check_recency: implement loops as function ModelAction::may_read_from()
[cdsspec-compiler.git] / model.cc
1 #include <stdio.h>
2 #include <algorithm>
3 #include <mutex>
4 #include <new>
5
6 #include "model.h"
7 #include "action.h"
8 #include "nodestack.h"
9 #include "schedule.h"
10 #include "snapshot-interface.h"
11 #include "common.h"
12 #include "clockvector.h"
13 #include "cyclegraph.h"
14 #include "promise.h"
15 #include "datarace.h"
16 #include "threads-model.h"
17 #include "output.h"
18
19 #define INITIAL_THREAD_ID       0
20
21 ModelChecker *model;
22
23 struct bug_message {
24         bug_message(const char *str) {
25                 const char *fmt = "  [BUG] %s\n";
26                 msg = (char *)snapshot_malloc(strlen(fmt) + strlen(str));
27                 sprintf(msg, fmt, str);
28         }
29         ~bug_message() { if (msg) snapshot_free(msg); }
30
31         char *msg;
32         void print() { model_print("%s", msg); }
33
34         SNAPSHOTALLOC
35 };
36
37 /**
38  * Structure for holding small ModelChecker members that should be snapshotted
39  */
40 struct model_snapshot_members {
41         model_snapshot_members() :
42                 /* First thread created will have id INITIAL_THREAD_ID */
43                 next_thread_id(INITIAL_THREAD_ID),
44                 used_sequence_numbers(0),
45                 next_backtrack(NULL),
46                 bugs(),
47                 stats(),
48                 failed_promise(false),
49                 too_many_reads(false),
50                 no_valid_reads(false),
51                 bad_synchronization(false),
52                 asserted(false)
53         { }
54
55         ~model_snapshot_members() {
56                 for (unsigned int i = 0; i < bugs.size(); i++)
57                         delete bugs[i];
58                 bugs.clear();
59         }
60
61         unsigned int next_thread_id;
62         modelclock_t used_sequence_numbers;
63         ModelAction *next_backtrack;
64         std::vector< bug_message *, SnapshotAlloc<bug_message *> > bugs;
65         struct execution_stats stats;
66         bool failed_promise;
67         bool too_many_reads;
68         bool no_valid_reads;
69         /** @brief Incorrectly-ordered synchronization was made */
70         bool bad_synchronization;
71         bool asserted;
72
73         SNAPSHOTALLOC
74 };
75
76 /** @brief Constructor */
77 ModelChecker::ModelChecker(struct model_params params) :
78         /* Initialize default scheduler */
79         params(params),
80         scheduler(new Scheduler()),
81         diverge(NULL),
82         earliest_diverge(NULL),
83         action_trace(new action_list_t()),
84         thread_map(new HashTable<int, Thread *, int>()),
85         obj_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
86         lock_waiters_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
87         condvar_waiters_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
88         obj_thrd_map(new HashTable<void *, std::vector<action_list_t> *, uintptr_t, 4 >()),
89         promises(new std::vector< Promise *, SnapshotAlloc<Promise *> >()),
90         futurevalues(new std::vector< struct PendingFutureValue, SnapshotAlloc<struct PendingFutureValue> >()),
91         pending_rel_seqs(new std::vector< struct release_seq *, SnapshotAlloc<struct release_seq *> >()),
92         thrd_last_action(new std::vector< ModelAction *, SnapshotAlloc<ModelAction *> >(1)),
93         thrd_last_fence_release(new std::vector< ModelAction *, SnapshotAlloc<ModelAction *> >()),
94         node_stack(new NodeStack()),
95         priv(new struct model_snapshot_members()),
96         mo_graph(new CycleGraph())
97 {
98         /* Initialize a model-checker thread, for special ModelActions */
99         model_thread = new Thread(get_next_id());
100         thread_map->put(id_to_int(model_thread->get_id()), model_thread);
101 }
102
103 /** @brief Destructor */
104 ModelChecker::~ModelChecker()
105 {
106         for (unsigned int i = 0; i < get_num_threads(); i++)
107                 delete thread_map->get(i);
108         delete thread_map;
109
110         delete obj_thrd_map;
111         delete obj_map;
112         delete lock_waiters_map;
113         delete condvar_waiters_map;
114         delete action_trace;
115
116         for (unsigned int i = 0; i < promises->size(); i++)
117                 delete (*promises)[i];
118         delete promises;
119
120         delete pending_rel_seqs;
121
122         delete thrd_last_action;
123         delete thrd_last_fence_release;
124         delete node_stack;
125         delete scheduler;
126         delete mo_graph;
127         delete priv;
128 }
129
130 static action_list_t * get_safe_ptr_action(HashTable<const void *, action_list_t *, uintptr_t, 4> * hash, void * ptr)
131 {
132         action_list_t *tmp = hash->get(ptr);
133         if (tmp == NULL) {
134                 tmp = new action_list_t();
135                 hash->put(ptr, tmp);
136         }
137         return tmp;
138 }
139
140 static std::vector<action_list_t> * get_safe_ptr_vect_action(HashTable<void *, std::vector<action_list_t> *, uintptr_t, 4> * hash, void * ptr)
141 {
142         std::vector<action_list_t> *tmp = hash->get(ptr);
143         if (tmp == NULL) {
144                 tmp = new std::vector<action_list_t>();
145                 hash->put(ptr, tmp);
146         }
147         return tmp;
148 }
149
150 /**
151  * Restores user program to initial state and resets all model-checker data
152  * structures.
153  */
154 void ModelChecker::reset_to_initial_state()
155 {
156         DEBUG("+++ Resetting to initial state +++\n");
157         node_stack->reset_execution();
158
159         /* Print all model-checker output before rollback */
160         fflush(model_out);
161
162         /**
163          * FIXME: if we utilize partial rollback, we will need to free only
164          * those pending actions which were NOT pending before the rollback
165          * point
166          */
167         for (unsigned int i = 0; i < get_num_threads(); i++)
168                 delete get_thread(int_to_id(i))->get_pending();
169
170         snapshot_backtrack_before(0);
171 }
172
173 /** @return a thread ID for a new Thread */
174 thread_id_t ModelChecker::get_next_id()
175 {
176         return priv->next_thread_id++;
177 }
178
179 /** @return the number of user threads created during this execution */
180 unsigned int ModelChecker::get_num_threads() const
181 {
182         return priv->next_thread_id;
183 }
184
185 /**
186  * Must be called from user-thread context (e.g., through the global
187  * thread_current() interface)
188  *
189  * @return The currently executing Thread.
190  */
191 Thread * ModelChecker::get_current_thread() const
192 {
193         return scheduler->get_current_thread();
194 }
195
196 /** @return a sequence number for a new ModelAction */
197 modelclock_t ModelChecker::get_next_seq_num()
198 {
199         return ++priv->used_sequence_numbers;
200 }
201
202 Node * ModelChecker::get_curr_node() const
203 {
204         return node_stack->get_head();
205 }
206
207 /**
208  * @brief Choose the next thread to execute.
209  *
210  * This function chooses the next thread that should execute. It can force the
211  * adjacency of read/write portions of a RMW action, force THREAD_CREATE to be
212  * followed by a THREAD_START, or it can enforce execution replay/backtracking.
213  * The model-checker may have no preference regarding the next thread (i.e.,
214  * when exploring a new execution ordering), in which case we defer to the
215  * scheduler.
216  *
217  * @param curr Optional: The current ModelAction. Only used if non-NULL and it
218  * might guide the choice of next thread (i.e., THREAD_CREATE should be
219  * followed by THREAD_START, or ATOMIC_RMWR followed by ATOMIC_{RMW,RMWC})
220  * @return The next chosen thread to run, if any exist. Or else if no threads
221  * remain to be executed, return NULL.
222  */
223 Thread * ModelChecker::get_next_thread(ModelAction *curr)
224 {
225         thread_id_t tid;
226
227         if (curr != NULL) {
228                 /* Do not split atomic actions. */
229                 if (curr->is_rmwr())
230                         return get_thread(curr);
231                 else if (curr->get_type() == THREAD_CREATE)
232                         return curr->get_thread_operand();
233         }
234
235         /*
236          * Have we completed exploring the preselected path? Then let the
237          * scheduler decide
238          */
239         if (diverge == NULL)
240                 return scheduler->select_next_thread();
241
242         /* Else, we are trying to replay an execution */
243         ModelAction *next = node_stack->get_next()->get_action();
244
245         if (next == diverge) {
246                 if (earliest_diverge == NULL || *diverge < *earliest_diverge)
247                         earliest_diverge = diverge;
248
249                 Node *nextnode = next->get_node();
250                 Node *prevnode = nextnode->get_parent();
251                 scheduler->update_sleep_set(prevnode);
252
253                 /* Reached divergence point */
254                 if (nextnode->increment_misc()) {
255                         /* The next node will try to satisfy a different misc_index values. */
256                         tid = next->get_tid();
257                         node_stack->pop_restofstack(2);
258                 } else if (nextnode->increment_promise()) {
259                         /* The next node will try to satisfy a different set of promises. */
260                         tid = next->get_tid();
261                         node_stack->pop_restofstack(2);
262                 } else if (nextnode->increment_read_from()) {
263                         /* The next node will read from a different value. */
264                         tid = next->get_tid();
265                         node_stack->pop_restofstack(2);
266                 } else if (nextnode->increment_relseq_break()) {
267                         /* The next node will try to resolve a release sequence differently */
268                         tid = next->get_tid();
269                         node_stack->pop_restofstack(2);
270                 } else {
271                         ASSERT(prevnode);
272                         /* Make a different thread execute for next step */
273                         scheduler->add_sleep(get_thread(next->get_tid()));
274                         tid = prevnode->get_next_backtrack();
275                         /* Make sure the backtracked thread isn't sleeping. */
276                         node_stack->pop_restofstack(1);
277                         if (diverge == earliest_diverge) {
278                                 earliest_diverge = prevnode->get_action();
279                         }
280                 }
281                 /* Start the round robin scheduler from this thread id */
282                 scheduler->set_scheduler_thread(tid);
283                 /* The correct sleep set is in the parent node. */
284                 execute_sleep_set();
285
286                 DEBUG("*** Divergence point ***\n");
287
288                 diverge = NULL;
289         } else {
290                 tid = next->get_tid();
291         }
292         DEBUG("*** ModelChecker chose next thread = %d ***\n", id_to_int(tid));
293         ASSERT(tid != THREAD_ID_T_NONE);
294         return thread_map->get(id_to_int(tid));
295 }
296
297 /**
298  * We need to know what the next actions of all threads in the sleep
299  * set will be.  This method computes them and stores the actions at
300  * the corresponding thread object's pending action.
301  */
302
303 void ModelChecker::execute_sleep_set()
304 {
305         for (unsigned int i = 0; i < get_num_threads(); i++) {
306                 thread_id_t tid = int_to_id(i);
307                 Thread *thr = get_thread(tid);
308                 if (scheduler->is_sleep_set(thr) && thr->get_pending()) {
309                         thr->get_pending()->set_sleep_flag();
310                 }
311         }
312 }
313
314 /**
315  * @brief Should the current action wake up a given thread?
316  *
317  * @param curr The current action
318  * @param thread The thread that we might wake up
319  * @return True, if we should wake up the sleeping thread; false otherwise
320  */
321 bool ModelChecker::should_wake_up(const ModelAction *curr, const Thread *thread) const
322 {
323         const ModelAction *asleep = thread->get_pending();
324         /* Don't allow partial RMW to wake anyone up */
325         if (curr->is_rmwr())
326                 return false;
327         /* Synchronizing actions may have been backtracked */
328         if (asleep->could_synchronize_with(curr))
329                 return true;
330         /* All acquire/release fences and fence-acquire/store-release */
331         if (asleep->is_fence() && asleep->is_acquire() && curr->is_release())
332                 return true;
333         /* Fence-release + store can awake load-acquire on the same location */
334         if (asleep->is_read() && asleep->is_acquire() && curr->same_var(asleep) && curr->is_write()) {
335                 ModelAction *fence_release = get_last_fence_release(curr->get_tid());
336                 if (fence_release && *(get_last_action(thread->get_id())) < *fence_release)
337                         return true;
338         }
339         return false;
340 }
341
342 void ModelChecker::wake_up_sleeping_actions(ModelAction *curr)
343 {
344         for (unsigned int i = 0; i < get_num_threads(); i++) {
345                 Thread *thr = get_thread(int_to_id(i));
346                 if (scheduler->is_sleep_set(thr)) {
347                         if (should_wake_up(curr, thr))
348                                 /* Remove this thread from sleep set */
349                                 scheduler->remove_sleep(thr);
350                 }
351         }
352 }
353
354 /** @brief Alert the model-checker that an incorrectly-ordered
355  * synchronization was made */
356 void ModelChecker::set_bad_synchronization()
357 {
358         priv->bad_synchronization = true;
359 }
360
361 /**
362  * Check whether the current trace has triggered an assertion which should halt
363  * its execution.
364  *
365  * @return True, if the execution should be aborted; false otherwise
366  */
367 bool ModelChecker::has_asserted() const
368 {
369         return priv->asserted;
370 }
371
372 /**
373  * Trigger a trace assertion which should cause this execution to be halted.
374  * This can be due to a detected bug or due to an infeasibility that should
375  * halt ASAP.
376  */
377 void ModelChecker::set_assert()
378 {
379         priv->asserted = true;
380 }
381
382 /**
383  * Check if we are in a deadlock. Should only be called at the end of an
384  * execution, although it should not give false positives in the middle of an
385  * execution (there should be some ENABLED thread).
386  *
387  * @return True if program is in a deadlock; false otherwise
388  */
389 bool ModelChecker::is_deadlocked() const
390 {
391         bool blocking_threads = false;
392         for (unsigned int i = 0; i < get_num_threads(); i++) {
393                 thread_id_t tid = int_to_id(i);
394                 if (is_enabled(tid))
395                         return false;
396                 Thread *t = get_thread(tid);
397                 if (!t->is_model_thread() && t->get_pending())
398                         blocking_threads = true;
399         }
400         return blocking_threads;
401 }
402
403 /**
404  * Check if this is a complete execution. That is, have all thread completed
405  * execution (rather than exiting because sleep sets have forced a redundant
406  * execution).
407  *
408  * @return True if the execution is complete.
409  */
410 bool ModelChecker::is_complete_execution() const
411 {
412         for (unsigned int i = 0; i < get_num_threads(); i++)
413                 if (is_enabled(int_to_id(i)))
414                         return false;
415         return true;
416 }
417
418 /**
419  * @brief Assert a bug in the executing program.
420  *
421  * Use this function to assert any sort of bug in the user program. If the
422  * current trace is feasible (actually, a prefix of some feasible execution),
423  * then this execution will be aborted, printing the appropriate message. If
424  * the current trace is not yet feasible, the error message will be stashed and
425  * printed if the execution ever becomes feasible.
426  *
427  * @param msg Descriptive message for the bug (do not include newline char)
428  * @return True if bug is immediately-feasible
429  */
430 bool ModelChecker::assert_bug(const char *msg)
431 {
432         priv->bugs.push_back(new bug_message(msg));
433
434         if (isfeasibleprefix()) {
435                 set_assert();
436                 return true;
437         }
438         return false;
439 }
440
441 /**
442  * @brief Assert a bug in the executing program, asserted by a user thread
443  * @see ModelChecker::assert_bug
444  * @param msg Descriptive message for the bug (do not include newline char)
445  */
446 void ModelChecker::assert_user_bug(const char *msg)
447 {
448         /* If feasible bug, bail out now */
449         if (assert_bug(msg))
450                 switch_to_master(NULL);
451 }
452
453 /** @return True, if any bugs have been reported for this execution */
454 bool ModelChecker::have_bug_reports() const
455 {
456         return priv->bugs.size() != 0;
457 }
458
459 /** @brief Print bug report listing for this execution (if any bugs exist) */
460 void ModelChecker::print_bugs() const
461 {
462         if (have_bug_reports()) {
463                 model_print("Bug report: %zu bug%s detected\n",
464                                 priv->bugs.size(),
465                                 priv->bugs.size() > 1 ? "s" : "");
466                 for (unsigned int i = 0; i < priv->bugs.size(); i++)
467                         priv->bugs[i]->print();
468         }
469 }
470
471 /**
472  * @brief Record end-of-execution stats
473  *
474  * Must be run when exiting an execution. Records various stats.
475  * @see struct execution_stats
476  */
477 void ModelChecker::record_stats()
478 {
479         stats.num_total++;
480         if (!isfeasibleprefix())
481                 stats.num_infeasible++;
482         else if (have_bug_reports())
483                 stats.num_buggy_executions++;
484         else if (is_complete_execution())
485                 stats.num_complete++;
486         else {
487                 stats.num_redundant++;
488
489                 /**
490                  * @todo We can violate this ASSERT() when fairness/sleep sets
491                  * conflict to cause an execution to terminate, e.g. with:
492                  * Scheduler: [0: disabled][1: disabled][2: sleep][3: current, enabled]
493                  */
494                 //ASSERT(scheduler->all_threads_sleeping());
495         }
496 }
497
498 /** @brief Print execution stats */
499 void ModelChecker::print_stats() const
500 {
501         model_print("Number of complete, bug-free executions: %d\n", stats.num_complete);
502         model_print("Number of redundant executions: %d\n", stats.num_redundant);
503         model_print("Number of buggy executions: %d\n", stats.num_buggy_executions);
504         model_print("Number of infeasible executions: %d\n", stats.num_infeasible);
505         model_print("Total executions: %d\n", stats.num_total);
506         model_print("Total nodes created: %d\n", node_stack->get_total_nodes());
507 }
508
509 /**
510  * @brief End-of-exeuction print
511  * @param printbugs Should any existing bugs be printed?
512  */
513 void ModelChecker::print_execution(bool printbugs) const
514 {
515         print_program_output();
516
517         if (DBG_ENABLED() || params.verbose) {
518                 model_print("Earliest divergence point since last feasible execution:\n");
519                 if (earliest_diverge)
520                         earliest_diverge->print();
521                 else
522                         model_print("(Not set)\n");
523
524                 model_print("\n");
525                 print_stats();
526         }
527
528         /* Don't print invalid bugs */
529         if (printbugs)
530                 print_bugs();
531
532         model_print("\n");
533         print_summary();
534 }
535
536 /**
537  * Queries the model-checker for more executions to explore and, if one
538  * exists, resets the model-checker state to execute a new execution.
539  *
540  * @return If there are more executions to explore, return true. Otherwise,
541  * return false.
542  */
543 bool ModelChecker::next_execution()
544 {
545         DBG();
546         /* Is this execution a feasible execution that's worth bug-checking? */
547         bool complete = isfeasibleprefix() && (is_complete_execution() ||
548                         have_bug_reports());
549
550         /* End-of-execution bug checks */
551         if (complete) {
552                 if (is_deadlocked())
553                         assert_bug("Deadlock detected");
554
555                 checkDataRaces();
556         }
557
558         record_stats();
559
560         /* Output */
561         if (DBG_ENABLED() || params.verbose || (complete && have_bug_reports()))
562                 print_execution(complete);
563         else
564                 clear_program_output();
565
566         if (complete)
567                 earliest_diverge = NULL;
568
569         if ((diverge = get_next_backtrack()) == NULL)
570                 return false;
571
572         if (DBG_ENABLED()) {
573                 model_print("Next execution will diverge at:\n");
574                 diverge->print();
575         }
576
577         reset_to_initial_state();
578         return true;
579 }
580
581 /**
582  * @brief Find the last fence-related backtracking conflict for a ModelAction
583  *
584  * This function performs the search for the most recent conflicting action
585  * against which we should perform backtracking, as affected by fence
586  * operations. This includes pairs of potentially-synchronizing actions which
587  * occur due to fence-acquire or fence-release, and hence should be explored in
588  * the opposite execution order.
589  *
590  * @param act The current action
591  * @return The most recent action which conflicts with act due to fences
592  */
593 ModelAction * ModelChecker::get_last_fence_conflict(ModelAction *act) const
594 {
595         /* Only perform release/acquire fence backtracking for stores */
596         if (!act->is_write())
597                 return NULL;
598
599         /* Find a fence-release (or, act is a release) */
600         ModelAction *last_release;
601         if (act->is_release())
602                 last_release = act;
603         else
604                 last_release = get_last_fence_release(act->get_tid());
605         if (!last_release)
606                 return NULL;
607
608         /* Skip past the release */
609         action_list_t *list = action_trace;
610         action_list_t::reverse_iterator rit;
611         for (rit = list->rbegin(); rit != list->rend(); rit++)
612                 if (*rit == last_release)
613                         break;
614         ASSERT(rit != list->rend());
615
616         /* Find a prior:
617          *   load-acquire
618          * or
619          *   load --sb-> fence-acquire */
620         std::vector< ModelAction *, ModelAlloc<ModelAction *> > acquire_fences(get_num_threads(), NULL);
621         std::vector< ModelAction *, ModelAlloc<ModelAction *> > prior_loads(get_num_threads(), NULL);
622         bool found_acquire_fences = false;
623         for ( ; rit != list->rend(); rit++) {
624                 ModelAction *prev = *rit;
625                 if (act->same_thread(prev))
626                         continue;
627
628                 int tid = id_to_int(prev->get_tid());
629
630                 if (prev->is_read() && act->same_var(prev)) {
631                         if (prev->is_acquire()) {
632                                 /* Found most recent load-acquire, don't need
633                                  * to search for more fences */
634                                 if (!found_acquire_fences)
635                                         return NULL;
636                         } else {
637                                 prior_loads[tid] = prev;
638                         }
639                 }
640                 if (prev->is_acquire() && prev->is_fence() && !acquire_fences[tid]) {
641                         found_acquire_fences = true;
642                         acquire_fences[tid] = prev;
643                 }
644         }
645
646         ModelAction *latest_backtrack = NULL;
647         for (unsigned int i = 0; i < acquire_fences.size(); i++)
648                 if (acquire_fences[i] && prior_loads[i])
649                         if (!latest_backtrack || *latest_backtrack < *acquire_fences[i])
650                                 latest_backtrack = acquire_fences[i];
651         return latest_backtrack;
652 }
653
654 /**
655  * @brief Find the last backtracking conflict for a ModelAction
656  *
657  * This function performs the search for the most recent conflicting action
658  * against which we should perform backtracking. This primary includes pairs of
659  * synchronizing actions which should be explored in the opposite execution
660  * order.
661  *
662  * @param act The current action
663  * @return The most recent action which conflicts with act
664  */
665 ModelAction * ModelChecker::get_last_conflict(ModelAction *act) const
666 {
667         switch (act->get_type()) {
668         /* case ATOMIC_FENCE: fences don't directly cause backtracking */
669         case ATOMIC_READ:
670         case ATOMIC_WRITE:
671         case ATOMIC_RMW: {
672                 ModelAction *ret = NULL;
673
674                 /* linear search: from most recent to oldest */
675                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
676                 action_list_t::reverse_iterator rit;
677                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
678                         ModelAction *prev = *rit;
679                         if (prev->could_synchronize_with(act)) {
680                                 ret = prev;
681                                 break;
682                         }
683                 }
684
685                 ModelAction *ret2 = get_last_fence_conflict(act);
686                 if (!ret2)
687                         return ret;
688                 if (!ret)
689                         return ret2;
690                 if (*ret < *ret2)
691                         return ret2;
692                 return ret;
693         }
694         case ATOMIC_LOCK:
695         case ATOMIC_TRYLOCK: {
696                 /* linear search: from most recent to oldest */
697                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
698                 action_list_t::reverse_iterator rit;
699                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
700                         ModelAction *prev = *rit;
701                         if (act->is_conflicting_lock(prev))
702                                 return prev;
703                 }
704                 break;
705         }
706         case ATOMIC_UNLOCK: {
707                 /* linear search: from most recent to oldest */
708                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
709                 action_list_t::reverse_iterator rit;
710                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
711                         ModelAction *prev = *rit;
712                         if (!act->same_thread(prev) && prev->is_failed_trylock())
713                                 return prev;
714                 }
715                 break;
716         }
717         case ATOMIC_WAIT: {
718                 /* linear search: from most recent to oldest */
719                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
720                 action_list_t::reverse_iterator rit;
721                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
722                         ModelAction *prev = *rit;
723                         if (!act->same_thread(prev) && prev->is_failed_trylock())
724                                 return prev;
725                         if (!act->same_thread(prev) && prev->is_notify())
726                                 return prev;
727                 }
728                 break;
729         }
730
731         case ATOMIC_NOTIFY_ALL:
732         case ATOMIC_NOTIFY_ONE: {
733                 /* linear search: from most recent to oldest */
734                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
735                 action_list_t::reverse_iterator rit;
736                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
737                         ModelAction *prev = *rit;
738                         if (!act->same_thread(prev) && prev->is_wait())
739                                 return prev;
740                 }
741                 break;
742         }
743         default:
744                 break;
745         }
746         return NULL;
747 }
748
749 /** This method finds backtracking points where we should try to
750  * reorder the parameter ModelAction against.
751  *
752  * @param the ModelAction to find backtracking points for.
753  */
754 void ModelChecker::set_backtracking(ModelAction *act)
755 {
756         Thread *t = get_thread(act);
757         ModelAction *prev = get_last_conflict(act);
758         if (prev == NULL)
759                 return;
760
761         Node *node = prev->get_node()->get_parent();
762
763         int low_tid, high_tid;
764         if (node->enabled_status(t->get_id()) == THREAD_ENABLED) {
765                 low_tid = id_to_int(act->get_tid());
766                 high_tid = low_tid + 1;
767         } else {
768                 low_tid = 0;
769                 high_tid = get_num_threads();
770         }
771
772         for (int i = low_tid; i < high_tid; i++) {
773                 thread_id_t tid = int_to_id(i);
774
775                 /* Make sure this thread can be enabled here. */
776                 if (i >= node->get_num_threads())
777                         break;
778
779                 /* Don't backtrack into a point where the thread is disabled or sleeping. */
780                 if (node->enabled_status(tid) != THREAD_ENABLED)
781                         continue;
782
783                 /* Check if this has been explored already */
784                 if (node->has_been_explored(tid))
785                         continue;
786
787                 /* See if fairness allows */
788                 if (model->params.fairwindow != 0 && !node->has_priority(tid)) {
789                         bool unfair = false;
790                         for (int t = 0; t < node->get_num_threads(); t++) {
791                                 thread_id_t tother = int_to_id(t);
792                                 if (node->is_enabled(tother) && node->has_priority(tother)) {
793                                         unfair = true;
794                                         break;
795                                 }
796                         }
797                         if (unfair)
798                                 continue;
799                 }
800                 /* Cache the latest backtracking point */
801                 set_latest_backtrack(prev);
802
803                 /* If this is a new backtracking point, mark the tree */
804                 if (!node->set_backtrack(tid))
805                         continue;
806                 DEBUG("Setting backtrack: conflict = %d, instead tid = %d\n",
807                                         id_to_int(prev->get_tid()),
808                                         id_to_int(t->get_id()));
809                 if (DBG_ENABLED()) {
810                         prev->print();
811                         act->print();
812                 }
813         }
814 }
815
816 /**
817  * @brief Cache the a backtracking point as the "most recent", if eligible
818  *
819  * Note that this does not prepare the NodeStack for this backtracking
820  * operation, it only caches the action on a per-execution basis
821  *
822  * @param act The operation at which we should explore a different next action
823  * (i.e., backtracking point)
824  * @return True, if this action is now the most recent backtracking point;
825  * false otherwise
826  */
827 bool ModelChecker::set_latest_backtrack(ModelAction *act)
828 {
829         if (!priv->next_backtrack || *act > *priv->next_backtrack) {
830                 priv->next_backtrack = act;
831                 return true;
832         }
833         return false;
834 }
835
836 /**
837  * Returns last backtracking point. The model checker will explore a different
838  * path for this point in the next execution.
839  * @return The ModelAction at which the next execution should diverge.
840  */
841 ModelAction * ModelChecker::get_next_backtrack()
842 {
843         ModelAction *next = priv->next_backtrack;
844         priv->next_backtrack = NULL;
845         return next;
846 }
847
848 /**
849  * Processes a read model action.
850  * @param curr is the read model action to process.
851  * @return True if processing this read updates the mo_graph.
852  */
853 bool ModelChecker::process_read(ModelAction *curr)
854 {
855         Node *node = curr->get_node();
856         uint64_t value = VALUE_NONE;
857         bool updated = false;
858         while (true) {
859                 switch (node->get_read_from_status()) {
860                 case READ_FROM_PAST: {
861                         const ModelAction *rf = node->get_read_from_past();
862                         ASSERT(rf);
863
864                         mo_graph->startChanges();
865                         value = rf->get_value();
866                         check_recency(curr, rf);
867                         bool r_status = r_modification_order(curr, rf);
868
869                         if (is_infeasible() && node->increment_read_from()) {
870                                 mo_graph->rollbackChanges();
871                                 priv->too_many_reads = false;
872                                 continue;
873                         }
874
875                         read_from(curr, rf);
876                         mo_graph->commitChanges();
877                         mo_check_promises(curr, true);
878
879                         updated |= r_status;
880                         break;
881                 }
882                 case READ_FROM_PROMISE: {
883                         Promise *promise = curr->get_node()->get_read_from_promise();
884                         promise->add_reader(curr);
885                         value = promise->get_value();
886                         curr->set_read_from_promise(promise);
887                         mo_graph->startChanges();
888                         updated = r_modification_order(curr, promise);
889                         mo_graph->commitChanges();
890                         break;
891                 }
892                 case READ_FROM_FUTURE: {
893                         /* Read from future value */
894                         struct future_value fv = node->get_future_value();
895                         Promise *promise = new Promise(curr, fv);
896                         value = fv.value;
897                         curr->set_read_from_promise(promise);
898                         promises->push_back(promise);
899                         mo_graph->startChanges();
900                         updated = r_modification_order(curr, promise);
901                         mo_graph->commitChanges();
902                         break;
903                 }
904                 default:
905                         ASSERT(false);
906                 }
907                 get_thread(curr)->set_return_value(value);
908                 return updated;
909         }
910 }
911
912 /**
913  * Processes a lock, trylock, or unlock model action.  @param curr is
914  * the read model action to process.
915  *
916  * The try lock operation checks whether the lock is taken.  If not,
917  * it falls to the normal lock operation case.  If so, it returns
918  * fail.
919  *
920  * The lock operation has already been checked that it is enabled, so
921  * it just grabs the lock and synchronizes with the previous unlock.
922  *
923  * The unlock operation has to re-enable all of the threads that are
924  * waiting on the lock.
925  *
926  * @return True if synchronization was updated; false otherwise
927  */
928 bool ModelChecker::process_mutex(ModelAction *curr)
929 {
930         std::mutex *mutex = NULL;
931         struct std::mutex_state *state = NULL;
932
933         if (curr->is_trylock() || curr->is_lock() || curr->is_unlock()) {
934                 mutex = (std::mutex *)curr->get_location();
935                 state = mutex->get_state();
936         } else if (curr->is_wait()) {
937                 mutex = (std::mutex *)curr->get_value();
938                 state = mutex->get_state();
939         }
940
941         switch (curr->get_type()) {
942         case ATOMIC_TRYLOCK: {
943                 bool success = !state->islocked;
944                 curr->set_try_lock(success);
945                 if (!success) {
946                         get_thread(curr)->set_return_value(0);
947                         break;
948                 }
949                 get_thread(curr)->set_return_value(1);
950         }
951                 //otherwise fall into the lock case
952         case ATOMIC_LOCK: {
953                 if (curr->get_cv()->getClock(state->alloc_tid) <= state->alloc_clock)
954                         assert_bug("Lock access before initialization");
955                 state->islocked = true;
956                 ModelAction *unlock = get_last_unlock(curr);
957                 //synchronize with the previous unlock statement
958                 if (unlock != NULL) {
959                         curr->synchronize_with(unlock);
960                         return true;
961                 }
962                 break;
963         }
964         case ATOMIC_UNLOCK: {
965                 //unlock the lock
966                 state->islocked = false;
967                 //wake up the other threads
968                 action_list_t *waiters = get_safe_ptr_action(lock_waiters_map, curr->get_location());
969                 //activate all the waiting threads
970                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
971                         scheduler->wake(get_thread(*rit));
972                 }
973                 waiters->clear();
974                 break;
975         }
976         case ATOMIC_WAIT: {
977                 //unlock the lock
978                 state->islocked = false;
979                 //wake up the other threads
980                 action_list_t *waiters = get_safe_ptr_action(lock_waiters_map, (void *) curr->get_value());
981                 //activate all the waiting threads
982                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
983                         scheduler->wake(get_thread(*rit));
984                 }
985                 waiters->clear();
986                 //check whether we should go to sleep or not...simulate spurious failures
987                 if (curr->get_node()->get_misc() == 0) {
988                         get_safe_ptr_action(condvar_waiters_map, curr->get_location())->push_back(curr);
989                         //disable us
990                         scheduler->sleep(get_thread(curr));
991                 }
992                 break;
993         }
994         case ATOMIC_NOTIFY_ALL: {
995                 action_list_t *waiters = get_safe_ptr_action(condvar_waiters_map, curr->get_location());
996                 //activate all the waiting threads
997                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
998                         scheduler->wake(get_thread(*rit));
999                 }
1000                 waiters->clear();
1001                 break;
1002         }
1003         case ATOMIC_NOTIFY_ONE: {
1004                 action_list_t *waiters = get_safe_ptr_action(condvar_waiters_map, curr->get_location());
1005                 int wakeupthread = curr->get_node()->get_misc();
1006                 action_list_t::iterator it = waiters->begin();
1007                 advance(it, wakeupthread);
1008                 scheduler->wake(get_thread(*it));
1009                 waiters->erase(it);
1010                 break;
1011         }
1012
1013         default:
1014                 ASSERT(0);
1015         }
1016         return false;
1017 }
1018
1019 void ModelChecker::add_future_value(const ModelAction *writer, ModelAction *reader)
1020 {
1021         /* Do more ambitious checks now that mo is more complete */
1022         if (mo_may_allow(writer, reader)) {
1023                 Node *node = reader->get_node();
1024
1025                 /* Find an ancestor thread which exists at the time of the reader */
1026                 Thread *write_thread = get_thread(writer);
1027                 while (id_to_int(write_thread->get_id()) >= node->get_num_threads())
1028                         write_thread = write_thread->get_parent();
1029
1030                 struct future_value fv = {
1031                         writer->get_write_value(),
1032                         writer->get_seq_number() + params.maxfuturedelay,
1033                         write_thread->get_id(),
1034                 };
1035                 if (node->add_future_value(fv))
1036                         set_latest_backtrack(reader);
1037         }
1038 }
1039
1040 /**
1041  * Process a write ModelAction
1042  * @param curr The ModelAction to process
1043  * @return True if the mo_graph was updated or promises were resolved
1044  */
1045 bool ModelChecker::process_write(ModelAction *curr)
1046 {
1047         /* Readers to which we may send our future value */
1048         std::vector< ModelAction *, ModelAlloc<ModelAction *> > send_fv;
1049
1050         bool updated_mod_order = w_modification_order(curr, &send_fv);
1051         int promise_idx = get_promise_to_resolve(curr);
1052         const ModelAction *earliest_promise_reader;
1053         bool updated_promises = false;
1054
1055         if (promise_idx >= 0) {
1056                 earliest_promise_reader = (*promises)[promise_idx]->get_reader(0);
1057                 updated_promises = resolve_promise(curr, promise_idx);
1058         } else
1059                 earliest_promise_reader = NULL;
1060
1061         /* Don't send future values to reads after the Promise we resolve */
1062         for (unsigned int i = 0; i < send_fv.size(); i++) {
1063                 ModelAction *read = send_fv[i];
1064                 if (!earliest_promise_reader || *read < *earliest_promise_reader)
1065                         futurevalues->push_back(PendingFutureValue(curr, read));
1066         }
1067
1068         if (promises->size() == 0) {
1069                 for (unsigned int i = 0; i < futurevalues->size(); i++) {
1070                         struct PendingFutureValue pfv = (*futurevalues)[i];
1071                         add_future_value(pfv.writer, pfv.act);
1072                 }
1073                 futurevalues->clear();
1074         }
1075
1076         mo_graph->commitChanges();
1077         mo_check_promises(curr, false);
1078
1079         get_thread(curr)->set_return_value(VALUE_NONE);
1080         return updated_mod_order || updated_promises;
1081 }
1082
1083 /**
1084  * Process a fence ModelAction
1085  * @param curr The ModelAction to process
1086  * @return True if synchronization was updated
1087  */
1088 bool ModelChecker::process_fence(ModelAction *curr)
1089 {
1090         /*
1091          * fence-relaxed: no-op
1092          * fence-release: only log the occurence (not in this function), for
1093          *   use in later synchronization
1094          * fence-acquire (this function): search for hypothetical release
1095          *   sequences
1096          */
1097         bool updated = false;
1098         if (curr->is_acquire()) {
1099                 action_list_t *list = action_trace;
1100                 action_list_t::reverse_iterator rit;
1101                 /* Find X : is_read(X) && X --sb-> curr */
1102                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1103                         ModelAction *act = *rit;
1104                         if (act == curr)
1105                                 continue;
1106                         if (act->get_tid() != curr->get_tid())
1107                                 continue;
1108                         /* Stop at the beginning of the thread */
1109                         if (act->is_thread_start())
1110                                 break;
1111                         /* Stop once we reach a prior fence-acquire */
1112                         if (act->is_fence() && act->is_acquire())
1113                                 break;
1114                         if (!act->is_read())
1115                                 continue;
1116                         /* read-acquire will find its own release sequences */
1117                         if (act->is_acquire())
1118                                 continue;
1119
1120                         /* Establish hypothetical release sequences */
1121                         rel_heads_list_t release_heads;
1122                         get_release_seq_heads(curr, act, &release_heads);
1123                         for (unsigned int i = 0; i < release_heads.size(); i++)
1124                                 if (!curr->synchronize_with(release_heads[i]))
1125                                         set_bad_synchronization();
1126                         if (release_heads.size() != 0)
1127                                 updated = true;
1128                 }
1129         }
1130         return updated;
1131 }
1132
1133 /**
1134  * @brief Process the current action for thread-related activity
1135  *
1136  * Performs current-action processing for a THREAD_* ModelAction. Proccesses
1137  * may include setting Thread status, completing THREAD_FINISH/THREAD_JOIN
1138  * synchronization, etc.  This function is a no-op for non-THREAD actions
1139  * (e.g., ATOMIC_{READ,WRITE,RMW,LOCK}, etc.)
1140  *
1141  * @param curr The current action
1142  * @return True if synchronization was updated or a thread completed
1143  */
1144 bool ModelChecker::process_thread_action(ModelAction *curr)
1145 {
1146         bool updated = false;
1147
1148         switch (curr->get_type()) {
1149         case THREAD_CREATE: {
1150                 thrd_t *thrd = (thrd_t *)curr->get_location();
1151                 struct thread_params *params = (struct thread_params *)curr->get_value();
1152                 Thread *th = new Thread(thrd, params->func, params->arg, get_thread(curr));
1153                 add_thread(th);
1154                 th->set_creation(curr);
1155                 /* Promises can be satisfied by children */
1156                 for (unsigned int i = 0; i < promises->size(); i++) {
1157                         Promise *promise = (*promises)[i];
1158                         if (promise->thread_is_available(curr->get_tid()))
1159                                 promise->add_thread(th->get_id());
1160                 }
1161                 break;
1162         }
1163         case THREAD_JOIN: {
1164                 Thread *blocking = curr->get_thread_operand();
1165                 ModelAction *act = get_last_action(blocking->get_id());
1166                 curr->synchronize_with(act);
1167                 updated = true; /* trigger rel-seq checks */
1168                 break;
1169         }
1170         case THREAD_FINISH: {
1171                 Thread *th = get_thread(curr);
1172                 while (!th->wait_list_empty()) {
1173                         ModelAction *act = th->pop_wait_list();
1174                         scheduler->wake(get_thread(act));
1175                 }
1176                 th->complete();
1177                 /* Completed thread can't satisfy promises */
1178                 for (unsigned int i = 0; i < promises->size(); i++) {
1179                         Promise *promise = (*promises)[i];
1180                         if (promise->thread_is_available(th->get_id()))
1181                                 if (promise->eliminate_thread(th->get_id()))
1182                                         priv->failed_promise = true;
1183                 }
1184                 updated = true; /* trigger rel-seq checks */
1185                 break;
1186         }
1187         case THREAD_START: {
1188                 check_promises(curr->get_tid(), NULL, curr->get_cv());
1189                 break;
1190         }
1191         default:
1192                 break;
1193         }
1194
1195         return updated;
1196 }
1197
1198 /**
1199  * @brief Process the current action for release sequence fixup activity
1200  *
1201  * Performs model-checker release sequence fixups for the current action,
1202  * forcing a single pending release sequence to break (with a given, potential
1203  * "loose" write) or to complete (i.e., synchronize). If a pending release
1204  * sequence forms a complete release sequence, then we must perform the fixup
1205  * synchronization, mo_graph additions, etc.
1206  *
1207  * @param curr The current action; must be a release sequence fixup action
1208  * @param work_queue The work queue to which to add work items as they are
1209  * generated
1210  */
1211 void ModelChecker::process_relseq_fixup(ModelAction *curr, work_queue_t *work_queue)
1212 {
1213         const ModelAction *write = curr->get_node()->get_relseq_break();
1214         struct release_seq *sequence = pending_rel_seqs->back();
1215         pending_rel_seqs->pop_back();
1216         ASSERT(sequence);
1217         ModelAction *acquire = sequence->acquire;
1218         const ModelAction *rf = sequence->rf;
1219         const ModelAction *release = sequence->release;
1220         ASSERT(acquire);
1221         ASSERT(release);
1222         ASSERT(rf);
1223         ASSERT(release->same_thread(rf));
1224
1225         if (write == NULL) {
1226                 /**
1227                  * @todo Forcing a synchronization requires that we set
1228                  * modification order constraints. For instance, we can't allow
1229                  * a fixup sequence in which two separate read-acquire
1230                  * operations read from the same sequence, where the first one
1231                  * synchronizes and the other doesn't. Essentially, we can't
1232                  * allow any writes to insert themselves between 'release' and
1233                  * 'rf'
1234                  */
1235
1236                 /* Must synchronize */
1237                 if (!acquire->synchronize_with(release)) {
1238                         set_bad_synchronization();
1239                         return;
1240                 }
1241                 /* Re-check all pending release sequences */
1242                 work_queue->push_back(CheckRelSeqWorkEntry(NULL));
1243                 /* Re-check act for mo_graph edges */
1244                 work_queue->push_back(MOEdgeWorkEntry(acquire));
1245
1246                 /* propagate synchronization to later actions */
1247                 action_list_t::reverse_iterator rit = action_trace->rbegin();
1248                 for (; (*rit) != acquire; rit++) {
1249                         ModelAction *propagate = *rit;
1250                         if (acquire->happens_before(propagate)) {
1251                                 propagate->synchronize_with(acquire);
1252                                 /* Re-check 'propagate' for mo_graph edges */
1253                                 work_queue->push_back(MOEdgeWorkEntry(propagate));
1254                         }
1255                 }
1256         } else {
1257                 /* Break release sequence with new edges:
1258                  *   release --mo--> write --mo--> rf */
1259                 mo_graph->addEdge(release, write);
1260                 mo_graph->addEdge(write, rf);
1261         }
1262
1263         /* See if we have realized a data race */
1264         checkDataRaces();
1265 }
1266
1267 /**
1268  * Initialize the current action by performing one or more of the following
1269  * actions, as appropriate: merging RMWR and RMWC/RMW actions, stepping forward
1270  * in the NodeStack, manipulating backtracking sets, allocating and
1271  * initializing clock vectors, and computing the promises to fulfill.
1272  *
1273  * @param curr The current action, as passed from the user context; may be
1274  * freed/invalidated after the execution of this function, with a different
1275  * action "returned" its place (pass-by-reference)
1276  * @return True if curr is a newly-explored action; false otherwise
1277  */
1278 bool ModelChecker::initialize_curr_action(ModelAction **curr)
1279 {
1280         ModelAction *newcurr;
1281
1282         if ((*curr)->is_rmwc() || (*curr)->is_rmw()) {
1283                 newcurr = process_rmw(*curr);
1284                 delete *curr;
1285
1286                 if (newcurr->is_rmw())
1287                         compute_promises(newcurr);
1288
1289                 *curr = newcurr;
1290                 return false;
1291         }
1292
1293         (*curr)->set_seq_number(get_next_seq_num());
1294
1295         newcurr = node_stack->explore_action(*curr, scheduler->get_enabled_array());
1296         if (newcurr) {
1297                 /* First restore type and order in case of RMW operation */
1298                 if ((*curr)->is_rmwr())
1299                         newcurr->copy_typeandorder(*curr);
1300
1301                 ASSERT((*curr)->get_location() == newcurr->get_location());
1302                 newcurr->copy_from_new(*curr);
1303
1304                 /* Discard duplicate ModelAction; use action from NodeStack */
1305                 delete *curr;
1306
1307                 /* Always compute new clock vector */
1308                 newcurr->create_cv(get_parent_action(newcurr->get_tid()));
1309
1310                 *curr = newcurr;
1311                 return false; /* Action was explored previously */
1312         } else {
1313                 newcurr = *curr;
1314
1315                 /* Always compute new clock vector */
1316                 newcurr->create_cv(get_parent_action(newcurr->get_tid()));
1317
1318                 /* Assign most recent release fence */
1319                 newcurr->set_last_fence_release(get_last_fence_release(newcurr->get_tid()));
1320
1321                 /*
1322                  * Perform one-time actions when pushing new ModelAction onto
1323                  * NodeStack
1324                  */
1325                 if (newcurr->is_write())
1326                         compute_promises(newcurr);
1327                 else if (newcurr->is_relseq_fixup())
1328                         compute_relseq_breakwrites(newcurr);
1329                 else if (newcurr->is_wait())
1330                         newcurr->get_node()->set_misc_max(2);
1331                 else if (newcurr->is_notify_one()) {
1332                         newcurr->get_node()->set_misc_max(get_safe_ptr_action(condvar_waiters_map, newcurr->get_location())->size());
1333                 }
1334                 return true; /* This was a new ModelAction */
1335         }
1336 }
1337
1338 /**
1339  * @brief Establish reads-from relation between two actions
1340  *
1341  * Perform basic operations involved with establishing a concrete rf relation,
1342  * including setting the ModelAction data and checking for release sequences.
1343  *
1344  * @param act The action that is reading (must be a read)
1345  * @param rf The action from which we are reading (must be a write)
1346  *
1347  * @return True if this read established synchronization
1348  */
1349 bool ModelChecker::read_from(ModelAction *act, const ModelAction *rf)
1350 {
1351         ASSERT(rf);
1352         act->set_read_from(rf);
1353         if (act->is_acquire()) {
1354                 rel_heads_list_t release_heads;
1355                 get_release_seq_heads(act, act, &release_heads);
1356                 int num_heads = release_heads.size();
1357                 for (unsigned int i = 0; i < release_heads.size(); i++)
1358                         if (!act->synchronize_with(release_heads[i])) {
1359                                 set_bad_synchronization();
1360                                 num_heads--;
1361                         }
1362                 return num_heads > 0;
1363         }
1364         return false;
1365 }
1366
1367 /**
1368  * Check promises and eliminate potentially-satisfying threads when a thread is
1369  * blocked (e.g., join, lock). A thread which is waiting on another thread can
1370  * no longer satisfy a promise generated from that thread.
1371  *
1372  * @param blocker The thread on which a thread is waiting
1373  * @param waiting The waiting thread
1374  */
1375 void ModelChecker::thread_blocking_check_promises(Thread *blocker, Thread *waiting)
1376 {
1377         for (unsigned int i = 0; i < promises->size(); i++) {
1378                 Promise *promise = (*promises)[i];
1379                 if (!promise->thread_is_available(waiting->get_id()))
1380                         continue;
1381                 for (unsigned int j = 0; j < promise->get_num_readers(); j++) {
1382                         ModelAction *reader = promise->get_reader(j);
1383                         if (reader->get_tid() != blocker->get_id())
1384                                 continue;
1385                         if (promise->eliminate_thread(waiting->get_id())) {
1386                                 /* Promise has failed */
1387                                 priv->failed_promise = true;
1388                         } else {
1389                                 /* Only eliminate the 'waiting' thread once */
1390                                 return;
1391                         }
1392                 }
1393         }
1394 }
1395
1396 /**
1397  * @brief Check whether a model action is enabled.
1398  *
1399  * Checks whether a lock or join operation would be successful (i.e., is the
1400  * lock already locked, or is the joined thread already complete). If not, put
1401  * the action in a waiter list.
1402  *
1403  * @param curr is the ModelAction to check whether it is enabled.
1404  * @return a bool that indicates whether the action is enabled.
1405  */
1406 bool ModelChecker::check_action_enabled(ModelAction *curr) {
1407         if (curr->is_lock()) {
1408                 std::mutex *lock = (std::mutex *)curr->get_location();
1409                 struct std::mutex_state *state = lock->get_state();
1410                 if (state->islocked) {
1411                         //Stick the action in the appropriate waiting queue
1412                         get_safe_ptr_action(lock_waiters_map, curr->get_location())->push_back(curr);
1413                         return false;
1414                 }
1415         } else if (curr->get_type() == THREAD_JOIN) {
1416                 Thread *blocking = (Thread *)curr->get_location();
1417                 if (!blocking->is_complete()) {
1418                         blocking->push_wait_list(curr);
1419                         thread_blocking_check_promises(blocking, get_thread(curr));
1420                         return false;
1421                 }
1422         }
1423
1424         return true;
1425 }
1426
1427 /**
1428  * This is the heart of the model checker routine. It performs model-checking
1429  * actions corresponding to a given "current action." Among other processes, it
1430  * calculates reads-from relationships, updates synchronization clock vectors,
1431  * forms a memory_order constraints graph, and handles replay/backtrack
1432  * execution when running permutations of previously-observed executions.
1433  *
1434  * @param curr The current action to process
1435  * @return The ModelAction that is actually executed; may be different than
1436  * curr; may be NULL, if the current action is not enabled to run
1437  */
1438 ModelAction * ModelChecker::check_current_action(ModelAction *curr)
1439 {
1440         ASSERT(curr);
1441         bool second_part_of_rmw = curr->is_rmwc() || curr->is_rmw();
1442
1443         if (!check_action_enabled(curr)) {
1444                 /* Make the execution look like we chose to run this action
1445                  * much later, when a lock/join can succeed */
1446                 get_thread(curr)->set_pending(curr);
1447                 scheduler->sleep(get_thread(curr));
1448                 return NULL;
1449         }
1450
1451         bool newly_explored = initialize_curr_action(&curr);
1452
1453         DBG();
1454         if (DBG_ENABLED())
1455                 curr->print();
1456
1457         wake_up_sleeping_actions(curr);
1458
1459         /* Add the action to lists before any other model-checking tasks */
1460         if (!second_part_of_rmw)
1461                 add_action_to_lists(curr);
1462
1463         /* Build may_read_from set for newly-created actions */
1464         if (newly_explored && curr->is_read())
1465                 build_may_read_from(curr);
1466
1467         /* Initialize work_queue with the "current action" work */
1468         work_queue_t work_queue(1, CheckCurrWorkEntry(curr));
1469         while (!work_queue.empty() && !has_asserted()) {
1470                 WorkQueueEntry work = work_queue.front();
1471                 work_queue.pop_front();
1472
1473                 switch (work.type) {
1474                 case WORK_CHECK_CURR_ACTION: {
1475                         ModelAction *act = work.action;
1476                         bool update = false; /* update this location's release seq's */
1477                         bool update_all = false; /* update all release seq's */
1478
1479                         if (process_thread_action(curr))
1480                                 update_all = true;
1481
1482                         if (act->is_read() && !second_part_of_rmw && process_read(act))
1483                                 update = true;
1484
1485                         if (act->is_write() && process_write(act))
1486                                 update = true;
1487
1488                         if (act->is_fence() && process_fence(act))
1489                                 update_all = true;
1490
1491                         if (act->is_mutex_op() && process_mutex(act))
1492                                 update_all = true;
1493
1494                         if (act->is_relseq_fixup())
1495                                 process_relseq_fixup(curr, &work_queue);
1496
1497                         if (update_all)
1498                                 work_queue.push_back(CheckRelSeqWorkEntry(NULL));
1499                         else if (update)
1500                                 work_queue.push_back(CheckRelSeqWorkEntry(act->get_location()));
1501                         break;
1502                 }
1503                 case WORK_CHECK_RELEASE_SEQ:
1504                         resolve_release_sequences(work.location, &work_queue);
1505                         break;
1506                 case WORK_CHECK_MO_EDGES: {
1507                         /** @todo Complete verification of work_queue */
1508                         ModelAction *act = work.action;
1509                         bool updated = false;
1510
1511                         if (act->is_read()) {
1512                                 const ModelAction *rf = act->get_reads_from();
1513                                 const Promise *promise = act->get_reads_from_promise();
1514                                 if (rf) {
1515                                         if (r_modification_order(act, rf))
1516                                                 updated = true;
1517                                 } else if (promise) {
1518                                         if (r_modification_order(act, promise))
1519                                                 updated = true;
1520                                 }
1521                         }
1522                         if (act->is_write()) {
1523                                 if (w_modification_order(act, NULL))
1524                                         updated = true;
1525                         }
1526                         mo_graph->commitChanges();
1527
1528                         if (updated)
1529                                 work_queue.push_back(CheckRelSeqWorkEntry(act->get_location()));
1530                         break;
1531                 }
1532                 default:
1533                         ASSERT(false);
1534                         break;
1535                 }
1536         }
1537
1538         check_curr_backtracking(curr);
1539         set_backtracking(curr);
1540         return curr;
1541 }
1542
1543 void ModelChecker::check_curr_backtracking(ModelAction *curr)
1544 {
1545         Node *currnode = curr->get_node();
1546         Node *parnode = currnode->get_parent();
1547
1548         if ((parnode && !parnode->backtrack_empty()) ||
1549                          !currnode->misc_empty() ||
1550                          !currnode->read_from_empty() ||
1551                          !currnode->promise_empty() ||
1552                          !currnode->relseq_break_empty()) {
1553                 set_latest_backtrack(curr);
1554         }
1555 }
1556
1557 bool ModelChecker::promises_expired() const
1558 {
1559         for (unsigned int i = 0; i < promises->size(); i++) {
1560                 Promise *promise = (*promises)[i];
1561                 if (promise->get_expiration() < priv->used_sequence_numbers)
1562                         return true;
1563         }
1564         return false;
1565 }
1566
1567 /**
1568  * This is the strongest feasibility check available.
1569  * @return whether the current trace (partial or complete) must be a prefix of
1570  * a feasible trace.
1571  */
1572 bool ModelChecker::isfeasibleprefix() const
1573 {
1574         return pending_rel_seqs->size() == 0 && is_feasible_prefix_ignore_relseq();
1575 }
1576
1577 /**
1578  * Print disagnostic information about an infeasible execution
1579  * @param prefix A string to prefix the output with; if NULL, then a default
1580  * message prefix will be provided
1581  */
1582 void ModelChecker::print_infeasibility(const char *prefix) const
1583 {
1584         char buf[100];
1585         char *ptr = buf;
1586         if (mo_graph->checkForCycles())
1587                 ptr += sprintf(ptr, "[mo cycle]");
1588         if (priv->failed_promise)
1589                 ptr += sprintf(ptr, "[failed promise]");
1590         if (priv->too_many_reads)
1591                 ptr += sprintf(ptr, "[too many reads]");
1592         if (priv->no_valid_reads)
1593                 ptr += sprintf(ptr, "[no valid reads-from]");
1594         if (priv->bad_synchronization)
1595                 ptr += sprintf(ptr, "[bad sw ordering]");
1596         if (promises_expired())
1597                 ptr += sprintf(ptr, "[promise expired]");
1598         if (promises->size() != 0)
1599                 ptr += sprintf(ptr, "[unresolved promise]");
1600         if (ptr != buf)
1601                 model_print("%s: %s\n", prefix ? prefix : "Infeasible", buf);
1602 }
1603
1604 /**
1605  * Returns whether the current completed trace is feasible, except for pending
1606  * release sequences.
1607  */
1608 bool ModelChecker::is_feasible_prefix_ignore_relseq() const
1609 {
1610         return !is_infeasible() && promises->size() == 0;
1611 }
1612
1613 /**
1614  * Check if the current partial trace is infeasible. Does not check any
1615  * end-of-execution flags, which might rule out the execution. Thus, this is
1616  * useful only for ruling an execution as infeasible.
1617  * @return whether the current partial trace is infeasible.
1618  */
1619 bool ModelChecker::is_infeasible() const
1620 {
1621         return mo_graph->checkForCycles() ||
1622                 priv->no_valid_reads ||
1623                 priv->failed_promise ||
1624                 priv->too_many_reads ||
1625                 priv->bad_synchronization ||
1626                 promises_expired();
1627 }
1628
1629 /** Close out a RMWR by converting previous RMWR into a RMW or READ. */
1630 ModelAction * ModelChecker::process_rmw(ModelAction *act) {
1631         ModelAction *lastread = get_last_action(act->get_tid());
1632         lastread->process_rmw(act);
1633         if (act->is_rmw()) {
1634                 if (lastread->get_reads_from())
1635                         mo_graph->addRMWEdge(lastread->get_reads_from(), lastread);
1636                 else
1637                         mo_graph->addRMWEdge(lastread->get_reads_from_promise(), lastread);
1638                 mo_graph->commitChanges();
1639         }
1640         return lastread;
1641 }
1642
1643 /**
1644  * Checks whether a thread has read from the same write for too many times
1645  * without seeing the effects of a later write.
1646  *
1647  * Basic idea:
1648  * 1) there must a different write that we could read from that would satisfy the modification order,
1649  * 2) we must have read from the same value in excess of maxreads times, and
1650  * 3) that other write must have been in the reads_from set for maxreads times.
1651  *
1652  * If so, we decide that the execution is no longer feasible.
1653  */
1654 void ModelChecker::check_recency(ModelAction *curr, const ModelAction *rf)
1655 {
1656         if (!params.maxreads)
1657                 return;
1658
1659         //NOTE: Next check is just optimization, not really necessary....
1660         if (curr->get_node()->get_read_from_past_size() <= 1)
1661                 return;
1662         /* Must make sure that execution is currently feasible...  We could
1663          * accidentally clear by rolling back */
1664         if (is_infeasible())
1665                 return;
1666
1667         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1668         int tid = id_to_int(curr->get_tid());
1669         ASSERT(tid < (int)thrd_lists->size());
1670         action_list_t *list = &(*thrd_lists)[tid];
1671         action_list_t::reverse_iterator rit = list->rbegin();
1672         ASSERT((*rit) == curr);
1673         /* Skip past curr */
1674         rit++;
1675
1676         action_list_t::reverse_iterator ritcopy = rit;
1677         /* See if we have enough reads from the same value */
1678         for (int count = 0; count < params.maxreads; ritcopy++, count++) {
1679                 if (ritcopy == list->rend())
1680                         return;
1681                 ModelAction *act = *ritcopy;
1682                 if (!act->is_read())
1683                         return;
1684                 if (act->get_reads_from() != rf)
1685                         return;
1686                 if (act->get_node()->get_read_from_past_size() <= 1)
1687                         return;
1688         }
1689         for (int i = 0; i < curr->get_node()->get_read_from_past_size(); i++) {
1690                 /* Get write */
1691                 const ModelAction *write = curr->get_node()->get_read_from_past(i);
1692
1693                 /* Need a different write */
1694                 if (write == rf)
1695                         continue;
1696
1697                 //NOTE: SHOULD MAKE SURE write is MOd after rf
1698
1699                 /* Test to see whether this is a feasible write to read from */
1700                 /** NOTE: all members of read-from set should be
1701                  *  feasible, so we no longer check it here **/
1702
1703                 ritcopy = rit;
1704
1705                 bool feasiblewrite = true;
1706                 /* now we need to see if this write works for everyone */
1707                 for (int loop = params.maxreads; loop > 0; loop--, ritcopy++) {
1708                         ModelAction *act = *ritcopy;
1709                         if (!act->may_read_from(write)) {
1710                                 feasiblewrite = false;
1711                                 break;
1712                         }
1713                 }
1714                 if (feasiblewrite) {
1715                         priv->too_many_reads = true;
1716                         return;
1717                 }
1718         }
1719 }
1720
1721 /**
1722  * Updates the mo_graph with the constraints imposed from the current
1723  * read.
1724  *
1725  * Basic idea is the following: Go through each other thread and find
1726  * the last action that happened before our read.  Two cases:
1727  *
1728  * (1) The action is a write => that write must either occur before
1729  * the write we read from or be the write we read from.
1730  *
1731  * (2) The action is a read => the write that that action read from
1732  * must occur before the write we read from or be the same write.
1733  *
1734  * @param curr The current action. Must be a read.
1735  * @param rf The ModelAction or Promise that curr reads from. Must be a write.
1736  * @return True if modification order edges were added; false otherwise
1737  */
1738 template <typename rf_type>
1739 bool ModelChecker::r_modification_order(ModelAction *curr, const rf_type *rf)
1740 {
1741         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1742         unsigned int i;
1743         bool added = false;
1744         ASSERT(curr->is_read());
1745
1746         /* Last SC fence in the current thread */
1747         ModelAction *last_sc_fence_local = get_last_seq_cst_fence(curr->get_tid(), NULL);
1748
1749         /* Iterate over all threads */
1750         for (i = 0; i < thrd_lists->size(); i++) {
1751                 /* Last SC fence in thread i */
1752                 ModelAction *last_sc_fence_thread_local = NULL;
1753                 if (int_to_id((int)i) != curr->get_tid())
1754                         last_sc_fence_thread_local = get_last_seq_cst_fence(int_to_id(i), NULL);
1755
1756                 /* Last SC fence in thread i, before last SC fence in current thread */
1757                 ModelAction *last_sc_fence_thread_before = NULL;
1758                 if (last_sc_fence_local)
1759                         last_sc_fence_thread_before = get_last_seq_cst_fence(int_to_id(i), last_sc_fence_local);
1760
1761                 /* Iterate over actions in thread, starting from most recent */
1762                 action_list_t *list = &(*thrd_lists)[i];
1763                 action_list_t::reverse_iterator rit;
1764                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1765                         ModelAction *act = *rit;
1766
1767                         if (act->is_write() && !act->equals(rf) && act != curr) {
1768                                 /* C++, Section 29.3 statement 5 */
1769                                 if (curr->is_seqcst() && last_sc_fence_thread_local &&
1770                                                 *act < *last_sc_fence_thread_local) {
1771                                         added = mo_graph->addEdge(act, rf) || added;
1772                                         break;
1773                                 }
1774                                 /* C++, Section 29.3 statement 4 */
1775                                 else if (act->is_seqcst() && last_sc_fence_local &&
1776                                                 *act < *last_sc_fence_local) {
1777                                         added = mo_graph->addEdge(act, rf) || added;
1778                                         break;
1779                                 }
1780                                 /* C++, Section 29.3 statement 6 */
1781                                 else if (last_sc_fence_thread_before &&
1782                                                 *act < *last_sc_fence_thread_before) {
1783                                         added = mo_graph->addEdge(act, rf) || added;
1784                                         break;
1785                                 }
1786                         }
1787
1788                         /*
1789                          * Include at most one act per-thread that "happens
1790                          * before" curr. Don't consider reflexively.
1791                          */
1792                         if (act->happens_before(curr) && act != curr) {
1793                                 if (act->is_write()) {
1794                                         if (!act->equals(rf)) {
1795                                                 added = mo_graph->addEdge(act, rf) || added;
1796                                         }
1797                                 } else {
1798                                         const ModelAction *prevrf = act->get_reads_from();
1799                                         const Promise *prevrf_promise = act->get_reads_from_promise();
1800                                         if (prevrf) {
1801                                                 if (!prevrf->equals(rf))
1802                                                         added = mo_graph->addEdge(prevrf, rf) || added;
1803                                         } else if (!prevrf_promise->equals(rf)) {
1804                                                 added = mo_graph->addEdge(prevrf_promise, rf) || added;
1805                                         }
1806                                 }
1807                                 break;
1808                         }
1809                 }
1810         }
1811
1812         /*
1813          * All compatible, thread-exclusive promises must be ordered after any
1814          * concrete loads from the same thread
1815          */
1816         for (unsigned int i = 0; i < promises->size(); i++)
1817                 if ((*promises)[i]->is_compatible_exclusive(curr))
1818                         added = mo_graph->addEdge(rf, (*promises)[i]) || added;
1819
1820         return added;
1821 }
1822
1823 /**
1824  * Updates the mo_graph with the constraints imposed from the current write.
1825  *
1826  * Basic idea is the following: Go through each other thread and find
1827  * the lastest action that happened before our write.  Two cases:
1828  *
1829  * (1) The action is a write => that write must occur before
1830  * the current write
1831  *
1832  * (2) The action is a read => the write that that action read from
1833  * must occur before the current write.
1834  *
1835  * This method also handles two other issues:
1836  *
1837  * (I) Sequential Consistency: Making sure that if the current write is
1838  * seq_cst, that it occurs after the previous seq_cst write.
1839  *
1840  * (II) Sending the write back to non-synchronizing reads.
1841  *
1842  * @param curr The current action. Must be a write.
1843  * @param send_fv A vector for stashing reads to which we may pass our future
1844  * value. If NULL, then don't record any future values.
1845  * @return True if modification order edges were added; false otherwise
1846  */
1847 bool ModelChecker::w_modification_order(ModelAction *curr, std::vector< ModelAction *, ModelAlloc<ModelAction *> > *send_fv)
1848 {
1849         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1850         unsigned int i;
1851         bool added = false;
1852         ASSERT(curr->is_write());
1853
1854         if (curr->is_seqcst()) {
1855                 /* We have to at least see the last sequentially consistent write,
1856                          so we are initialized. */
1857                 ModelAction *last_seq_cst = get_last_seq_cst_write(curr);
1858                 if (last_seq_cst != NULL) {
1859                         added = mo_graph->addEdge(last_seq_cst, curr) || added;
1860                 }
1861         }
1862
1863         /* Last SC fence in the current thread */
1864         ModelAction *last_sc_fence_local = get_last_seq_cst_fence(curr->get_tid(), NULL);
1865
1866         /* Iterate over all threads */
1867         for (i = 0; i < thrd_lists->size(); i++) {
1868                 /* Last SC fence in thread i, before last SC fence in current thread */
1869                 ModelAction *last_sc_fence_thread_before = NULL;
1870                 if (last_sc_fence_local && int_to_id((int)i) != curr->get_tid())
1871                         last_sc_fence_thread_before = get_last_seq_cst_fence(int_to_id(i), last_sc_fence_local);
1872
1873                 /* Iterate over actions in thread, starting from most recent */
1874                 action_list_t *list = &(*thrd_lists)[i];
1875                 action_list_t::reverse_iterator rit;
1876                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1877                         ModelAction *act = *rit;
1878                         if (act == curr) {
1879                                 /*
1880                                  * 1) If RMW and it actually read from something, then we
1881                                  * already have all relevant edges, so just skip to next
1882                                  * thread.
1883                                  *
1884                                  * 2) If RMW and it didn't read from anything, we should
1885                                  * whatever edge we can get to speed up convergence.
1886                                  *
1887                                  * 3) If normal write, we need to look at earlier actions, so
1888                                  * continue processing list.
1889                                  */
1890                                 if (curr->is_rmw()) {
1891                                         if (curr->get_reads_from() != NULL)
1892                                                 break;
1893                                         else
1894                                                 continue;
1895                                 } else
1896                                         continue;
1897                         }
1898
1899                         /* C++, Section 29.3 statement 7 */
1900                         if (last_sc_fence_thread_before && act->is_write() &&
1901                                         *act < *last_sc_fence_thread_before) {
1902                                 added = mo_graph->addEdge(act, curr) || added;
1903                                 break;
1904                         }
1905
1906                         /*
1907                          * Include at most one act per-thread that "happens
1908                          * before" curr
1909                          */
1910                         if (act->happens_before(curr)) {
1911                                 /*
1912                                  * Note: if act is RMW, just add edge:
1913                                  *   act --mo--> curr
1914                                  * The following edge should be handled elsewhere:
1915                                  *   readfrom(act) --mo--> act
1916                                  */
1917                                 if (act->is_write())
1918                                         added = mo_graph->addEdge(act, curr) || added;
1919                                 else if (act->is_read()) {
1920                                         //if previous read accessed a null, just keep going
1921                                         if (act->get_reads_from() == NULL)
1922                                                 continue;
1923                                         added = mo_graph->addEdge(act->get_reads_from(), curr) || added;
1924                                 }
1925                                 break;
1926                         } else if (act->is_read() && !act->could_synchronize_with(curr) &&
1927                                                      !act->same_thread(curr)) {
1928                                 /* We have an action that:
1929                                    (1) did not happen before us
1930                                    (2) is a read and we are a write
1931                                    (3) cannot synchronize with us
1932                                    (4) is in a different thread
1933                                    =>
1934                                    that read could potentially read from our write.  Note that
1935                                    these checks are overly conservative at this point, we'll
1936                                    do more checks before actually removing the
1937                                    pendingfuturevalue.
1938
1939                                  */
1940                                 if (send_fv && thin_air_constraint_may_allow(curr, act)) {
1941                                         if (!is_infeasible())
1942                                                 send_fv->push_back(act);
1943                                         else if (curr->is_rmw() && act->is_rmw() && curr->get_reads_from() && curr->get_reads_from() == act->get_reads_from())
1944                                                 add_future_value(curr, act);
1945                                 }
1946                         }
1947                 }
1948         }
1949
1950         /*
1951          * All compatible, thread-exclusive promises must be ordered after any
1952          * concrete stores to the same thread, or else they can be merged with
1953          * this store later
1954          */
1955         for (unsigned int i = 0; i < promises->size(); i++)
1956                 if ((*promises)[i]->is_compatible_exclusive(curr))
1957                         added = mo_graph->addEdge(curr, (*promises)[i]) || added;
1958
1959         return added;
1960 }
1961
1962 /** Arbitrary reads from the future are not allowed.  Section 29.3
1963  * part 9 places some constraints.  This method checks one result of constraint
1964  * constraint.  Others require compiler support. */
1965 bool ModelChecker::thin_air_constraint_may_allow(const ModelAction *writer, const ModelAction *reader)
1966 {
1967         if (!writer->is_rmw())
1968                 return true;
1969
1970         if (!reader->is_rmw())
1971                 return true;
1972
1973         for (const ModelAction *search = writer->get_reads_from(); search != NULL; search = search->get_reads_from()) {
1974                 if (search == reader)
1975                         return false;
1976                 if (search->get_tid() == reader->get_tid() &&
1977                                 search->happens_before(reader))
1978                         break;
1979         }
1980
1981         return true;
1982 }
1983
1984 /**
1985  * Arbitrary reads from the future are not allowed. Section 29.3 part 9 places
1986  * some constraints. This method checks one the following constraint (others
1987  * require compiler support):
1988  *
1989  *   If X --hb-> Y --mo-> Z, then X should not read from Z.
1990  */
1991 bool ModelChecker::mo_may_allow(const ModelAction *writer, const ModelAction *reader)
1992 {
1993         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, reader->get_location());
1994         unsigned int i;
1995         /* Iterate over all threads */
1996         for (i = 0; i < thrd_lists->size(); i++) {
1997                 const ModelAction *write_after_read = NULL;
1998
1999                 /* Iterate over actions in thread, starting from most recent */
2000                 action_list_t *list = &(*thrd_lists)[i];
2001                 action_list_t::reverse_iterator rit;
2002                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
2003                         ModelAction *act = *rit;
2004
2005                         /* Don't disallow due to act == reader */
2006                         if (!reader->happens_before(act) || reader == act)
2007                                 break;
2008                         else if (act->is_write())
2009                                 write_after_read = act;
2010                         else if (act->is_read() && act->get_reads_from() != NULL)
2011                                 write_after_read = act->get_reads_from();
2012                 }
2013
2014                 if (write_after_read && write_after_read != writer && mo_graph->checkReachable(write_after_read, writer))
2015                         return false;
2016         }
2017         return true;
2018 }
2019
2020 /**
2021  * Finds the head(s) of the release sequence(s) containing a given ModelAction.
2022  * The ModelAction under consideration is expected to be taking part in
2023  * release/acquire synchronization as an object of the "reads from" relation.
2024  * Note that this can only provide release sequence support for RMW chains
2025  * which do not read from the future, as those actions cannot be traced until
2026  * their "promise" is fulfilled. Similarly, we may not even establish the
2027  * presence of a release sequence with certainty, as some modification order
2028  * constraints may be decided further in the future. Thus, this function
2029  * "returns" two pieces of data: a pass-by-reference vector of @a release_heads
2030  * and a boolean representing certainty.
2031  *
2032  * @param rf The action that might be part of a release sequence. Must be a
2033  * write.
2034  * @param release_heads A pass-by-reference style return parameter. After
2035  * execution of this function, release_heads will contain the heads of all the
2036  * relevant release sequences, if any exists with certainty
2037  * @param pending A pass-by-reference style return parameter which is only used
2038  * when returning false (i.e., uncertain). Returns most information regarding
2039  * an uncertain release sequence, including any write operations that might
2040  * break the sequence.
2041  * @return true, if the ModelChecker is certain that release_heads is complete;
2042  * false otherwise
2043  */
2044 bool ModelChecker::release_seq_heads(const ModelAction *rf,
2045                 rel_heads_list_t *release_heads,
2046                 struct release_seq *pending) const
2047 {
2048         /* Only check for release sequences if there are no cycles */
2049         if (mo_graph->checkForCycles())
2050                 return false;
2051
2052         for ( ; rf != NULL; rf = rf->get_reads_from()) {
2053                 ASSERT(rf->is_write());
2054
2055                 if (rf->is_release())
2056                         release_heads->push_back(rf);
2057                 else if (rf->get_last_fence_release())
2058                         release_heads->push_back(rf->get_last_fence_release());
2059                 if (!rf->is_rmw())
2060                         break; /* End of RMW chain */
2061
2062                 /** @todo Need to be smarter here...  In the linux lock
2063                  * example, this will run to the beginning of the program for
2064                  * every acquire. */
2065                 /** @todo The way to be smarter here is to keep going until 1
2066                  * thread has a release preceded by an acquire and you've seen
2067                  *       both. */
2068
2069                 /* acq_rel RMW is a sufficient stopping condition */
2070                 if (rf->is_acquire() && rf->is_release())
2071                         return true; /* complete */
2072         };
2073         if (!rf) {
2074                 /* read from future: need to settle this later */
2075                 pending->rf = NULL;
2076                 return false; /* incomplete */
2077         }
2078
2079         if (rf->is_release())
2080                 return true; /* complete */
2081
2082         /* else relaxed write
2083          * - check for fence-release in the same thread (29.8, stmt. 3)
2084          * - check modification order for contiguous subsequence
2085          *   -> rf must be same thread as release */
2086
2087         const ModelAction *fence_release = rf->get_last_fence_release();
2088         /* Synchronize with a fence-release unconditionally; we don't need to
2089          * find any more "contiguous subsequence..." for it */
2090         if (fence_release)
2091                 release_heads->push_back(fence_release);
2092
2093         int tid = id_to_int(rf->get_tid());
2094         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, rf->get_location());
2095         action_list_t *list = &(*thrd_lists)[tid];
2096         action_list_t::const_reverse_iterator rit;
2097
2098         /* Find rf in the thread list */
2099         rit = std::find(list->rbegin(), list->rend(), rf);
2100         ASSERT(rit != list->rend());
2101
2102         /* Find the last {write,fence}-release */
2103         for (; rit != list->rend(); rit++) {
2104                 if (fence_release && *(*rit) < *fence_release)
2105                         break;
2106                 if ((*rit)->is_release())
2107                         break;
2108         }
2109         if (rit == list->rend()) {
2110                 /* No write-release in this thread */
2111                 return true; /* complete */
2112         } else if (fence_release && *(*rit) < *fence_release) {
2113                 /* The fence-release is more recent (and so, "stronger") than
2114                  * the most recent write-release */
2115                 return true; /* complete */
2116         } /* else, need to establish contiguous release sequence */
2117         ModelAction *release = *rit;
2118
2119         ASSERT(rf->same_thread(release));
2120
2121         pending->writes.clear();
2122
2123         bool certain = true;
2124         for (unsigned int i = 0; i < thrd_lists->size(); i++) {
2125                 if (id_to_int(rf->get_tid()) == (int)i)
2126                         continue;
2127                 list = &(*thrd_lists)[i];
2128
2129                 /* Can we ensure no future writes from this thread may break
2130                  * the release seq? */
2131                 bool future_ordered = false;
2132
2133                 ModelAction *last = get_last_action(int_to_id(i));
2134                 Thread *th = get_thread(int_to_id(i));
2135                 if ((last && rf->happens_before(last)) ||
2136                                 !is_enabled(th) ||
2137                                 th->is_complete())
2138                         future_ordered = true;
2139
2140                 ASSERT(!th->is_model_thread() || future_ordered);
2141
2142                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
2143                         const ModelAction *act = *rit;
2144                         /* Reach synchronization -> this thread is complete */
2145                         if (act->happens_before(release))
2146                                 break;
2147                         if (rf->happens_before(act)) {
2148                                 future_ordered = true;
2149                                 continue;
2150                         }
2151
2152                         /* Only non-RMW writes can break release sequences */
2153                         if (!act->is_write() || act->is_rmw())
2154                                 continue;
2155
2156                         /* Check modification order */
2157                         if (mo_graph->checkReachable(rf, act)) {
2158                                 /* rf --mo--> act */
2159                                 future_ordered = true;
2160                                 continue;
2161                         }
2162                         if (mo_graph->checkReachable(act, release))
2163                                 /* act --mo--> release */
2164                                 break;
2165                         if (mo_graph->checkReachable(release, act) &&
2166                                       mo_graph->checkReachable(act, rf)) {
2167                                 /* release --mo-> act --mo--> rf */
2168                                 return true; /* complete */
2169                         }
2170                         /* act may break release sequence */
2171                         pending->writes.push_back(act);
2172                         certain = false;
2173                 }
2174                 if (!future_ordered)
2175                         certain = false; /* This thread is uncertain */
2176         }
2177
2178         if (certain) {
2179                 release_heads->push_back(release);
2180                 pending->writes.clear();
2181         } else {
2182                 pending->release = release;
2183                 pending->rf = rf;
2184         }
2185         return certain;
2186 }
2187
2188 /**
2189  * An interface for getting the release sequence head(s) with which a
2190  * given ModelAction must synchronize. This function only returns a non-empty
2191  * result when it can locate a release sequence head with certainty. Otherwise,
2192  * it may mark the internal state of the ModelChecker so that it will handle
2193  * the release sequence at a later time, causing @a acquire to update its
2194  * synchronization at some later point in execution.
2195  *
2196  * @param acquire The 'acquire' action that may synchronize with a release
2197  * sequence
2198  * @param read The read action that may read from a release sequence; this may
2199  * be the same as acquire, or else an earlier action in the same thread (i.e.,
2200  * when 'acquire' is a fence-acquire)
2201  * @param release_heads A pass-by-reference return parameter. Will be filled
2202  * with the head(s) of the release sequence(s), if they exists with certainty.
2203  * @see ModelChecker::release_seq_heads
2204  */
2205 void ModelChecker::get_release_seq_heads(ModelAction *acquire,
2206                 ModelAction *read, rel_heads_list_t *release_heads)
2207 {
2208         const ModelAction *rf = read->get_reads_from();
2209         struct release_seq *sequence = (struct release_seq *)snapshot_calloc(1, sizeof(struct release_seq));
2210         sequence->acquire = acquire;
2211         sequence->read = read;
2212
2213         if (!release_seq_heads(rf, release_heads, sequence)) {
2214                 /* add act to 'lazy checking' list */
2215                 pending_rel_seqs->push_back(sequence);
2216         } else {
2217                 snapshot_free(sequence);
2218         }
2219 }
2220
2221 /**
2222  * Attempt to resolve all stashed operations that might synchronize with a
2223  * release sequence for a given location. This implements the "lazy" portion of
2224  * determining whether or not a release sequence was contiguous, since not all
2225  * modification order information is present at the time an action occurs.
2226  *
2227  * @param location The location/object that should be checked for release
2228  * sequence resolutions. A NULL value means to check all locations.
2229  * @param work_queue The work queue to which to add work items as they are
2230  * generated
2231  * @return True if any updates occurred (new synchronization, new mo_graph
2232  * edges)
2233  */
2234 bool ModelChecker::resolve_release_sequences(void *location, work_queue_t *work_queue)
2235 {
2236         bool updated = false;
2237         std::vector< struct release_seq *, SnapshotAlloc<struct release_seq *> >::iterator it = pending_rel_seqs->begin();
2238         while (it != pending_rel_seqs->end()) {
2239                 struct release_seq *pending = *it;
2240                 ModelAction *acquire = pending->acquire;
2241                 const ModelAction *read = pending->read;
2242
2243                 /* Only resolve sequences on the given location, if provided */
2244                 if (location && read->get_location() != location) {
2245                         it++;
2246                         continue;
2247                 }
2248
2249                 const ModelAction *rf = read->get_reads_from();
2250                 rel_heads_list_t release_heads;
2251                 bool complete;
2252                 complete = release_seq_heads(rf, &release_heads, pending);
2253                 for (unsigned int i = 0; i < release_heads.size(); i++) {
2254                         if (!acquire->has_synchronized_with(release_heads[i])) {
2255                                 if (acquire->synchronize_with(release_heads[i]))
2256                                         updated = true;
2257                                 else
2258                                         set_bad_synchronization();
2259                         }
2260                 }
2261
2262                 if (updated) {
2263                         /* Re-check all pending release sequences */
2264                         work_queue->push_back(CheckRelSeqWorkEntry(NULL));
2265                         /* Re-check read-acquire for mo_graph edges */
2266                         if (acquire->is_read())
2267                                 work_queue->push_back(MOEdgeWorkEntry(acquire));
2268
2269                         /* propagate synchronization to later actions */
2270                         action_list_t::reverse_iterator rit = action_trace->rbegin();
2271                         for (; (*rit) != acquire; rit++) {
2272                                 ModelAction *propagate = *rit;
2273                                 if (acquire->happens_before(propagate)) {
2274                                         propagate->synchronize_with(acquire);
2275                                         /* Re-check 'propagate' for mo_graph edges */
2276                                         work_queue->push_back(MOEdgeWorkEntry(propagate));
2277                                 }
2278                         }
2279                 }
2280                 if (complete) {
2281                         it = pending_rel_seqs->erase(it);
2282                         snapshot_free(pending);
2283                 } else {
2284                         it++;
2285                 }
2286         }
2287
2288         // If we resolved promises or data races, see if we have realized a data race.
2289         checkDataRaces();
2290
2291         return updated;
2292 }
2293
2294 /**
2295  * Performs various bookkeeping operations for the current ModelAction. For
2296  * instance, adds action to the per-object, per-thread action vector and to the
2297  * action trace list of all thread actions.
2298  *
2299  * @param act is the ModelAction to add.
2300  */
2301 void ModelChecker::add_action_to_lists(ModelAction *act)
2302 {
2303         int tid = id_to_int(act->get_tid());
2304         ModelAction *uninit = NULL;
2305         int uninit_id = -1;
2306         action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
2307         if (list->empty() && act->is_atomic_var()) {
2308                 uninit = new_uninitialized_action(act->get_location());
2309                 uninit_id = id_to_int(uninit->get_tid());
2310                 list->push_back(uninit);
2311         }
2312         list->push_back(act);
2313
2314         action_trace->push_back(act);
2315         if (uninit)
2316                 action_trace->push_front(uninit);
2317
2318         std::vector<action_list_t> *vec = get_safe_ptr_vect_action(obj_thrd_map, act->get_location());
2319         if (tid >= (int)vec->size())
2320                 vec->resize(priv->next_thread_id);
2321         (*vec)[tid].push_back(act);
2322         if (uninit)
2323                 (*vec)[uninit_id].push_front(uninit);
2324
2325         if ((int)thrd_last_action->size() <= tid)
2326                 thrd_last_action->resize(get_num_threads());
2327         (*thrd_last_action)[tid] = act;
2328         if (uninit)
2329                 (*thrd_last_action)[uninit_id] = uninit;
2330
2331         if (act->is_fence() && act->is_release()) {
2332                 if ((int)thrd_last_fence_release->size() <= tid)
2333                         thrd_last_fence_release->resize(get_num_threads());
2334                 (*thrd_last_fence_release)[tid] = act;
2335         }
2336
2337         if (act->is_wait()) {
2338                 void *mutex_loc = (void *) act->get_value();
2339                 get_safe_ptr_action(obj_map, mutex_loc)->push_back(act);
2340
2341                 std::vector<action_list_t> *vec = get_safe_ptr_vect_action(obj_thrd_map, mutex_loc);
2342                 if (tid >= (int)vec->size())
2343                         vec->resize(priv->next_thread_id);
2344                 (*vec)[tid].push_back(act);
2345         }
2346 }
2347
2348 /**
2349  * @brief Get the last action performed by a particular Thread
2350  * @param tid The thread ID of the Thread in question
2351  * @return The last action in the thread
2352  */
2353 ModelAction * ModelChecker::get_last_action(thread_id_t tid) const
2354 {
2355         int threadid = id_to_int(tid);
2356         if (threadid < (int)thrd_last_action->size())
2357                 return (*thrd_last_action)[id_to_int(tid)];
2358         else
2359                 return NULL;
2360 }
2361
2362 /**
2363  * @brief Get the last fence release performed by a particular Thread
2364  * @param tid The thread ID of the Thread in question
2365  * @return The last fence release in the thread, if one exists; NULL otherwise
2366  */
2367 ModelAction * ModelChecker::get_last_fence_release(thread_id_t tid) const
2368 {
2369         int threadid = id_to_int(tid);
2370         if (threadid < (int)thrd_last_fence_release->size())
2371                 return (*thrd_last_fence_release)[id_to_int(tid)];
2372         else
2373                 return NULL;
2374 }
2375
2376 /**
2377  * Gets the last memory_order_seq_cst write (in the total global sequence)
2378  * performed on a particular object (i.e., memory location), not including the
2379  * current action.
2380  * @param curr The current ModelAction; also denotes the object location to
2381  * check
2382  * @return The last seq_cst write
2383  */
2384 ModelAction * ModelChecker::get_last_seq_cst_write(ModelAction *curr) const
2385 {
2386         void *location = curr->get_location();
2387         action_list_t *list = get_safe_ptr_action(obj_map, location);
2388         /* Find: max({i in dom(S) | seq_cst(t_i) && isWrite(t_i) && samevar(t_i, t)}) */
2389         action_list_t::reverse_iterator rit;
2390         for (rit = list->rbegin(); rit != list->rend(); rit++)
2391                 if ((*rit)->is_write() && (*rit)->is_seqcst() && (*rit) != curr)
2392                         return *rit;
2393         return NULL;
2394 }
2395
2396 /**
2397  * Gets the last memory_order_seq_cst fence (in the total global sequence)
2398  * performed in a particular thread, prior to a particular fence.
2399  * @param tid The ID of the thread to check
2400  * @param before_fence The fence from which to begin the search; if NULL, then
2401  * search for the most recent fence in the thread.
2402  * @return The last prior seq_cst fence in the thread, if exists; otherwise, NULL
2403  */
2404 ModelAction * ModelChecker::get_last_seq_cst_fence(thread_id_t tid, const ModelAction *before_fence) const
2405 {
2406         /* All fences should have NULL location */
2407         action_list_t *list = get_safe_ptr_action(obj_map, NULL);
2408         action_list_t::reverse_iterator rit = list->rbegin();
2409
2410         if (before_fence) {
2411                 for (; rit != list->rend(); rit++)
2412                         if (*rit == before_fence)
2413                                 break;
2414
2415                 ASSERT(*rit == before_fence);
2416                 rit++;
2417         }
2418
2419         for (; rit != list->rend(); rit++)
2420                 if ((*rit)->is_fence() && (tid == (*rit)->get_tid()) && (*rit)->is_seqcst())
2421                         return *rit;
2422         return NULL;
2423 }
2424
2425 /**
2426  * Gets the last unlock operation performed on a particular mutex (i.e., memory
2427  * location). This function identifies the mutex according to the current
2428  * action, which is presumed to perform on the same mutex.
2429  * @param curr The current ModelAction; also denotes the object location to
2430  * check
2431  * @return The last unlock operation
2432  */
2433 ModelAction * ModelChecker::get_last_unlock(ModelAction *curr) const
2434 {
2435         void *location = curr->get_location();
2436         action_list_t *list = get_safe_ptr_action(obj_map, location);
2437         /* Find: max({i in dom(S) | isUnlock(t_i) && samevar(t_i, t)}) */
2438         action_list_t::reverse_iterator rit;
2439         for (rit = list->rbegin(); rit != list->rend(); rit++)
2440                 if ((*rit)->is_unlock() || (*rit)->is_wait())
2441                         return *rit;
2442         return NULL;
2443 }
2444
2445 ModelAction * ModelChecker::get_parent_action(thread_id_t tid) const
2446 {
2447         ModelAction *parent = get_last_action(tid);
2448         if (!parent)
2449                 parent = get_thread(tid)->get_creation();
2450         return parent;
2451 }
2452
2453 /**
2454  * Returns the clock vector for a given thread.
2455  * @param tid The thread whose clock vector we want
2456  * @return Desired clock vector
2457  */
2458 ClockVector * ModelChecker::get_cv(thread_id_t tid) const
2459 {
2460         return get_parent_action(tid)->get_cv();
2461 }
2462
2463 /**
2464  * @brief Find the promise, if any to resolve for the current action
2465  * @param curr The current ModelAction. Should be a write.
2466  * @return The (non-negative) index for the Promise to resolve, if any;
2467  * otherwise -1
2468  */
2469 int ModelChecker::get_promise_to_resolve(const ModelAction *curr) const
2470 {
2471         for (unsigned int i = 0; i < promises->size(); i++)
2472                 if (curr->get_node()->get_promise(i))
2473                         return i;
2474         return -1;
2475 }
2476
2477 /**
2478  * Resolve a Promise with a current write.
2479  * @param write The ModelAction that is fulfilling Promises
2480  * @param promise_idx The index corresponding to the promise
2481  * @return True if the Promise was successfully resolved; false otherwise
2482  */
2483 bool ModelChecker::resolve_promise(ModelAction *write, unsigned int promise_idx)
2484 {
2485         std::vector< ModelAction *, ModelAlloc<ModelAction *> > actions_to_check;
2486         promise_list_t mustResolve;
2487         Promise *promise = (*promises)[promise_idx];
2488
2489         for (unsigned int i = 0; i < promise->get_num_readers(); i++) {
2490                 ModelAction *read = promise->get_reader(i);
2491                 read_from(read, write);
2492                 actions_to_check.push_back(read);
2493         }
2494         /* Make sure the promise's value matches the write's value */
2495         ASSERT(promise->is_compatible(write) && promise->same_value(write));
2496         mo_graph->resolvePromise(promise, write, &mustResolve);
2497
2498         promises->erase(promises->begin() + promise_idx);
2499
2500         /** @todo simplify the 'mustResolve' stuff */
2501         ASSERT(mustResolve.size() <= 1);
2502
2503         if (!mustResolve.empty() && mustResolve[0] != promise)
2504                 priv->failed_promise = true;
2505         delete promise;
2506
2507         //Check whether reading these writes has made threads unable to
2508         //resolve promises
2509
2510         for (unsigned int i = 0; i < actions_to_check.size(); i++) {
2511                 ModelAction *read = actions_to_check[i];
2512                 mo_check_promises(read, true);
2513         }
2514
2515         return true;
2516 }
2517
2518 /**
2519  * Compute the set of promises that could potentially be satisfied by this
2520  * action. Note that the set computation actually appears in the Node, not in
2521  * ModelChecker.
2522  * @param curr The ModelAction that may satisfy promises
2523  */
2524 void ModelChecker::compute_promises(ModelAction *curr)
2525 {
2526         for (unsigned int i = 0; i < promises->size(); i++) {
2527                 Promise *promise = (*promises)[i];
2528                 if (!promise->is_compatible(curr) || !promise->same_value(curr))
2529                         continue;
2530
2531                 bool satisfy = true;
2532                 for (unsigned int j = 0; j < promise->get_num_readers(); j++) {
2533                         const ModelAction *act = promise->get_reader(j);
2534                         if (act->happens_before(curr) ||
2535                                         act->could_synchronize_with(curr)) {
2536                                 satisfy = false;
2537                                 break;
2538                         }
2539                 }
2540                 if (satisfy)
2541                         curr->get_node()->set_promise(i);
2542         }
2543 }
2544
2545 /** Checks promises in response to change in ClockVector Threads. */
2546 void ModelChecker::check_promises(thread_id_t tid, ClockVector *old_cv, ClockVector *merge_cv)
2547 {
2548         for (unsigned int i = 0; i < promises->size(); i++) {
2549                 Promise *promise = (*promises)[i];
2550                 if (!promise->thread_is_available(tid))
2551                         continue;
2552                 for (unsigned int j = 0; j < promise->get_num_readers(); j++) {
2553                         const ModelAction *act = promise->get_reader(j);
2554                         if ((!old_cv || !old_cv->synchronized_since(act)) &&
2555                                         merge_cv->synchronized_since(act)) {
2556                                 if (promise->eliminate_thread(tid)) {
2557                                         /* Promise has failed */
2558                                         priv->failed_promise = true;
2559                                         return;
2560                                 }
2561                         }
2562                 }
2563         }
2564 }
2565
2566 void ModelChecker::check_promises_thread_disabled()
2567 {
2568         for (unsigned int i = 0; i < promises->size(); i++) {
2569                 Promise *promise = (*promises)[i];
2570                 if (promise->has_failed()) {
2571                         priv->failed_promise = true;
2572                         return;
2573                 }
2574         }
2575 }
2576
2577 /**
2578  * @brief Checks promises in response to addition to modification order for
2579  * threads.
2580  *
2581  * We test whether threads are still available for satisfying promises after an
2582  * addition to our modification order constraints. Those that are unavailable
2583  * are "eliminated". Once all threads are eliminated from satisfying a promise,
2584  * that promise has failed.
2585  *
2586  * @param act The ModelAction which updated the modification order
2587  * @param is_read_check Should be true if act is a read and we must check for
2588  * updates to the store from which it read (there is a distinction here for
2589  * RMW's, which are both a load and a store)
2590  */
2591 void ModelChecker::mo_check_promises(const ModelAction *act, bool is_read_check)
2592 {
2593         const ModelAction *write = is_read_check ? act->get_reads_from() : act;
2594
2595         for (unsigned int i = 0; i < promises->size(); i++) {
2596                 Promise *promise = (*promises)[i];
2597
2598                 // Is this promise on the same location?
2599                 if (!promise->same_location(write))
2600                         continue;
2601
2602                 for (unsigned int j = 0; j < promise->get_num_readers(); j++) {
2603                         const ModelAction *pread = promise->get_reader(j);
2604                         if (!pread->happens_before(act))
2605                                continue;
2606                         if (mo_graph->checkPromise(write, promise)) {
2607                                 priv->failed_promise = true;
2608                                 return;
2609                         }
2610                         break;
2611                 }
2612
2613                 // Don't do any lookups twice for the same thread
2614                 if (!promise->thread_is_available(act->get_tid()))
2615                         continue;
2616
2617                 if (mo_graph->checkReachable(promise, write)) {
2618                         if (mo_graph->checkPromise(write, promise)) {
2619                                 priv->failed_promise = true;
2620                                 return;
2621                         }
2622                 }
2623         }
2624 }
2625
2626 /**
2627  * Compute the set of writes that may break the current pending release
2628  * sequence. This information is extracted from previou release sequence
2629  * calculations.
2630  *
2631  * @param curr The current ModelAction. Must be a release sequence fixup
2632  * action.
2633  */
2634 void ModelChecker::compute_relseq_breakwrites(ModelAction *curr)
2635 {
2636         if (pending_rel_seqs->empty())
2637                 return;
2638
2639         struct release_seq *pending = pending_rel_seqs->back();
2640         for (unsigned int i = 0; i < pending->writes.size(); i++) {
2641                 const ModelAction *write = pending->writes[i];
2642                 curr->get_node()->add_relseq_break(write);
2643         }
2644
2645         /* NULL means don't break the sequence; just synchronize */
2646         curr->get_node()->add_relseq_break(NULL);
2647 }
2648
2649 /**
2650  * Build up an initial set of all past writes that this 'read' action may read
2651  * from, as well as any previously-observed future values that must still be valid.
2652  *
2653  * @param curr is the current ModelAction that we are exploring; it must be a
2654  * 'read' operation.
2655  */
2656 void ModelChecker::build_may_read_from(ModelAction *curr)
2657 {
2658         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
2659         unsigned int i;
2660         ASSERT(curr->is_read());
2661
2662         ModelAction *last_sc_write = NULL;
2663
2664         if (curr->is_seqcst())
2665                 last_sc_write = get_last_seq_cst_write(curr);
2666
2667         /* Iterate over all threads */
2668         for (i = 0; i < thrd_lists->size(); i++) {
2669                 /* Iterate over actions in thread, starting from most recent */
2670                 action_list_t *list = &(*thrd_lists)[i];
2671                 action_list_t::reverse_iterator rit;
2672                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
2673                         ModelAction *act = *rit;
2674
2675                         /* Only consider 'write' actions */
2676                         if (!act->is_write() || act == curr)
2677                                 continue;
2678
2679                         /* Don't consider more than one seq_cst write if we are a seq_cst read. */
2680                         bool allow_read = true;
2681
2682                         if (curr->is_seqcst() && (act->is_seqcst() || (last_sc_write != NULL && act->happens_before(last_sc_write))) && act != last_sc_write)
2683                                 allow_read = false;
2684                         else if (curr->get_sleep_flag() && !curr->is_seqcst() && !sleep_can_read_from(curr, act))
2685                                 allow_read = false;
2686
2687                         if (allow_read) {
2688                                 /* Only add feasible reads */
2689                                 mo_graph->startChanges();
2690                                 r_modification_order(curr, act);
2691                                 if (!is_infeasible())
2692                                         curr->get_node()->add_read_from_past(act);
2693                                 mo_graph->rollbackChanges();
2694                         }
2695
2696                         /* Include at most one act per-thread that "happens before" curr */
2697                         if (act->happens_before(curr))
2698                                 break;
2699                 }
2700         }
2701
2702         /* Inherit existing, promised future values */
2703         for (i = 0; i < promises->size(); i++) {
2704                 const Promise *promise = (*promises)[i];
2705                 const ModelAction *promise_read = promise->get_reader(0);
2706                 if (promise_read->same_var(curr)) {
2707                         /* Only add feasible future-values */
2708                         mo_graph->startChanges();
2709                         r_modification_order(curr, promise);
2710                         if (!is_infeasible())
2711                                 curr->get_node()->add_read_from_promise(promise_read);
2712                         mo_graph->rollbackChanges();
2713                 }
2714         }
2715
2716         /* We may find no valid may-read-from only if the execution is doomed */
2717         if (!curr->get_node()->read_from_size()) {
2718                 priv->no_valid_reads = true;
2719                 set_assert();
2720         }
2721
2722         if (DBG_ENABLED()) {
2723                 model_print("Reached read action:\n");
2724                 curr->print();
2725                 model_print("Printing read_from_past\n");
2726                 curr->get_node()->print_read_from_past();
2727                 model_print("End printing read_from_past\n");
2728         }
2729 }
2730
2731 bool ModelChecker::sleep_can_read_from(ModelAction *curr, const ModelAction *write)
2732 {
2733         for ( ; write != NULL; write = write->get_reads_from()) {
2734                 /* UNINIT actions don't have a Node, and they never sleep */
2735                 if (write->is_uninitialized())
2736                         return true;
2737                 Node *prevnode = write->get_node()->get_parent();
2738
2739                 bool thread_sleep = prevnode->enabled_status(curr->get_tid()) == THREAD_SLEEP_SET;
2740                 if (write->is_release() && thread_sleep)
2741                         return true;
2742                 if (!write->is_rmw())
2743                         return false;
2744         }
2745         return true;
2746 }
2747
2748 /**
2749  * @brief Create a new action representing an uninitialized atomic
2750  * @param location The memory location of the atomic object
2751  * @return A pointer to a new ModelAction
2752  */
2753 ModelAction * ModelChecker::new_uninitialized_action(void *location) const
2754 {
2755         ModelAction *act = (ModelAction *)snapshot_malloc(sizeof(class ModelAction));
2756         act = new (act) ModelAction(ATOMIC_UNINIT, std::memory_order_relaxed, location, 0, model_thread);
2757         act->create_cv(NULL);
2758         return act;
2759 }
2760
2761 static void print_list(action_list_t *list)
2762 {
2763         action_list_t::iterator it;
2764
2765         model_print("---------------------------------------------------------------------\n");
2766
2767         unsigned int hash = 0;
2768
2769         for (it = list->begin(); it != list->end(); it++) {
2770                 (*it)->print();
2771                 hash = hash^(hash<<3)^((*it)->hash());
2772         }
2773         model_print("HASH %u\n", hash);
2774         model_print("---------------------------------------------------------------------\n");
2775 }
2776
2777 #if SUPPORT_MOD_ORDER_DUMP
2778 void ModelChecker::dumpGraph(char *filename) const
2779 {
2780         char buffer[200];
2781         sprintf(buffer, "%s.dot", filename);
2782         FILE *file = fopen(buffer, "w");
2783         fprintf(file, "digraph %s {\n", filename);
2784         mo_graph->dumpNodes(file);
2785         ModelAction **thread_array = (ModelAction **)model_calloc(1, sizeof(ModelAction *) * get_num_threads());
2786
2787         for (action_list_t::iterator it = action_trace->begin(); it != action_trace->end(); it++) {
2788                 ModelAction *act = *it;
2789                 if (act->is_read()) {
2790                         mo_graph->dot_print_node(file, act);
2791                         if (act->get_reads_from())
2792                                 mo_graph->dot_print_edge(file,
2793                                                 act->get_reads_from(),
2794                                                 act,
2795                                                 "label=\"rf\", color=red, weight=2");
2796                         else
2797                                 mo_graph->dot_print_edge(file,
2798                                                 act->get_reads_from_promise(),
2799                                                 act,
2800                                                 "label=\"rf\", color=red");
2801                 }
2802                 if (thread_array[act->get_tid()]) {
2803                         mo_graph->dot_print_edge(file,
2804                                         thread_array[id_to_int(act->get_tid())],
2805                                         act,
2806                                         "label=\"sb\", color=blue, weight=400");
2807                 }
2808
2809                 thread_array[act->get_tid()] = act;
2810         }
2811         fprintf(file, "}\n");
2812         model_free(thread_array);
2813         fclose(file);
2814 }
2815 #endif
2816
2817 /** @brief Prints an execution trace summary. */
2818 void ModelChecker::print_summary() const
2819 {
2820 #if SUPPORT_MOD_ORDER_DUMP
2821         char buffername[100];
2822         sprintf(buffername, "exec%04u", stats.num_total);
2823         mo_graph->dumpGraphToFile(buffername);
2824         sprintf(buffername, "graph%04u", stats.num_total);
2825         dumpGraph(buffername);
2826 #endif
2827
2828         model_print("Execution %d:", stats.num_total);
2829         if (isfeasibleprefix()) {
2830                 if (scheduler->all_threads_sleeping())
2831                         model_print(" SLEEP-SET REDUNDANT");
2832                 model_print("\n");
2833         } else
2834                 print_infeasibility(" INFEASIBLE");
2835         print_list(action_trace);
2836         model_print("\n");
2837 }
2838
2839 /**
2840  * Add a Thread to the system for the first time. Should only be called once
2841  * per thread.
2842  * @param t The Thread to add
2843  */
2844 void ModelChecker::add_thread(Thread *t)
2845 {
2846         thread_map->put(id_to_int(t->get_id()), t);
2847         scheduler->add_thread(t);
2848 }
2849
2850 /**
2851  * Removes a thread from the scheduler.
2852  * @param the thread to remove.
2853  */
2854 void ModelChecker::remove_thread(Thread *t)
2855 {
2856         scheduler->remove_thread(t);
2857 }
2858
2859 /**
2860  * @brief Get a Thread reference by its ID
2861  * @param tid The Thread's ID
2862  * @return A Thread reference
2863  */
2864 Thread * ModelChecker::get_thread(thread_id_t tid) const
2865 {
2866         return thread_map->get(id_to_int(tid));
2867 }
2868
2869 /**
2870  * @brief Get a reference to the Thread in which a ModelAction was executed
2871  * @param act The ModelAction
2872  * @return A Thread reference
2873  */
2874 Thread * ModelChecker::get_thread(const ModelAction *act) const
2875 {
2876         return get_thread(act->get_tid());
2877 }
2878
2879 /**
2880  * @brief Get a Promise's "promise number"
2881  *
2882  * A "promise number" is an index number that is unique to a promise, valid
2883  * only for a specific snapshot of an execution trace. Promises may come and go
2884  * as they are generated an resolved, so an index only retains meaning for the
2885  * current snapshot.
2886  *
2887  * @param promise The Promise to check
2888  * @return The promise index, if the promise still is valid; otherwise -1
2889  */
2890 int ModelChecker::get_promise_number(const Promise *promise) const
2891 {
2892         for (unsigned int i = 0; i < promises->size(); i++)
2893                 if ((*promises)[i] == promise)
2894                         return i;
2895         /* Not found */
2896         return -1;
2897 }
2898
2899 /**
2900  * @brief Check if a Thread is currently enabled
2901  * @param t The Thread to check
2902  * @return True if the Thread is currently enabled
2903  */
2904 bool ModelChecker::is_enabled(Thread *t) const
2905 {
2906         return scheduler->is_enabled(t);
2907 }
2908
2909 /**
2910  * @brief Check if a Thread is currently enabled
2911  * @param tid The ID of the Thread to check
2912  * @return True if the Thread is currently enabled
2913  */
2914 bool ModelChecker::is_enabled(thread_id_t tid) const
2915 {
2916         return scheduler->is_enabled(tid);
2917 }
2918
2919 /**
2920  * Switch from a model-checker context to a user-thread context. This is the
2921  * complement of ModelChecker::switch_to_master and must be called from the
2922  * model-checker context
2923  *
2924  * @param thread The user-thread to switch to
2925  */
2926 void ModelChecker::switch_from_master(Thread *thread)
2927 {
2928         scheduler->set_current_thread(thread);
2929         Thread::swap(&system_context, thread);
2930 }
2931
2932 /**
2933  * Switch from a user-context to the "master thread" context (a.k.a. system
2934  * context). This switch is made with the intention of exploring a particular
2935  * model-checking action (described by a ModelAction object). Must be called
2936  * from a user-thread context.
2937  *
2938  * @param act The current action that will be explored. May be NULL only if
2939  * trace is exiting via an assertion (see ModelChecker::set_assert and
2940  * ModelChecker::has_asserted).
2941  * @return Return the value returned by the current action
2942  */
2943 uint64_t ModelChecker::switch_to_master(ModelAction *act)
2944 {
2945         DBG();
2946         Thread *old = thread_current();
2947         ASSERT(!old->get_pending());
2948         old->set_pending(act);
2949         if (Thread::swap(old, &system_context) < 0) {
2950                 perror("swap threads");
2951                 exit(EXIT_FAILURE);
2952         }
2953         return old->get_return_value();
2954 }
2955
2956 /**
2957  * Takes the next step in the execution, if possible.
2958  * @param curr The current step to take
2959  * @return Returns the next Thread to run, if any; NULL if this execution
2960  * should terminate
2961  */
2962 Thread * ModelChecker::take_step(ModelAction *curr)
2963 {
2964         Thread *curr_thrd = get_thread(curr);
2965         ASSERT(curr_thrd->get_state() == THREAD_READY);
2966
2967         curr = check_current_action(curr);
2968
2969         /* Infeasible -> don't take any more steps */
2970         if (is_infeasible())
2971                 return NULL;
2972         else if (isfeasibleprefix() && have_bug_reports()) {
2973                 set_assert();
2974                 return NULL;
2975         }
2976
2977         if (params.bound != 0 && priv->used_sequence_numbers > params.bound)
2978                 return NULL;
2979
2980         if (curr_thrd->is_blocked() || curr_thrd->is_complete())
2981                 scheduler->remove_thread(curr_thrd);
2982
2983         Thread *next_thrd = get_next_thread(curr);
2984
2985         DEBUG("(%d, %d)\n", curr_thrd ? id_to_int(curr_thrd->get_id()) : -1,
2986                         next_thrd ? id_to_int(next_thrd->get_id()) : -1);
2987
2988         return next_thrd;
2989 }
2990
2991 /** Wrapper to run the user's main function, with appropriate arguments */
2992 void user_main_wrapper(void *)
2993 {
2994         user_main(model->params.argc, model->params.argv);
2995 }
2996
2997 /** @brief Run ModelChecker for the user program */
2998 void ModelChecker::run()
2999 {
3000         do {
3001                 thrd_t user_thread;
3002                 Thread *t = new Thread(&user_thread, &user_main_wrapper, NULL, NULL);
3003                 add_thread(t);
3004
3005                 do {
3006                         /*
3007                          * Stash next pending action(s) for thread(s). There
3008                          * should only need to stash one thread's action--the
3009                          * thread which just took a step--plus the first step
3010                          * for any newly-created thread
3011                          */
3012                         for (unsigned int i = 0; i < get_num_threads(); i++) {
3013                                 thread_id_t tid = int_to_id(i);
3014                                 Thread *thr = get_thread(tid);
3015                                 if (!thr->is_model_thread() && !thr->is_complete() && !thr->get_pending()) {
3016                                         switch_from_master(thr);
3017                                 }
3018                         }
3019
3020                         /* Catch assertions from prior take_step or from
3021                          * between-ModelAction bugs (e.g., data races) */
3022                         if (has_asserted())
3023                                 break;
3024
3025                         /* Consume the next action for a Thread */
3026                         ModelAction *curr = t->get_pending();
3027                         t->set_pending(NULL);
3028                         t = take_step(curr);
3029                 } while (t && !t->is_model_thread());
3030
3031                 /*
3032                  * Launch end-of-execution release sequence fixups only when
3033                  * the execution is otherwise feasible AND there are:
3034                  *
3035                  * (1) pending release sequences
3036                  * (2) pending assertions that could be invalidated by a change
3037                  * in clock vectors (i.e., data races)
3038                  * (3) no pending promises
3039                  */
3040                 while (!pending_rel_seqs->empty() &&
3041                                 is_feasible_prefix_ignore_relseq() &&
3042                                 !unrealizedraces.empty()) {
3043                         model_print("*** WARNING: release sequence fixup action "
3044                                         "(%zu pending release seuqence(s)) ***\n",
3045                                         pending_rel_seqs->size());
3046                         ModelAction *fixup = new ModelAction(MODEL_FIXUP_RELSEQ,
3047                                         std::memory_order_seq_cst, NULL, VALUE_NONE,
3048                                         model_thread);
3049                         take_step(fixup);
3050                 };
3051         } while (next_execution());
3052
3053         model_print("******* Model-checking complete: *******\n");
3054         print_stats();
3055 }