
CDSSpec: Testing Concurrent Data Structures Under the
C/C++11 Memory Model

Peizhao Ou and Brian Demsky

ABSTRACT
Concurrent data structures often provide better performance on
multi-core platforms, but are significantly more difficult to design
and verify than their sequential counterparts. The C/C++11 stan-
dard introduced a weak language memory model supporting low-
level atomic operations such as compare and swap (CAS). While
these atomic operations can significantly improve the performance
of concurrent data structures, programming at this level introduces
non-intuitive behaviors that significantly increase the difficulty of
developing code.

In this paper, we present CDSSPEC, a specification language
checker that allows developers to write simple specifications for
low-level concurrent data structures that make use of C/C++11
atomics and check the correctness of concurrent data structures
against these specifications. CDSSPEC is designed to be used in
conjunction with model checking tools and we have implemented
it as a plugin to CDSCHECKER. We have evaluated CDSSPEC by
annotating and checking several concurrent data structures.

1. INTRODUCTION
Concurrent data structure design can improve scalability by sup-

porting multiple simultaneous operations, reducing memory coher-
ence traffic, and reducing the time taken by an individual data struc-
ture operation. Researchers have developed many concurrent data
structure designs with these goals [6, 11]. Concurrent data struc-
tures often use sophisticated techniques including low-level atomic
instructions (e.g., compare and swap), careful reasoning about the
order of loads and stores, and fine-grained locking. For example,
while the standard Java hash table implementation can limit scal-
ability to a handful of cores, more sophisticated concurrent hash
tables can scale to many hundreds of cores [10].

The C/C++ standard committee extended the C and C++
languages with support for low-level atomic operations in the
C/C++11 standard [1, 2, 4] to enable developers to write portable
implementations of concurrent data structures. To support the re-
laxations typically performed by compilers and processors, the
C/C++ memory model provides weaker semantics than sequential
consistency [9] and as a result, correctly using these operations is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

challenging. Developers must not only reason about potential in-
terleavings, but also about how the processor and compiler might
reorder memory operations. Even experts make subtle errors when
reasoning about such memory models.

Researchers have developed tools for exploring the behav-
ior of code under the C/C++ memory model including CD-
SCHECKER [12], CPPMEM [3], and Relacy [14]. These tools ex-
plore behaviors that are allowed under the C/C++ memory model.
While these tools can certainly be useful for exploring executions,
they can be challenging to use for testing as they don’t provide
support (other than assertions) for specifying the behavior of data
structures. Using assertions can be challenging as different inter-
leavings or reorderings legitimately produce different behaviors,
and it can be very difficult to code assertions to check the output
of a test case for an arbitrary (unknown) execution.

This paper presents CDSSPEC, a specification language and
specification checking tool that is designed to be used in conjunc-
tion with model checking tools. We have implemented it as a plugin
for the CDSCHECKER model checker.

1.1 Background on Specifying the Correct-
ness of Concurrent Data Structures

Researchers have developed several techniques for specifying
correctness properties of concurrent data structures written for
strong memory models. While these techniques cannot handle the
behaviors typically exhibited by relaxed data structure implemen-
tations, they provide insight into intuitive approaches to specifying
concurrent data structure behavior.

One approach for specifying the correctness of concurrent data
structures is in terms of equivalent sequential executions of either
the concurrent data structure or a simplified sequential version. The
problem then becomes how do we map a concurrent execution to an
equivalent sequential execution? A common criterion is lineariz-
ability — linearizability simply states that a concurrent operation
can be viewed as taking effect at some time between its invocation
and its return (or response) [8].

An equivalent sequential data structure is a sequential version of
a concurrent data structure that can be used to express correctness
properties by relating executions of the original concurrent data
structure with executions of the equivalent sequential data struc-
ture. The equivalent sequential data structure is often simpler, and
in many cases one can simply use existing well-tested implementa-
tions from the STL library.

An execution history is a total order of method invocations and
responses. A sequential history is one where all invocations are fol-
lowed by the corresponding responses immediately. A concurrent
execution is correct if its behavior is consistent with its equivalent
sequential history replayed on the equivalent sequential data struc-

ture. A concurrent object is linearizable if for all executions:
1. Each method call appears to take effect instantaneously at some

point between its invocation and response.
2. The invocations and responses can be reordered to yield a se-

quential history under the rule that an invocation cannot be re-
ordered before the preceding responses.

3. The concurrent execution yields the same behavior as the se-
quential history.
A weaker variation of linearization is sequential consistency1.

Sequential consistency only requires that there exists a sequential
history that is consistent with the program order (the intra-thread
order). This ordering does not need to be consistent with the order
that the operations were actually issued in.

Line-Up [5], Paraglider [13], and VYRD [7] leverage lineariz-
ability to test concurrent data structures. Unfortunately, effi-
cient implementations of many common data structures, e.g.,
RCU [6], MS Queue [11], etc., for the C/C++ memory model
are neither linearizable nor sequentially consistent! Thus pre-
vious tools cannot check such data structures under the C/C++
memory model.

1.2 New Challenges from the C/C++ Memory
Model

The C/C++ memory model brings the following two key chal-
lenges that prevent the application of previous approaches to spec-
ifying the concurrent data structures to this setting:
1. Relaxed Executions Break Existing Data Structure Consis-

tency Models: C/C++ data structures often expose clients to
weaker (non-SC) behaviors to gain performance. A common
guarantee is to provide happens-before synchronization between
operations that implement updates and the operations that read
those updates. These data structures often do not guarantee that
different threads observe updates in the same order — in other
words the data structures may expose clients to weaker consis-
tency models than sequential consistency. For example, even
when one uses the relatively strong acquire and release
memory orderings in C++, it is possible for two different threads
to observe two stores happening in different orders, i.e., execu-
tions can fail the IRIW test. Thus many data structures legiti-
mately admit executions for which there are no sequential histo-
ries that preserve program order.
Like many other relaxed memory models, the C/C++ memory
model does not include a total order over all memory operations,
thus even further complicating the application of traditional ap-
proaches to correctness, e.g., linearization cannot be applied.
In particular the approaches that relate the behaviors of concur-
rent data structures to analogous sequential data structures break
down due to the absence of a total ordering of the memory opera-
tions. While many of the dynamic tools [12, 14] for exploring the
behavior of code under relaxed models do as a practical matter
print out an execution in some order, this order is to some degree
arbitrary as relaxed memory models generally make it possible
for a data structure operation to see the effects of operations that
appear later in any such an order (e.g., a load can read from a
store that appears later in the order). Instead of a total order,
the C/C++ memory model is formulated as a graph of memory
operations with several partial orders defined in this graph.

2. Constraining Reorderings (Specifying Synchronization

1It is important to note that the term sequential consistency in the
literature is applied to both the consistency model that data struc-
tures expose clients to as well as the guarantees that the underlying
memory system provides for load and store operations.

Program with
CDSSPEC
annotations

Program with
annotation

atomics

CDSChecker
framework

CDSSPEC
checker
plugin

CDSSPEC
compiler

GCC

Diagnostic
reports

run

extend

Figure 1: CDSSPEC system overview

Properties): Synchronization2 in C/C++ provides an ordering
between memory operations to different locations. Concurrent
data structures must establish synchronization or they poten-
tially expose their users to highly non-intuitive behavior that
is likely to break client code. For example, consider the case
of a concurrent queue that does not establish synchronization
between enqueue and dequeue operations. Consider the follow-
ing sequence of operations: (1) thread A initializes the fields
of a new object X; (2) thread A enqueues the reference to X
in such a queue (3) thread B dequeues the reference to X; (4)
thread B reads the fields of X through the dequeued reference.
In (4), thread B could fail to see the initializing writes from (1).
This surprising behavior could occur if the compiler or CPU
could reorder the initializing writes to be executed after the
enqueue operation. If the fields are non-atomic, such loads are
considered data races and violate the data race free requirement
of the C/C++ language standard and thus the program has no
semantics.
The C/C++ memory model formalizes synchronization in terms
of a happens-before relation. The C/C++ happens-before rela-
tionship is a partial order over memory accesses. If memory ac-
cess x happens before memory access y, it means that the effects
of x must be ordered before the effects of y.

1.3 Specification Language and Tool Support
Figure 1 presents an overview of the CDSSPEC system. Af-

ter implementing a concurrent data structure, developers annotate
their code with a CDSSPEC specification. To test their implemen-
tation, developers compile the data structure with the CDSSPEC
specification compiler to extract the specification and generate a
program that is instrumented with specification checks. Then, de-
velopers compile the instrumented program with a standard C/C++
compiler. Finally, developers run the binary under the CDSSPEC
checker. CDSSPEC then exhaustively explores the behaviors of the
specific unit test and generates diagnostic reports for any executions
that violate the specification.

1.4 Contributions
This paper makes the following contributions:
• Specification Language: It introduces a specification language

that enables developers to write specifications of concurrent data
structures developed for a relaxed memory model in a simple
fashion that capture the key correctness properties. Our specifi-
cation language is the first to our knowledge that supports con-
current data structures that use C/C++ atomic operations.
• A Technique to Relate Concurrent Executions to Sequential

Executions: It presents an approach to order the memory oper-
2Synchronization here is not mutual exclusion, but rather a lower-
level property that captures which stores must be visible to a thread.
In other words, it constrains which reorderings can be performed by
a processor or compiler.

ations for the C/C++ model, which lacks a definition of a trace
and for which one generally cannot even construct a total order
of atomic operations that is consistent with the program order.
The generated sequential execution by necessity does not always
maintain program order.
• Synchronization Properties: It presents (a) constructs for spec-

ifying the happens before relations that a data structure should
establish, and (b) tool support for checking these properties and
exposing synchronization related bugs.
• Tool for Checking C/C++ Data Structures Against Specifica-

tions: CDSSPEC is the first tool to our knowledge that can check
concurrent data structures that exhibit relaxed behaviors against
specifications that are specified in terms of intuitive sequential
executions.
• Evaluation: It shows that the CDSSPEC specification language

can express key correctness properties for a set of real-world
concurrent data structures, that our tool can detect bugs, and that
our tool can unit test real world data structures with reasonable
performance.

2. FORMALIZATION OF CORRECTNESS
MODEL

Unlike the SC memory model, finding an appropriate correctness
model for concurrent data structures under the C/C++11 memory
model is challenging. For example, linearizability no longer fits
C/C++ by the fact that the C/C++ memory model allows atomic
loads to read from atomic stores that appear later in the trace and
that it is in general impossible to produce a sequential history that
preserves program order for the C/C++ memory model.

Consider the following example:

Thrd 1: Thrd 2:
x = 1; y = 1;
r1 = y; r2 = x;

Suppose each operation in this example is the only operation of
each method call, and shared variables x and y are both initilly 0.
Each store operation has release semantics and each load oper-
ation has acquire semantics. For the execution where both r1
and r2 obtain the old value 0, we encounter a challenge of gener-
ating a sequential history. Since neither load operation reads from
the corresponding store, they should be ordered before their corre-
sponding store operation. On the other hand, both stores happen
before the other load (intra-thread ordering), making it impossible
to topologically sort the operations to generate a consistent sequen-
tial history.

Intuitively however, we can weaken some constraints, e.g. the
happens-before edges in some cases, to generate a reordering of
ordering points such that they yield a sequential history that is con-
sistent with the specification. We formalize our approach as follow.

First of all, we represent a trace as an execution graph, where
each node represents each API method call with a set of ordering
points, and edges between nodes are derived from the happens-
before edges and the modification order edges between ordering
points. We define opo as the ordering point order relation between
ordering point. Given two operations X and Y that are both order-
ing points, the modification order edges are as follow:
1. Modification Order (write-write): X mo−−→ Y ⇒ X

opo−−→ Y .

2. Modification Order (read-write): A mo−−→ Y ∧ A
rf−→ X ⇒

X
opo−−→ Y .

3. Modification Order (write-read): X mo−−→ B ∧ B
rf−→ Y ⇒

X
opo−−→ Y .

4. Modification Order (read-read): A
mo−−→ B ∧ A

rf−→ X ∧
B

rf−→ Y ⇒ X
opo−−→ Y .

Intuitively, if method A has an information flow to method B, we
want method B to see the effects before method A. In C/C++11,
on the other hand, we want method A to have release semantics
while method B to have acquire semantics so that they estab-
lish the happens-before relationship. For example, for a concurrent
queue, we want a dequeuer synchronizes with the corresponding
enqueuer so that when the dequeuer obtains a reference to an ob-
ject, it can read the fully initialized value of that object. To some
degree this can also avoid data races. When it comes to C/C++11
data structures, the ordering points of method calls should have re-
lease/acquire semantics on stores and loads.

In order to relax the contraints on the original execution graph,
we will have to disregard some happens-before edges. To make our
model intuitive, we want to keep the happens-before edges from
stores to stores and from load operations to store operations be-
cause that can ensure information is only flowing from earlier store
operations. Besides, we also want to keep the happens-before edges
between operations on the same memory location since otherwise
the generated history will become very counter-intuitive. However,
such a model does not work in C/C++ in general. Consider the
following example:

Consider the following example:

Thrd 1: Thrd 2: Thrd 3: Thrd 4:
x = 1; y = 2; r1 = x; r3 = y;
y = 1; x = 2; r2 = x; r4 = y;

We define an action tranform that can be performed on the graph
as follow:
Hoisting loads: ∀X,Y,X ∈ OrderingPoints ∧ Y ∈
OrderingPoints∧ address(X) 6= address(Y)∧X

hb−→ Y ∧ Y ∈
LoadOps⇒ ∀Z,Z.
Generating the Reordering: The CDSSPEC checker first builds
an execution graph where the nodes are method calls and the edges
represent the opo ordering of the ordering points of the methods
that correspond to the source and destination nodes. Assuming the
absence of cycles in the execution graph, the opo ordering is used
to generate the sequential history. The CDSSPEC checker topolog-
ically sorts the graph to generate the equivalent sequential execu-
tion.

3. REFERENCES
[1] ISO/IEC 14882:2011, Information technology –

programming languages – C++.
[2] ISO/IEC 9899:2011, Information technology – programming

languages – C.
[3] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber.

Mathematizing C++ concurrency. In Proceedings of the
Symposium on Principles of Programming Languages, 2011.

[4] H. J. Boehm and S. V. Adve. Foundations of the C++
concurrency memory model. In Proceedings of the 2008
ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2008.

[5] S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan. Line-up:
A complete and automatic linearizability checker. In
Proceedings of the 2010 ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2010.

[6] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais,
and J. Walpole. User-level implementations of read-copy
update. IEEE Transactions on Parallel and Distributed
Systems, 2011.

1: function INFERPARAMS(testcases, initialParams)
2: inputParams := initialParams
3: if inputParams is empty then
4: inputParams := the weakest parameters
5: end if
6: for all test case t in testcases do
7: candidates := inputParams
8: results := {}
9: while candidates is not empty do

10: Candidate c := pop from candidates
11: run CDSCHECKER with c and check SC
12: if ∃ SC violation v then
13: STRENGTHENPARAM(v, c, candidates)
14: else
15: results += WEAKENORDERPARAMS(c)
16: end if
17: end while
18: inputParams := results
19: end for
20: return results
21: end function
22: procedure STRENGTHENPARAM(v, c, candidates)
23: while ∃ a fix f for violation v do
24: possible_repairs := strengthen c with fix f
25: candidates += possible_repairs
26: end while
27: end procedure

Figure 2: Algorithm for inferring order parameters

[7] T. Elmas, S. Tasiran, and S. Qadeer. VYRD: Verifying
concurrent programs by runtime refinement-violation
detection. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, 2005.

[8] M. Herlihy and J. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Transactions on
Programming Languages and Systems, 12(3):463–492, July
1990.

[9] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE
Transactions on Computers, 28(9):690–691, Sept. 1979.

[10] D. Lea. util.concurrent.ConcurrentHashMap in
java.util.concurrent the Java Concurrency Package.
http://docs.oracle.com/javase/8/docs/
api/java/util/concurrent/
ConcurrentHashMap.html.

[11] M. M. Michael and M. L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In
Proceedings of the Fifteenth Annual ACM Symposium on
Principles of Distributed Computing, 1996.

[12] B. Norris and B. Demsky. CDSChecker: Checking
concurrent data structures written with C/C++ atomics. In
Proceeding of the 28th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, 2013.

[13] M. Vechev, E. Yahav, and G. Yorsh. Experience with model
checking linearizability. In International SPIN Workshop on
Model Checking Software, 2009.

[14] D. Vyukov. Relacy race detector.
http://relacy.sourceforge.net/, 2011 Oct.

