model: bugfix - send future values more eagerly
[c11tester.git] / model.cc
1 #include <stdio.h>
2 #include <algorithm>
3 #include <mutex>
4 #include <new>
5
6 #include "model.h"
7 #include "action.h"
8 #include "nodestack.h"
9 #include "schedule.h"
10 #include "snapshot-interface.h"
11 #include "common.h"
12 #include "clockvector.h"
13 #include "cyclegraph.h"
14 #include "promise.h"
15 #include "datarace.h"
16 #include "threads-model.h"
17 #include "output.h"
18
19 #define INITIAL_THREAD_ID       0
20
21 ModelChecker *model;
22
23 struct bug_message {
24         bug_message(const char *str) {
25                 const char *fmt = "  [BUG] %s\n";
26                 msg = (char *)snapshot_malloc(strlen(fmt) + strlen(str));
27                 sprintf(msg, fmt, str);
28         }
29         ~bug_message() { if (msg) snapshot_free(msg); }
30
31         char *msg;
32         void print() { model_print("%s", msg); }
33
34         SNAPSHOTALLOC
35 };
36
37 /**
38  * Structure for holding small ModelChecker members that should be snapshotted
39  */
40 struct model_snapshot_members {
41         model_snapshot_members() :
42                 /* First thread created will have id INITIAL_THREAD_ID */
43                 next_thread_id(INITIAL_THREAD_ID),
44                 used_sequence_numbers(0),
45                 next_backtrack(NULL),
46                 bugs(),
47                 stats(),
48                 failed_promise(false),
49                 too_many_reads(false),
50                 no_valid_reads(false),
51                 bad_synchronization(false),
52                 asserted(false)
53         { }
54
55         ~model_snapshot_members() {
56                 for (unsigned int i = 0; i < bugs.size(); i++)
57                         delete bugs[i];
58                 bugs.clear();
59         }
60
61         unsigned int next_thread_id;
62         modelclock_t used_sequence_numbers;
63         ModelAction *next_backtrack;
64         SnapVector<bug_message *> bugs;
65         struct execution_stats stats;
66         bool failed_promise;
67         bool too_many_reads;
68         bool no_valid_reads;
69         /** @brief Incorrectly-ordered synchronization was made */
70         bool bad_synchronization;
71         bool asserted;
72
73         SNAPSHOTALLOC
74 };
75
76 /** @brief Constructor */
77 ModelChecker::ModelChecker(struct model_params params) :
78         /* Initialize default scheduler */
79         params(params),
80         scheduler(new Scheduler()),
81         diverge(NULL),
82         earliest_diverge(NULL),
83         action_trace(new action_list_t()),
84         thread_map(new HashTable<int, Thread *, int>()),
85         obj_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
86         lock_waiters_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
87         condvar_waiters_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
88         obj_thrd_map(new HashTable<void *, SnapVector<action_list_t> *, uintptr_t, 4 >()),
89         promises(new SnapVector<Promise *>()),
90         futurevalues(new SnapVector<struct PendingFutureValue>()),
91         pending_rel_seqs(new SnapVector<struct release_seq *>()),
92         thrd_last_action(new SnapVector<ModelAction *>(1)),
93         thrd_last_fence_release(new SnapVector<ModelAction *>()),
94         node_stack(new NodeStack()),
95         priv(new struct model_snapshot_members()),
96         mo_graph(new CycleGraph())
97 {
98         /* Initialize a model-checker thread, for special ModelActions */
99         model_thread = new Thread(get_next_id());
100         thread_map->put(id_to_int(model_thread->get_id()), model_thread);
101 }
102
103 /** @brief Destructor */
104 ModelChecker::~ModelChecker()
105 {
106         for (unsigned int i = 0; i < get_num_threads(); i++)
107                 delete thread_map->get(i);
108         delete thread_map;
109
110         delete obj_thrd_map;
111         delete obj_map;
112         delete lock_waiters_map;
113         delete condvar_waiters_map;
114         delete action_trace;
115
116         for (unsigned int i = 0; i < promises->size(); i++)
117                 delete (*promises)[i];
118         delete promises;
119
120         delete pending_rel_seqs;
121
122         delete thrd_last_action;
123         delete thrd_last_fence_release;
124         delete node_stack;
125         delete scheduler;
126         delete mo_graph;
127         delete priv;
128 }
129
130 static action_list_t * get_safe_ptr_action(HashTable<const void *, action_list_t *, uintptr_t, 4> * hash, void * ptr)
131 {
132         action_list_t *tmp = hash->get(ptr);
133         if (tmp == NULL) {
134                 tmp = new action_list_t();
135                 hash->put(ptr, tmp);
136         }
137         return tmp;
138 }
139
140 static SnapVector<action_list_t> * get_safe_ptr_vect_action(HashTable<void *, SnapVector<action_list_t> *, uintptr_t, 4> * hash, void * ptr)
141 {
142         SnapVector<action_list_t> *tmp = hash->get(ptr);
143         if (tmp == NULL) {
144                 tmp = new SnapVector<action_list_t>();
145                 hash->put(ptr, tmp);
146         }
147         return tmp;
148 }
149
150 /**
151  * Restores user program to initial state and resets all model-checker data
152  * structures.
153  */
154 void ModelChecker::reset_to_initial_state()
155 {
156         DEBUG("+++ Resetting to initial state +++\n");
157         node_stack->reset_execution();
158
159         /* Print all model-checker output before rollback */
160         fflush(model_out);
161
162         /**
163          * FIXME: if we utilize partial rollback, we will need to free only
164          * those pending actions which were NOT pending before the rollback
165          * point
166          */
167         for (unsigned int i = 0; i < get_num_threads(); i++)
168                 delete get_thread(int_to_id(i))->get_pending();
169
170         snapshot_backtrack_before(0);
171 }
172
173 /** @return a thread ID for a new Thread */
174 thread_id_t ModelChecker::get_next_id()
175 {
176         return priv->next_thread_id++;
177 }
178
179 /** @return the number of user threads created during this execution */
180 unsigned int ModelChecker::get_num_threads() const
181 {
182         return priv->next_thread_id;
183 }
184
185 /**
186  * Must be called from user-thread context (e.g., through the global
187  * thread_current() interface)
188  *
189  * @return The currently executing Thread.
190  */
191 Thread * ModelChecker::get_current_thread() const
192 {
193         return scheduler->get_current_thread();
194 }
195
196 /** @return a sequence number for a new ModelAction */
197 modelclock_t ModelChecker::get_next_seq_num()
198 {
199         return ++priv->used_sequence_numbers;
200 }
201
202 Node * ModelChecker::get_curr_node() const
203 {
204         return node_stack->get_head();
205 }
206
207 /**
208  * @brief Select the next thread to execute based on the curren action
209  *
210  * RMW actions occur in two parts, and we cannot split them. And THREAD_CREATE
211  * actions should be followed by the execution of their child thread. In either
212  * case, the current action should determine the next thread schedule.
213  *
214  * @param curr The current action
215  * @return The next thread to run, if the current action will determine this
216  * selection; otherwise NULL
217  */
218 Thread * ModelChecker::action_select_next_thread(const ModelAction *curr) const
219 {
220         /* Do not split atomic RMW */
221         if (curr->is_rmwr())
222                 return get_thread(curr);
223         /* Follow CREATE with the created thread */
224         if (curr->get_type() == THREAD_CREATE)
225                 return curr->get_thread_operand();
226         return NULL;
227 }
228
229 /**
230  * @brief Choose the next thread to execute.
231  *
232  * This function chooses the next thread that should execute. It can enforce
233  * execution replay/backtracking or, if the model-checker has no preference
234  * regarding the next thread (i.e., when exploring a new execution ordering),
235  * we defer to the scheduler.
236  *
237  * @return The next chosen thread to run, if any exist. Or else if the current
238  * execution should terminate, return NULL.
239  */
240 Thread * ModelChecker::get_next_thread()
241 {
242         thread_id_t tid;
243
244         /*
245          * Have we completed exploring the preselected path? Then let the
246          * scheduler decide
247          */
248         if (diverge == NULL)
249                 return scheduler->select_next_thread();
250
251         /* Else, we are trying to replay an execution */
252         ModelAction *next = node_stack->get_next()->get_action();
253
254         if (next == diverge) {
255                 if (earliest_diverge == NULL || *diverge < *earliest_diverge)
256                         earliest_diverge = diverge;
257
258                 Node *nextnode = next->get_node();
259                 Node *prevnode = nextnode->get_parent();
260                 scheduler->update_sleep_set(prevnode);
261
262                 /* Reached divergence point */
263                 if (nextnode->increment_misc()) {
264                         /* The next node will try to satisfy a different misc_index values. */
265                         tid = next->get_tid();
266                         node_stack->pop_restofstack(2);
267                 } else if (nextnode->increment_promise()) {
268                         /* The next node will try to satisfy a different set of promises. */
269                         tid = next->get_tid();
270                         node_stack->pop_restofstack(2);
271                 } else if (nextnode->increment_read_from()) {
272                         /* The next node will read from a different value. */
273                         tid = next->get_tid();
274                         node_stack->pop_restofstack(2);
275                 } else if (nextnode->increment_relseq_break()) {
276                         /* The next node will try to resolve a release sequence differently */
277                         tid = next->get_tid();
278                         node_stack->pop_restofstack(2);
279                 } else {
280                         ASSERT(prevnode);
281                         /* Make a different thread execute for next step */
282                         scheduler->add_sleep(get_thread(next->get_tid()));
283                         tid = prevnode->get_next_backtrack();
284                         /* Make sure the backtracked thread isn't sleeping. */
285                         node_stack->pop_restofstack(1);
286                         if (diverge == earliest_diverge) {
287                                 earliest_diverge = prevnode->get_action();
288                         }
289                 }
290                 /* Start the round robin scheduler from this thread id */
291                 scheduler->set_scheduler_thread(tid);
292                 /* The correct sleep set is in the parent node. */
293                 execute_sleep_set();
294
295                 DEBUG("*** Divergence point ***\n");
296
297                 diverge = NULL;
298         } else {
299                 tid = next->get_tid();
300         }
301         DEBUG("*** ModelChecker chose next thread = %d ***\n", id_to_int(tid));
302         ASSERT(tid != THREAD_ID_T_NONE);
303         return thread_map->get(id_to_int(tid));
304 }
305
306 /**
307  * We need to know what the next actions of all threads in the sleep
308  * set will be.  This method computes them and stores the actions at
309  * the corresponding thread object's pending action.
310  */
311
312 void ModelChecker::execute_sleep_set()
313 {
314         for (unsigned int i = 0; i < get_num_threads(); i++) {
315                 thread_id_t tid = int_to_id(i);
316                 Thread *thr = get_thread(tid);
317                 if (scheduler->is_sleep_set(thr) && thr->get_pending()) {
318                         thr->get_pending()->set_sleep_flag();
319                 }
320         }
321 }
322
323 /**
324  * @brief Should the current action wake up a given thread?
325  *
326  * @param curr The current action
327  * @param thread The thread that we might wake up
328  * @return True, if we should wake up the sleeping thread; false otherwise
329  */
330 bool ModelChecker::should_wake_up(const ModelAction *curr, const Thread *thread) const
331 {
332         const ModelAction *asleep = thread->get_pending();
333         /* Don't allow partial RMW to wake anyone up */
334         if (curr->is_rmwr())
335                 return false;
336         /* Synchronizing actions may have been backtracked */
337         if (asleep->could_synchronize_with(curr))
338                 return true;
339         /* All acquire/release fences and fence-acquire/store-release */
340         if (asleep->is_fence() && asleep->is_acquire() && curr->is_release())
341                 return true;
342         /* Fence-release + store can awake load-acquire on the same location */
343         if (asleep->is_read() && asleep->is_acquire() && curr->same_var(asleep) && curr->is_write()) {
344                 ModelAction *fence_release = get_last_fence_release(curr->get_tid());
345                 if (fence_release && *(get_last_action(thread->get_id())) < *fence_release)
346                         return true;
347         }
348         return false;
349 }
350
351 void ModelChecker::wake_up_sleeping_actions(ModelAction *curr)
352 {
353         for (unsigned int i = 0; i < get_num_threads(); i++) {
354                 Thread *thr = get_thread(int_to_id(i));
355                 if (scheduler->is_sleep_set(thr)) {
356                         if (should_wake_up(curr, thr))
357                                 /* Remove this thread from sleep set */
358                                 scheduler->remove_sleep(thr);
359                 }
360         }
361 }
362
363 /** @brief Alert the model-checker that an incorrectly-ordered
364  * synchronization was made */
365 void ModelChecker::set_bad_synchronization()
366 {
367         priv->bad_synchronization = true;
368 }
369
370 /**
371  * Check whether the current trace has triggered an assertion which should halt
372  * its execution.
373  *
374  * @return True, if the execution should be aborted; false otherwise
375  */
376 bool ModelChecker::has_asserted() const
377 {
378         return priv->asserted;
379 }
380
381 /**
382  * Trigger a trace assertion which should cause this execution to be halted.
383  * This can be due to a detected bug or due to an infeasibility that should
384  * halt ASAP.
385  */
386 void ModelChecker::set_assert()
387 {
388         priv->asserted = true;
389 }
390
391 /**
392  * Check if we are in a deadlock. Should only be called at the end of an
393  * execution, although it should not give false positives in the middle of an
394  * execution (there should be some ENABLED thread).
395  *
396  * @return True if program is in a deadlock; false otherwise
397  */
398 bool ModelChecker::is_deadlocked() const
399 {
400         bool blocking_threads = false;
401         for (unsigned int i = 0; i < get_num_threads(); i++) {
402                 thread_id_t tid = int_to_id(i);
403                 if (is_enabled(tid))
404                         return false;
405                 Thread *t = get_thread(tid);
406                 if (!t->is_model_thread() && t->get_pending())
407                         blocking_threads = true;
408         }
409         return blocking_threads;
410 }
411
412 /**
413  * Check if a Thread has entered a circular wait deadlock situation. This will
414  * not check other threads for potential deadlock situations, and may miss
415  * deadlocks involving WAIT.
416  *
417  * @param t The thread which may have entered a deadlock
418  * @return True if this Thread entered a deadlock; false otherwise
419  */
420 bool ModelChecker::is_circular_wait(const Thread *t) const
421 {
422         for (Thread *waiting = t->waiting_on() ; waiting != NULL; waiting = waiting->waiting_on())
423                 if (waiting == t)
424                         return true;
425         return false;
426 }
427
428 /**
429  * Check if this is a complete execution. That is, have all thread completed
430  * execution (rather than exiting because sleep sets have forced a redundant
431  * execution).
432  *
433  * @return True if the execution is complete.
434  */
435 bool ModelChecker::is_complete_execution() const
436 {
437         for (unsigned int i = 0; i < get_num_threads(); i++)
438                 if (is_enabled(int_to_id(i)))
439                         return false;
440         return true;
441 }
442
443 /**
444  * @brief Assert a bug in the executing program.
445  *
446  * Use this function to assert any sort of bug in the user program. If the
447  * current trace is feasible (actually, a prefix of some feasible execution),
448  * then this execution will be aborted, printing the appropriate message. If
449  * the current trace is not yet feasible, the error message will be stashed and
450  * printed if the execution ever becomes feasible.
451  *
452  * @param msg Descriptive message for the bug (do not include newline char)
453  * @return True if bug is immediately-feasible
454  */
455 bool ModelChecker::assert_bug(const char *msg)
456 {
457         priv->bugs.push_back(new bug_message(msg));
458
459         if (isfeasibleprefix()) {
460                 set_assert();
461                 return true;
462         }
463         return false;
464 }
465
466 /**
467  * @brief Assert a bug in the executing program, asserted by a user thread
468  * @see ModelChecker::assert_bug
469  * @param msg Descriptive message for the bug (do not include newline char)
470  */
471 void ModelChecker::assert_user_bug(const char *msg)
472 {
473         /* If feasible bug, bail out now */
474         if (assert_bug(msg))
475                 switch_to_master(NULL);
476 }
477
478 /** @return True, if any bugs have been reported for this execution */
479 bool ModelChecker::have_bug_reports() const
480 {
481         return priv->bugs.size() != 0;
482 }
483
484 /** @brief Print bug report listing for this execution (if any bugs exist) */
485 void ModelChecker::print_bugs() const
486 {
487         if (have_bug_reports()) {
488                 model_print("Bug report: %zu bug%s detected\n",
489                                 priv->bugs.size(),
490                                 priv->bugs.size() > 1 ? "s" : "");
491                 for (unsigned int i = 0; i < priv->bugs.size(); i++)
492                         priv->bugs[i]->print();
493         }
494 }
495
496 /**
497  * @brief Record end-of-execution stats
498  *
499  * Must be run when exiting an execution. Records various stats.
500  * @see struct execution_stats
501  */
502 void ModelChecker::record_stats()
503 {
504         stats.num_total++;
505         if (!isfeasibleprefix())
506                 stats.num_infeasible++;
507         else if (have_bug_reports())
508                 stats.num_buggy_executions++;
509         else if (is_complete_execution())
510                 stats.num_complete++;
511         else {
512                 stats.num_redundant++;
513
514                 /**
515                  * @todo We can violate this ASSERT() when fairness/sleep sets
516                  * conflict to cause an execution to terminate, e.g. with:
517                  * Scheduler: [0: disabled][1: disabled][2: sleep][3: current, enabled]
518                  */
519                 //ASSERT(scheduler->all_threads_sleeping());
520         }
521 }
522
523 /** @brief Print execution stats */
524 void ModelChecker::print_stats() const
525 {
526         model_print("Number of complete, bug-free executions: %d\n", stats.num_complete);
527         model_print("Number of redundant executions: %d\n", stats.num_redundant);
528         model_print("Number of buggy executions: %d\n", stats.num_buggy_executions);
529         model_print("Number of infeasible executions: %d\n", stats.num_infeasible);
530         model_print("Total executions: %d\n", stats.num_total);
531         model_print("Total nodes created: %d\n", node_stack->get_total_nodes());
532 }
533
534 /**
535  * @brief End-of-exeuction print
536  * @param printbugs Should any existing bugs be printed?
537  */
538 void ModelChecker::print_execution(bool printbugs) const
539 {
540         print_program_output();
541
542         if (params.verbose) {
543                 model_print("Earliest divergence point since last feasible execution:\n");
544                 if (earliest_diverge)
545                         earliest_diverge->print();
546                 else
547                         model_print("(Not set)\n");
548
549                 model_print("\n");
550                 print_stats();
551         }
552
553         /* Don't print invalid bugs */
554         if (printbugs)
555                 print_bugs();
556
557         model_print("\n");
558         print_summary();
559 }
560
561 /**
562  * Queries the model-checker for more executions to explore and, if one
563  * exists, resets the model-checker state to execute a new execution.
564  *
565  * @return If there are more executions to explore, return true. Otherwise,
566  * return false.
567  */
568 bool ModelChecker::next_execution()
569 {
570         DBG();
571         /* Is this execution a feasible execution that's worth bug-checking? */
572         bool complete = isfeasibleprefix() && (is_complete_execution() ||
573                         have_bug_reports());
574
575         /* End-of-execution bug checks */
576         if (complete) {
577                 if (is_deadlocked())
578                         assert_bug("Deadlock detected");
579
580                 checkDataRaces();
581         }
582
583         record_stats();
584
585         /* Output */
586         if (params.verbose || (complete && have_bug_reports()))
587                 print_execution(complete);
588         else
589                 clear_program_output();
590
591         if (complete)
592                 earliest_diverge = NULL;
593
594         if ((diverge = get_next_backtrack()) == NULL)
595                 return false;
596
597         if (DBG_ENABLED()) {
598                 model_print("Next execution will diverge at:\n");
599                 diverge->print();
600         }
601
602         reset_to_initial_state();
603         return true;
604 }
605
606 /**
607  * @brief Find the last fence-related backtracking conflict for a ModelAction
608  *
609  * This function performs the search for the most recent conflicting action
610  * against which we should perform backtracking, as affected by fence
611  * operations. This includes pairs of potentially-synchronizing actions which
612  * occur due to fence-acquire or fence-release, and hence should be explored in
613  * the opposite execution order.
614  *
615  * @param act The current action
616  * @return The most recent action which conflicts with act due to fences
617  */
618 ModelAction * ModelChecker::get_last_fence_conflict(ModelAction *act) const
619 {
620         /* Only perform release/acquire fence backtracking for stores */
621         if (!act->is_write())
622                 return NULL;
623
624         /* Find a fence-release (or, act is a release) */
625         ModelAction *last_release;
626         if (act->is_release())
627                 last_release = act;
628         else
629                 last_release = get_last_fence_release(act->get_tid());
630         if (!last_release)
631                 return NULL;
632
633         /* Skip past the release */
634         action_list_t *list = action_trace;
635         action_list_t::reverse_iterator rit;
636         for (rit = list->rbegin(); rit != list->rend(); rit++)
637                 if (*rit == last_release)
638                         break;
639         ASSERT(rit != list->rend());
640
641         /* Find a prior:
642          *   load-acquire
643          * or
644          *   load --sb-> fence-acquire */
645         ModelVector<ModelAction *> acquire_fences(get_num_threads(), NULL);
646         ModelVector<ModelAction *> prior_loads(get_num_threads(), NULL);
647         bool found_acquire_fences = false;
648         for ( ; rit != list->rend(); rit++) {
649                 ModelAction *prev = *rit;
650                 if (act->same_thread(prev))
651                         continue;
652
653                 int tid = id_to_int(prev->get_tid());
654
655                 if (prev->is_read() && act->same_var(prev)) {
656                         if (prev->is_acquire()) {
657                                 /* Found most recent load-acquire, don't need
658                                  * to search for more fences */
659                                 if (!found_acquire_fences)
660                                         return NULL;
661                         } else {
662                                 prior_loads[tid] = prev;
663                         }
664                 }
665                 if (prev->is_acquire() && prev->is_fence() && !acquire_fences[tid]) {
666                         found_acquire_fences = true;
667                         acquire_fences[tid] = prev;
668                 }
669         }
670
671         ModelAction *latest_backtrack = NULL;
672         for (unsigned int i = 0; i < acquire_fences.size(); i++)
673                 if (acquire_fences[i] && prior_loads[i])
674                         if (!latest_backtrack || *latest_backtrack < *acquire_fences[i])
675                                 latest_backtrack = acquire_fences[i];
676         return latest_backtrack;
677 }
678
679 /**
680  * @brief Find the last backtracking conflict for a ModelAction
681  *
682  * This function performs the search for the most recent conflicting action
683  * against which we should perform backtracking. This primary includes pairs of
684  * synchronizing actions which should be explored in the opposite execution
685  * order.
686  *
687  * @param act The current action
688  * @return The most recent action which conflicts with act
689  */
690 ModelAction * ModelChecker::get_last_conflict(ModelAction *act) const
691 {
692         switch (act->get_type()) {
693         /* case ATOMIC_FENCE: fences don't directly cause backtracking */
694         case ATOMIC_READ:
695         case ATOMIC_WRITE:
696         case ATOMIC_RMW: {
697                 ModelAction *ret = NULL;
698
699                 /* linear search: from most recent to oldest */
700                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
701                 action_list_t::reverse_iterator rit;
702                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
703                         ModelAction *prev = *rit;
704                         if (prev->could_synchronize_with(act)) {
705                                 ret = prev;
706                                 break;
707                         }
708                 }
709
710                 ModelAction *ret2 = get_last_fence_conflict(act);
711                 if (!ret2)
712                         return ret;
713                 if (!ret)
714                         return ret2;
715                 if (*ret < *ret2)
716                         return ret2;
717                 return ret;
718         }
719         case ATOMIC_LOCK:
720         case ATOMIC_TRYLOCK: {
721                 /* linear search: from most recent to oldest */
722                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
723                 action_list_t::reverse_iterator rit;
724                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
725                         ModelAction *prev = *rit;
726                         if (act->is_conflicting_lock(prev))
727                                 return prev;
728                 }
729                 break;
730         }
731         case ATOMIC_UNLOCK: {
732                 /* linear search: from most recent to oldest */
733                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
734                 action_list_t::reverse_iterator rit;
735                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
736                         ModelAction *prev = *rit;
737                         if (!act->same_thread(prev) && prev->is_failed_trylock())
738                                 return prev;
739                 }
740                 break;
741         }
742         case ATOMIC_WAIT: {
743                 /* linear search: from most recent to oldest */
744                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
745                 action_list_t::reverse_iterator rit;
746                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
747                         ModelAction *prev = *rit;
748                         if (!act->same_thread(prev) && prev->is_failed_trylock())
749                                 return prev;
750                         if (!act->same_thread(prev) && prev->is_notify())
751                                 return prev;
752                 }
753                 break;
754         }
755
756         case ATOMIC_NOTIFY_ALL:
757         case ATOMIC_NOTIFY_ONE: {
758                 /* linear search: from most recent to oldest */
759                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
760                 action_list_t::reverse_iterator rit;
761                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
762                         ModelAction *prev = *rit;
763                         if (!act->same_thread(prev) && prev->is_wait())
764                                 return prev;
765                 }
766                 break;
767         }
768         default:
769                 break;
770         }
771         return NULL;
772 }
773
774 /** This method finds backtracking points where we should try to
775  * reorder the parameter ModelAction against.
776  *
777  * @param the ModelAction to find backtracking points for.
778  */
779 void ModelChecker::set_backtracking(ModelAction *act)
780 {
781         Thread *t = get_thread(act);
782         ModelAction *prev = get_last_conflict(act);
783         if (prev == NULL)
784                 return;
785
786         Node *node = prev->get_node()->get_parent();
787
788         int low_tid, high_tid;
789         if (node->enabled_status(t->get_id()) == THREAD_ENABLED) {
790                 low_tid = id_to_int(act->get_tid());
791                 high_tid = low_tid + 1;
792         } else {
793                 low_tid = 0;
794                 high_tid = get_num_threads();
795         }
796
797         for (int i = low_tid; i < high_tid; i++) {
798                 thread_id_t tid = int_to_id(i);
799
800                 /* Make sure this thread can be enabled here. */
801                 if (i >= node->get_num_threads())
802                         break;
803
804                 /* Don't backtrack into a point where the thread is disabled or sleeping. */
805                 if (node->enabled_status(tid) != THREAD_ENABLED)
806                         continue;
807
808                 /* Check if this has been explored already */
809                 if (node->has_been_explored(tid))
810                         continue;
811
812                 /* See if fairness allows */
813                 if (model->params.fairwindow != 0 && !node->has_priority(tid)) {
814                         bool unfair = false;
815                         for (int t = 0; t < node->get_num_threads(); t++) {
816                                 thread_id_t tother = int_to_id(t);
817                                 if (node->is_enabled(tother) && node->has_priority(tother)) {
818                                         unfair = true;
819                                         break;
820                                 }
821                         }
822                         if (unfair)
823                                 continue;
824                 }
825
826                 /* See if CHESS-like yield fairness allows */
827                 if (model->params.yieldon) {
828                         bool unfair = false;
829                         for (int t = 0; t < node->get_num_threads(); t++) {
830                                 thread_id_t tother = int_to_id(t);
831                                 if (node->is_enabled(tother) && node->has_priority_over(tid, tother)) {
832                                         unfair = true;
833                                         break;
834                                 }
835                         }
836                         if (unfair)
837                                 continue;
838                 }
839                 
840                 /* Cache the latest backtracking point */
841                 set_latest_backtrack(prev);
842
843                 /* If this is a new backtracking point, mark the tree */
844                 if (!node->set_backtrack(tid))
845                         continue;
846                 DEBUG("Setting backtrack: conflict = %d, instead tid = %d\n",
847                                         id_to_int(prev->get_tid()),
848                                         id_to_int(t->get_id()));
849                 if (DBG_ENABLED()) {
850                         prev->print();
851                         act->print();
852                 }
853         }
854 }
855
856 /**
857  * @brief Cache the a backtracking point as the "most recent", if eligible
858  *
859  * Note that this does not prepare the NodeStack for this backtracking
860  * operation, it only caches the action on a per-execution basis
861  *
862  * @param act The operation at which we should explore a different next action
863  * (i.e., backtracking point)
864  * @return True, if this action is now the most recent backtracking point;
865  * false otherwise
866  */
867 bool ModelChecker::set_latest_backtrack(ModelAction *act)
868 {
869         if (!priv->next_backtrack || *act > *priv->next_backtrack) {
870                 priv->next_backtrack = act;
871                 return true;
872         }
873         return false;
874 }
875
876 /**
877  * Returns last backtracking point. The model checker will explore a different
878  * path for this point in the next execution.
879  * @return The ModelAction at which the next execution should diverge.
880  */
881 ModelAction * ModelChecker::get_next_backtrack()
882 {
883         ModelAction *next = priv->next_backtrack;
884         priv->next_backtrack = NULL;
885         return next;
886 }
887
888 /**
889  * Processes a read model action.
890  * @param curr is the read model action to process.
891  * @return True if processing this read updates the mo_graph.
892  */
893 bool ModelChecker::process_read(ModelAction *curr)
894 {
895         Node *node = curr->get_node();
896         while (true) {
897                 bool updated = false;
898                 switch (node->get_read_from_status()) {
899                 case READ_FROM_PAST: {
900                         const ModelAction *rf = node->get_read_from_past();
901                         ASSERT(rf);
902
903                         mo_graph->startChanges();
904
905                         ASSERT(!is_infeasible());
906                         if (!check_recency(curr, rf)) {
907                                 if (node->increment_read_from()) {
908                                         mo_graph->rollbackChanges();
909                                         continue;
910                                 } else {
911                                         priv->too_many_reads = true;
912                                 }
913                         }
914
915                         updated = r_modification_order(curr, rf);
916                         read_from(curr, rf);
917                         mo_graph->commitChanges();
918                         mo_check_promises(curr, true);
919                         break;
920                 }
921                 case READ_FROM_PROMISE: {
922                         Promise *promise = curr->get_node()->get_read_from_promise();
923                         if (promise->add_reader(curr))
924                                 priv->failed_promise = true;
925                         curr->set_read_from_promise(promise);
926                         mo_graph->startChanges();
927                         if (!check_recency(curr, promise))
928                                 priv->too_many_reads = true;
929                         updated = r_modification_order(curr, promise);
930                         mo_graph->commitChanges();
931                         break;
932                 }
933                 case READ_FROM_FUTURE: {
934                         /* Read from future value */
935                         struct future_value fv = node->get_future_value();
936                         Promise *promise = new Promise(curr, fv);
937                         curr->set_read_from_promise(promise);
938                         promises->push_back(promise);
939                         mo_graph->startChanges();
940                         updated = r_modification_order(curr, promise);
941                         mo_graph->commitChanges();
942                         break;
943                 }
944                 default:
945                         ASSERT(false);
946                 }
947                 get_thread(curr)->set_return_value(curr->get_return_value());
948                 return updated;
949         }
950 }
951
952 /**
953  * Processes a lock, trylock, or unlock model action.  @param curr is
954  * the read model action to process.
955  *
956  * The try lock operation checks whether the lock is taken.  If not,
957  * it falls to the normal lock operation case.  If so, it returns
958  * fail.
959  *
960  * The lock operation has already been checked that it is enabled, so
961  * it just grabs the lock and synchronizes with the previous unlock.
962  *
963  * The unlock operation has to re-enable all of the threads that are
964  * waiting on the lock.
965  *
966  * @return True if synchronization was updated; false otherwise
967  */
968 bool ModelChecker::process_mutex(ModelAction *curr)
969 {
970         std::mutex *mutex = curr->get_mutex();
971         struct std::mutex_state *state = NULL;
972
973         if (mutex)
974                 state = mutex->get_state();
975
976         switch (curr->get_type()) {
977         case ATOMIC_TRYLOCK: {
978                 bool success = !state->locked;
979                 curr->set_try_lock(success);
980                 if (!success) {
981                         get_thread(curr)->set_return_value(0);
982                         break;
983                 }
984                 get_thread(curr)->set_return_value(1);
985         }
986                 //otherwise fall into the lock case
987         case ATOMIC_LOCK: {
988                 if (curr->get_cv()->getClock(state->alloc_tid) <= state->alloc_clock)
989                         assert_bug("Lock access before initialization");
990                 state->locked = get_thread(curr);
991                 ModelAction *unlock = get_last_unlock(curr);
992                 //synchronize with the previous unlock statement
993                 if (unlock != NULL) {
994                         curr->synchronize_with(unlock);
995                         return true;
996                 }
997                 break;
998         }
999         case ATOMIC_UNLOCK: {
1000                 //unlock the lock
1001                 state->locked = NULL;
1002                 //wake up the other threads
1003                 action_list_t *waiters = get_safe_ptr_action(lock_waiters_map, curr->get_location());
1004                 //activate all the waiting threads
1005                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
1006                         scheduler->wake(get_thread(*rit));
1007                 }
1008                 waiters->clear();
1009                 break;
1010         }
1011         case ATOMIC_WAIT: {
1012                 //unlock the lock
1013                 state->locked = NULL;
1014                 //wake up the other threads
1015                 action_list_t *waiters = get_safe_ptr_action(lock_waiters_map, (void *) curr->get_value());
1016                 //activate all the waiting threads
1017                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
1018                         scheduler->wake(get_thread(*rit));
1019                 }
1020                 waiters->clear();
1021                 //check whether we should go to sleep or not...simulate spurious failures
1022                 if (curr->get_node()->get_misc() == 0) {
1023                         get_safe_ptr_action(condvar_waiters_map, curr->get_location())->push_back(curr);
1024                         //disable us
1025                         scheduler->sleep(get_thread(curr));
1026                 }
1027                 break;
1028         }
1029         case ATOMIC_NOTIFY_ALL: {
1030                 action_list_t *waiters = get_safe_ptr_action(condvar_waiters_map, curr->get_location());
1031                 //activate all the waiting threads
1032                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
1033                         scheduler->wake(get_thread(*rit));
1034                 }
1035                 waiters->clear();
1036                 break;
1037         }
1038         case ATOMIC_NOTIFY_ONE: {
1039                 action_list_t *waiters = get_safe_ptr_action(condvar_waiters_map, curr->get_location());
1040                 int wakeupthread = curr->get_node()->get_misc();
1041                 action_list_t::iterator it = waiters->begin();
1042                 advance(it, wakeupthread);
1043                 scheduler->wake(get_thread(*it));
1044                 waiters->erase(it);
1045                 break;
1046         }
1047
1048         default:
1049                 ASSERT(0);
1050         }
1051         return false;
1052 }
1053
1054 /**
1055  * @brief Check if the current pending promises allow a future value to be sent
1056  *
1057  * If one of the following is true:
1058  *  (a) there are no pending promises
1059  *  (b) the reader is ordered after the latest Promise creation
1060  * Then, it is safe to pass a future value back now.
1061  *
1062  * Otherwise, we must save the pending future value until (a) or (b) is true
1063  *
1064  * @param writer The operation which sends the future value. Must be a write.
1065  * @param reader The operation which will observe the value. Must be a read.
1066  * @return True if the future value can be sent now; false if it must wait.
1067  */
1068 bool ModelChecker::promises_may_allow(const ModelAction *writer,
1069                 const ModelAction *reader) const
1070 {
1071         return promises->empty() ||
1072                 *(promises->back()->get_reader(0)) < *reader;
1073 }
1074
1075 /**
1076  * @brief Add a future value to a reader
1077  *
1078  * This function performs a few additional checks to ensure that the future
1079  * value can be feasibly observed by the reader
1080  *
1081  * @param writer The operation whose value is sent. Must be a write.
1082  * @param reader The read operation which may read the future value. Must be a read.
1083  */
1084 void ModelChecker::add_future_value(const ModelAction *writer, ModelAction *reader)
1085 {
1086         /* Do more ambitious checks now that mo is more complete */
1087         if (!mo_may_allow(writer, reader))
1088                 return;
1089
1090         Node *node = reader->get_node();
1091
1092         /* Find an ancestor thread which exists at the time of the reader */
1093         Thread *write_thread = get_thread(writer);
1094         while (id_to_int(write_thread->get_id()) >= node->get_num_threads())
1095                 write_thread = write_thread->get_parent();
1096
1097         struct future_value fv = {
1098                 writer->get_write_value(),
1099                 writer->get_seq_number() + params.maxfuturedelay,
1100                 write_thread->get_id(),
1101         };
1102         if (node->add_future_value(fv))
1103                 set_latest_backtrack(reader);
1104 }
1105
1106 /**
1107  * Process a write ModelAction
1108  * @param curr The ModelAction to process
1109  * @return True if the mo_graph was updated or promises were resolved
1110  */
1111 bool ModelChecker::process_write(ModelAction *curr)
1112 {
1113         /* Readers to which we may send our future value */
1114         ModelVector<ModelAction *> send_fv;
1115
1116         const ModelAction *earliest_promise_reader;
1117         bool updated_promises = false;
1118
1119         bool updated_mod_order = w_modification_order(curr, &send_fv);
1120         Promise *promise = pop_promise_to_resolve(curr);
1121
1122         if (promise) {
1123                 earliest_promise_reader = promise->get_reader(0);
1124                 updated_promises = resolve_promise(curr, promise);
1125         } else
1126                 earliest_promise_reader = NULL;
1127
1128         for (unsigned int i = 0; i < send_fv.size(); i++) {
1129                 ModelAction *read = send_fv[i];
1130
1131                 /* Don't send future values to reads after the Promise we resolve */
1132                 if (!earliest_promise_reader || *read < *earliest_promise_reader) {
1133                         /* Check if future value can be sent immediately */
1134                         if (promises_may_allow(curr, read)) {
1135                                 add_future_value(curr, read);
1136                         } else {
1137                                 futurevalues->push_back(PendingFutureValue(curr, read));
1138                         }
1139                 }
1140         }
1141
1142         if (promises->empty()) {
1143                 for (unsigned int i = 0; i < futurevalues->size(); i++) {
1144                         struct PendingFutureValue pfv = (*futurevalues)[i];
1145                         add_future_value(pfv.writer, pfv.reader);
1146                 }
1147                 futurevalues->clear();
1148         }
1149
1150         mo_graph->commitChanges();
1151         mo_check_promises(curr, false);
1152
1153         get_thread(curr)->set_return_value(VALUE_NONE);
1154         return updated_mod_order || updated_promises;
1155 }
1156
1157 /**
1158  * Process a fence ModelAction
1159  * @param curr The ModelAction to process
1160  * @return True if synchronization was updated
1161  */
1162 bool ModelChecker::process_fence(ModelAction *curr)
1163 {
1164         /*
1165          * fence-relaxed: no-op
1166          * fence-release: only log the occurence (not in this function), for
1167          *   use in later synchronization
1168          * fence-acquire (this function): search for hypothetical release
1169          *   sequences
1170          * fence-seq-cst: MO constraints formed in {r,w}_modification_order
1171          */
1172         bool updated = false;
1173         if (curr->is_acquire()) {
1174                 action_list_t *list = action_trace;
1175                 action_list_t::reverse_iterator rit;
1176                 /* Find X : is_read(X) && X --sb-> curr */
1177                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1178                         ModelAction *act = *rit;
1179                         if (act == curr)
1180                                 continue;
1181                         if (act->get_tid() != curr->get_tid())
1182                                 continue;
1183                         /* Stop at the beginning of the thread */
1184                         if (act->is_thread_start())
1185                                 break;
1186                         /* Stop once we reach a prior fence-acquire */
1187                         if (act->is_fence() && act->is_acquire())
1188                                 break;
1189                         if (!act->is_read())
1190                                 continue;
1191                         /* read-acquire will find its own release sequences */
1192                         if (act->is_acquire())
1193                                 continue;
1194
1195                         /* Establish hypothetical release sequences */
1196                         rel_heads_list_t release_heads;
1197                         get_release_seq_heads(curr, act, &release_heads);
1198                         for (unsigned int i = 0; i < release_heads.size(); i++)
1199                                 if (!curr->synchronize_with(release_heads[i]))
1200                                         set_bad_synchronization();
1201                         if (release_heads.size() != 0)
1202                                 updated = true;
1203                 }
1204         }
1205         return updated;
1206 }
1207
1208 /**
1209  * @brief Process the current action for thread-related activity
1210  *
1211  * Performs current-action processing for a THREAD_* ModelAction. Proccesses
1212  * may include setting Thread status, completing THREAD_FINISH/THREAD_JOIN
1213  * synchronization, etc.  This function is a no-op for non-THREAD actions
1214  * (e.g., ATOMIC_{READ,WRITE,RMW,LOCK}, etc.)
1215  *
1216  * @param curr The current action
1217  * @return True if synchronization was updated or a thread completed
1218  */
1219 bool ModelChecker::process_thread_action(ModelAction *curr)
1220 {
1221         bool updated = false;
1222
1223         switch (curr->get_type()) {
1224         case THREAD_CREATE: {
1225                 thrd_t *thrd = (thrd_t *)curr->get_location();
1226                 struct thread_params *params = (struct thread_params *)curr->get_value();
1227                 Thread *th = new Thread(thrd, params->func, params->arg, get_thread(curr));
1228                 add_thread(th);
1229                 th->set_creation(curr);
1230                 /* Promises can be satisfied by children */
1231                 for (unsigned int i = 0; i < promises->size(); i++) {
1232                         Promise *promise = (*promises)[i];
1233                         if (promise->thread_is_available(curr->get_tid()))
1234                                 promise->add_thread(th->get_id());
1235                 }
1236                 break;
1237         }
1238         case THREAD_JOIN: {
1239                 Thread *blocking = curr->get_thread_operand();
1240                 ModelAction *act = get_last_action(blocking->get_id());
1241                 curr->synchronize_with(act);
1242                 updated = true; /* trigger rel-seq checks */
1243                 break;
1244         }
1245         case THREAD_FINISH: {
1246                 Thread *th = get_thread(curr);
1247                 while (!th->wait_list_empty()) {
1248                         ModelAction *act = th->pop_wait_list();
1249                         scheduler->wake(get_thread(act));
1250                 }
1251                 th->complete();
1252                 /* Completed thread can't satisfy promises */
1253                 for (unsigned int i = 0; i < promises->size(); i++) {
1254                         Promise *promise = (*promises)[i];
1255                         if (promise->thread_is_available(th->get_id()))
1256                                 if (promise->eliminate_thread(th->get_id()))
1257                                         priv->failed_promise = true;
1258                 }
1259                 updated = true; /* trigger rel-seq checks */
1260                 break;
1261         }
1262         case THREAD_START: {
1263                 check_promises(curr->get_tid(), NULL, curr->get_cv());
1264                 break;
1265         }
1266         default:
1267                 break;
1268         }
1269
1270         return updated;
1271 }
1272
1273 /**
1274  * @brief Process the current action for release sequence fixup activity
1275  *
1276  * Performs model-checker release sequence fixups for the current action,
1277  * forcing a single pending release sequence to break (with a given, potential
1278  * "loose" write) or to complete (i.e., synchronize). If a pending release
1279  * sequence forms a complete release sequence, then we must perform the fixup
1280  * synchronization, mo_graph additions, etc.
1281  *
1282  * @param curr The current action; must be a release sequence fixup action
1283  * @param work_queue The work queue to which to add work items as they are
1284  * generated
1285  */
1286 void ModelChecker::process_relseq_fixup(ModelAction *curr, work_queue_t *work_queue)
1287 {
1288         const ModelAction *write = curr->get_node()->get_relseq_break();
1289         struct release_seq *sequence = pending_rel_seqs->back();
1290         pending_rel_seqs->pop_back();
1291         ASSERT(sequence);
1292         ModelAction *acquire = sequence->acquire;
1293         const ModelAction *rf = sequence->rf;
1294         const ModelAction *release = sequence->release;
1295         ASSERT(acquire);
1296         ASSERT(release);
1297         ASSERT(rf);
1298         ASSERT(release->same_thread(rf));
1299
1300         if (write == NULL) {
1301                 /**
1302                  * @todo Forcing a synchronization requires that we set
1303                  * modification order constraints. For instance, we can't allow
1304                  * a fixup sequence in which two separate read-acquire
1305                  * operations read from the same sequence, where the first one
1306                  * synchronizes and the other doesn't. Essentially, we can't
1307                  * allow any writes to insert themselves between 'release' and
1308                  * 'rf'
1309                  */
1310
1311                 /* Must synchronize */
1312                 if (!acquire->synchronize_with(release)) {
1313                         set_bad_synchronization();
1314                         return;
1315                 }
1316                 /* Re-check all pending release sequences */
1317                 work_queue->push_back(CheckRelSeqWorkEntry(NULL));
1318                 /* Re-check act for mo_graph edges */
1319                 work_queue->push_back(MOEdgeWorkEntry(acquire));
1320
1321                 /* propagate synchronization to later actions */
1322                 action_list_t::reverse_iterator rit = action_trace->rbegin();
1323                 for (; (*rit) != acquire; rit++) {
1324                         ModelAction *propagate = *rit;
1325                         if (acquire->happens_before(propagate)) {
1326                                 propagate->synchronize_with(acquire);
1327                                 /* Re-check 'propagate' for mo_graph edges */
1328                                 work_queue->push_back(MOEdgeWorkEntry(propagate));
1329                         }
1330                 }
1331         } else {
1332                 /* Break release sequence with new edges:
1333                  *   release --mo--> write --mo--> rf */
1334                 mo_graph->addEdge(release, write);
1335                 mo_graph->addEdge(write, rf);
1336         }
1337
1338         /* See if we have realized a data race */
1339         checkDataRaces();
1340 }
1341
1342 /**
1343  * Initialize the current action by performing one or more of the following
1344  * actions, as appropriate: merging RMWR and RMWC/RMW actions, stepping forward
1345  * in the NodeStack, manipulating backtracking sets, allocating and
1346  * initializing clock vectors, and computing the promises to fulfill.
1347  *
1348  * @param curr The current action, as passed from the user context; may be
1349  * freed/invalidated after the execution of this function, with a different
1350  * action "returned" its place (pass-by-reference)
1351  * @return True if curr is a newly-explored action; false otherwise
1352  */
1353 bool ModelChecker::initialize_curr_action(ModelAction **curr)
1354 {
1355         ModelAction *newcurr;
1356
1357         if ((*curr)->is_rmwc() || (*curr)->is_rmw()) {
1358                 newcurr = process_rmw(*curr);
1359                 delete *curr;
1360
1361                 if (newcurr->is_rmw())
1362                         compute_promises(newcurr);
1363
1364                 *curr = newcurr;
1365                 return false;
1366         }
1367
1368         (*curr)->set_seq_number(get_next_seq_num());
1369
1370         newcurr = node_stack->explore_action(*curr, scheduler->get_enabled_array());
1371         if (newcurr) {
1372                 /* First restore type and order in case of RMW operation */
1373                 if ((*curr)->is_rmwr())
1374                         newcurr->copy_typeandorder(*curr);
1375
1376                 ASSERT((*curr)->get_location() == newcurr->get_location());
1377                 newcurr->copy_from_new(*curr);
1378
1379                 /* Discard duplicate ModelAction; use action from NodeStack */
1380                 delete *curr;
1381
1382                 /* Always compute new clock vector */
1383                 newcurr->create_cv(get_parent_action(newcurr->get_tid()));
1384
1385                 *curr = newcurr;
1386                 return false; /* Action was explored previously */
1387         } else {
1388                 newcurr = *curr;
1389
1390                 /* Always compute new clock vector */
1391                 newcurr->create_cv(get_parent_action(newcurr->get_tid()));
1392
1393                 /* Assign most recent release fence */
1394                 newcurr->set_last_fence_release(get_last_fence_release(newcurr->get_tid()));
1395
1396                 /*
1397                  * Perform one-time actions when pushing new ModelAction onto
1398                  * NodeStack
1399                  */
1400                 if (newcurr->is_write())
1401                         compute_promises(newcurr);
1402                 else if (newcurr->is_relseq_fixup())
1403                         compute_relseq_breakwrites(newcurr);
1404                 else if (newcurr->is_wait())
1405                         newcurr->get_node()->set_misc_max(2);
1406                 else if (newcurr->is_notify_one()) {
1407                         newcurr->get_node()->set_misc_max(get_safe_ptr_action(condvar_waiters_map, newcurr->get_location())->size());
1408                 }
1409                 return true; /* This was a new ModelAction */
1410         }
1411 }
1412
1413 /**
1414  * @brief Establish reads-from relation between two actions
1415  *
1416  * Perform basic operations involved with establishing a concrete rf relation,
1417  * including setting the ModelAction data and checking for release sequences.
1418  *
1419  * @param act The action that is reading (must be a read)
1420  * @param rf The action from which we are reading (must be a write)
1421  *
1422  * @return True if this read established synchronization
1423  */
1424 bool ModelChecker::read_from(ModelAction *act, const ModelAction *rf)
1425 {
1426         ASSERT(rf);
1427         ASSERT(rf->is_write());
1428
1429         act->set_read_from(rf);
1430         if (act->is_acquire()) {
1431                 rel_heads_list_t release_heads;
1432                 get_release_seq_heads(act, act, &release_heads);
1433                 int num_heads = release_heads.size();
1434                 for (unsigned int i = 0; i < release_heads.size(); i++)
1435                         if (!act->synchronize_with(release_heads[i])) {
1436                                 set_bad_synchronization();
1437                                 num_heads--;
1438                         }
1439                 return num_heads > 0;
1440         }
1441         return false;
1442 }
1443
1444 /**
1445  * Check promises and eliminate potentially-satisfying threads when a thread is
1446  * blocked (e.g., join, lock). A thread which is waiting on another thread can
1447  * no longer satisfy a promise generated from that thread.
1448  *
1449  * @param blocker The thread on which a thread is waiting
1450  * @param waiting The waiting thread
1451  */
1452 void ModelChecker::thread_blocking_check_promises(Thread *blocker, Thread *waiting)
1453 {
1454         for (unsigned int i = 0; i < promises->size(); i++) {
1455                 Promise *promise = (*promises)[i];
1456                 if (!promise->thread_is_available(waiting->get_id()))
1457                         continue;
1458                 for (unsigned int j = 0; j < promise->get_num_readers(); j++) {
1459                         ModelAction *reader = promise->get_reader(j);
1460                         if (reader->get_tid() != blocker->get_id())
1461                                 continue;
1462                         if (promise->eliminate_thread(waiting->get_id())) {
1463                                 /* Promise has failed */
1464                                 priv->failed_promise = true;
1465                         } else {
1466                                 /* Only eliminate the 'waiting' thread once */
1467                                 return;
1468                         }
1469                 }
1470         }
1471 }
1472
1473 /**
1474  * @brief Check whether a model action is enabled.
1475  *
1476  * Checks whether a lock or join operation would be successful (i.e., is the
1477  * lock already locked, or is the joined thread already complete). If not, put
1478  * the action in a waiter list.
1479  *
1480  * @param curr is the ModelAction to check whether it is enabled.
1481  * @return a bool that indicates whether the action is enabled.
1482  */
1483 bool ModelChecker::check_action_enabled(ModelAction *curr) {
1484         if (curr->is_lock()) {
1485                 std::mutex *lock = (std::mutex *)curr->get_location();
1486                 struct std::mutex_state *state = lock->get_state();
1487                 if (state->locked) {
1488                         //Stick the action in the appropriate waiting queue
1489                         get_safe_ptr_action(lock_waiters_map, curr->get_location())->push_back(curr);
1490                         return false;
1491                 }
1492         } else if (curr->get_type() == THREAD_JOIN) {
1493                 Thread *blocking = (Thread *)curr->get_location();
1494                 if (!blocking->is_complete()) {
1495                         blocking->push_wait_list(curr);
1496                         thread_blocking_check_promises(blocking, get_thread(curr));
1497                         return false;
1498                 }
1499         }
1500
1501         return true;
1502 }
1503
1504 /**
1505  * This is the heart of the model checker routine. It performs model-checking
1506  * actions corresponding to a given "current action." Among other processes, it
1507  * calculates reads-from relationships, updates synchronization clock vectors,
1508  * forms a memory_order constraints graph, and handles replay/backtrack
1509  * execution when running permutations of previously-observed executions.
1510  *
1511  * @param curr The current action to process
1512  * @return The ModelAction that is actually executed; may be different than
1513  * curr; may be NULL, if the current action is not enabled to run
1514  */
1515 ModelAction * ModelChecker::check_current_action(ModelAction *curr)
1516 {
1517         ASSERT(curr);
1518         bool second_part_of_rmw = curr->is_rmwc() || curr->is_rmw();
1519
1520         if (!check_action_enabled(curr)) {
1521                 /* Make the execution look like we chose to run this action
1522                  * much later, when a lock/join can succeed */
1523                 get_thread(curr)->set_pending(curr);
1524                 scheduler->sleep(get_thread(curr));
1525                 return NULL;
1526         }
1527
1528         bool newly_explored = initialize_curr_action(&curr);
1529
1530         DBG();
1531         if (DBG_ENABLED())
1532                 curr->print();
1533
1534         wake_up_sleeping_actions(curr);
1535
1536         /* Compute fairness information for CHESS yield algorithm */
1537         if (model->params.yieldon) {
1538                 curr->get_node()->update_yield(scheduler);
1539         }
1540
1541         /* Add the action to lists before any other model-checking tasks */
1542         if (!second_part_of_rmw)
1543                 add_action_to_lists(curr);
1544
1545         /* Build may_read_from set for newly-created actions */
1546         if (newly_explored && curr->is_read())
1547                 build_may_read_from(curr);
1548
1549         /* Initialize work_queue with the "current action" work */
1550         work_queue_t work_queue(1, CheckCurrWorkEntry(curr));
1551         while (!work_queue.empty() && !has_asserted()) {
1552                 WorkQueueEntry work = work_queue.front();
1553                 work_queue.pop_front();
1554
1555                 switch (work.type) {
1556                 case WORK_CHECK_CURR_ACTION: {
1557                         ModelAction *act = work.action;
1558                         bool update = false; /* update this location's release seq's */
1559                         bool update_all = false; /* update all release seq's */
1560
1561                         if (process_thread_action(curr))
1562                                 update_all = true;
1563
1564                         if (act->is_read() && !second_part_of_rmw && process_read(act))
1565                                 update = true;
1566
1567                         if (act->is_write() && process_write(act))
1568                                 update = true;
1569
1570                         if (act->is_fence() && process_fence(act))
1571                                 update_all = true;
1572
1573                         if (act->is_mutex_op() && process_mutex(act))
1574                                 update_all = true;
1575
1576                         if (act->is_relseq_fixup())
1577                                 process_relseq_fixup(curr, &work_queue);
1578
1579                         if (update_all)
1580                                 work_queue.push_back(CheckRelSeqWorkEntry(NULL));
1581                         else if (update)
1582                                 work_queue.push_back(CheckRelSeqWorkEntry(act->get_location()));
1583                         break;
1584                 }
1585                 case WORK_CHECK_RELEASE_SEQ:
1586                         resolve_release_sequences(work.location, &work_queue);
1587                         break;
1588                 case WORK_CHECK_MO_EDGES: {
1589                         /** @todo Complete verification of work_queue */
1590                         ModelAction *act = work.action;
1591                         bool updated = false;
1592
1593                         if (act->is_read()) {
1594                                 const ModelAction *rf = act->get_reads_from();
1595                                 const Promise *promise = act->get_reads_from_promise();
1596                                 if (rf) {
1597                                         if (r_modification_order(act, rf))
1598                                                 updated = true;
1599                                 } else if (promise) {
1600                                         if (r_modification_order(act, promise))
1601                                                 updated = true;
1602                                 }
1603                         }
1604                         if (act->is_write()) {
1605                                 if (w_modification_order(act, NULL))
1606                                         updated = true;
1607                         }
1608                         mo_graph->commitChanges();
1609
1610                         if (updated)
1611                                 work_queue.push_back(CheckRelSeqWorkEntry(act->get_location()));
1612                         break;
1613                 }
1614                 default:
1615                         ASSERT(false);
1616                         break;
1617                 }
1618         }
1619
1620         check_curr_backtracking(curr);
1621         set_backtracking(curr);
1622         return curr;
1623 }
1624
1625 void ModelChecker::check_curr_backtracking(ModelAction *curr)
1626 {
1627         Node *currnode = curr->get_node();
1628         Node *parnode = currnode->get_parent();
1629
1630         if ((parnode && !parnode->backtrack_empty()) ||
1631                          !currnode->misc_empty() ||
1632                          !currnode->read_from_empty() ||
1633                          !currnode->promise_empty() ||
1634                          !currnode->relseq_break_empty()) {
1635                 set_latest_backtrack(curr);
1636         }
1637 }
1638
1639 bool ModelChecker::promises_expired() const
1640 {
1641         for (unsigned int i = 0; i < promises->size(); i++) {
1642                 Promise *promise = (*promises)[i];
1643                 if (promise->get_expiration() < priv->used_sequence_numbers)
1644                         return true;
1645         }
1646         return false;
1647 }
1648
1649 /**
1650  * This is the strongest feasibility check available.
1651  * @return whether the current trace (partial or complete) must be a prefix of
1652  * a feasible trace.
1653  */
1654 bool ModelChecker::isfeasibleprefix() const
1655 {
1656         return pending_rel_seqs->size() == 0 && is_feasible_prefix_ignore_relseq();
1657 }
1658
1659 /**
1660  * Print disagnostic information about an infeasible execution
1661  * @param prefix A string to prefix the output with; if NULL, then a default
1662  * message prefix will be provided
1663  */
1664 void ModelChecker::print_infeasibility(const char *prefix) const
1665 {
1666         char buf[100];
1667         char *ptr = buf;
1668         if (mo_graph->checkForCycles())
1669                 ptr += sprintf(ptr, "[mo cycle]");
1670         if (priv->failed_promise)
1671                 ptr += sprintf(ptr, "[failed promise]");
1672         if (priv->too_many_reads)
1673                 ptr += sprintf(ptr, "[too many reads]");
1674         if (priv->no_valid_reads)
1675                 ptr += sprintf(ptr, "[no valid reads-from]");
1676         if (priv->bad_synchronization)
1677                 ptr += sprintf(ptr, "[bad sw ordering]");
1678         if (promises_expired())
1679                 ptr += sprintf(ptr, "[promise expired]");
1680         if (promises->size() != 0)
1681                 ptr += sprintf(ptr, "[unresolved promise]");
1682         if (ptr != buf)
1683                 model_print("%s: %s\n", prefix ? prefix : "Infeasible", buf);
1684 }
1685
1686 /**
1687  * Returns whether the current completed trace is feasible, except for pending
1688  * release sequences.
1689  */
1690 bool ModelChecker::is_feasible_prefix_ignore_relseq() const
1691 {
1692         return !is_infeasible() && promises->size() == 0;
1693 }
1694
1695 /**
1696  * Check if the current partial trace is infeasible. Does not check any
1697  * end-of-execution flags, which might rule out the execution. Thus, this is
1698  * useful only for ruling an execution as infeasible.
1699  * @return whether the current partial trace is infeasible.
1700  */
1701 bool ModelChecker::is_infeasible() const
1702 {
1703         return mo_graph->checkForCycles() ||
1704                 priv->no_valid_reads ||
1705                 priv->failed_promise ||
1706                 priv->too_many_reads ||
1707                 priv->bad_synchronization ||
1708                 promises_expired();
1709 }
1710
1711 /** Close out a RMWR by converting previous RMWR into a RMW or READ. */
1712 ModelAction * ModelChecker::process_rmw(ModelAction *act) {
1713         ModelAction *lastread = get_last_action(act->get_tid());
1714         lastread->process_rmw(act);
1715         if (act->is_rmw()) {
1716                 if (lastread->get_reads_from())
1717                         mo_graph->addRMWEdge(lastread->get_reads_from(), lastread);
1718                 else
1719                         mo_graph->addRMWEdge(lastread->get_reads_from_promise(), lastread);
1720                 mo_graph->commitChanges();
1721         }
1722         return lastread;
1723 }
1724
1725 /**
1726  * A helper function for ModelChecker::check_recency, to check if the current
1727  * thread is able to read from a different write/promise for 'params.maxreads'
1728  * number of steps and if that write/promise should become visible (i.e., is
1729  * ordered later in the modification order). This helps model memory liveness.
1730  *
1731  * @param curr The current action. Must be a read.
1732  * @param rf The write/promise from which we plan to read
1733  * @param other_rf The write/promise from which we may read
1734  * @return True if we were able to read from other_rf for params.maxreads steps
1735  */
1736 template <typename T, typename U>
1737 bool ModelChecker::should_read_instead(const ModelAction *curr, const T *rf, const U *other_rf) const
1738 {
1739         /* Need a different write/promise */
1740         if (other_rf->equals(rf))
1741                 return false;
1742
1743         /* Only look for "newer" writes/promises */
1744         if (!mo_graph->checkReachable(rf, other_rf))
1745                 return false;
1746
1747         SnapVector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1748         action_list_t *list = &(*thrd_lists)[id_to_int(curr->get_tid())];
1749         action_list_t::reverse_iterator rit = list->rbegin();
1750         ASSERT((*rit) == curr);
1751         /* Skip past curr */
1752         rit++;
1753
1754         /* Does this write/promise work for everyone? */
1755         for (int i = 0; i < params.maxreads; i++, rit++) {
1756                 ModelAction *act = *rit;
1757                 if (!act->may_read_from(other_rf))
1758                         return false;
1759         }
1760         return true;
1761 }
1762
1763 /**
1764  * Checks whether a thread has read from the same write or Promise for too many
1765  * times without seeing the effects of a later write/Promise.
1766  *
1767  * Basic idea:
1768  * 1) there must a different write/promise that we could read from,
1769  * 2) we must have read from the same write/promise in excess of maxreads times,
1770  * 3) that other write/promise must have been in the reads_from set for maxreads times, and
1771  * 4) that other write/promise must be mod-ordered after the write/promise we are reading.
1772  *
1773  * If so, we decide that the execution is no longer feasible.
1774  *
1775  * @param curr The current action. Must be a read.
1776  * @param rf The ModelAction/Promise from which we might read.
1777  * @return True if the read should succeed; false otherwise
1778  */
1779 template <typename T>
1780 bool ModelChecker::check_recency(ModelAction *curr, const T *rf) const
1781 {
1782         if (!params.maxreads)
1783                 return true;
1784
1785         //NOTE: Next check is just optimization, not really necessary....
1786         if (curr->get_node()->get_read_from_past_size() +
1787                         curr->get_node()->get_read_from_promise_size() <= 1)
1788                 return true;
1789
1790         SnapVector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1791         int tid = id_to_int(curr->get_tid());
1792         ASSERT(tid < (int)thrd_lists->size());
1793         action_list_t *list = &(*thrd_lists)[tid];
1794         action_list_t::reverse_iterator rit = list->rbegin();
1795         ASSERT((*rit) == curr);
1796         /* Skip past curr */
1797         rit++;
1798
1799         action_list_t::reverse_iterator ritcopy = rit;
1800         /* See if we have enough reads from the same value */
1801         for (int count = 0; count < params.maxreads; ritcopy++, count++) {
1802                 if (ritcopy == list->rend())
1803                         return true;
1804                 ModelAction *act = *ritcopy;
1805                 if (!act->is_read())
1806                         return true;
1807                 if (act->get_reads_from_promise() && !act->get_reads_from_promise()->equals(rf))
1808                         return true;
1809                 if (act->get_reads_from() && !act->get_reads_from()->equals(rf))
1810                         return true;
1811                 if (act->get_node()->get_read_from_past_size() +
1812                                 act->get_node()->get_read_from_promise_size() <= 1)
1813                         return true;
1814         }
1815         for (int i = 0; i < curr->get_node()->get_read_from_past_size(); i++) {
1816                 const ModelAction *write = curr->get_node()->get_read_from_past(i);
1817                 if (should_read_instead(curr, rf, write))
1818                         return false; /* liveness failure */
1819         }
1820         for (int i = 0; i < curr->get_node()->get_read_from_promise_size(); i++) {
1821                 const Promise *promise = curr->get_node()->get_read_from_promise(i);
1822                 if (should_read_instead(curr, rf, promise))
1823                         return false; /* liveness failure */
1824         }
1825         return true;
1826 }
1827
1828 /**
1829  * Updates the mo_graph with the constraints imposed from the current
1830  * read.
1831  *
1832  * Basic idea is the following: Go through each other thread and find
1833  * the last action that happened before our read.  Two cases:
1834  *
1835  * (1) The action is a write => that write must either occur before
1836  * the write we read from or be the write we read from.
1837  *
1838  * (2) The action is a read => the write that that action read from
1839  * must occur before the write we read from or be the same write.
1840  *
1841  * @param curr The current action. Must be a read.
1842  * @param rf The ModelAction or Promise that curr reads from. Must be a write.
1843  * @return True if modification order edges were added; false otherwise
1844  */
1845 template <typename rf_type>
1846 bool ModelChecker::r_modification_order(ModelAction *curr, const rf_type *rf)
1847 {
1848         SnapVector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1849         unsigned int i;
1850         bool added = false;
1851         ASSERT(curr->is_read());
1852
1853         /* Last SC fence in the current thread */
1854         ModelAction *last_sc_fence_local = get_last_seq_cst_fence(curr->get_tid(), NULL);
1855         ModelAction *last_sc_write = NULL;
1856         if (curr->is_seqcst())
1857                 last_sc_write = get_last_seq_cst_write(curr);
1858
1859         /* Iterate over all threads */
1860         for (i = 0; i < thrd_lists->size(); i++) {
1861                 /* Last SC fence in thread i */
1862                 ModelAction *last_sc_fence_thread_local = NULL;
1863                 if (int_to_id((int)i) != curr->get_tid())
1864                         last_sc_fence_thread_local = get_last_seq_cst_fence(int_to_id(i), NULL);
1865
1866                 /* Last SC fence in thread i, before last SC fence in current thread */
1867                 ModelAction *last_sc_fence_thread_before = NULL;
1868                 if (last_sc_fence_local)
1869                         last_sc_fence_thread_before = get_last_seq_cst_fence(int_to_id(i), last_sc_fence_local);
1870
1871                 /* Iterate over actions in thread, starting from most recent */
1872                 action_list_t *list = &(*thrd_lists)[i];
1873                 action_list_t::reverse_iterator rit;
1874                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1875                         ModelAction *act = *rit;
1876
1877                         /* Skip curr */
1878                         if (act == curr)
1879                                 continue;
1880                         /* Don't want to add reflexive edges on 'rf' */
1881                         if (act->equals(rf)) {
1882                                 if (act->happens_before(curr))
1883                                         break;
1884                                 else
1885                                         continue;
1886                         }
1887
1888                         if (act->is_write()) {
1889                                 /* C++, Section 29.3 statement 5 */
1890                                 if (curr->is_seqcst() && last_sc_fence_thread_local &&
1891                                                 *act < *last_sc_fence_thread_local) {
1892                                         added = mo_graph->addEdge(act, rf) || added;
1893                                         break;
1894                                 }
1895                                 /* C++, Section 29.3 statement 4 */
1896                                 else if (act->is_seqcst() && last_sc_fence_local &&
1897                                                 *act < *last_sc_fence_local) {
1898                                         added = mo_graph->addEdge(act, rf) || added;
1899                                         break;
1900                                 }
1901                                 /* C++, Section 29.3 statement 6 */
1902                                 else if (last_sc_fence_thread_before &&
1903                                                 *act < *last_sc_fence_thread_before) {
1904                                         added = mo_graph->addEdge(act, rf) || added;
1905                                         break;
1906                                 }
1907                         }
1908
1909                         /* C++, Section 29.3 statement 3 (second subpoint) */
1910                         if (curr->is_seqcst() && last_sc_write && act == last_sc_write) {
1911                                 added = mo_graph->addEdge(act, rf) || added;
1912                                 break;
1913                         }
1914
1915                         /*
1916                          * Include at most one act per-thread that "happens
1917                          * before" curr
1918                          */
1919                         if (act->happens_before(curr)) {
1920                                 if (act->is_write()) {
1921                                         added = mo_graph->addEdge(act, rf) || added;
1922                                 } else {
1923                                         const ModelAction *prevrf = act->get_reads_from();
1924                                         const Promise *prevrf_promise = act->get_reads_from_promise();
1925                                         if (prevrf) {
1926                                                 if (!prevrf->equals(rf))
1927                                                         added = mo_graph->addEdge(prevrf, rf) || added;
1928                                         } else if (!prevrf_promise->equals(rf)) {
1929                                                 added = mo_graph->addEdge(prevrf_promise, rf) || added;
1930                                         }
1931                                 }
1932                                 break;
1933                         }
1934                 }
1935         }
1936
1937         /*
1938          * All compatible, thread-exclusive promises must be ordered after any
1939          * concrete loads from the same thread
1940          */
1941         for (unsigned int i = 0; i < promises->size(); i++)
1942                 if ((*promises)[i]->is_compatible_exclusive(curr))
1943                         added = mo_graph->addEdge(rf, (*promises)[i]) || added;
1944
1945         return added;
1946 }
1947
1948 /**
1949  * Updates the mo_graph with the constraints imposed from the current write.
1950  *
1951  * Basic idea is the following: Go through each other thread and find
1952  * the lastest action that happened before our write.  Two cases:
1953  *
1954  * (1) The action is a write => that write must occur before
1955  * the current write
1956  *
1957  * (2) The action is a read => the write that that action read from
1958  * must occur before the current write.
1959  *
1960  * This method also handles two other issues:
1961  *
1962  * (I) Sequential Consistency: Making sure that if the current write is
1963  * seq_cst, that it occurs after the previous seq_cst write.
1964  *
1965  * (II) Sending the write back to non-synchronizing reads.
1966  *
1967  * @param curr The current action. Must be a write.
1968  * @param send_fv A vector for stashing reads to which we may pass our future
1969  * value. If NULL, then don't record any future values.
1970  * @return True if modification order edges were added; false otherwise
1971  */
1972 bool ModelChecker::w_modification_order(ModelAction *curr, ModelVector<ModelAction *> *send_fv)
1973 {
1974         SnapVector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1975         unsigned int i;
1976         bool added = false;
1977         ASSERT(curr->is_write());
1978
1979         if (curr->is_seqcst()) {
1980                 /* We have to at least see the last sequentially consistent write,
1981                          so we are initialized. */
1982                 ModelAction *last_seq_cst = get_last_seq_cst_write(curr);
1983                 if (last_seq_cst != NULL) {
1984                         added = mo_graph->addEdge(last_seq_cst, curr) || added;
1985                 }
1986         }
1987
1988         /* Last SC fence in the current thread */
1989         ModelAction *last_sc_fence_local = get_last_seq_cst_fence(curr->get_tid(), NULL);
1990
1991         /* Iterate over all threads */
1992         for (i = 0; i < thrd_lists->size(); i++) {
1993                 /* Last SC fence in thread i, before last SC fence in current thread */
1994                 ModelAction *last_sc_fence_thread_before = NULL;
1995                 if (last_sc_fence_local && int_to_id((int)i) != curr->get_tid())
1996                         last_sc_fence_thread_before = get_last_seq_cst_fence(int_to_id(i), last_sc_fence_local);
1997
1998                 /* Iterate over actions in thread, starting from most recent */
1999                 action_list_t *list = &(*thrd_lists)[i];
2000                 action_list_t::reverse_iterator rit;
2001                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
2002                         ModelAction *act = *rit;
2003                         if (act == curr) {
2004                                 /*
2005                                  * 1) If RMW and it actually read from something, then we
2006                                  * already have all relevant edges, so just skip to next
2007                                  * thread.
2008                                  *
2009                                  * 2) If RMW and it didn't read from anything, we should
2010                                  * whatever edge we can get to speed up convergence.
2011                                  *
2012                                  * 3) If normal write, we need to look at earlier actions, so
2013                                  * continue processing list.
2014                                  */
2015                                 if (curr->is_rmw()) {
2016                                         if (curr->get_reads_from() != NULL)
2017                                                 break;
2018                                         else
2019                                                 continue;
2020                                 } else
2021                                         continue;
2022                         }
2023
2024                         /* C++, Section 29.3 statement 7 */
2025                         if (last_sc_fence_thread_before && act->is_write() &&
2026                                         *act < *last_sc_fence_thread_before) {
2027                                 added = mo_graph->addEdge(act, curr) || added;
2028                                 break;
2029                         }
2030
2031                         /*
2032                          * Include at most one act per-thread that "happens
2033                          * before" curr
2034                          */
2035                         if (act->happens_before(curr)) {
2036                                 /*
2037                                  * Note: if act is RMW, just add edge:
2038                                  *   act --mo--> curr
2039                                  * The following edge should be handled elsewhere:
2040                                  *   readfrom(act) --mo--> act
2041                                  */
2042                                 if (act->is_write())
2043                                         added = mo_graph->addEdge(act, curr) || added;
2044                                 else if (act->is_read()) {
2045                                         //if previous read accessed a null, just keep going
2046                                         if (act->get_reads_from() == NULL)
2047                                                 continue;
2048                                         added = mo_graph->addEdge(act->get_reads_from(), curr) || added;
2049                                 }
2050                                 break;
2051                         } else if (act->is_read() && !act->could_synchronize_with(curr) &&
2052                                                      !act->same_thread(curr)) {
2053                                 /* We have an action that:
2054                                    (1) did not happen before us
2055                                    (2) is a read and we are a write
2056                                    (3) cannot synchronize with us
2057                                    (4) is in a different thread
2058                                    =>
2059                                    that read could potentially read from our write.  Note that
2060                                    these checks are overly conservative at this point, we'll
2061                                    do more checks before actually removing the
2062                                    pendingfuturevalue.
2063
2064                                  */
2065                                 if (send_fv && thin_air_constraint_may_allow(curr, act)) {
2066                                         if (!is_infeasible())
2067                                                 send_fv->push_back(act);
2068                                         else if (curr->is_rmw() && act->is_rmw() && curr->get_reads_from() && curr->get_reads_from() == act->get_reads_from())
2069                                                 add_future_value(curr, act);
2070                                 }
2071                         }
2072                 }
2073         }
2074
2075         /*
2076          * All compatible, thread-exclusive promises must be ordered after any
2077          * concrete stores to the same thread, or else they can be merged with
2078          * this store later
2079          */
2080         for (unsigned int i = 0; i < promises->size(); i++)
2081                 if ((*promises)[i]->is_compatible_exclusive(curr))
2082                         added = mo_graph->addEdge(curr, (*promises)[i]) || added;
2083
2084         return added;
2085 }
2086
2087 /** Arbitrary reads from the future are not allowed.  Section 29.3
2088  * part 9 places some constraints.  This method checks one result of constraint
2089  * constraint.  Others require compiler support. */
2090 bool ModelChecker::thin_air_constraint_may_allow(const ModelAction *writer, const ModelAction *reader) const
2091 {
2092         if (!writer->is_rmw())
2093                 return true;
2094
2095         if (!reader->is_rmw())
2096                 return true;
2097
2098         for (const ModelAction *search = writer->get_reads_from(); search != NULL; search = search->get_reads_from()) {
2099                 if (search == reader)
2100                         return false;
2101                 if (search->get_tid() == reader->get_tid() &&
2102                                 search->happens_before(reader))
2103                         break;
2104         }
2105
2106         return true;
2107 }
2108
2109 /**
2110  * Arbitrary reads from the future are not allowed. Section 29.3 part 9 places
2111  * some constraints. This method checks one the following constraint (others
2112  * require compiler support):
2113  *
2114  *   If X --hb-> Y --mo-> Z, then X should not read from Z.
2115  */
2116 bool ModelChecker::mo_may_allow(const ModelAction *writer, const ModelAction *reader)
2117 {
2118         SnapVector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, reader->get_location());
2119         unsigned int i;
2120         /* Iterate over all threads */
2121         for (i = 0; i < thrd_lists->size(); i++) {
2122                 const ModelAction *write_after_read = NULL;
2123
2124                 /* Iterate over actions in thread, starting from most recent */
2125                 action_list_t *list = &(*thrd_lists)[i];
2126                 action_list_t::reverse_iterator rit;
2127                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
2128                         ModelAction *act = *rit;
2129
2130                         /* Don't disallow due to act == reader */
2131                         if (!reader->happens_before(act) || reader == act)
2132                                 break;
2133                         else if (act->is_write())
2134                                 write_after_read = act;
2135                         else if (act->is_read() && act->get_reads_from() != NULL)
2136                                 write_after_read = act->get_reads_from();
2137                 }
2138
2139                 if (write_after_read && write_after_read != writer && mo_graph->checkReachable(write_after_read, writer))
2140                         return false;
2141         }
2142         return true;
2143 }
2144
2145 /**
2146  * Finds the head(s) of the release sequence(s) containing a given ModelAction.
2147  * The ModelAction under consideration is expected to be taking part in
2148  * release/acquire synchronization as an object of the "reads from" relation.
2149  * Note that this can only provide release sequence support for RMW chains
2150  * which do not read from the future, as those actions cannot be traced until
2151  * their "promise" is fulfilled. Similarly, we may not even establish the
2152  * presence of a release sequence with certainty, as some modification order
2153  * constraints may be decided further in the future. Thus, this function
2154  * "returns" two pieces of data: a pass-by-reference vector of @a release_heads
2155  * and a boolean representing certainty.
2156  *
2157  * @param rf The action that might be part of a release sequence. Must be a
2158  * write.
2159  * @param release_heads A pass-by-reference style return parameter. After
2160  * execution of this function, release_heads will contain the heads of all the
2161  * relevant release sequences, if any exists with certainty
2162  * @param pending A pass-by-reference style return parameter which is only used
2163  * when returning false (i.e., uncertain). Returns most information regarding
2164  * an uncertain release sequence, including any write operations that might
2165  * break the sequence.
2166  * @return true, if the ModelChecker is certain that release_heads is complete;
2167  * false otherwise
2168  */
2169 bool ModelChecker::release_seq_heads(const ModelAction *rf,
2170                 rel_heads_list_t *release_heads,
2171                 struct release_seq *pending) const
2172 {
2173         /* Only check for release sequences if there are no cycles */
2174         if (mo_graph->checkForCycles())
2175                 return false;
2176
2177         for ( ; rf != NULL; rf = rf->get_reads_from()) {
2178                 ASSERT(rf->is_write());
2179
2180                 if (rf->is_release())
2181                         release_heads->push_back(rf);
2182                 else if (rf->get_last_fence_release())
2183                         release_heads->push_back(rf->get_last_fence_release());
2184                 if (!rf->is_rmw())
2185                         break; /* End of RMW chain */
2186
2187                 /** @todo Need to be smarter here...  In the linux lock
2188                  * example, this will run to the beginning of the program for
2189                  * every acquire. */
2190                 /** @todo The way to be smarter here is to keep going until 1
2191                  * thread has a release preceded by an acquire and you've seen
2192                  *       both. */
2193
2194                 /* acq_rel RMW is a sufficient stopping condition */
2195                 if (rf->is_acquire() && rf->is_release())
2196                         return true; /* complete */
2197         };
2198         if (!rf) {
2199                 /* read from future: need to settle this later */
2200                 pending->rf = NULL;
2201                 return false; /* incomplete */
2202         }
2203
2204         if (rf->is_release())
2205                 return true; /* complete */
2206
2207         /* else relaxed write
2208          * - check for fence-release in the same thread (29.8, stmt. 3)
2209          * - check modification order for contiguous subsequence
2210          *   -> rf must be same thread as release */
2211
2212         const ModelAction *fence_release = rf->get_last_fence_release();
2213         /* Synchronize with a fence-release unconditionally; we don't need to
2214          * find any more "contiguous subsequence..." for it */
2215         if (fence_release)
2216                 release_heads->push_back(fence_release);
2217
2218         int tid = id_to_int(rf->get_tid());
2219         SnapVector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, rf->get_location());
2220         action_list_t *list = &(*thrd_lists)[tid];
2221         action_list_t::const_reverse_iterator rit;
2222
2223         /* Find rf in the thread list */
2224         rit = std::find(list->rbegin(), list->rend(), rf);
2225         ASSERT(rit != list->rend());
2226
2227         /* Find the last {write,fence}-release */
2228         for (; rit != list->rend(); rit++) {
2229                 if (fence_release && *(*rit) < *fence_release)
2230                         break;
2231                 if ((*rit)->is_release())
2232                         break;
2233         }
2234         if (rit == list->rend()) {
2235                 /* No write-release in this thread */
2236                 return true; /* complete */
2237         } else if (fence_release && *(*rit) < *fence_release) {
2238                 /* The fence-release is more recent (and so, "stronger") than
2239                  * the most recent write-release */
2240                 return true; /* complete */
2241         } /* else, need to establish contiguous release sequence */
2242         ModelAction *release = *rit;
2243
2244         ASSERT(rf->same_thread(release));
2245
2246         pending->writes.clear();
2247
2248         bool certain = true;
2249         for (unsigned int i = 0; i < thrd_lists->size(); i++) {
2250                 if (id_to_int(rf->get_tid()) == (int)i)
2251                         continue;
2252                 list = &(*thrd_lists)[i];
2253
2254                 /* Can we ensure no future writes from this thread may break
2255                  * the release seq? */
2256                 bool future_ordered = false;
2257
2258                 ModelAction *last = get_last_action(int_to_id(i));
2259                 Thread *th = get_thread(int_to_id(i));
2260                 if ((last && rf->happens_before(last)) ||
2261                                 !is_enabled(th) ||
2262                                 th->is_complete())
2263                         future_ordered = true;
2264
2265                 ASSERT(!th->is_model_thread() || future_ordered);
2266
2267                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
2268                         const ModelAction *act = *rit;
2269                         /* Reach synchronization -> this thread is complete */
2270                         if (act->happens_before(release))
2271                                 break;
2272                         if (rf->happens_before(act)) {
2273                                 future_ordered = true;
2274                                 continue;
2275                         }
2276
2277                         /* Only non-RMW writes can break release sequences */
2278                         if (!act->is_write() || act->is_rmw())
2279                                 continue;
2280
2281                         /* Check modification order */
2282                         if (mo_graph->checkReachable(rf, act)) {
2283                                 /* rf --mo--> act */
2284                                 future_ordered = true;
2285                                 continue;
2286                         }
2287                         if (mo_graph->checkReachable(act, release))
2288                                 /* act --mo--> release */
2289                                 break;
2290                         if (mo_graph->checkReachable(release, act) &&
2291                                       mo_graph->checkReachable(act, rf)) {
2292                                 /* release --mo-> act --mo--> rf */
2293                                 return true; /* complete */
2294                         }
2295                         /* act may break release sequence */
2296                         pending->writes.push_back(act);
2297                         certain = false;
2298                 }
2299                 if (!future_ordered)
2300                         certain = false; /* This thread is uncertain */
2301         }
2302
2303         if (certain) {
2304                 release_heads->push_back(release);
2305                 pending->writes.clear();
2306         } else {
2307                 pending->release = release;
2308                 pending->rf = rf;
2309         }
2310         return certain;
2311 }
2312
2313 /**
2314  * An interface for getting the release sequence head(s) with which a
2315  * given ModelAction must synchronize. This function only returns a non-empty
2316  * result when it can locate a release sequence head with certainty. Otherwise,
2317  * it may mark the internal state of the ModelChecker so that it will handle
2318  * the release sequence at a later time, causing @a acquire to update its
2319  * synchronization at some later point in execution.
2320  *
2321  * @param acquire The 'acquire' action that may synchronize with a release
2322  * sequence
2323  * @param read The read action that may read from a release sequence; this may
2324  * be the same as acquire, or else an earlier action in the same thread (i.e.,
2325  * when 'acquire' is a fence-acquire)
2326  * @param release_heads A pass-by-reference return parameter. Will be filled
2327  * with the head(s) of the release sequence(s), if they exists with certainty.
2328  * @see ModelChecker::release_seq_heads
2329  */
2330 void ModelChecker::get_release_seq_heads(ModelAction *acquire,
2331                 ModelAction *read, rel_heads_list_t *release_heads)
2332 {
2333         const ModelAction *rf = read->get_reads_from();
2334         struct release_seq *sequence = (struct release_seq *)snapshot_calloc(1, sizeof(struct release_seq));
2335         sequence->acquire = acquire;
2336         sequence->read = read;
2337
2338         if (!release_seq_heads(rf, release_heads, sequence)) {
2339                 /* add act to 'lazy checking' list */
2340                 pending_rel_seqs->push_back(sequence);
2341         } else {
2342                 snapshot_free(sequence);
2343         }
2344 }
2345
2346 /**
2347  * Attempt to resolve all stashed operations that might synchronize with a
2348  * release sequence for a given location. This implements the "lazy" portion of
2349  * determining whether or not a release sequence was contiguous, since not all
2350  * modification order information is present at the time an action occurs.
2351  *
2352  * @param location The location/object that should be checked for release
2353  * sequence resolutions. A NULL value means to check all locations.
2354  * @param work_queue The work queue to which to add work items as they are
2355  * generated
2356  * @return True if any updates occurred (new synchronization, new mo_graph
2357  * edges)
2358  */
2359 bool ModelChecker::resolve_release_sequences(void *location, work_queue_t *work_queue)
2360 {
2361         bool updated = false;
2362         SnapVector<struct release_seq *>::iterator it = pending_rel_seqs->begin();
2363         while (it != pending_rel_seqs->end()) {
2364                 struct release_seq *pending = *it;
2365                 ModelAction *acquire = pending->acquire;
2366                 const ModelAction *read = pending->read;
2367
2368                 /* Only resolve sequences on the given location, if provided */
2369                 if (location && read->get_location() != location) {
2370                         it++;
2371                         continue;
2372                 }
2373
2374                 const ModelAction *rf = read->get_reads_from();
2375                 rel_heads_list_t release_heads;
2376                 bool complete;
2377                 complete = release_seq_heads(rf, &release_heads, pending);
2378                 for (unsigned int i = 0; i < release_heads.size(); i++) {
2379                         if (!acquire->has_synchronized_with(release_heads[i])) {
2380                                 if (acquire->synchronize_with(release_heads[i]))
2381                                         updated = true;
2382                                 else
2383                                         set_bad_synchronization();
2384                         }
2385                 }
2386
2387                 if (updated) {
2388                         /* Re-check all pending release sequences */
2389                         work_queue->push_back(CheckRelSeqWorkEntry(NULL));
2390                         /* Re-check read-acquire for mo_graph edges */
2391                         if (acquire->is_read())
2392                                 work_queue->push_back(MOEdgeWorkEntry(acquire));
2393
2394                         /* propagate synchronization to later actions */
2395                         action_list_t::reverse_iterator rit = action_trace->rbegin();
2396                         for (; (*rit) != acquire; rit++) {
2397                                 ModelAction *propagate = *rit;
2398                                 if (acquire->happens_before(propagate)) {
2399                                         propagate->synchronize_with(acquire);
2400                                         /* Re-check 'propagate' for mo_graph edges */
2401                                         work_queue->push_back(MOEdgeWorkEntry(propagate));
2402                                 }
2403                         }
2404                 }
2405                 if (complete) {
2406                         it = pending_rel_seqs->erase(it);
2407                         snapshot_free(pending);
2408                 } else {
2409                         it++;
2410                 }
2411         }
2412
2413         // If we resolved promises or data races, see if we have realized a data race.
2414         checkDataRaces();
2415
2416         return updated;
2417 }
2418
2419 /**
2420  * Performs various bookkeeping operations for the current ModelAction. For
2421  * instance, adds action to the per-object, per-thread action vector and to the
2422  * action trace list of all thread actions.
2423  *
2424  * @param act is the ModelAction to add.
2425  */
2426 void ModelChecker::add_action_to_lists(ModelAction *act)
2427 {
2428         int tid = id_to_int(act->get_tid());
2429         ModelAction *uninit = NULL;
2430         int uninit_id = -1;
2431         action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
2432         if (list->empty() && act->is_atomic_var()) {
2433                 uninit = get_uninitialized_action(act);
2434                 uninit_id = id_to_int(uninit->get_tid());
2435                 list->push_front(uninit);
2436         }
2437         list->push_back(act);
2438
2439         action_trace->push_back(act);
2440         if (uninit)
2441                 action_trace->push_front(uninit);
2442
2443         SnapVector<action_list_t> *vec = get_safe_ptr_vect_action(obj_thrd_map, act->get_location());
2444         if (tid >= (int)vec->size())
2445                 vec->resize(priv->next_thread_id);
2446         (*vec)[tid].push_back(act);
2447         if (uninit)
2448                 (*vec)[uninit_id].push_front(uninit);
2449
2450         if ((int)thrd_last_action->size() <= tid)
2451                 thrd_last_action->resize(get_num_threads());
2452         (*thrd_last_action)[tid] = act;
2453         if (uninit)
2454                 (*thrd_last_action)[uninit_id] = uninit;
2455
2456         if (act->is_fence() && act->is_release()) {
2457                 if ((int)thrd_last_fence_release->size() <= tid)
2458                         thrd_last_fence_release->resize(get_num_threads());
2459                 (*thrd_last_fence_release)[tid] = act;
2460         }
2461
2462         if (act->is_wait()) {
2463                 void *mutex_loc = (void *) act->get_value();
2464                 get_safe_ptr_action(obj_map, mutex_loc)->push_back(act);
2465
2466                 SnapVector<action_list_t> *vec = get_safe_ptr_vect_action(obj_thrd_map, mutex_loc);
2467                 if (tid >= (int)vec->size())
2468                         vec->resize(priv->next_thread_id);
2469                 (*vec)[tid].push_back(act);
2470         }
2471 }
2472
2473 /**
2474  * @brief Get the last action performed by a particular Thread
2475  * @param tid The thread ID of the Thread in question
2476  * @return The last action in the thread
2477  */
2478 ModelAction * ModelChecker::get_last_action(thread_id_t tid) const
2479 {
2480         int threadid = id_to_int(tid);
2481         if (threadid < (int)thrd_last_action->size())
2482                 return (*thrd_last_action)[id_to_int(tid)];
2483         else
2484                 return NULL;
2485 }
2486
2487 /**
2488  * @brief Get the last fence release performed by a particular Thread
2489  * @param tid The thread ID of the Thread in question
2490  * @return The last fence release in the thread, if one exists; NULL otherwise
2491  */
2492 ModelAction * ModelChecker::get_last_fence_release(thread_id_t tid) const
2493 {
2494         int threadid = id_to_int(tid);
2495         if (threadid < (int)thrd_last_fence_release->size())
2496                 return (*thrd_last_fence_release)[id_to_int(tid)];
2497         else
2498                 return NULL;
2499 }
2500
2501 /**
2502  * Gets the last memory_order_seq_cst write (in the total global sequence)
2503  * performed on a particular object (i.e., memory location), not including the
2504  * current action.
2505  * @param curr The current ModelAction; also denotes the object location to
2506  * check
2507  * @return The last seq_cst write
2508  */
2509 ModelAction * ModelChecker::get_last_seq_cst_write(ModelAction *curr) const
2510 {
2511         void *location = curr->get_location();
2512         action_list_t *list = get_safe_ptr_action(obj_map, location);
2513         /* Find: max({i in dom(S) | seq_cst(t_i) && isWrite(t_i) && samevar(t_i, t)}) */
2514         action_list_t::reverse_iterator rit;
2515         for (rit = list->rbegin(); (*rit) != curr; rit++)
2516                 ;
2517         rit++; /* Skip past curr */
2518         for ( ; rit != list->rend(); rit++)
2519                 if ((*rit)->is_write() && (*rit)->is_seqcst())
2520                         return *rit;
2521         return NULL;
2522 }
2523
2524 /**
2525  * Gets the last memory_order_seq_cst fence (in the total global sequence)
2526  * performed in a particular thread, prior to a particular fence.
2527  * @param tid The ID of the thread to check
2528  * @param before_fence The fence from which to begin the search; if NULL, then
2529  * search for the most recent fence in the thread.
2530  * @return The last prior seq_cst fence in the thread, if exists; otherwise, NULL
2531  */
2532 ModelAction * ModelChecker::get_last_seq_cst_fence(thread_id_t tid, const ModelAction *before_fence) const
2533 {
2534         /* All fences should have NULL location */
2535         action_list_t *list = get_safe_ptr_action(obj_map, NULL);
2536         action_list_t::reverse_iterator rit = list->rbegin();
2537
2538         if (before_fence) {
2539                 for (; rit != list->rend(); rit++)
2540                         if (*rit == before_fence)
2541                                 break;
2542
2543                 ASSERT(*rit == before_fence);
2544                 rit++;
2545         }
2546
2547         for (; rit != list->rend(); rit++)
2548                 if ((*rit)->is_fence() && (tid == (*rit)->get_tid()) && (*rit)->is_seqcst())
2549                         return *rit;
2550         return NULL;
2551 }
2552
2553 /**
2554  * Gets the last unlock operation performed on a particular mutex (i.e., memory
2555  * location). This function identifies the mutex according to the current
2556  * action, which is presumed to perform on the same mutex.
2557  * @param curr The current ModelAction; also denotes the object location to
2558  * check
2559  * @return The last unlock operation
2560  */
2561 ModelAction * ModelChecker::get_last_unlock(ModelAction *curr) const
2562 {
2563         void *location = curr->get_location();
2564         action_list_t *list = get_safe_ptr_action(obj_map, location);
2565         /* Find: max({i in dom(S) | isUnlock(t_i) && samevar(t_i, t)}) */
2566         action_list_t::reverse_iterator rit;
2567         for (rit = list->rbegin(); rit != list->rend(); rit++)
2568                 if ((*rit)->is_unlock() || (*rit)->is_wait())
2569                         return *rit;
2570         return NULL;
2571 }
2572
2573 ModelAction * ModelChecker::get_parent_action(thread_id_t tid) const
2574 {
2575         ModelAction *parent = get_last_action(tid);
2576         if (!parent)
2577                 parent = get_thread(tid)->get_creation();
2578         return parent;
2579 }
2580
2581 /**
2582  * Returns the clock vector for a given thread.
2583  * @param tid The thread whose clock vector we want
2584  * @return Desired clock vector
2585  */
2586 ClockVector * ModelChecker::get_cv(thread_id_t tid) const
2587 {
2588         return get_parent_action(tid)->get_cv();
2589 }
2590
2591 /**
2592  * @brief Find the promise (if any) to resolve for the current action and
2593  * remove it from the pending promise vector
2594  * @param curr The current ModelAction. Should be a write.
2595  * @return The Promise to resolve, if any; otherwise NULL
2596  */
2597 Promise * ModelChecker::pop_promise_to_resolve(const ModelAction *curr)
2598 {
2599         for (unsigned int i = 0; i < promises->size(); i++)
2600                 if (curr->get_node()->get_promise(i)) {
2601                         Promise *ret = (*promises)[i];
2602                         promises->erase(promises->begin() + i);
2603                         return ret;
2604                 }
2605         return NULL;
2606 }
2607
2608 /**
2609  * Resolve a Promise with a current write.
2610  * @param write The ModelAction that is fulfilling Promises
2611  * @param promise The Promise to resolve
2612  * @return True if the Promise was successfully resolved; false otherwise
2613  */
2614 bool ModelChecker::resolve_promise(ModelAction *write, Promise *promise)
2615 {
2616         ModelVector<ModelAction *> actions_to_check;
2617
2618         for (unsigned int i = 0; i < promise->get_num_readers(); i++) {
2619                 ModelAction *read = promise->get_reader(i);
2620                 read_from(read, write);
2621                 actions_to_check.push_back(read);
2622         }
2623         /* Make sure the promise's value matches the write's value */
2624         ASSERT(promise->is_compatible(write) && promise->same_value(write));
2625         if (!mo_graph->resolvePromise(promise, write))
2626                 priv->failed_promise = true;
2627
2628         /**
2629          * @todo  It is possible to end up in an inconsistent state, where a
2630          * "resolved" promise may still be referenced if
2631          * CycleGraph::resolvePromise() failed, so don't delete 'promise'.
2632          *
2633          * Note that the inconsistency only matters when dumping mo_graph to
2634          * file.
2635          *
2636          * delete promise;
2637          */
2638
2639         //Check whether reading these writes has made threads unable to
2640         //resolve promises
2641         for (unsigned int i = 0; i < actions_to_check.size(); i++) {
2642                 ModelAction *read = actions_to_check[i];
2643                 mo_check_promises(read, true);
2644         }
2645
2646         return true;
2647 }
2648
2649 /**
2650  * Compute the set of promises that could potentially be satisfied by this
2651  * action. Note that the set computation actually appears in the Node, not in
2652  * ModelChecker.
2653  * @param curr The ModelAction that may satisfy promises
2654  */
2655 void ModelChecker::compute_promises(ModelAction *curr)
2656 {
2657         for (unsigned int i = 0; i < promises->size(); i++) {
2658                 Promise *promise = (*promises)[i];
2659                 if (!promise->is_compatible(curr) || !promise->same_value(curr))
2660                         continue;
2661
2662                 bool satisfy = true;
2663                 for (unsigned int j = 0; j < promise->get_num_readers(); j++) {
2664                         const ModelAction *act = promise->get_reader(j);
2665                         if (act->happens_before(curr) ||
2666                                         act->could_synchronize_with(curr)) {
2667                                 satisfy = false;
2668                                 break;
2669                         }
2670                 }
2671                 if (satisfy)
2672                         curr->get_node()->set_promise(i);
2673         }
2674 }
2675
2676 /** Checks promises in response to change in ClockVector Threads. */
2677 void ModelChecker::check_promises(thread_id_t tid, ClockVector *old_cv, ClockVector *merge_cv)
2678 {
2679         for (unsigned int i = 0; i < promises->size(); i++) {
2680                 Promise *promise = (*promises)[i];
2681                 if (!promise->thread_is_available(tid))
2682                         continue;
2683                 for (unsigned int j = 0; j < promise->get_num_readers(); j++) {
2684                         const ModelAction *act = promise->get_reader(j);
2685                         if ((!old_cv || !old_cv->synchronized_since(act)) &&
2686                                         merge_cv->synchronized_since(act)) {
2687                                 if (promise->eliminate_thread(tid)) {
2688                                         /* Promise has failed */
2689                                         priv->failed_promise = true;
2690                                         return;
2691                                 }
2692                         }
2693                 }
2694         }
2695 }
2696
2697 void ModelChecker::check_promises_thread_disabled()
2698 {
2699         for (unsigned int i = 0; i < promises->size(); i++) {
2700                 Promise *promise = (*promises)[i];
2701                 if (promise->has_failed()) {
2702                         priv->failed_promise = true;
2703                         return;
2704                 }
2705         }
2706 }
2707
2708 /**
2709  * @brief Checks promises in response to addition to modification order for
2710  * threads.
2711  *
2712  * We test whether threads are still available for satisfying promises after an
2713  * addition to our modification order constraints. Those that are unavailable
2714  * are "eliminated". Once all threads are eliminated from satisfying a promise,
2715  * that promise has failed.
2716  *
2717  * @param act The ModelAction which updated the modification order
2718  * @param is_read_check Should be true if act is a read and we must check for
2719  * updates to the store from which it read (there is a distinction here for
2720  * RMW's, which are both a load and a store)
2721  */
2722 void ModelChecker::mo_check_promises(const ModelAction *act, bool is_read_check)
2723 {
2724         const ModelAction *write = is_read_check ? act->get_reads_from() : act;
2725
2726         for (unsigned int i = 0; i < promises->size(); i++) {
2727                 Promise *promise = (*promises)[i];
2728
2729                 // Is this promise on the same location?
2730                 if (!promise->same_location(write))
2731                         continue;
2732
2733                 for (unsigned int j = 0; j < promise->get_num_readers(); j++) {
2734                         const ModelAction *pread = promise->get_reader(j);
2735                         if (!pread->happens_before(act))
2736                                continue;
2737                         if (mo_graph->checkPromise(write, promise)) {
2738                                 priv->failed_promise = true;
2739                                 return;
2740                         }
2741                         break;
2742                 }
2743
2744                 // Don't do any lookups twice for the same thread
2745                 if (!promise->thread_is_available(act->get_tid()))
2746                         continue;
2747
2748                 if (mo_graph->checkReachable(promise, write)) {
2749                         if (mo_graph->checkPromise(write, promise)) {
2750                                 priv->failed_promise = true;
2751                                 return;
2752                         }
2753                 }
2754         }
2755 }
2756
2757 /**
2758  * Compute the set of writes that may break the current pending release
2759  * sequence. This information is extracted from previou release sequence
2760  * calculations.
2761  *
2762  * @param curr The current ModelAction. Must be a release sequence fixup
2763  * action.
2764  */
2765 void ModelChecker::compute_relseq_breakwrites(ModelAction *curr)
2766 {
2767         if (pending_rel_seqs->empty())
2768                 return;
2769
2770         struct release_seq *pending = pending_rel_seqs->back();
2771         for (unsigned int i = 0; i < pending->writes.size(); i++) {
2772                 const ModelAction *write = pending->writes[i];
2773                 curr->get_node()->add_relseq_break(write);
2774         }
2775
2776         /* NULL means don't break the sequence; just synchronize */
2777         curr->get_node()->add_relseq_break(NULL);
2778 }
2779
2780 /**
2781  * Build up an initial set of all past writes that this 'read' action may read
2782  * from, as well as any previously-observed future values that must still be valid.
2783  *
2784  * @param curr is the current ModelAction that we are exploring; it must be a
2785  * 'read' operation.
2786  */
2787 void ModelChecker::build_may_read_from(ModelAction *curr)
2788 {
2789         SnapVector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
2790         unsigned int i;
2791         ASSERT(curr->is_read());
2792
2793         ModelAction *last_sc_write = NULL;
2794
2795         if (curr->is_seqcst())
2796                 last_sc_write = get_last_seq_cst_write(curr);
2797
2798         /* Iterate over all threads */
2799         for (i = 0; i < thrd_lists->size(); i++) {
2800                 /* Iterate over actions in thread, starting from most recent */
2801                 action_list_t *list = &(*thrd_lists)[i];
2802                 action_list_t::reverse_iterator rit;
2803                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
2804                         ModelAction *act = *rit;
2805
2806                         /* Only consider 'write' actions */
2807                         if (!act->is_write() || act == curr)
2808                                 continue;
2809
2810                         /* Don't consider more than one seq_cst write if we are a seq_cst read. */
2811                         bool allow_read = true;
2812
2813                         if (curr->is_seqcst() && (act->is_seqcst() || (last_sc_write != NULL && act->happens_before(last_sc_write))) && act != last_sc_write)
2814                                 allow_read = false;
2815                         else if (curr->get_sleep_flag() && !curr->is_seqcst() && !sleep_can_read_from(curr, act))
2816                                 allow_read = false;
2817
2818                         if (allow_read) {
2819                                 /* Only add feasible reads */
2820                                 mo_graph->startChanges();
2821                                 r_modification_order(curr, act);
2822                                 if (!is_infeasible())
2823                                         curr->get_node()->add_read_from_past(act);
2824                                 mo_graph->rollbackChanges();
2825                         }
2826
2827                         /* Include at most one act per-thread that "happens before" curr */
2828                         if (act->happens_before(curr))
2829                                 break;
2830                 }
2831         }
2832
2833         /* Inherit existing, promised future values */
2834         for (i = 0; i < promises->size(); i++) {
2835                 const Promise *promise = (*promises)[i];
2836                 const ModelAction *promise_read = promise->get_reader(0);
2837                 if (promise_read->same_var(curr)) {
2838                         /* Only add feasible future-values */
2839                         mo_graph->startChanges();
2840                         r_modification_order(curr, promise);
2841                         if (!is_infeasible())
2842                                 curr->get_node()->add_read_from_promise(promise_read);
2843                         mo_graph->rollbackChanges();
2844                 }
2845         }
2846
2847         /* We may find no valid may-read-from only if the execution is doomed */
2848         if (!curr->get_node()->read_from_size()) {
2849                 priv->no_valid_reads = true;
2850                 set_assert();
2851         }
2852
2853         if (DBG_ENABLED()) {
2854                 model_print("Reached read action:\n");
2855                 curr->print();
2856                 model_print("Printing read_from_past\n");
2857                 curr->get_node()->print_read_from_past();
2858                 model_print("End printing read_from_past\n");
2859         }
2860 }
2861
2862 bool ModelChecker::sleep_can_read_from(ModelAction *curr, const ModelAction *write)
2863 {
2864         for ( ; write != NULL; write = write->get_reads_from()) {
2865                 /* UNINIT actions don't have a Node, and they never sleep */
2866                 if (write->is_uninitialized())
2867                         return true;
2868                 Node *prevnode = write->get_node()->get_parent();
2869
2870                 bool thread_sleep = prevnode->enabled_status(curr->get_tid()) == THREAD_SLEEP_SET;
2871                 if (write->is_release() && thread_sleep)
2872                         return true;
2873                 if (!write->is_rmw())
2874                         return false;
2875         }
2876         return true;
2877 }
2878
2879 /**
2880  * @brief Get an action representing an uninitialized atomic
2881  *
2882  * This function may create a new one or try to retrieve one from the NodeStack
2883  *
2884  * @param curr The current action, which prompts the creation of an UNINIT action
2885  * @return A pointer to the UNINIT ModelAction
2886  */
2887 ModelAction * ModelChecker::get_uninitialized_action(const ModelAction *curr) const
2888 {
2889         Node *node = curr->get_node();
2890         ModelAction *act = node->get_uninit_action();
2891         if (!act) {
2892                 act = new ModelAction(ATOMIC_UNINIT, std::memory_order_relaxed, curr->get_location(), model->params.uninitvalue, model_thread);
2893                 node->set_uninit_action(act);
2894         }
2895         act->create_cv(NULL);
2896         return act;
2897 }
2898
2899 static void print_list(action_list_t *list)
2900 {
2901         action_list_t::iterator it;
2902
2903         model_print("---------------------------------------------------------------------\n");
2904
2905         unsigned int hash = 0;
2906
2907         for (it = list->begin(); it != list->end(); it++) {
2908                 const ModelAction *act = *it;
2909                 if (act->get_seq_number() > 0)
2910                         act->print();
2911                 hash = hash^(hash<<3)^((*it)->hash());
2912         }
2913         model_print("HASH %u\n", hash);
2914         model_print("---------------------------------------------------------------------\n");
2915 }
2916
2917 #if SUPPORT_MOD_ORDER_DUMP
2918 void ModelChecker::dumpGraph(char *filename) const
2919 {
2920         char buffer[200];
2921         sprintf(buffer, "%s.dot", filename);
2922         FILE *file = fopen(buffer, "w");
2923         fprintf(file, "digraph %s {\n", filename);
2924         mo_graph->dumpNodes(file);
2925         ModelAction **thread_array = (ModelAction **)model_calloc(1, sizeof(ModelAction *) * get_num_threads());
2926
2927         for (action_list_t::iterator it = action_trace->begin(); it != action_trace->end(); it++) {
2928                 ModelAction *act = *it;
2929                 if (act->is_read()) {
2930                         mo_graph->dot_print_node(file, act);
2931                         if (act->get_reads_from())
2932                                 mo_graph->dot_print_edge(file,
2933                                                 act->get_reads_from(),
2934                                                 act,
2935                                                 "label=\"rf\", color=red, weight=2");
2936                         else
2937                                 mo_graph->dot_print_edge(file,
2938                                                 act->get_reads_from_promise(),
2939                                                 act,
2940                                                 "label=\"rf\", color=red");
2941                 }
2942                 if (thread_array[act->get_tid()]) {
2943                         mo_graph->dot_print_edge(file,
2944                                         thread_array[id_to_int(act->get_tid())],
2945                                         act,
2946                                         "label=\"sb\", color=blue, weight=400");
2947                 }
2948
2949                 thread_array[act->get_tid()] = act;
2950         }
2951         fprintf(file, "}\n");
2952         model_free(thread_array);
2953         fclose(file);
2954 }
2955 #endif
2956
2957 /** @brief Prints an execution trace summary. */
2958 void ModelChecker::print_summary() const
2959 {
2960 #if SUPPORT_MOD_ORDER_DUMP
2961         char buffername[100];
2962         sprintf(buffername, "exec%04u", stats.num_total);
2963         mo_graph->dumpGraphToFile(buffername);
2964         sprintf(buffername, "graph%04u", stats.num_total);
2965         dumpGraph(buffername);
2966 #endif
2967
2968         model_print("Execution %d:", stats.num_total);
2969         if (isfeasibleprefix()) {
2970                 if (scheduler->all_threads_sleeping())
2971                         model_print(" SLEEP-SET REDUNDANT");
2972                 model_print("\n");
2973         } else
2974                 print_infeasibility(" INFEASIBLE");
2975         print_list(action_trace);
2976         model_print("\n");
2977         if (!promises->empty()) {
2978                 model_print("Pending promises:\n");
2979                 for (unsigned int i = 0; i < promises->size(); i++) {
2980                         model_print(" [P%u] ", i);
2981                         (*promises)[i]->print();
2982                 }
2983                 model_print("\n");
2984         }
2985 }
2986
2987 /**
2988  * Add a Thread to the system for the first time. Should only be called once
2989  * per thread.
2990  * @param t The Thread to add
2991  */
2992 void ModelChecker::add_thread(Thread *t)
2993 {
2994         thread_map->put(id_to_int(t->get_id()), t);
2995         scheduler->add_thread(t);
2996 }
2997
2998 /**
2999  * @brief Get a Thread reference by its ID
3000  * @param tid The Thread's ID
3001  * @return A Thread reference
3002  */
3003 Thread * ModelChecker::get_thread(thread_id_t tid) const
3004 {
3005         return thread_map->get(id_to_int(tid));
3006 }
3007
3008 /**
3009  * @brief Get a reference to the Thread in which a ModelAction was executed
3010  * @param act The ModelAction
3011  * @return A Thread reference
3012  */
3013 Thread * ModelChecker::get_thread(const ModelAction *act) const
3014 {
3015         return get_thread(act->get_tid());
3016 }
3017
3018 /**
3019  * @brief Get a Promise's "promise number"
3020  *
3021  * A "promise number" is an index number that is unique to a promise, valid
3022  * only for a specific snapshot of an execution trace. Promises may come and go
3023  * as they are generated an resolved, so an index only retains meaning for the
3024  * current snapshot.
3025  *
3026  * @param promise The Promise to check
3027  * @return The promise index, if the promise still is valid; otherwise -1
3028  */
3029 int ModelChecker::get_promise_number(const Promise *promise) const
3030 {
3031         for (unsigned int i = 0; i < promises->size(); i++)
3032                 if ((*promises)[i] == promise)
3033                         return i;
3034         /* Not found */
3035         return -1;
3036 }
3037
3038 /**
3039  * @brief Check if a Thread is currently enabled
3040  * @param t The Thread to check
3041  * @return True if the Thread is currently enabled
3042  */
3043 bool ModelChecker::is_enabled(Thread *t) const
3044 {
3045         return scheduler->is_enabled(t);
3046 }
3047
3048 /**
3049  * @brief Check if a Thread is currently enabled
3050  * @param tid The ID of the Thread to check
3051  * @return True if the Thread is currently enabled
3052  */
3053 bool ModelChecker::is_enabled(thread_id_t tid) const
3054 {
3055         return scheduler->is_enabled(tid);
3056 }
3057
3058 /**
3059  * Switch from a model-checker context to a user-thread context. This is the
3060  * complement of ModelChecker::switch_to_master and must be called from the
3061  * model-checker context
3062  *
3063  * @param thread The user-thread to switch to
3064  */
3065 void ModelChecker::switch_from_master(Thread *thread)
3066 {
3067         scheduler->set_current_thread(thread);
3068         Thread::swap(&system_context, thread);
3069 }
3070
3071 /**
3072  * Switch from a user-context to the "master thread" context (a.k.a. system
3073  * context). This switch is made with the intention of exploring a particular
3074  * model-checking action (described by a ModelAction object). Must be called
3075  * from a user-thread context.
3076  *
3077  * @param act The current action that will be explored. May be NULL only if
3078  * trace is exiting via an assertion (see ModelChecker::set_assert and
3079  * ModelChecker::has_asserted).
3080  * @return Return the value returned by the current action
3081  */
3082 uint64_t ModelChecker::switch_to_master(ModelAction *act)
3083 {
3084         DBG();
3085         Thread *old = thread_current();
3086         scheduler->set_current_thread(NULL);
3087         ASSERT(!old->get_pending());
3088         old->set_pending(act);
3089         if (Thread::swap(old, &system_context) < 0) {
3090                 perror("swap threads");
3091                 exit(EXIT_FAILURE);
3092         }
3093         return old->get_return_value();
3094 }
3095
3096 /**
3097  * Takes the next step in the execution, if possible.
3098  * @param curr The current step to take
3099  * @return Returns the next Thread to run, if any; NULL if this execution
3100  * should terminate
3101  */
3102 Thread * ModelChecker::take_step(ModelAction *curr)
3103 {
3104         Thread *curr_thrd = get_thread(curr);
3105         ASSERT(curr_thrd->get_state() == THREAD_READY);
3106
3107         curr = check_current_action(curr);
3108
3109         /* Infeasible -> don't take any more steps */
3110         if (is_infeasible())
3111                 return NULL;
3112         else if (isfeasibleprefix() && have_bug_reports()) {
3113                 set_assert();
3114                 return NULL;
3115         }
3116
3117         if (params.bound != 0 && priv->used_sequence_numbers > params.bound)
3118                 return NULL;
3119
3120         if (curr_thrd->is_blocked() || curr_thrd->is_complete())
3121                 scheduler->remove_thread(curr_thrd);
3122
3123         Thread *next_thrd = NULL;
3124         if (curr)
3125                 next_thrd = action_select_next_thread(curr);
3126         if (!next_thrd)
3127                 next_thrd = get_next_thread();
3128
3129         DEBUG("(%d, %d)\n", curr_thrd ? id_to_int(curr_thrd->get_id()) : -1,
3130                         next_thrd ? id_to_int(next_thrd->get_id()) : -1);
3131
3132         return next_thrd;
3133 }
3134
3135 /** Wrapper to run the user's main function, with appropriate arguments */
3136 void user_main_wrapper(void *)
3137 {
3138         user_main(model->params.argc, model->params.argv);
3139 }
3140
3141 /** @brief Run ModelChecker for the user program */
3142 void ModelChecker::run()
3143 {
3144         do {
3145                 thrd_t user_thread;
3146                 Thread *t = new Thread(&user_thread, &user_main_wrapper, NULL, NULL);
3147                 add_thread(t);
3148
3149                 do {
3150                         /*
3151                          * Stash next pending action(s) for thread(s). There
3152                          * should only need to stash one thread's action--the
3153                          * thread which just took a step--plus the first step
3154                          * for any newly-created thread
3155                          */
3156                         for (unsigned int i = 0; i < get_num_threads(); i++) {
3157                                 thread_id_t tid = int_to_id(i);
3158                                 Thread *thr = get_thread(tid);
3159                                 if (!thr->is_model_thread() && !thr->is_complete() && !thr->get_pending()) {
3160                                         switch_from_master(thr);
3161                                         if (is_circular_wait(thr))
3162                                                 assert_bug("Deadlock detected");
3163                                 }
3164                         }
3165
3166                         /* Catch assertions from prior take_step or from
3167                          * between-ModelAction bugs (e.g., data races) */
3168                         if (has_asserted())
3169                                 break;
3170
3171                         /* Consume the next action for a Thread */
3172                         ModelAction *curr = t->get_pending();
3173                         t->set_pending(NULL);
3174                         t = take_step(curr);
3175                 } while (t && !t->is_model_thread());
3176
3177                 /*
3178                  * Launch end-of-execution release sequence fixups only when
3179                  * the execution is otherwise feasible AND there are:
3180                  *
3181                  * (1) pending release sequences
3182                  * (2) pending assertions that could be invalidated by a change
3183                  * in clock vectors (i.e., data races)
3184                  * (3) no pending promises
3185                  */
3186                 while (!pending_rel_seqs->empty() &&
3187                                 is_feasible_prefix_ignore_relseq() &&
3188                                 !unrealizedraces.empty()) {
3189                         model_print("*** WARNING: release sequence fixup action "
3190                                         "(%zu pending release seuqence(s)) ***\n",
3191                                         pending_rel_seqs->size());
3192                         ModelAction *fixup = new ModelAction(MODEL_FIXUP_RELSEQ,
3193                                         std::memory_order_seq_cst, NULL, VALUE_NONE,
3194                                         model_thread);
3195                         take_step(fixup);
3196                 };
3197         } while (next_execution());
3198
3199         model_print("******* Model-checking complete: *******\n");
3200         print_stats();
3201 }