW(dev))
14602                 dev_priv->display.get_display_clock_speed =
14603                         valleyview_get_display_clock_speed;
14604         else if (IS_GEN5(dev))
14605                 dev_priv->display.get_display_clock_speed =
14606                         ilk_get_display_clock_speed;
14607         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14608                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14609                 dev_priv->display.get_display_clock_speed =
14610                         i945_get_display_clock_speed;
14611         else if (IS_GM45(dev))
14612                 dev_priv->display.get_display_clock_speed =
14613                         gm45_get_display_clock_speed;
14614         else if (IS_CRESTLINE(dev))
14615                 dev_priv->display.get_display_clock_speed =
14616                         i965gm_get_display_clock_speed;
14617         else if (IS_PINEVIEW(dev))
14618                 dev_priv->display.get_display_clock_speed =
14619                         pnv_get_display_clock_speed;
14620         else if (IS_G33(dev) || IS_G4X(dev))
14621                 dev_priv->display.get_display_clock_speed =
14622                         g33_get_display_clock_speed;
14623         else if (IS_I915G(dev))
14624                 dev_priv->display.get_display_clock_speed =
14625                         i915_get_display_clock_speed;
14626         else if (IS_I945GM(dev) || IS_845G(dev))
14627                 dev_priv->display.get_display_clock_speed =
14628                         i9xx_misc_get_display_clock_speed;
14629         else if (IS_PINEVIEW(dev))
14630                 dev_priv->display.get_display_clock_speed =
14631                         pnv_get_display_clock_speed;
14632         else if (IS_I915GM(dev))
14633                 dev_priv->display.get_display_clock_speed =
14634                         i915gm_get_display_clock_speed;
14635         else if (IS_I865G(dev))
14636                 dev_priv->display.get_display_clock_speed =
14637                         i865_get_display_clock_speed;
14638         else if (IS_I85X(dev))
14639                 dev_priv->display.get_display_clock_speed =
14640                         i85x_get_display_clock_speed;
14641         else { /* 830 */
14642                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14643                 dev_priv->display.get_display_clock_speed =
14644                         i830_get_display_clock_speed;
14645         }
14646
14647         if (IS_GEN5(dev)) {
14648                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14649         } else if (IS_GEN6(dev)) {
14650                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14651         } else if (IS_IVYBRIDGE(dev)) {
14652                 /* FIXME: detect B0+ stepping and use auto training */
14653                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14654         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14655                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14656                 if (IS_BROADWELL(dev)) {
14657                         dev_priv->display.modeset_commit_cdclk =
14658                                 broadwell_modeset_commit_cdclk;
14659                         dev_priv->display.modeset_calc_cdclk =
14660                                 broadwell_modeset_calc_cdclk;
14661                 }
14662         } else if (IS_VALLEYVIEW(dev)) {
14663                 dev_priv->display.modeset_commit_cdclk =
14664                         valleyview_modeset_commit_cdclk;
14665                 dev_priv->display.modeset_calc_cdclk =
14666                         valleyview_modeset_calc_cdclk;
14667         } else if (IS_BROXTON(dev)) {
14668                 dev_priv->display.modeset_commit_cdclk =
14669                         broxton_modeset_commit_cdclk;
14670                 dev_priv->display.modeset_calc_cdclk =
14671                         broxton_modeset_calc_cdclk;
14672         }
14673
14674         switch (INTEL_INFO(dev)->gen) {
14675         case 2:
14676                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14677                 break;
14678
14679         case 3:
14680                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14681                 break;
14682
14683         case 4:
14684         case 5:
14685                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14686                 break;
14687
14688         case 6:
14689                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14690                 break;
14691         case 7:
14692         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14693                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14694                 break;
14695         case 9:
14696                 /* Drop through - unsupported since execlist only. */
14697         default:
14698                 /* Default just returns -ENODEV to indicate unsupported */
14699                 dev_priv->display.queue_flip = intel_default_queue_flip;
14700         }
14701
14702         mutex_init(&dev_priv->pps_mutex);
14703 }
14704
14705 /*
14706  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14707  * resume, or other times.  This quirk makes sure that's the case for
14708  * affected systems.
14709  */
14710 static void quirk_pipea_force(struct drm_device *dev)
14711 {
14712         struct drm_i915_private *dev_priv = dev->dev_private;
14713
14714         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14715         DRM_INFO("applying pipe a force quirk\n");
14716 }
14717
14718 static void quirk_pipeb_force(struct drm_device *dev)
14719 {
14720         struct drm_i915_private *dev_priv = dev->dev_private;
14721
14722         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14723         DRM_INFO("applying pipe b force quirk\n");
14724 }
14725
14726 /*
14727  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14728  */
14729 static void quirk_ssc_force_disable(struct drm_device *dev)
14730 {
14731         struct drm_i915_private *dev_priv = dev->dev_private;
14732         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14733         DRM_INFO("applying lvds SSC disable quirk\n");
14734 }
14735
14736 /*
14737  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14738  * brightness value
14739  */
14740 static void quirk_invert_brightness(struct drm_device *dev)
14741 {
14742         struct drm_i915_private *dev_priv = dev->dev_private;
14743         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14744         DRM_INFO("applying inverted panel brightness quirk\n");
14745 }
14746
14747 /* Some VBT's incorrectly indicate no backlight is present */
14748 static void quirk_backlight_present(struct drm_device *dev)
14749 {
14750         struct drm_i915_private *dev_priv = dev->dev_private;
14751         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14752         DRM_INFO("applying backlight present quirk\n");
14753 }
14754
14755 struct intel_quirk {
14756         int device;
14757         int subsystem_vendor;
14758         int subsystem_device;
14759         void (*hook)(struct drm_device *dev);
14760 };
14761
14762 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14763 struct intel_dmi_quirk {
14764         void (*hook)(struct drm_device *dev);
14765         const struct dmi_system_id (*dmi_id_list)[];
14766 };
14767
14768 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14769 {
14770         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14771         return 1;
14772 }
14773
14774 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14775         {
14776                 .dmi_id_list = &(const struct dmi_system_id[]) {
14777                         {
14778                                 .callback = intel_dmi_reverse_brightness,
14779                                 .ident = "NCR Corporation",
14780                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14781                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14782                                 },
14783                         },
14784                         { }  /* terminating entry */
14785                 },
14786                 .hook = quirk_invert_brightness,
14787         },
14788 };
14789
14790 static struct intel_quirk intel_quirks[] = {
14791         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14792         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14793
14794         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14795         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14796
14797         /* 830 needs to leave pipe A & dpll A up */
14798         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14799
14800         /* 830 needs to leave pipe B & dpll B up */
14801         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14802
14803         /* Lenovo U160 cannot use SSC on LVDS */
14804         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14805
14806         /* Sony Vaio Y cannot use SSC on LVDS */
14807         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14808
14809         /* Acer Aspire 5734Z must invert backlight brightness */
14810         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14811
14812         /* Acer/eMachines G725 */
14813         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14814
14815         /* Acer/eMachines e725 */
14816         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14817
14818         /* Acer/Packard Bell NCL20 */
14819         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14820
14821         /* Acer Aspire 4736Z */
14822         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14823
14824         /* Acer Aspire 5336 */
14825         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14826
14827         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14828         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14829
14830         /* Acer C720 Chromebook (Core i3 4005U) */
14831         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14832
14833         /* Apple Macbook 2,1 (Core 2 T7400) */
14834         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14835
14836         /* Apple Macbook 4,1 */
14837         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14838
14839         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14840         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14841
14842         /* HP Chromebook 14 (Celeron 2955U) */
14843         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14844
14845         /* Dell Chromebook 11 */
14846         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14847
14848         /* Dell Chromebook 11 (2015 version) */
14849         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14850 };
14851
14852 static void intel_init_quirks(struct drm_device *dev)
14853 {
14854         struct pci_dev *d = dev->pdev;
14855         int i;
14856
14857         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14858                 struct intel_quirk *q = &intel_quirks[i];
14859
14860                 if (d->device == q->device &&
14861                     (d->subsystem_vendor == q->subsystem_vendor ||
14862                      q->subsystem_vendor == PCI_ANY_ID) &&
14863                     (d->subsystem_device == q->subsystem_device ||
14864                      q->subsystem_device == PCI_ANY_ID))
14865                         q->hook(dev);
14866         }
14867         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14868                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14869                         intel_dmi_quirks[i].hook(dev);
14870         }
14871 }
14872
14873 /* Disable the VGA plane that we never use */
14874 static void i915_disable_vga(struct drm_device *dev)
14875 {
14876         struct drm_i915_private *dev_priv = dev->dev_private;
14877         u8 sr1;
14878         u32 vga_reg = i915_vgacntrl_reg(dev);
14879
14880         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14881         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14882         outb(SR01, VGA_SR_INDEX);
14883         sr1 = inb(VGA_SR_DATA);
14884         outb(sr1 | 1<<5, VGA_SR_DATA);
14885         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14886         udelay(300);
14887
14888         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14889         POSTING_READ(vga_reg);
14890 }
14891
14892 void intel_modeset_init_hw(struct drm_device *dev)
14893 {
14894         intel_update_cdclk(dev);
14895         intel_prepare_ddi(dev);
14896         intel_init_clock_gating(dev);
14897         intel_enable_gt_powersave(dev);
14898 }
14899
14900 void intel_modeset_init(struct drm_device *dev)
14901 {
14902         struct drm_i915_private *dev_priv = dev->dev_private;
14903         int sprite, ret;
14904         enum pipe pipe;
14905         struct intel_crtc *crtc;
14906
14907         drm_mode_config_init(dev);
14908
14909         dev->mode_config.min_width = 0;
14910         dev->mode_config.min_height = 0;
14911
14912         dev->mode_config.preferred_depth = 24;
14913         dev->mode_config.prefer_shadow = 1;
14914
14915         dev->mode_config.allow_fb_modifiers = true;
14916
14917         dev->mode_config.funcs = &intel_mode_funcs;
14918
14919         intel_init_quirks(dev);
14920
14921         intel_init_pm(dev);
14922
14923         if (INTEL_INFO(dev)->num_pipes == 0)
14924                 return;
14925
14926         /*
14927          * There may be no VBT; and if the BIOS enabled SSC we can
14928          * just keep using it to avoid unnecessary flicker.  Whereas if the
14929          * BIOS isn't using it, don't assume it will work even if the VBT
14930          * indicates as much.
14931          */
14932         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14933                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14934                                             DREF_SSC1_ENABLE);
14935
14936                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14937                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14938                                      bios_lvds_use_ssc ? "en" : "dis",
14939                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14940                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14941                 }
14942         }
14943
14944         intel_init_display(dev);
14945         intel_init_audio(dev);
14946
14947         if (IS_GEN2(dev)) {
14948                 dev->mode_config.max_width = 2048;
14949                 dev->mode_config.max_height = 2048;
14950         } else if (IS_GEN3(dev)) {
14951                 dev->mode_config.max_width = 4096;
14952                 dev->mode_config.max_height = 4096;
14953         } else {
14954                 dev->mode_config.max_width = 8192;
14955                 dev->mode_config.max_height = 8192;
14956         }
14957
14958         if (IS_845G(dev) || IS_I865G(dev)) {
14959                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14960                 dev->mode_config.cursor_height = 1023;
14961         } else if (IS_GEN2(dev)) {
14962                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14963                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14964         } else {
14965                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14966                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14967         }
14968
14969         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14970
14971         DRM_DEBUG_KMS("%d display pipe%s available.\n",
14972                       INTEL_INFO(dev)->num_pipes,
14973                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14974
14975         for_each_pipe(dev_priv, pipe) {
14976                 intel_crtc_init(dev, pipe);
14977                 for_each_sprite(dev_priv, pipe, sprite) {
14978                         ret = intel_plane_init(dev, pipe, sprite);
14979                         if (ret)
14980                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14981                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
14982                 }
14983         }
14984
14985         intel_update_czclk(dev_priv);
14986         intel_update_cdclk(dev);
14987
14988         intel_shared_dpll_init(dev);
14989
14990         /* Just disable it once at startup */
14991         i915_disable_vga(dev);
14992         intel_setup_outputs(dev);
14993
14994         /* Just in case the BIOS is doing something questionable. */
14995         intel_fbc_disable(dev_priv);
14996
14997         drm_modeset_lock_all(dev);
14998         intel_modeset_setup_hw_state(dev);
14999         drm_modeset_unlock_all(dev);
15000
15001         for_each_intel_crtc(dev, crtc) {
15002                 struct intel_initial_plane_config plane_config = {};
15003
15004                 if (!crtc->active)
15005                         continue;
15006
15007                 /*
15008                  * Note that reserving the BIOS fb up front prevents us
15009                  * from stuffing other stolen allocations like the ring
15010                  * on top.  This prevents some ugliness at boot time, and
15011                  * can even allow for smooth boot transitions if the BIOS
15012                  * fb is large enough for the active pipe configuration.
15013                  */
15014                 dev_priv->display.get_initial_plane_config(crtc,
15015                                                            &plane_config);
15016
15017                 /*
15018                  * If the fb is shared between multiple heads, we'll
15019                  * just get the first one.
15020                  */
15021                 intel_find_initial_plane_obj(crtc, &plane_config);
15022         }
15023 }
15024
15025 static void intel_enable_pipe_a(struct drm_device *dev)
15026 {
15027         struct intel_connector *connector;
15028         struct drm_connector *crt = NULL;
15029         struct intel_load_detect_pipe load_detect_temp;
15030         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15031
15032         /* We can't just switch on the pipe A, we need to set things up with a
15033          * proper mode and output configuration. As a gross hack, enable pipe A
15034          * by enabling the load detect pipe once. */
15035         for_each_intel_connector(dev, connector) {
15036                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15037                         crt = &connector->base;
15038                         break;
15039                 }
15040         }
15041
15042         if (!crt)
15043                 return;
15044
15045         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15046                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15047 }
15048
15049 static bool
15050 intel_check_plane_mapping(struct intel_crtc *crtc)
15051 {
15052         struct drm_device *dev = crtc->base.dev;
15053         struct drm_i915_private *dev_priv = dev->dev_private;
15054         u32 val;
15055
15056         if (INTEL_INFO(dev)->num_pipes == 1)
15057                 return true;
15058
15059         val = I915_READ(DSPCNTR(!crtc->plane));
15060
15061         if ((val & DISPLAY_PLANE_ENABLE) &&
15062             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15063                 return false;
15064
15065         return true;
15066 }
15067
15068 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15069 {
15070         struct drm_device *dev = crtc->base.dev;
15071         struct intel_encoder *encoder;
15072
15073         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15074                 return true;
15075
15076         return false;
15077 }
15078
15079 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15080 {
15081         struct drm_device *dev = crtc->base.dev;
15082         struct drm_i915_private *dev_priv = dev->dev_private;
15083         u32 reg;
15084
15085         /* Clear any frame start delays used for debugging left by the BIOS */
15086         reg = PIPECONF(crtc->config->cpu_transcoder);
15087         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15088
15089         /* restore vblank interrupts to correct state */
15090         drm_crtc_vblank_reset(&crtc->base);
15091         if (crtc->active) {
15092                 struct intel_plane *plane;
15093
15094                 drm_crtc_vblank_on(&crtc->base);
15095
15096                 /* Disable everything but the primary plane */
15097                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15098                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15099                                 continue;
15100
15101                         plane->disable_plane(&plane->base, &crtc->base);
15102                 }
15103         }
15104
15105         /* We need to sanitize the plane -> pipe mapping first because this will
15106          * disable the crtc (and hence change the state) if it is wrong. Note
15107          * that gen4+ has a fixed plane -> pipe mapping.  */
15108         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15109                 bool plane;
15110
15111                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15112                               crtc->base.base.id);
15113
15114                 /* Pipe has the wrong plane attached and the plane is active.
15115                  * Temporarily change the plane mapping and disable everything
15116                  * ...  */
15117                 plane = crtc->plane;
15118                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15119                 crtc->plane = !plane;
15120                 intel_crtc_disable_noatomic(&crtc->base);
15121                 crtc->plane = plane;
15122         }
15123
15124         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15125             crtc->pipe == PIPE_A && !crtc->active) {
15126                 /* BIOS forgot to enable pipe A, this mostly happens after
15127                  * resume. Force-enable the pipe to fix this, the update_dpms
15128                  * call below we restore the pipe to the right state, but leave
15129                  * the required bits on. */
15130                 intel_enable_pipe_a(dev);
15131         }
15132
15133         /* Adjust the state of the output pipe according to whether we
15134          * have active connectors/encoders. */
15135         if (!intel_crtc_has_encoders(crtc))
15136                 intel_crtc_disable_noatomic(&crtc->base);
15137
15138         if (crtc->active != crtc->base.state->active) {
15139                 struct intel_encoder *encoder;
15140
15141                 /* This can happen either due to bugs in the get_hw_state
15142                  * functions or because of calls to intel_crtc_disable_noatomic,
15143                  * or because the pipe is force-enabled due to the
15144                  * pipe A quirk. */
15145                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15146                               crtc->base.base.id,
15147                               crtc->base.state->enable ? "enabled" : "disabled",
15148                               crtc->active ? "enabled" : "disabled");
15149
15150                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15151                 crtc->base.state->active = crtc->active;
15152                 crtc->base.enabled = crtc->active;
15153
15154                 /* Because we only establish the connector -> encoder ->
15155                  * crtc links if something is active, this means the
15156                  * crtc is now deactivated. Break the links. connector
15157                  * -> encoder links are only establish when things are
15158                  *  actually up, hence no need to break them. */
15159                 WARN_ON(crtc->active);
15160
15161                 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15162                         encoder->base.crtc = NULL;
15163         }
15164
15165         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15166                 /*
15167                  * We start out with underrun reporting disabled to avoid races.
15168                  * For correct bookkeeping mark this on active crtcs.
15169                  *
15170                  * Also on gmch platforms we dont have any hardware bits to
15171                  * disable the underrun reporting. Which means we need to start
15172                  * out with underrun reporting disabled also on inactive pipes,
15173                  * since otherwise we'll complain about the garbage we read when
15174                  * e.g. coming up after runtime pm.
15175                  *
15176                  * No protection against concurrent access is required - at
15177                  * worst a fifo underrun happens which also sets this to false.
15178                  */
15179                 crtc->cpu_fifo_underrun_disabled = true;
15180                 crtc->pch_fifo_underrun_disabled = true;
15181         }
15182 }
15183
15184 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15185 {
15186         struct intel_connector *connector;
15187         struct drm_device *dev = encoder->base.dev;
15188         bool active = false;
15189
15190         /* We need to check both for a crtc link (meaning that the
15191          * encoder is active and trying to read from a pipe) and the
15192          * pipe itself being active. */
15193         bool has_active_crtc = encoder->base.crtc &&
15194                 to_intel_crtc(encoder->base.crtc)->active;
15195
15196         for_each_intel_connector(dev, connector) {
15197                 if (connector->base.encoder != &encoder->base)
15198                         continue;
15199
15200                 active = true;
15201                 break;
15202         }
15203
15204         if (active && !has_active_crtc) {
15205                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15206                               encoder->base.base.id,
15207                               encoder->base.name);
15208
15209                 /* Connector is active, but has no active pipe. This is
15210                  * fallout from our resume register restoring. Disable
15211                  * the encoder manually again. */
15212                 if (encoder->base.crtc) {
15213                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15214                                       encoder->base.base.id,
15215                                       encoder->base.name);
15216                         encoder->disable(encoder);
15217                         if (encoder->post_disable)
15218                                 encoder->post_disable(encoder);
15219                 }
15220                 encoder->base.crtc = NULL;
15221
15222                 /* Inconsistent output/port/pipe state happens presumably due to
15223                  * a bug in one of the get_hw_state functions. Or someplace else
15224                  * in our code, like the register restore mess on resume. Clamp
15225                  * things to off as a safer default. */
15226                 for_each_intel_connector(dev, connector) {
15227                         if (connector->encoder != encoder)
15228                                 continue;
15229                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15230                         connector->base.encoder = NULL;
15231                 }
15232         }
15233         /* Enabled encoders without active connectors will be fixed in
15234          * the crtc fixup. */
15235 }
15236
15237 void i915_redisable_vga_power_on(struct drm_device *dev)
15238 {
15239         struct drm_i915_private *dev_priv = dev->dev_private;
15240         u32 vga_reg = i915_vgacntrl_reg(dev);
15241
15242         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15243                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15244                 i915_disable_vga(dev);
15245         }
15246 }
15247
15248 void i915_redisable_vga(struct drm_device *dev)
15249 {
15250         struct drm_i915_private *dev_priv = dev->dev_private;
15251
15252         /* This function can be called both from intel_modeset_setup_hw_state or
15253          * at a very early point in our resume sequence, where the power well
15254          * structures are not yet restored. Since this function is at a very
15255          * paranoid "someone might have enabled VGA while we were not looking"
15256          * level, just check if the power well is enabled instead of trying to
15257          * follow the "don't touch the power well if we don't need it" policy
15258          * the rest of the driver uses. */
15259         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15260                 return;
15261
15262         i915_redisable_vga_power_on(dev);
15263 }
15264
15265 static bool primary_get_hw_state(struct intel_plane *plane)
15266 {
15267         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15268
15269         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15270 }
15271
15272 /* FIXME read out full plane state for all planes */
15273 static void readout_plane_state(struct intel_crtc *crtc)
15274 {
15275         struct drm_plane *primary = crtc->base.primary;
15276         struct intel_plane_state *plane_state =
15277                 to_intel_plane_state(primary->state);
15278
15279         plane_state->visible =
15280                 primary_get_hw_state(to_intel_plane(primary));
15281
15282         if (plane_state->visible)
15283                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15284 }
15285
15286 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15287 {
15288         struct drm_i915_private *dev_priv = dev->dev_private;
15289         enum pipe pipe;
15290         struct intel_crtc *crtc;
15291         struct intel_encoder *encoder;
15292         struct intel_connector *connector;
15293         int i;
15294
15295         for_each_intel_crtc(dev, crtc) {
15296                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15297                 memset(crtc->config, 0, sizeof(*crtc->config));
15298                 crtc->config->base.crtc = &crtc->base;
15299
15300                 crtc->active = dev_priv->display.get_pipe_config(crtc,
15301                                                                  crtc->config);
15302
15303                 crtc->base.state->active = crtc->active;
15304                 crtc->base.enabled = crtc->active;
15305
15306                 readout_plane_state(crtc);
15307
15308                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15309                               crtc->base.base.id,
15310                               crtc->active ? "enabled" : "disabled");
15311         }
15312
15313         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15314                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15315
15316                 pll->on = pll->get_hw_state(dev_priv, pll,
15317                                             &pll->config.hw_state);
15318                 pll->active = 0;
15319                 pll->config.crtc_mask = 0;
15320                 for_each_intel_crtc(dev, crtc) {
15321                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15322                                 pll->active++;
15323                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15324                         }
15325                 }
15326
15327                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15328                               pll->name, pll->config.crtc_mask, pll->on);
15329
15330                 if (pll->config.crtc_mask)
15331                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15332         }
15333
15334         for_each_intel_encoder(dev, encoder) {
15335                 pipe = 0;
15336
15337                 if (encoder->get_hw_state(encoder, &pipe)) {
15338                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15339                         encoder->base.crtc = &crtc->base;
15340                         encoder->get_config(encoder, crtc->config);
15341                 } else {
15342                         encoder->base.crtc = NULL;
15343                 }
15344
15345                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15346                               encoder->base.base.id,
15347                               encoder->base.name,
15348                               encoder->base.crtc ? "enabled" : "disabled",
15349                               pipe_name(pipe));
15350         }
15351
15352         for_each_intel_connector(dev, connector) {
15353                 if (connector->get_hw_state(connector)) {
15354                         connector->base.dpms = DRM_MODE_DPMS_ON;
15355                         connector->base.encoder = &connector->encoder->base;
15356                 } else {
15357                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15358                         connector->base.encoder = NULL;
15359                 }
15360                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15361                               connector->base.base.id,
15362                               connector->base.name,
15363                               connector->base.encoder ? "enabled" : "disabled");
15364         }
15365
15366         for_each_intel_crtc(dev, crtc) {
15367                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15368
15369                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15370                 if (crtc->base.state->active) {
15371                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15372                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15373                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15374
15375                         /*
15376                          * The initial mode needs to be set in order to keep
15377                          * the atomic core happy. It wants a valid mode if the
15378                          * crtc's enabled, so we do the above call.
15379                          *
15380                          * At this point some state updated by the connectors
15381                          * in their ->detect() callback has not run yet, so
15382                          * no recalculation can be done yet.
15383                          *
15384                          * Even if we could do a recalculation and modeset
15385                          * right now it would cause a double modeset if
15386                          * fbdev or userspace chooses a different initial mode.
15387                          *
15388                          * If that happens, someone indicated they wanted a
15389                          * mode change, which means it's safe to do a full
15390                          * recalculation.
15391                          */
15392                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15393
15394                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15395                         update_scanline_offset(crtc);
15396                 }
15397         }
15398 }
15399
15400 /* Scan out the current hw modeset state,
15401  * and sanitizes it to the current state
15402  */
15403 static void
15404 intel_modeset_setup_hw_state(struct drm_device *dev)
15405 {
15406         struct drm_i915_private *dev_priv = dev->dev_private;
15407         enum pipe pipe;
15408         struct intel_crtc *crtc;
15409         struct intel_encoder *encoder;
15410         int i;
15411
15412         intel_modeset_readout_hw_state(dev);
15413
15414         /* HW state is read out, now we need to sanitize this mess. */
15415         for_each_intel_encoder(dev, encoder) {
15416                 intel_sanitize_encoder(encoder);
15417         }
15418
15419         for_each_pipe(dev_priv, pipe) {
15420                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15421                 intel_sanitize_crtc(crtc);
15422                 intel_dump_pipe_config(crtc, crtc->config,
15423                                        "[setup_hw_state]");
15424         }
15425
15426         intel_modeset_update_connector_atomic_state(dev);
15427
15428         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15429                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15430
15431                 if (!pll->on || pll->active)
15432                         continue;
15433
15434                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15435
15436                 pll->disable(dev_priv, pll);
15437                 pll->on = false;
15438         }
15439
15440         if (IS_VALLEYVIEW(dev))
15441                 vlv_wm_get_hw_state(dev);
15442         else if (IS_GEN9(dev))
15443                 skl_wm_get_hw_state(dev);
15444         else if (HAS_PCH_SPLIT(dev))
15445                 ilk_wm_get_hw_state(dev);
15446
15447         for_each_intel_crtc(dev, crtc) {
15448                 unsigned long put_domains;
15449
15450                 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15451                 if (WARN_ON(put_domains))
15452                         modeset_put_power_domains(dev_priv, put_domains);
15453         }
15454         intel_display_set_init_power(dev_priv, false);
15455 }
15456
15457 void intel_display_resume(struct drm_device *dev)
15458 {
15459         struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15460         struct intel_connector *conn;
15461         struct intel_plane *plane;
15462         struct drm_crtc *crtc;
15463         int ret;
15464
15465         if (!state)
15466                 return;
15467
15468         state->acquire_ctx = dev->mode_config.acquire_ctx;
15469
15470         /* preserve complete old state, including dpll */
15471         intel_atomic_get_shared_dpll_state(state);
15472
15473         for_each_crtc(dev, crtc) {
15474                 struct drm_crtc_state *crtc_state =
15475                         drm_atomic_get_crtc_state(state, crtc);
15476
15477                 ret = PTR_ERR_OR_ZERO(crtc_state);
15478                 if (ret)
15479                         goto err;
15480
15481                 /* force a restore */
15482                 crtc_state->mode_changed = true;
15483         }
15484
15485         for_each_intel_plane(dev, plane) {
15486                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15487                 if (ret)
15488                         goto err;
15489         }
15490
15491         for_each_intel_connector(dev, conn) {
15492                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15493                 if (ret)
15494                         goto err;
15495         }
15496
15497         intel_modeset_setup_hw_state(dev);
15498
15499         i915_redisable_vga(dev);
15500         ret = drm_atomic_commit(state);
15501         if (!ret)
15502                 return;
15503
15504 err:
15505         DRM_ERROR("Restoring old state failed with %i\n", ret);
15506         drm_atomic_state_free(state);
15507 }
15508
15509 void intel_modeset_gem_init(struct drm_device *dev)
15510 {
15511         struct drm_crtc *c;
15512         struct drm_i915_gem_object *obj;
15513         int ret;
15514
15515         mutex_lock(&dev->struct_mutex);
15516         intel_init_gt_powersave(dev);
15517         mutex_unlock(&dev->struct_mutex);
15518
15519         intel_modeset_init_hw(dev);
15520
15521         intel_setup_overlay(dev);
15522
15523         /*
15524          * Make sure any fbs we allocated at startup are properly
15525          * pinned & fenced.  When we do the allocation it's too early
15526          * for this.
15527          */
15528         for_each_crtc(dev, c) {
15529                 obj = intel_fb_obj(c->primary->fb);
15530                 if (obj == NULL)
15531                         continue;
15532
15533                 mutex_lock(&dev->struct_mutex);
15534                 ret = intel_pin_and_fence_fb_obj(c->primary,
15535                                                  c->primary->fb,
15536                                                  c->primary->state,
15537                                                  NULL, NULL);
15538                 mutex_unlock(&dev->struct_mutex);
15539                 if (ret) {
15540                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15541                                   to_intel_crtc(c)->pipe);
15542                         drm_framebuffer_unreference(c->primary->fb);
15543                         c->primary->fb = NULL;
15544                         c->primary->crtc = c->primary->state->crtc = NULL;
15545                         update_state_fb(c->primary);
15546                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15547                 }
15548         }
15549
15550         intel_backlight_register(dev);
15551 }
15552
15553 void intel_connector_unregister(struct intel_connector *intel_connector)
15554 {
15555         struct drm_connector *connector = &intel_connector->base;
15556
15557         intel_panel_destroy_backlight(connector);
15558         drm_connector_unregister(connector);
15559 }
15560
15561 void intel_modeset_cleanup(struct drm_device *dev)
15562 {
15563         struct drm_i915_private *dev_priv = dev->dev_private;
15564         struct drm_connector *connector;
15565
15566         intel_disable_gt_powersave(dev);
15567
15568         intel_backlight_unregister(dev);
15569
15570         /*
15571          * Interrupts and polling as the first thing to avoid creating havoc.
15572          * Too much stuff here (turning of connectors, ...) would
15573          * experience fancy races otherwise.
15574          */
15575         intel_irq_uninstall(dev_priv);
15576
15577         /*
15578          * Due to the hpd irq storm handling the hotplug work can re-arm the
15579          * poll handlers. Hence disable polling after hpd handling is shut down.
15580          */
15581         drm_kms_helper_poll_fini(dev);
15582
15583         intel_unregister_dsm_handler();
15584
15585         intel_fbc_disable(dev_priv);
15586
15587         /* flush any delayed tasks or pending work */
15588         flush_scheduled_work();
15589
15590         /* destroy the backlight and sysfs files before encoders/connectors */
15591         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15592                 struct intel_connector *intel_connector;
15593
15594                 intel_connector = to_intel_connector(connector);
15595                 intel_connector->unregister(intel_connector);
15596         }
15597
15598         drm_mode_config_cleanup(dev);
15599
15600         intel_cleanup_overlay(dev);
15601
15602         mutex_lock(&dev->struct_mutex);
15603         intel_cleanup_gt_powersave(dev);
15604         mutex_unlock(&dev->struct_mutex);
15605
15606         intel_teardown_gmbus(dev);
15607 }
15608
15609 /*
15610  * Return which encoder is currently attached for connector.
15611  */
15612 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15613 {
15614         return &intel_attached_encoder(connector)->base;
15615 }
15616
15617 void intel_connector_attach_encoder(struct intel_connector *connector,
15618                                     struct intel_encoder *encoder)
15619 {
15620         connector->encoder = encoder;
15621         drm_mode_connector_attach_encoder(&connector->base,
15622                                           &encoder->base);
15623 }
15624
15625 /*
15626  * set vga decode state - true == enable VGA decode
15627  */
15628 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15629 {
15630         struct drm_i915_private *dev_priv = dev->dev_private;
15631         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15632         u16 gmch_ctrl;
15633
15634         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15635                 DRM_ERROR("failed to read control word\n");
15636                 return -EIO;
15637         }
15638
15639         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15640                 return 0;
15641
15642         if (state)
15643                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15644         else
15645                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15646
15647         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15648                 DRM_ERROR("failed to write control word\n");
15649                 return -EIO;
15650         }
15651
15652         return 0;
15653 }
15654
15655 struct intel_display_error_state {
15656
15657         u32 power_well_driver;
15658
15659         int num_transcoders;
15660
15661         struct intel_cursor_error_state {
15662                 u32 control;
15663                 u32 position;
15664                 u32 base;
15665                 u32 size;
15666         } cursor[I915_MAX_PIPES];
15667
15668         struct intel_pipe_error_state {
15669                 bool power_domain_on;
15670                 u32 source;
15671                 u32 stat;
15672         } pipe[I915_MAX_PIPES];
15673
15674         struct intel_plane_error_state {
15675                 u32 control;
15676                 u32 stride;
15677                 u32 size;
15678                 u32 pos;
15679                 u32 addr;
15680                 u32 surface;
15681                 u32 tile_offset;
15682         } plane[I915_MAX_PIPES];
15683
15684         struct intel_transcoder_error_state {
15685                 bool power_domain_on;
15686                 enum transcoder cpu_transcoder;
15687
15688                 u32 conf;
15689
15690                 u32 htotal;
15691                 u32 hblank;
15692                 u32 hsync;
15693                 u32 vtotal;
15694                 u32 vblank;
15695                 u32 vsync;
15696         } transcoder[4];
15697 };
15698
15699 struct intel_display_error_state *
15700 intel_display_capture_error_state(struct drm_device *dev)
15701 {
15702         struct drm_i915_private *dev_priv = dev->dev_private;
15703         struct intel_display_error_state *error;
15704         int transcoders[] = {
15705                 TRANSCODER_A,
15706                 TRANSCODER_B,
15707                 TRANSCODER_C,
15708                 TRANSCODER_EDP,
15709         };
15710         int i;
15711
15712         if (INTEL_INFO(dev)->num_pipes == 0)
15713                 return NULL;
15714
15715         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15716         if (error == NULL)
15717                 return NULL;
15718
15719         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15720                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15721
15722         for_each_pipe(dev_priv, i) {
15723                 error->pipe[i].power_domain_on =
15724                         __intel_display_power_is_enabled(dev_priv,
15725                                                          POWER_DOMAIN_PIPE(i));
15726                 if (!error->pipe[i].power_domain_on)
15727                         continue;
15728
15729                 error->cursor[i].control = I915_READ(CURCNTR(i));
15730                 error->cursor[i].position = I915_READ(CURPOS(i));
15731                 error->cursor[i].base = I915_READ(CURBASE(i));
15732
15733                 error->plane[i].control = I915_READ(DSPCNTR(i));
15734                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15735                 if (INTEL_INFO(dev)->gen <= 3) {
15736                         error->plane[i].size = I915_READ(DSPSIZE(i));
15737                         error->plane[i].pos = I915_READ(DSPPOS(i));
15738                 }
15739                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15740                         error->plane[i].addr = I915_READ(DSPADDR(i));
15741                 if (INTEL_INFO(dev)->gen >= 4) {
15742                         error->plane[i].surface = I915_READ(DSPSURF(i));
15743                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15744                 }
15745
15746                 error->pipe[i].source = I915_READ(PIPESRC(i));
15747
15748                 if (HAS_GMCH_DISPLAY(dev))
15749                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15750         }
15751
15752         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15753         if (HAS_DDI(dev_priv->dev))
15754                 error->num_transcoders++; /* Account for eDP. */
15755
15756         for (i = 0; i < error->num_transcoders; i++) {
15757                 enum transcoder cpu_transcoder = transcoders[i];
15758
15759                 error->transcoder[i].power_domain_on =
15760                         __intel_display_power_is_enabled(dev_priv,
15761                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15762                 if (!error->transcoder[i].power_domain_on)
15763                         continue;
15764
15765                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15766
15767                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15768                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15769                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15770                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15771                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15772                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15773                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15774         }
15775
15776         return error;
15777 }
15778
15779 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15780
15781 void
15782 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15783                                 struct drm_device *dev,
15784                                 struct intel_display_error_state *error)
15785 {
15786         struct drm_i915_private *dev_priv = dev->dev_private;
15787         int i;
15788
15789         if (!error)
15790                 return;
15791
15792         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15793         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15794                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15795                            error->power_well_driver);
15796         for_each_pipe(dev_priv, i) {
15797                 err_printf(m, "Pipe [%d]:\n", i);
15798                 err_printf(m, "  Power: %s\n",
15799                            error->pipe[i].power_domain_on ? "on" : "off");
15800                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15801                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15802
15803                 err_printf(m, "Plane [%d]:\n", i);
15804                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15805                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15806                 if (INTEL_INFO(dev)->gen <= 3) {
15807                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15808                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15809                 }
15810                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15811                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15812                 if (INTEL_INFO(dev)->gen >= 4) {
15813                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15814                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15815                 }
15816
15817                 err_printf(m, "Cursor [%d]:\n", i);
15818                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15819                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15820                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15821         }
15822
15823         for (i = 0; i < error->num_transcoders; i++) {
15824                 err_printf(m, "CPU transcoder: %c\n",
15825                            transcoder_name(error->transcoder[i].cpu_transcoder));
15826                 err_printf(m, "  Power: %s\n",
15827                            error->transcoder[i].power_domain_on ? "on" : "off");
15828                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15829                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15830                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15831                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15832                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15833                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15834                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15835         }
15836 }
15837
15838 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15839 {
15840         struct intel_crtc *crtc;
15841
15842         for_each_intel_crtc(dev, crtc) {
15843                 struct intel_unpin_work *work;
15844
15845                 spin_lock_irq(&dev->event_lock);
15846
15847                 work = crtc->unpin_work;
15848
15849                 if (work && work->event &&
15850                     work->event->base.file_priv == file) {
15851                         kfree(work->event);
15852                         work->event = NULL;
15853                 }
15854
15855                 spin_unlock_irq(&dev->event_lock);
15856         }
15857 }