
CDSSpec: Testing Concurrent Data Structures Under the
C/C++11 Memory Model

Peizhao Ou and Brian Demsky

ABSTRACT
Concurrent data structures often provide better performance on
multi-core platforms, but are significantly more difficult to design
and verify than their sequential counterparts. The C/C++11 stan-
dard introduced a weak language memory model supporting low-
level atomic operations such as compare and swap (CAS). While
these atomic operations can significantly improve the performance
of concurrent data structures, programming at this level introduces
non-intuitive behaviors that significantly increase the difficulty of
developing code.

In this paper, we present CDSSPEC, a specification language
checker that allows developers to write simple specifications for
low-level concurrent data structures that make use of C/C++11
atomics and check the correctness of concurrent data structures
against these specifications. CDSSPEC is designed to be used in
conjunction with model checking tools and we have implemented
it as a plugin to CDSCHECKER. We have evaluated CDSSPEC by
annotating and checking several concurrent data structures.

1. INTRODUCTION
Concurrent data structure design can improve scalability by sup-

porting multiple simultaneous operations, reducing memory coher-
ence traffic, and reducing the time taken by an individual data struc-
ture operation. Researchers have developed many concurrent data
structure designs with these goals [18, 28]. Concurrent data struc-
tures often use sophisticated techniques including low-level atomic
instructions (e.g., compare and swap), careful reasoning about the
order of loads and stores, and fine-grained locking. For example,
while the standard Java hash table implementation can limit scal-
ability to a handful of cores, more sophisticated concurrent hash
tables can scale to many hundreds of cores [26].

The C/C++ standard committee extended the C and C++
languages with support for low-level atomic operations in the
C/C++11 standard [2, 3, 8] to enable developers to write portable
implementations of concurrent data structures. To support the re-
laxations typically performed by compilers and processors, the
C/C++ memory model provides weaker semantics than sequential
consistency [24] and as a result, correctly using these operations is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

challenging. Developers must not only reason about potential in-
terleavings, but also about how the processor and compiler might
reorder memory operations. Even experts make subtle errors when
reasoning about such memory models.

Researchers have developed tools for exploring the behav-
ior of code under the C/C++ memory model including CD-
SCHECKER [30], CPPMEM [6], and Relacy [33]. These tools ex-
plore behaviors that are allowed under the C/C++ memory model.
While these tools can certainly be useful for exploring executions,
they can be challenging to use for testing as they don’t provide
support (other than assertions) for specifying the behavior of data
structures. Using assertions can be challenging as different inter-
leavings or reorderings legitimately produce different behaviors,
and it can be very difficult to code assertions to check the output
of a test case for an arbitrary (unknown) execution.

This paper presents CDSSPEC, a specification language and
specification checking tool that is designed to be used in conjunc-
tion with model checking tools. We have implemented it as a plugin
for the CDSCHECKER model checker.

1.1 Background on Specifying the Correct-
ness of Concurrent Data Structures

Researchers have developed several techniques for specifying
correctness properties of concurrent data structures written for
strong memory models. While these techniques cannot handle the
behaviors typically exhibited by relaxed data structure implemen-
tations, they provide insight into intuitive approaches to specifying
concurrent data structure behavior.

One approach for specifying the correctness of concurrent data
structures is in terms of equivalent sequential executions of either
the concurrent data structure or a simplified sequential version. The
problem then becomes how do we map a concurrent execution to an
equivalent sequential execution? A common criterion is lineariz-
ability — linearizability simply states that a concurrent operation
can be viewed as taking effect at some time between its invocation
and its return (or response) [22].

An equivalent sequential data structure is a sequential version of
a concurrent data structure that can be used to express correctness
properties by relating executions of the original concurrent data
structure with executions of the equivalent sequential data struc-
ture. The equivalent sequential data structure is often simpler, and
in many cases one can simply use existing well-tested implementa-
tions from the STL library.

An execution history is a total order of method invocations and
responses. A sequential history is one where all invocations are fol-
lowed by the corresponding responses immediately. A concurrent
execution is correct if its behavior is consistent with its equivalent
sequential history replayed on the equivalent sequential data struc-

ture. A concurrent object is linearizable if for all executions:
1. Each method call appears to take effect instantaneously at some

point between its invocation and response.
2. The invocations and responses can be reordered to yield a se-

quential history under the rule that an invocation cannot be re-
ordered before the preceding responses.

3. The concurrent execution yields the same behavior as the se-
quential history.
A weaker variation of linearization is sequential consistency1.

Sequential consistency only requires that there exists a sequential
history that is consistent with the program order (the intra-thread
order). This ordering does not need to be consistent with the order
that the operations were actually issued in.

Line-Up [10], Paraglider [32], and VYRD [20] leverage lin-
earizability to test concurrent data structures. Unfortunately, ef-
ficient implementations of many common data structures, e.g.,
RCU [18], MS Queue [28], etc., for the C/C++ memory model
are neither linearizable nor sequentially consistent! Thus pre-
vious tools cannot check such data structures under the C/C++
memory model.

1.2 New Challenges from the C/C++ Memory
Model

The C/C++ memory model brings the following two key chal-
lenges that prevent the application of previous approaches to spec-
ifying the concurrent data structures to this setting:
1. Relaxed Executions Break Existing Data Structure Consis-

tency Models: C/C++ data structures often expose clients to
weaker (non-SC) behaviors to gain performance. A common
guarantee is to provide happens-before synchronization between
operations that implement updates and the operations that read
those updates. These data structures often do not guarantee that
different threads observe updates in the same order — in other
words the data structures may expose clients to weaker consis-
tency models than sequential consistency. For example, even
when one uses the relatively strong acquire and release
memory orderings in C++, it is possible for two different threads
to observe two stores happening in different orders, i.e., execu-
tions can fail the IRIW test. Thus many data structures legiti-
mately admit executions for which there are no sequential histo-
ries that preserve program order.
Like many other relaxed memory models, the C/C++ memory
model does not include a total order over all memory operations,
thus even further complicating the application of traditional ap-
proaches to correctness, e.g., linearization cannot be applied.
In particular the approaches that relate the behaviors of concur-
rent data structures to analogous sequential data structures break
down due to the absence of a total ordering of the memory opera-
tions. While many of the dynamic tools [30, 33] for exploring the
behavior of code under relaxed models do as a practical matter
print out an execution in some order, this order is to some degree
arbitrary as relaxed memory models generally make it possible
for a data structure operation to see the effects of operations that
appear later in any such an order (e.g., a load can read from a
store that appears later in the order). Instead of a total order,
the C/C++ memory model is formulated as a graph of memory
operations with several partial orders defined in this graph.

2. Constraining Reorderings (Specifying Synchronization

1It is important to note that the term sequential consistency in the
literature is applied to both the consistency model that data struc-
tures expose clients to as well as the guarantees that the underlying
memory system provides for load and store operations.

Program with
CDSSPEC
annotations

Program with
annotation

atomics

CDSChecker
framework

CDSSPEC
checker
plugin

CDSSPEC
compiler

GCC

Diagnostic
reports

run

extend

Figure 1: CDSSPEC system overview

Properties): Synchronization2 in C/C++ provides an ordering
between memory operations to different locations. Concurrent
data structures must establish synchronization or they poten-
tially expose their users to highly non-intuitive behavior that
is likely to break client code. For example, consider the case
of a concurrent queue that does not establish synchronization
between enqueue and dequeue operations. Consider the follow-
ing sequence of operations: (1) thread A initializes the fields
of a new object X; (2) thread A enqueues the reference to X
in such a queue (3) thread B dequeues the reference to X; (4)
thread B reads the fields of X through the dequeued reference.
In (4), thread B could fail to see the initializing writes from (1).
This surprising behavior could occur if the compiler or CPU
could reorder the initializing writes to be executed after the
enqueue operation. If the fields are non-atomic, such loads are
considered data races and violate the data race free requirement
of the C/C++ language standard and thus the program has no
semantics.
The C/C++ memory model formalizes synchronization in terms
of a happens-before relation. The C/C++ happens-before rela-
tionship is a partial order over memory accesses. If memory ac-
cess x happens before memory access y, it means that the effects
of x must be ordered before the effects of y.

1.3 Specification Language and Tool Support
Figure 1 presents an overview of the CDSSPEC system. Af-

ter implementing a concurrent data structure, developers annotate
their code with a CDSSPEC specification. To test their implemen-
tation, developers compile the data structure with the CDSSPEC
specification compiler to extract the specification and generate a
program that is instrumented with specification checks. Then, de-
velopers compile the instrumented program with a standard C/C++
compiler. Finally, developers run the binary under the CDSSPEC
checker. CDSSPEC then exhaustively explores the behaviors of the
specific unit test and generates diagnostic reports for any executions
that violate the specification.

1.4 Contributions
This paper makes the following contributions:
• Specification Language: It introduces a specification language

that enables developers to write specifications of concurrent data
structures developed for a relaxed memory model in a simple
fashion that capture the key correctness properties. Our specifi-
cation language is the first to our knowledge that supports con-
current data structures that use C/C++ atomic operations.
• A Technique to Relate Concurrent Executions to Sequential

Executions: It presents an approach to order the memory oper-
2Synchronization here is not mutual exclusion, but rather a lower-
level property that captures which stores must be visible to a thread.
In other words, it constrains which reorderings can be performed by
a processor or compiler.

ations for the C/C++ model, which lacks a definition of a trace
and for which one generally cannot even construct a total order
of atomic operations that is consistent with the program order.
The generated sequential execution by necessity does not always
maintain program order.
• Synchronization Properties: It presents (a) constructs for spec-

ifying the happens before relations that a data structure should
establish, and (b) tool support for checking these properties and
exposing synchronization related bugs.
• Tool for Checking C/C++ Data Structures Against Specifica-

tions: CDSSPEC is the first tool to our knowledge that can check
concurrent data structures that exhibit relaxed behaviors against
specifications that are specified in terms of intuitive sequential
executions.
• Evaluation: It shows that the CDSSPEC specification language

can express key correctness properties for a set of real-world
concurrent data structures, that our tool can detect bugs, and that
our tool can unit test real world data structures with reasonable
performance.

2. C/C++ MEMORY MODEL
We next briefly summarize the key aspects of the C/C++ mem-

ory model. The memory model describes a set of atomic operations
and the corresponding allowed behaviors of programs that utilize
them. A more detailed formal treatment of the memory model [6]
and a more detailed informal description [2, 3] are available in the
literature. Any operation on an atomic object will have one of six
memory orders, each of which falls into one or more of the follow-
ing categories.

relaxed: memory_order_relaxed – weakest ordering

release: memory_order_release, memory_order_acq_rel,
and memory_order_seq_cst – a store-release may form
release/consume or release/acquire synchronization

consume:3 memory_order_consume – a load-consume may
form release/consume synchronization

acquire: memory_order_acquire, memory_order_acq_rel,
and memory_order_seq_cst – a load-acquire may form
release/acquire synchronization

seq-cst: memory_order_seq_cst – strongest ordering

2.1 Relations
The C/C++ memory model expresses program behavior in the

form of binary relations or orderings. The following subsections
will briefly summarize the relevant relations. Much of this discus-
sion resembles the preferred model from the formalization in [6].
Sequenced-Before: The order of program operations within a
single thread of execution establishes an intra-thread sequenced-
before (sb) relation. Note that while some operations in C/C++
provide no intra-thread ordering—the equality operator (==), for
example—we ignore this detail and assume that sb totally orders
all operations in a thread.
Reads-From: The reads-from (rf) relation consists of store-load
pairs (X,Y) such that Y reads its value from the effect of X—or

X
rf−→ Y . In the C/C++ memory model, this relation is non-trivial,

3Consume is not broadly supported by compilers due to challenges
associate with preserving data dependencies and is unlikely to pro-
vide significant performance gains on x86 hardware. We take the
same approach as many compilers and treat consumes as acquires.

as a given load operation may read from one of many potential
stores in the program execution.
Synchronizes-With: The synchronizes-with (sw) relation captures
synchronization that occurs when certain atomic operations interact
across two threads. For instance, release/acquire synchronization
occurs between a pair of atomic operations on the same object: a
store-release X and a load-acquire Y . If Y reads from X , then X

synchronizes with Y —or X sw−→ Y .
Happens-Before: In CDSSPEC, we avoid consume operations,
and so the happens-before (hb) relation is simply the transitive clo-
sure of sb and sw.

The hb relation restricts the stores that loads can read from. For
example, if we have two stores X and Y and a load Z to the same
memory location and X

hb−→ Y
hb−→ Z, then Z cannot read from X .

Sequential Consistency: All seq-cst operations in a program exe-
cution form a total ordering (sc) so that, for instance, a seq-cst load
may not read from a seq-cst store prior to the most recent store
(to the same location) in the sc ordering, nor from any store that
happens before that store. The sc order must be consistent with hb.
Modification Order: Each atomic object in a program execu-
tion has an associated modification order (mo)—a total order of
all stores to that object—which informally represents a memory-
coherent ordering in which those stores may be observed by the
rest of the program. In general the modification orders for all ob-
jects cannot be combined to form a consistent total ordering.

3. MOTIVATING EXAMPLE
We will use the read-copy update (RCU) [18] implementation

in Figure 2 as a running example. RCU data structures are use-
ful for usage scenarios with large numbers of reads and relatively
few updates. RCU based data structures scale to large numbers of
readers because read operations do not contain any low-level store
operations and thus do not generate coherence traffic to invalidate
cache lines. Lines 3 through 33 contain the code for the RCU im-
plementation, and Lines 35 through 44 show a test case for the
implementation.

The RCU implementation maintains a shared pointer (Line 9)
node to reference the data shared by readers and updaters. A
reader loads the shared pointer (Line 18) to read the shared data,
while an updater allocates a new struct (Line 24), loads the shared
pointer (Line 25), and then attempts a compare and swap (CAS)
operation to update the shared pointer. This process repeats until
the CAS is successful.

This implementation uses low-level atomic operations provided
by C/C++ to implement the RCU mechanism. For example, in
Line 29, the update method uses a CAS operation to update the
node. The memory order parameters attached to the atomic oper-
ations ensure that memory accesses that were performed before the
update operation must occur before memory accesses that were
performed after the read operation.

3.1 Consistency Model
In the example code, two threads, Thread 1 and Thread 2, each

update one of the RCU objects x and y, respectively, and then
access the object updated by the other thread. Under the C/C++
memory model, this example admits an execution in which both
Thread 1 and Thread 2 read the initial value 0.

Figure 3 shows a possible order for this execution in which the
model checker processes statements in the order shown in the ex-
ecution labeled Original Trace4, which is an interleaving of the in-
4Note that the C/C++ memory model does not include any notion
of a trace. We merely use the term trace to refer to the order in

1 #define mo_acquire memory_order_acquire
2 #define mo_acq_rel memory_order_acq_rel
3 struct Node {
4 int data ;
5 int version;
6 };
7

8 class RCU {
9 atomic<Node*> node;

10 public:
11 RCU() {
12 Node *n = new Node;
13 n->data= 0;
14 n->version = 0;
15 atomic_init(&node, n);
16 }
17 void read(int *data, int *version) {
18 Node *res = node.load(mo_acquire);
19 *data = res->data;
20 *version = res->version;
21 }
22 void update(int data) {
23 bool succ = false;
24 Node *newNode = new Node;
25 Node *prev = node.load(mo_acquire);
26 do {
27 newNode->data = data;
28 newNode->version = prev->version + 1;
29 succ = node.compare_exchange_strong(prev,
30 newNode, mo_acq_rel, mo_acquire);
31 } while (!succ);
32 }
33 };
34

35 RCU x, y; // Define two RCU objects
36 int r1, r2, v1, v2;
37 void thrd_1() { // Thread 1
38 x.update(1);
39 y.read(&r1, &v1); // r1 == 0
40 }
41 void thrd_2() { // Thread 2
42 y.update(1);
43 x.read(&r2, &v2); // r2 == 0
44 }

Figure 2: C++11 read-copy update example

vocation and response events of API methods indicated by “_i”and
“_r”, respectively.

This trace is rather counter-intuitive because it orders Thread 1’s
update event before Thread 2’s read event, yet Thread 2’s read
event does not observe the updated value. However, under the
C/C++11 memory model, this is allowed since a load is allowed
to read a value that is written by an old store.

It is important to note that it is impossible to produce a sequential
history for this example that preserves program order and produces
the observed behavior. This means that traditional notions of cor-
rectness that relate concurrent executions to sequential executions
that were developed for the SC memory model cannot directly be
applied to the C/C++11 memory model.

This example leads to the following conclusion — if we want
to define the behavior of concurrent executions by relating them to
equivalent sequential histories, then we must give up on preserving
program order.

We note that for this example, if we give up on program order,
we produce the sequential history in Figure 3 labeled Reordered
Trace. The data structure operations in this sequential history have
behavior that is consistent with the observed behaviors in the ex-
ample execution.

3.2 Synchronization Properties
A correct RCU data structure ensures the property that the invo-

which CDSSPEC prints the execution.

update_i
thrd1

update_r
thrd1

read_i
thrd1

read_r
thrd1

update_i
thrd2

update_r
thrd2

read_i
thrd2

read_r
thrd2

x.read x.update y.read y.update

update_i
thrd1

update_r
thrd1

read_i
thrd1

read_r
thrd1

update_i
thrd2

update_r
thrd2

read_i
thrd2

read_r
thrd2

Reordered
Trace

Original
Trace

program
order

Figure 3: History of a possible execution of two RCU objects

cation event of an update operation happens-before the response
event of the subsequent read operation. Informally, all operations
that appear before the update operation must appear to occur be-
fore the operations that appear after the read operation. While
these semantics follow naturally for SC, for relaxed memory mod-
els we must ensure that neither the compiler nor the processor per-
forms reorderings that violate these semantics. Therefore, when a
reader reads the fields of the node, data races are eliminated since
the read operation synchronizes with the update operation.

In the C/C++11 memory model, the transitive closure of
sequence-before and synchronizes-with relations form the happens-
before relation in the absence of operations with the consume
memory order. Since every time an update operation finishes,
a CAS operation to node with release semantics is executed, and
the subsequent read loads the node reference with acquire se-
mantics, the read operation synchronizes with the update op-
eration, providing the necessary synchronization properties. Some
RCU implementations may use consume semantics instead of ac-
quire semantics, however we do not use consume for the following
two reasons: (1) most existing C/C++ compilers do not support
consume semantics and thus acquire does not involve extra over-
head and (2) using consume semantics provides a more complex
interface to clients that may require them to explicitly declare de-
pendences throughout the code.

4. SPECIFICATION LANGUAGE DESIGN
We begin by overviewing CDSSPEC’s basic approach. The

CDSSPEC specification language specifies the correctness proper-
ties for concurrent data structures by establishing a correspondence
with an equivalent sequential data structure, which requires: (1)
defining the equivalent sequential data structure; (2) establishing
an equivalent sequential history; (3) relating the behavior of the
concurrent execution to the sequential history; and (4) specifying
the synchronization properties between method invocations. The
specification language has the following key components:
1. Equivalent Sequential Data Structure: This component de-
fines a sequential data structure against which the concurrent data
structure will be checked.
2. Defining the Equivalent Sequential History: For real-world
data structures, generally there exist two types of API methods,
primitive API methods and aggregate API methods. Take con-
current hashtables as an example, it provides primitive API meth-
ods such as put and get that implement the core functionality of
the data structure, and it also has aggregate API methods such as
putAll that calls primitive API methods internally. From our ex-
perience working with our benchmark set, it is generally possible
to generate a sequential history of primitive API method invoca-
tions for real-world data structures as they generally serialize on a
single memory location — while it is possible to observe partially
completed aggregate API method invocations. Therefore, our spec-
ifications will focus on the correctness of primitive API methods.

Borrowing from VYRD [20] the concept of commit points, we

allow developers to specify ordering points — the specific atomic
operations between method invocation and response events that are
used for ordering method calls. Ordering points are a generaliza-
tion of the commit points as they also use memory operations that
do not commit the data structure operation to order method calls.
Developers then specify ordering points to generate the equivalent
sequential history.
3. Specifying Correct Behaviors: Developers use the CDSSPEC
specification to provide a set of side effects and assertions to de-
scribe the desired behavior of each API method. Side effects cap-
ture how a method updates the equivalent sequential data structure.
Assertions include both preconditions and postconditions which
specify what conditions each method must satisfy before and af-
ter the method call, respectively. The specification of the side ef-
fects and assertions may make use of the states of the equivalent
sequential data structure, meaning that these components can ac-
cess the internal variables and methods of the equivalent sequential
data structure. Additionally, they can reference the values available
at the method invocation and response, i.e., the parameter values
and the return value.
4. Synchronization: The synchronization specification describes
the desired happens before relations between API method invo-
cations. CDSSPEC specifications allow developers to specify the
properties at the abstraction of methods. This makes specifications
cleaner, more understandable, and less error-prone because the
properties do not rely on low-level implementation details. More-
over, CDSSPEC specifications allow developers to attach condi-
tions to methods when specifying synchronization properties so
that a method call might synchronize with another only under
a specific condition. For example, consider a spin lock with a
try_lock() method, we need to specify that only a successful
try_lock() method invocation must synchronize with the pre-
vious unlock() method invocation.

Figure 4 presents the grammar for the CDSSPEC specification
language. The grammar defines three types of specification anno-
tations: structure annotations, method annotations, and ordering
point annotations. In the grammar, code means legal C/C++ source
code; and label means a legal C/C++ variable name. Annotations
are embedded in C/C++ comments. This format does not affect the
semantics of the original program and allows for the same source
to be used by both a standard C/C++ compiler to generate produc-
tion code and for the CDSSPEC specification compiler to extract
the CDSSPEC specification from the comments. We discuss these
constructs in more detail throughout the remainder of this section.

4.1 Example
To make the CDSSPEC specification language more concrete,

Figure 5 presents the annotated RCU example. We use ordering
points to order the method invocations to construct the equivalent
sequential history for the concurrent execution. We first specify
the ordering points for the read and update methods to define
the equivalent sequential history. For the read method, the load
access of the node field in Line 20 is the only operation that can be
an ordering point. For the update method, there exists more than
one atomic operation. However, they only serve as an ordering
point when it successfully uses the CAS operation to update the
node field. Thus, we specify in Line 39 that the CAS operation
should be the ordering point for the update operation when succ
is true. We associate the methods with the two ordering points in
Lines 15 and 27.

Next, we specify the equivalent sequential data structure for this
RCU implementation. Line 3 declares two integer fields _data
and _version as the internal states of the equivalent sequential

structureSpec → "@Structure_Define"

structureDefine (happensBefore)?

structureDefine → ("@DeclareStruct:" code)*

"@DeclareVar:" code

"@InitVar:" code

("@DefineFunc:" code)*

happensBefore → "@Happens_Before:" (invocation "->" invocation)+

invocation → label ("(" label")")?

methodSpec → "@Method:" label

"@Ordering_Point_Set:" label ("|" label)*

("@HB_Condition:" label "::" code)*

("@ID:" code)?

("@PreCondition:" code)?

("@SideEffect:" code)?

("@PostCondition:" code)?

potentialOP → "@Potential_Ordering_Point:" code

"@Label:" label

opCheck → "@Ordering_Point_Check:" code

"@Potential_Ordering_Point_Label:" label

"@Label:" label

opLabelCheck → "@Ordering_Point_Label_Check:" code

"@Label:" label

opClear → "@Ordering_Point_Clear:" code

"@Label:" label

code → <Legal C/C++ code>

Figure 4: Grammar for CDSSPEC specification language

RCU, and Line 4 initializes both variables to 0.
We then specify the correct behaviors of the equivalent sequen-

tial history by defining the side effects and assertions for the read
and update methods. Side effects specify how to perform the
corresponding operation on the equivalent sequential data struc-
ture. For example, Line 29 specifies the side effects of the update
to the sequential states. Assertions specify properties that should
be true of the concurrent data structure execution. For example,
Line 17 specifies that the read method should satisfy the post-
condition that the returned data and version fields should have
consistent values as the internal states of the equivalent sequential
data structure.

Our implementation of the RCU data structure is designed to es-
tablish synchronization between the update method invocation
and the later read or update method invocation. This is impor-
tant, for example, if a client thread were to update an array index
and use the RCU data structure to communicate the updated in-
dex to a second client thread. Without synchronization, the second
client thread may not see the update to the array index. Besides,
the synchronization between two update calls ensures that a later
read will see the most updated values. In order to specify the
synchronization, we associate read and update methods with
method call identifiers (Lines 16 and 28), which for this example
is the value of the this pointer. Together these annotations en-
sure that every API method call on the same RCU object will have
the same method call ID. Line 5 then specifies the synchronization
properties for the RCU — any update method invocation should
synchronize with all later read and update method invocations
that have the same method call identifier as that update method.
This guarantees that update calls should synchronize with the
read and update calls of the same RCU object.

4.2 Defining the Equivalent Sequential His-
tory

1 class RCU {
2 /** @Structure_Define:
3 @DeclareVar: int _data, _version;
4 @InitVar: _data = 0; _version = 0;
5 @Happens_Before: Update->Read Update->Update*/
6 atomic<Node*> node;
7 public:
8 RCU() {
9 Node *n = new Node;

10 n->data = 0;
11 n->version = 0;
12 atomic_init(&node, n);
13 }
14 /** @Interface: Read
15 @Ordering_Point_Set: Read_Point
16 @ID: this
17 @PostCondition:
18 _data == *data && _version == *version */
19 void read(int *data, int *version) {
20 Node *res = node.load(mo_acquire);
21 /** @Ordering_Point_Label_Check: true
22 @Label: Read_Point */
23 *data = res->data;
24 *version = res->version;
25 }
26 /** @Interface: Update
27 @Ordering_Point_Set: Update_Point
28 @ID: this
29 @SideEffect: _data = data; _version++; */
30 void update(int data) {
31 bool succ = false;
32 Node *newNode = new Node;
33 Node *prev = node.load(mo_acquire);
34 do {
35 newNode->data = data;
36 newNode->version = prev->version + 1;
37 succ = node.compare_exchange_strong(prev,
38 newNode, mo_acq_rel, mo_acquire);
39 /** @Ordering_Point_Label_Check: succ
40 @Label: Update_Point */
41 } while (!succ);
42 }
43 };

Figure 5: Annotated RCU specification example

While defining the equivalent sequential history for concurrent
executions is well studied in the context of the SC memory model,
optimizations that developers typically use in the context of weaker
memory models create the following new challenges when we gen-
erate the equivalent sequential history using ordering points.
• Absence of a Meaningful Trace or Total Order: For the SC

memory model, an execution can be represented by a simple in-
terleaving of all the memory operations, where each load opera-
tion reads from the last store operation to the same location in the
trace. However, under a relaxed memory model like C/C++11,
the interleaving does not uniquely define an execution because
a given load operation can potentially read from many different
store operations in the interleaving. Therefore, we have to rely
on the intrinsic relations between ordering points such as reads
from and modification order to order method calls.
• Lack of Program Order Preserving Sequential History:

Moreover, as discussed in Section 3.1, in general it is not pos-
sible to arrange an execution in any totally ordered sequential
history that preserves program order.
A key insight is that many concurrent data structures’ API meth-
ods have a commit point, which is a single memory operation
that makes the update visible to other threads and that also serves
as an ordering point. When two data structure operations have
a dependence, it is often the case that their respective commit
points are both conflicting accesses to the same memory loca-
tion. In this case, the modification order provided by C/C++
is sufficient to order these operations since modification order is

guaranteed to be consistent with the happens before relation (and
therefore also the sequenced before relation).
For cases where the method calls are independent, such as a
put(X, 1) followed by a get(Y) in a hashtable where X and
Y are different keys, the lack of an ordering is not a problem
since those methods commute.

Ordering Points Annotations: In many cases, it is not possible to
determine whether a given atomic operation is an ordering point un-
til later in the execution. For example, some internal methods may
be called by multiple API methods. In this case, the same atomic
operation can be identified as a potential ordering point for multi-
ple API methods, and each API method later has a checking anno-
tation to verify whether it was a real ordering point. Therefore, the
CDSSPEC specification separates the definition of ordering points
as follows:
1. Potential_Ordering_Point annotation: The labeling of

ordering points that identifies the location of a potential ordering
point.

2. Ordering_Point_Check annotation: The checking of or-
dering points that checks at a later point whether a potential or-
dering point was really an ordering point.
These two constructs together identify ordering points. For ex-

ample, assume that A is an atomic operation that is potentially an
ordering point under some specific condition. The developer would
then write a Potential_Ordering_Point annotation with a
condition ConditionA and a label LabelA, and then use the
label LabelA in an Ordering_Point_Check annotation at a
later point.

The Ordering_Point_Label_Check annotation
combines the Potential_Ordering_Point and the
Ordering_Point_Check annotations, and makes specifica-
tions simpler for the use case where the ordering point is known
immediately. For example, in Line 21 of Figure 5, we use the
Ordering_Point_Label_Check annotation to identify the
ordering point for read because we know the load operation in
Line 20 is an ordering point at the time it is executed.

Some data structure operations may require multiple ordering
points. For example, consider a transaction implementation that
first attempts to lock all of the involved objects (dropping the locks
and retrying if it fails to acquire a lock), performs the updates,
and then releases the locks. To order such transactions in a re-
laxed memory model, we must consider all of the locks it acquires
rather than just the last lock. Thus, we allow a method invocation
to have more than one ordering point, and the additional ordering
points serve to order the operation with respect to multiple different
memory locations. For the transaction example, it may be neces-
sary to retry the acquisition of locks. To support this scenario, the
Ordering_Point_Clear annotation removes all previous or-
dering points when it satisfies a specific condition.

Moreover, when an API method calls another API method, they
can share ordering points. In that case, CDSSPEC requires that at
that ordering point, the concurrent data structure should satisfy the
precondition and postcondition of both API methods.

4.3 Checking the IO Behavior of Methods
With the specified ordering points, CDSSPEC is able to gen-

erate the equivalent sequential history. Developers then need
to define the equivalent sequential data structure. For exam-
ple, in Line 3 and 4 of the annotated RCU example, we use
the Structure_define annotation to define the equivalent se-
quential RCU by specifying the internal states as two integers,
_version and _data. In the Structure_define annota-
tion, developers can also specify definitions for customized structs

and methods for convenience. We design these annotations in such
a way that developers can write specifications in C/C++ code such
that they do not have to learn a new specification language.

After defining the internal states and methods of the equivalent
data structure, developers use the SideEffect annotation to de-
fine the corresponding sequential API methods, which should con-
tain the action to be performed on the equivalent sequential data
structure. For example, in Line 29 of the annotated RCU exam-
ple, we use SideEffect to specify that when we execute the
update method on the equivalent sequential RCU, we should
update the internal states of _version and _data accordingly.
When the SideEffect annotation is omitted for a specific API
method, it means that no side effects will happen on the sequen-
tial data structure when that method is called. Take the annotated
RCU as an example, the read has no side effects on the equivalent
sequential RCU.

With the well-defined equivalent sequential data structure, de-
velopers then relate the generated equivalent sequential history to
the equivalent sequential data structure. In CDSSPEC, we al-
low developers to accomplish this by using the PreCondition
and PostCondition annotations to specify the conditions to be
checked before and after the API method appears to happen. For
example, Line 18 in the annotated RCU example means that when
read appears to happen, it should return the same value as the
current internal variables of the equivalent sequential RCU. Note
that these two annotations contain legitimate C/C++ expressions
that only access the method call parameters, return value and the
internal states of the equivalent sequential data structure.

4.4 Checking Synchronization
Under a relaxed memory model, compilers and processors can

reorder memory operations and thus the execution can exhibit
counter-intuitive behaviors. The C/C++11 memory model provides
developers with memory ordering that establish synchronization,
e.g., acquire, release, seq_cst. Synchronization serves to
control which reorderings are allowed — however, restricting re-
orderings comes at a runtime cost so developers must balance com-
plexity against runtime overhead. Checking that data structures es-
tablish proper synchronization is important to ensure that the data
structures can be effectively composed with client code.

We generalize the notion of happens before to methods as fol-
lows. Method call c1 happens-before method call c2 if the invoca-
tion event of c1 happens before the response event of c2. Note that
by this definition two method calls can both happen before each
other — an example of this is the barrier synchronization con-
struct. With this notion, for example, for a correctly synchronized
queue, we want an enqueue to happen before the corresponding de-
queue, which avoids the synchronization problems discussed ear-
lier in Section 1.2.

In order to flexibly express the synchronization between meth-
ods, we associate API methods with method call identifiers (or IDs)
and happens-before conditional guard expressions. The method
call ID is a C/C++ expression that computes a unique ID for the
call, and if it is omitted, a default value is used. For example, in
our RCU example in Figure 5, both the update and read meth-
ods have the this pointer of the corresponding RCU object. The
HB_Condition component associates one happens-before con-
ditional guard expression with a unique label. For one method,
multiple conditional guard expressions are allowed to be defined,
and the conditional guard expression can only access the method
instance’s argument values and return value.

After specifying the method call IDs and the HB_Condition
labels, developers can specify the synchronization as

“method1(HB_condition1) -> method2(HB_condition2)”.
When the HB_condition is omitted, it defaults to true.
The semantics of this expression is that all instances of calls
to method1 that satisfy the conditional guard expression
HB_condition1 should happen-before all later instances (as
determined by ordering points) of calls to method2 that satisfy
the conditional guard expression HB_condition2 such that
both instances shared the same ID. The ID and happens-before
conditional guard expression are important because they allow de-
velopers to impose synchronization only between specific method
invocations under specific conditions. For example, in Figure 5,
Line 5 specifies two synchronization rules, which together mean
that the update should only establish synchronization with
later read and update from the same RCU object under all
circumstances.

5. IMPLEMENTATION
The goal of the CDSSPEC specification language is to enable

developers to write specifications against which concurrent data
structures can be tested. We can ensure a concurrent data structure
is correct with respect to an equivalent sequential data structure if
for each execution of the concurrent data structure, the equivalent
sequential history for the equivalent sequential data structure yields
the same results.

The execution space for many concurrent data structures is un-
bounded, meaning that in practice we cannot verify correctness by
checking individual executions. However, the specifications can
be used for unit testing. In practice, many bugs can be exposed
by model checking unit tests for concurrent data structures. We
have implemented the CDSSPEC checker as a unit testing tool built
upon the CDSCHECKER framework. CDSSPEC can exhaustively
explore all behaviors for unit tests and provide developers with di-
agnostic reports for executions that violate their specification.

5.1 Model Checker Framework
The CDSSPEC checker takes as input a complete execution from

the CDSCHECKER model checker. The CDSCHECKER frame-
work operates at the abstraction level of individual atomic opera-
tions and thus has neither information about method calls nor which
atomic operations serve as ordering points. Thus, we extend the
framework by adding annotation operations to CDSCHECKER’s
traces, which record the necessary information to check the specifi-
cations but have no effect on other operations. The CDSSPEC com-
piler inserts code to generate the annotation actions to communicate
to the CDSSPEC checker plugin the critical events for checking the
CDSSPEC specification. These annotation actions then appear in
CDSCHECKER’s list of atomic operations and make it convenient
for CDSSPEC to construct a sequential history from the execution
because for any given method call, its invocation event, its ordering
points, and its response event are sequentially ordered in the list.

5.2 Specification Compiler
The specification compiler translates an annotated C/C++ pro-

gram into an instrumented C/C++ program that will generate ex-
ecution traces containing the dynamic information needed to con-
struct the sequential history and check the specification assertions.
We next describe the type of annotation actions that the CDSSPEC
compiler inserts into the instrumented program.
Ordering Points: Ordering points have a conditional guard ex-
pression and a label. Potential ordering point annotation actions
are inserted immediately after the atomic operation that serves as
the potential ordering point. Ordering point check annotation ac-
tions are inserted where they appear.

Method Boundary: To identify a method’s boundaries, CDSSPEC
inserts method_begin and method_end annotations at the beginning
and end of methods.
Sequential States and Methods: Since checking occurs after CD-
SCHECKER has completed an execution, the annotation actions
stores the values of any variables in the concurrent data structure
that the annotations reference.
Side Effects and Assertions: Side effects and assertions perform
their checks after an execution. The side effects and assertions are
compiled into methods and the equivalent sequential data struc-
ture’s states are accessible to these methods. With this encapsu-
lation, the CDSSPEC checker simply calls these functions to im-
plement the side effects and assertions.
Synchronization Checks: The CDSSPEC checker performs syn-
chronization checks in two parts: compiling the rules and runtime
data collection. First, the CDSSPEC compiler numbers all meth-
ods and happens-before checks uniquely. For example, the rule
“Update->Read” can be represented as (1, 0, 2, 0), which means
instances of method 1 that satisfy condition 0 should synchronize
with instances method 2 that satisfy condition 0. In this case, condi-
tion 0 means true. Then, the CDSSPEC compiler generates code
that communicates the synchronization rules by passing an array of
integer pairs. Runtime collection is then implemented by perform-
ing the condition check at each method invocation or response and
then passing the method number and happens before condition if
the check is satisfied.

5.3 Dynamic Checking
At this point, we have an execution trace with the necessary an-

notations to construct a sequential history and to check the exe-
cution’s correctness. However, before constructing the sequential
history, the CDSSPEC plugin first collects the necessary informa-
tion for each method call, which is the method_begin annotation,
the ordering point annotations, the happens-before checks, and the
method_end annotations. Since all of the operations in the trace
have thread identifiers it is straightforward to extract the operations
between the method_begin and method_end annotations.
Reorder Method Calls: As discussed above, determining the or-
dering of the ordering points is non-trivial under the C/C++ mem-
ory model. This can be complicated by the fact that the C/C++
memory model allows atomic loads to read from atomic stores
that appear later in the trace and that it is in general impossible
to produce a sequential history that preserves program order for the
C/C++ memory model.

However, we can still leverage the reads-from relation and the
modification-order relation to order the ordering points that appear
in typical data structures. CDSSPEC uses the following rules to
generate an ordering-point ordering opo relation on ordering points.
Given two operations X and Y that are both ordering points:

1. Reads-From: X rf−→ Y ⇒ X
opo−−→ Y .

2. Modification Order (write-write): X mo−−→ Y ⇒ X
opo−−→ Y .

3. Modification Order (read-write): A mo−−→ Y ∧ A
rf−→ X ⇒

X
opo−−→ Y .

4. Modification Order (write-read): X mo−−→ B ∧ B
rf−→ Y ⇒

X
opo−−→ Y .

5. Modification Order (read-read): A
mo−−→ B ∧ A

rf−→ X ∧
B

rf−→ Y ⇒ X
opo−−→ Y .

Generating the Reordering: The CDSSPEC checker first builds
an execution graph where the nodes are method calls and the edges
represent the opo ordering of the ordering points of the methods
that correspond to the source and destination nodes. Assuming the

absence of cycles in the execution graph, the opo ordering is used
to generate the sequential history. The CDSSPEC checker topolog-
ically sorts the graph to generate the equivalent sequential execu-
tion.

When CDSSPEC fails to order two ordering points, the opera-
tions often commute. Thus, if multiple histories satisfy the con-
straints of opo, by default we generally randomly select one. How-
ever, when those operations do not commute, we provide devel-
opers with different options: (1) they can add additional ordering
points to order the two nodes or (2) they can run CDSSPEC in either
of the following modes: (a) loosely exhaustive mode — CDSSPEC
explores all possible histories and only requires that there exists
some history that passes the checks or (b) strictly exhaustive mode
— CDSSPEC explores all possible histories and requires all histo-
ries pass the checks.
Synchronization Checks: Synchronization properties are speci-
fied using the IDs and conditions of method calls, and we have
that information available after CDSSPEC constructs the sequen-
tial history and checks the preconditions and postconditions. For
two specific method calls c1 and c2, we can ensure c1 synchronizes
with c2 by ensuring the annotation c1_begin happens-before
the annotation c2_end because any operations sequenced-before
c1_begin should happen-before any operations sequenced-after
c2_end according to the C/C++11 memory model.

6. EVALUATION
We have implemented CDSSPEC. Our evaluation focuses on the

following questions: (1) How expressive is CDSSPEC for specify-
ing the correctness properties of real-world concurrent data struc-
tures? (2) How easy is it to use CDSSPEC? (3) What is the perfor-
mance of CDSSPEC? (4) How effective was CDSSPEC in finding
bugs?

In order to evaluate CDSSPEC, we have gathered a contention
free lock, two types of concurrent queues, and a work stealing
deque [25]. As C/C++11 is relatively new there are no C/C++11
implementations for many concurrent data structures, thus we
ported several data structures. The Linux kernel’s reader-writer
spinlock and the Michael Scott queue were originally ported for
the CDSCHECKER benchmark suite. We also ported an RCU im-
plementation and Cliff Click’s hashtable from its Java implementa-
tion [15]. We report execution times on an Intel Core i7 3770.

6.1 Expressiveness
In this section, we evaluate the expressiveness of CDSSPEC by

reporting our experiences writing specifications for a range of con-
current data structures.
Lockfree hashtable: We ported Cliff Click’s hashtable, which
supports simultaneous lookups and updates by multiple threads as
well as concurrent table resizing. The implementation uses an ar-
ray of atomic variables to store the key/value slots, and uses ac-
quire/release synchronization to establish the synchronization be-
tween hashtable accesses.

Hashtable updates consist of two CAS operations — one to claim
the key slot and one to update the value. When a put method in-
vocation successfully updates both the key and value, the update is
visible to other threads. Thus, both CAS operations are ordering
points for the put method, and we annotate both of them as poten-
tial ordering points. The get method is ordered after an invocation
of the put only if it sees both the key and value updates. Thus we
annotate an ordering point for the key read only if the key is null.
We also annotate an ordering point for the value read if it reads the
value slot. The test driver has two threads both of which update and
read the value for the same key.

RCU: As discussed in the example, this is a synchronization mech-
anism used in the Linux kernel that allows concurrent reads and
updates. We ran this benchmark with four threads, two update the
data structure and two read the data structure.
Chase-Lev Deque: This is a bug-fixed version of a published C11
adaptation of the Chase-Lev deque [25]. It maintains a top and
bottom index to a shared array of references. In terms of synchro-
nization, when pushing an item into the sequential deque, we attach
a unique ID tag to that element. When stealing or taking an item,
we use that tag as the ID of the method call. Thus, we have (push,
steal) or (push, take) pairs that have the same method call ID. In
our test driver, one thread pushes 3 items and takes 2 items while
the other one steals 1 item.
Linux Reader-Writer Lock: A reader-writer lock allows either
multiple concurrent readers or one exclusive writer. We can ab-
stract it with a boolean writer_lock representing whether the
writer lock is held and an integer reader_cnt representing the
number of threads that are reading. We test this benchmark with a
single lock that protects shared variables. We have two threads that
read and write the shared variables under the protection of a read
lock and a write lock.
MCS Lock: This benchmark is an implementation of the Mellor-
Crummey and Scott lock [27, 1]. This lock queues waiting threads
in a FIFO. Our test driver utilizes two threads that read and write
shared variables with the protection of the lock.
M&S Queue: This benchmark is an adaptation of the Michael and
Scott lock free queue [28] to the C/C++ memory model. We ran
with two threads, one of which enqueues and the other of which
dequeues an item.
SPSC Queue: This is a lock-free single-producer, single-consumer
queue. We used a test driver that has two threads — one enqueues
a value and the other dequeues it.
MPMC Queue: This is a multiple-producer, multiple-consumer
queue. Producers call write_prepare to obtain a free slot,
update the slot, and call write_publish to publish it. Con-
sumers call read_fetch to obtain a valid slot, read the slot,
and call read_consume to free it. The specification focuses on
the synchronization properties which require write_publish
to synchronize with read_fetch to ensure the data integrity and
read_consume to synchronize with write_prepare to en-
sure that slots are not prematurely recycled. The test driver contains
two threads, each of which enqueue and dequeue an item.

6.2 Ease of Use
In addition to expressiveness, it is also important for specifica-

tion languages to be easy to use. In our experience using CDSSPEC
to specify the real-world data structures in our benchmark set, we
found that CDSSPEC was easy to use. CDSSPEC specifications
have only three parts — equivalent sequential data structures, or-
dering points, and synchronization properties, and we explain the
reasons as follows. (1) Specifying sequential data structures is easy
and straightforward, and developers can often just use an off-the-
shelf implementation from a library. (2) When developers spec-
ify ordering points, they only need to know what operations or-
der methods without needing to specify the subtle reasoning about
the corner cases involving interleavings and reorderings introduced
by relaxed memory models. Take the Michael & Scott queue as
an example, we can easily order enqueuers with the point when
enqueue loads the tail pointer right before inserting the new
node. (3) For synchronization, the fact that we allow specifying
synchronization at the abstraction of methods makes it easy. For
example, we only used 36 lines to specify synchronization in a to-
tal 1,033 lines of code (omitting blanks and comments).

Benchmark # Executions # Feasible Total Time (s)
Chase-Lev Deque 1,365 232 0.15
SPSC Queue 19 15 0.01
RCU 1269 756 0.11
Lockfree Hashtable 30,941 25,731 11.39
MCS Lock 19,501 13,546 2.62
MPMC Queue 170,220 93,224 45.63
M&S Queue 168 114 0.05
Linux RW Lock 148,053 405 13.06

Figure 6: Benchmark results

6.3 Performance
Figure 6 presents performance results for CDSSPEC on our

benchmark set. We list the number of the total executions that
CDSCHECKER has explored, the number of the feasible execu-
tions that we checked the specification for, and the time the bench-
mark took to complete. All of our benchmarks complete within one
minute and most take less than 3 seconds to complete.

6.4 Finding Bugs
Benchmark # Injection # DR # UL # Correctness # Sync Rate
Chase-Lev Deque 10 0 2 3 2 70%
SPSC Queue 2 2 0 0 0 100%
RCU 3 0 0 1 2 100%
Lockfree Hashtable 5 0 0 0 2 40%
MCS Lock 4 0 0 0 4 100%
MPMC Queue 6 0 0 0 2 33%
M&S Queue 11 0 6 3 0 82%
Linux RW Lock 8 0 0 0 8 100%
Total 49 2 8 7 20 76%

Figure 7: Bug injection detection results

The next component of the evaluation examines the effectiveness
of CDSSPEC for finding bugs.
New Bugs: In the M&S queue benchmark used in [30], the de-
queue interface does not differentiate between dequeuing the inte-
ger zero and returning that no item is available, and it passed our
initial specification. However, after modifying the dequeue inter-
face to match that in the original paper, CDSSPEC is able to find a
new bug that CDSCHECKER did not find. The original test driver
for this benchmark performed the enqueues first to make it easy
to write assertions that are valid for all executions. CDSSPEC al-
lows specification assertions to capture the behavior of the specific
execution and thus is able to discover the given bug.
Injected Bugs: To further evaluate CDSSPEC, we injected bugs
in our benchmarks by weakening the ordering parameter of the
atomic operations. These include changing release, acquire,
acq_rel and seq_cst to relaxed. We weakened one opera-
tion per each trial, and covered all of the atomic operations that our
tests exercise. While this injection strategy may not reproduce all
types of errors that developers make, it does simulate errors that are
caused by misunderstanding the complicated semantics of relaxed
memory models.

This fault injection strategy will introduce one of two types of
bugs. The first type is a specification-independent bug, which
can be detected by the underlying CDSCHECKER infrastructure
which includes internal data races and uninitialized loads. The
second type is a specification-dependent bug, which passes the
built-in checks but violates the CDSSPEC specification. These in-
clude failed assertions and synchronization violations. We classi-
fying bugs as follows. If CDSCHECKER reports a data race or an
uninitialized load, CDSSPEC reports the error and stops. If not,
CDSSPEC continues to check the execution against the specifica-
tion. It first checks for violations of the preconditions and postcon-
ditions and then for violations of the synchronization specification.

Figure 7 shows the results of the injection detection. The col-
umn DR represents data races, UL represents uninitialized loads,

correctness represents a failed precondition or postcondition, and
sync represents a synchronization violation. The detection rate is
the number of injections for which we detected a bug divided by
the total number of injections.
Linux Reader-Writer Lock: Our initial specification for this
benchmark did not allow write_trylock to spuriously fail.
However, when we checked this benchmark against that speci-
fication, CDSSPEC checker reports a correctness violation. We
then analyzed the code and found that write_trylock first
subtracts a bias from the lock variable to attempt to acquire the
lock, and restores that bias if the attempt to acquire the lock fails.
In the scenario where two write_trylock are racing for the
lock before the lock is released, one write_trylock can first
decrement the lock variable, the lock can be released by the orig-
inal holder, and then the second write_trylock can attempt
to acquire the lock. Even though the history indicates that the
lock is unlocked, it still holds a transient value due to the par-
tially completed first write_trylock invocation. Thus, the
second write_trylock invocation will also fail. As the sec-
ond write_trylock serializes after both the first unsuccess-
ful write_trylock and the unlock operation, the sequential
specification would force it to succeed. We then modified the speci-
fication of write_trylock to allow spurious failures so that our
correctness model fits this data structure. This shows CDSSPEC
can help developers iteratively refine the specifications of their data
structures. By analyzing the CDSSPEC diagnostic report, develop-
ers can better understand any inconsistencies between the specifi-
cation and the implementation.
MCS Lock: Three of the weakened operations are not detected
because they cause the execution to fail to terminate (and hit a trace
bound). We reviewed the code and found that weakening any of
those three operations makes the lock spin forever.
M&S Queue: Our test driver does not cause an enqueue or de-
queue thread to help another enqueue thread update the tail pointer,
which corresponds to two of the undetected injections.
Lockfree Hashtable: Our experiment only focuses on the two
primitive methods, get and put without triggering the resize.
We were able to successfully check all executions from a test driver
for the lockfree hash table that generates executions that have no
program order preserving sequential histories.
MPMC Queue: The undetected injections in this benchmark are
primarily due to the limitation of our test driver. One synchroniza-
tion property of this benchmark is that read_consume should
synchronize with the next write_prepare to ensure that a slot
cannot be reused before the consumer has finished with the slot.
Our test driver is unable to reach this case so those injections are
not detected.

From our experiments on concurrent data structures, we can see
that CDSSPEC checker can help detect incorrect memory order-
ings, help developers refine data structure specifications, and help
determine whether strong memory orderings are really necessary.
Since CDSSPEC checker is a unit testing tool, it is limited to small-
scale tests to explore common usage scenarios of the data struc-
tures. As a unit testing tool, CDSSPEC was able to find 100% of
injections for many data structures and to find 76% of the injec-
tions on average. For our 49 injections, 10 of them were detected
by checks in CDSCHECKER, and 27 additional injections were de-
tected by CDSSPEC. This shows that by writing specifications, we
detect significantly more fault injections.

7. RELATED WORK
Researchers have proposed and designed specifications and ap-

proaches to find bugs in concurrent data structures based on lin-

earization. Early work by Wing and Gong [34] proposed using
linearizability to test and verify concurrent objects. Line-up [10]
builds on the Chess [29] model checker to automatically check de-
terministic linearizability. It automatically generates the sequential
specification by systematically enumerating all sequential behav-
iors. Paraglider [32] supports checking with and without lineariza-
tion points based on SPIN [23]. All of these approaches assume
that there exist a sequential history that is consistent with program
order. Furthermore, they also assume the SC memory model and a
trace that provides an ordering for method invocation and response
events. Our work extends the notion of equivalence to sequential
executions to the relaxed memory models used by real systems.

Amit et al. [5] present a static analysis based on TVLA
for verifying linearizability of concurrent linked data structures.
Valeiadis [31] demonstrates a shape-value abstraction which can
automatically prove linearizability. Thread quantification can also
verify data structure linearizability [7]. Colvin et al. formally veri-
fied a list-based set [16]. While these approaches provide stronger
guarantees than CDSSPEC, they were typically used to check sim-
pler data structures and require experts to use. Moreover, they tar-
get the SC memory model.

Researchers have proposed specification languages for concur-
rent data structures. Refinement mapping [4] provides the theoret-
ical basis for designing and using specifications. Commit atomic-
ity [21] can verify atomicity properties. Concurrit [19] is a domain-
specific language that allows programmers to write scripts to spec-
ify thread schedules to reproduce bugs, and is useful when pro-
grammers already have some knowledge about a bug. NDeter-
min [12] infers nondeterministic sequential specifications to model
the behaviors of parallel code.

VYRD [20] is conceptually similar to CDSSPEC— developers
specify commit points for concurrent code. The parallel code is
then executed and the commit points are used to identify a sequen-
tial execution that should have the same behaviors. VYRD was
designed for the SC memory model — it is unable to construct a
sequential refinement for a relaxed memory model or check syn-
chronization properties.

GAMBIT [17] uses a prioritized search technique that combines
stateless model checking and heuristic-guided fuzzing to unit test
code under the SC memory model. RELAXED [14] explores SC
executions to identify executions with races and then re-executes
the program under the PSO or TSO memory model to test whether
the relaxations expose bugs. CheckFence [9] is a tool for verifying
data structures against relaxed memory models and takes a SAT-
based approach instead of the stateless model checking approach
used by CDSCHECKER.

Researchers have developed verification techniques for code that
admits only SC executions under the TSO and PSO memory mod-
els [13, 11]. The basic idea is to develop an execution monitor that
can detect whether non-SC executions exist by examining only SC
executions.

8. CONCLUSION
The CDSSPEC specification language and checking system

makes it easier to unit test concurrent data structures written for
the C/C++11 memory model. It extends and modifies classic ap-
proaches to defining the desired behaviors of concurrent data struc-
tures with respect to sequential versions of the same data structure
to apply to the C/C++ memory model. Our evaluation shows that
the approach can be used to specify and test correctness proper-
ties for a range of data structures including a lock-free hashtable,
work-stealing deque, queues and locks.

9. REFERENCES
[1] http://cbloomrants.blogspot.com/2011/07/

07-18-11-mcs-list-based-lock_18.html. Oct.
2012.

[2] ISO/IEC 14882:2011, Information technology –
programming languages – C++.

[3] ISO/IEC 9899:2011, Information technology – programming
languages – C.

[4] M. Abadi and L. Lamport. The existence of refinement
mapping. Theoretical Computer Science, 82(2):253–284,
May 1991.

[5] D. Amit, N. Rinetzky, T. Reps, M. Sagiv, and E. Yahav.
Comparison under abstraction for verifying linearizability. In
Proceedings of the 19th International Conference on
Computer Aided Verification, 2007.

[6] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber.
Mathematizing C++ concurrency. In Proceedings of the
Symposium on Principles of Programming Languages, 2011.

[7] J. Berdine, T. Lev-Ami, R. Manivich, G. Ramalingam, and
M. Sagiv. Thread quantification for concurrent shape
analysis. In Proceedings of the 20th International
Conference on Computer Aided Verification, 2008.

[8] H. J. Boehm and S. V. Adve. Foundations of the C++
concurrency memory model. In Proceedings of the 2008
ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2008.

[9] S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence:
Checking consistency of concurrent data types on relaxed
memory models. In Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, 2007.

[10] S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan. Line-up:
A complete and automatic linearizability checker. In
Proceedings of the 2010 ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2010.

[11] S. Burckhardt and M. Musuvathi. Effective program
verification for relaxed memory models. In Proceedings of
the 20th International Conference on Computer Aided
Verification, 2008.

[12] J. Burnim, T. Elmas, G. Necula, and K. Sen. NDetermin:
Inferring nondeterministic sequential specifications for
parallelism correctness. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2012.

[13] J. Burnim, K. Sen, and C. Stergiou. Sound and complete
monitoring of sequential consistency for relaxed memory
models. In Proceedings of the 17th International Conference
on Tools and Algorithms for the Construction and Analysis
of Systems, 2011.

[14] J. Burnim, K. Sen, and C. Stergiou. Testing concurrent
programs on relaxed memory models. In Proceedings of the
2011 International Symposium on Software Testing and
Analysis, 2011.

[15] C. Click. A lock-free hash table.
http://www.azulsystems.com/events/
javaone_2007/2007_LockFreeHash.pdf, May
2007.

[16] R. Colvin, L. Groves, V. Luchangco, and M. Moir. Formal
verification of a lazy concurrent list-based set algorithm. In
Proceedings of the 18th International Conference on
Computer Aided Verification, 2006.

[17] K. E. Coons, S. Burckhardt, and M. Musuvathi. GAMBIT:

Effective unit testing for concurrency libraries. In
Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2010.

[18] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais,
and J. Walpole. User-level implementations of read-copy
update. IEEE Transactions on Parallel and Distributed
Systems, 2011.

[19] T. Elmas, J. Burnim, G. Necula, and K. Sen. CONCURRIT:
A domain specific language for reproducing concurrency
bugs. In Proceedings of the 2013 ACM SIGPLAN Conference
on Programming Language Design and Implementation,
2013.

[20] T. Elmas, S. Tasiran, and S. Qadeer. VYRD: Verifying
concurrent programs by runtime refinement-violation
detection. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, 2005.

[21] C. Flanagan. Verifying commit-atomicity using
model-checking. In Proceedings of the 11th International
SPIN Workshop on Model Checking Software, 2004.

[22] M. Herlihy and J. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Transactions on
Programming Languages and Systems, 12(3):463–492, July
1990.

[23] G. J. Holzmann. The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley Professional, 1st
edition, 2003.

[24] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE
Transactions on Computers, 28(9):690–691, Sept. 1979.

[25] N. M. Lê, A. Pop, A. Cohen, and F. Zappa Nardelli. Correct
and efficient work-stealing for weak memory models. In
Proceedings of the 18th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2013.

[26] D. Lea. util.concurrent.ConcurrentHashMap in
java.util.concurrent the Java Concurrency Package.
http://docs.oracle.com/javase/8/docs/
api/java/util/concurrent/
ConcurrentHashMap.html.

[27] J. M. Mellor-Crummey and M. L. Scott. Synchronization
without contention. In Proceedings of the Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
269–278, 1991.

[28] M. M. Michael and M. L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In
Proceedings of the Fifteenth Annual ACM Symposium on
Principles of Distributed Computing, 1996.

[29] M. Musuvathi, S. Qadeer, P. A. Nainar, T. Ball, G. Basler,
and I. Neamtiu. Finding and reproducing Heisenbugs in
concurrent programs. In Proceedings of the 8th Symposium
on Operating Systems Design and Implementation, 2008.

[30] B. Norris and B. Demsky. CDSChecker: Checking
concurrent data structures written with C/C++ atomics. In
Proceeding of the 28th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, 2013.

[31] V. Vafeiadis. Shape-value abstraction for verifying
linearizability. In Proceedings of the 2009 Conference on
Verification, Model Checking, and Abstract Interpretation,
2009.

[32] M. Vechev, E. Yahav, and G. Yorsh. Experience with model

checking linearizability. In International SPIN Workshop on
Model Checking Software, 2009.

[33] D. Vyukov. Relacy race detector.
http://relacy.sourceforge.net/, 2011 Oct.

[34] J. M. Wing and C. Gong. Testing and verifying concurrent
objects. Journal of Parallel and Distributed Computing -
Special issue on parallel I/O systems, 17(1-2):164–182,
Jan./Feb. 1993.

