9e611fae96367283e33d7b927224eb259b52a27e
[c11tester.git] / model.cc
1 #include <stdio.h>
2 #include <algorithm>
3 #include <mutex>
4 #include <new>
5
6 #include "model.h"
7 #include "action.h"
8 #include "nodestack.h"
9 #include "schedule.h"
10 #include "snapshot-interface.h"
11 #include "common.h"
12 #include "clockvector.h"
13 #include "cyclegraph.h"
14 #include "promise.h"
15 #include "datarace.h"
16 #include "threads-model.h"
17 #include "output.h"
18
19 #define INITIAL_THREAD_ID       0
20
21 ModelChecker *model;
22
23 struct bug_message {
24         bug_message(const char *str) {
25                 const char *fmt = "  [BUG] %s\n";
26                 msg = (char *)snapshot_malloc(strlen(fmt) + strlen(str));
27                 sprintf(msg, fmt, str);
28         }
29         ~bug_message() { if (msg) snapshot_free(msg); }
30
31         char *msg;
32         void print() { model_print("%s", msg); }
33
34         SNAPSHOTALLOC
35 };
36
37 /**
38  * Structure for holding small ModelChecker members that should be snapshotted
39  */
40 struct model_snapshot_members {
41         model_snapshot_members() :
42                 current_action(NULL),
43                 /* First thread created will have id INITIAL_THREAD_ID */
44                 next_thread_id(INITIAL_THREAD_ID),
45                 used_sequence_numbers(0),
46                 next_backtrack(NULL),
47                 bugs(),
48                 stats(),
49                 failed_promise(false),
50                 too_many_reads(false),
51                 bad_synchronization(false),
52                 asserted(false)
53         { }
54
55         ~model_snapshot_members() {
56                 for (unsigned int i = 0; i < bugs.size(); i++)
57                         delete bugs[i];
58                 bugs.clear();
59         }
60
61         ModelAction *current_action;
62         unsigned int next_thread_id;
63         modelclock_t used_sequence_numbers;
64         ModelAction *next_backtrack;
65         std::vector< bug_message *, SnapshotAlloc<bug_message *> > bugs;
66         struct execution_stats stats;
67         bool failed_promise;
68         bool too_many_reads;
69         /** @brief Incorrectly-ordered synchronization was made */
70         bool bad_synchronization;
71         bool asserted;
72
73         SNAPSHOTALLOC
74 };
75
76 /** @brief Constructor */
77 ModelChecker::ModelChecker(struct model_params params) :
78         /* Initialize default scheduler */
79         params(params),
80         scheduler(new Scheduler()),
81         diverge(NULL),
82         earliest_diverge(NULL),
83         action_trace(new action_list_t()),
84         thread_map(new HashTable<int, Thread *, int>()),
85         obj_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
86         lock_waiters_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
87         condvar_waiters_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
88         obj_thrd_map(new HashTable<void *, std::vector<action_list_t> *, uintptr_t, 4 >()),
89         promises(new std::vector< Promise *, SnapshotAlloc<Promise *> >()),
90         futurevalues(new std::vector< struct PendingFutureValue, SnapshotAlloc<struct PendingFutureValue> >()),
91         pending_rel_seqs(new std::vector< struct release_seq *, SnapshotAlloc<struct release_seq *> >()),
92         thrd_last_action(new std::vector< ModelAction *, SnapshotAlloc<ModelAction *> >(1)),
93         thrd_last_fence_release(new std::vector< ModelAction *, SnapshotAlloc<ModelAction *> >()),
94         node_stack(new NodeStack()),
95         priv(new struct model_snapshot_members()),
96         mo_graph(new CycleGraph())
97 {
98         /* Initialize a model-checker thread, for special ModelActions */
99         model_thread = new Thread(get_next_id());
100         thread_map->put(id_to_int(model_thread->get_id()), model_thread);
101 }
102
103 /** @brief Destructor */
104 ModelChecker::~ModelChecker()
105 {
106         for (unsigned int i = 0; i < get_num_threads(); i++)
107                 delete thread_map->get(i);
108         delete thread_map;
109
110         delete obj_thrd_map;
111         delete obj_map;
112         delete lock_waiters_map;
113         delete condvar_waiters_map;
114         delete action_trace;
115
116         for (unsigned int i = 0; i < promises->size(); i++)
117                 delete (*promises)[i];
118         delete promises;
119
120         delete pending_rel_seqs;
121
122         delete thrd_last_action;
123         delete thrd_last_fence_release;
124         delete node_stack;
125         delete scheduler;
126         delete mo_graph;
127         delete priv;
128 }
129
130 static action_list_t * get_safe_ptr_action(HashTable<const void *, action_list_t *, uintptr_t, 4> * hash, void * ptr)
131 {
132         action_list_t *tmp = hash->get(ptr);
133         if (tmp == NULL) {
134                 tmp = new action_list_t();
135                 hash->put(ptr, tmp);
136         }
137         return tmp;
138 }
139
140 static std::vector<action_list_t> * get_safe_ptr_vect_action(HashTable<void *, std::vector<action_list_t> *, uintptr_t, 4> * hash, void * ptr)
141 {
142         std::vector<action_list_t> *tmp = hash->get(ptr);
143         if (tmp == NULL) {
144                 tmp = new std::vector<action_list_t>();
145                 hash->put(ptr, tmp);
146         }
147         return tmp;
148 }
149
150 /**
151  * Restores user program to initial state and resets all model-checker data
152  * structures.
153  */
154 void ModelChecker::reset_to_initial_state()
155 {
156         DEBUG("+++ Resetting to initial state +++\n");
157         node_stack->reset_execution();
158
159         /* Print all model-checker output before rollback */
160         fflush(model_out);
161
162         snapshot_backtrack_before(0);
163 }
164
165 /** @return a thread ID for a new Thread */
166 thread_id_t ModelChecker::get_next_id()
167 {
168         return priv->next_thread_id++;
169 }
170
171 /** @return the number of user threads created during this execution */
172 unsigned int ModelChecker::get_num_threads() const
173 {
174         return priv->next_thread_id;
175 }
176
177 /**
178  * Must be called from user-thread context (e.g., through the global
179  * thread_current() interface)
180  *
181  * @return The currently executing Thread.
182  */
183 Thread * ModelChecker::get_current_thread() const
184 {
185         return scheduler->get_current_thread();
186 }
187
188 /** @return a sequence number for a new ModelAction */
189 modelclock_t ModelChecker::get_next_seq_num()
190 {
191         return ++priv->used_sequence_numbers;
192 }
193
194 Node * ModelChecker::get_curr_node() const
195 {
196         return node_stack->get_head();
197 }
198
199 /**
200  * @brief Choose the next thread to execute.
201  *
202  * This function chooses the next thread that should execute. It can force the
203  * adjacency of read/write portions of a RMW action, force THREAD_CREATE to be
204  * followed by a THREAD_START, or it can enforce execution replay/backtracking.
205  * The model-checker may have no preference regarding the next thread (i.e.,
206  * when exploring a new execution ordering), in which case this will return
207  * NULL.
208  * @param curr The current ModelAction. This action might guide the choice of
209  * next thread.
210  * @return The next thread to run. If the model-checker has no preference, NULL.
211  */
212 Thread * ModelChecker::get_next_thread(ModelAction *curr)
213 {
214         thread_id_t tid;
215
216         if (curr != NULL) {
217                 /* Do not split atomic actions. */
218                 if (curr->is_rmwr())
219                         return thread_current();
220                 else if (curr->get_type() == THREAD_CREATE)
221                         return curr->get_thread_operand();
222         }
223
224         /* Have we completed exploring the preselected path? */
225         if (diverge == NULL)
226                 return NULL;
227
228         /* Else, we are trying to replay an execution */
229         ModelAction *next = node_stack->get_next()->get_action();
230
231         if (next == diverge) {
232                 if (earliest_diverge == NULL || *diverge < *earliest_diverge)
233                         earliest_diverge = diverge;
234
235                 Node *nextnode = next->get_node();
236                 Node *prevnode = nextnode->get_parent();
237                 scheduler->update_sleep_set(prevnode);
238
239                 /* Reached divergence point */
240                 if (nextnode->increment_misc()) {
241                         /* The next node will try to satisfy a different misc_index values. */
242                         tid = next->get_tid();
243                         node_stack->pop_restofstack(2);
244                 } else if (nextnode->increment_promise()) {
245                         /* The next node will try to satisfy a different set of promises. */
246                         tid = next->get_tid();
247                         node_stack->pop_restofstack(2);
248                 } else if (nextnode->increment_read_from()) {
249                         /* The next node will read from a different value. */
250                         tid = next->get_tid();
251                         node_stack->pop_restofstack(2);
252                 } else if (nextnode->increment_future_value()) {
253                         /* The next node will try to read from a different future value. */
254                         tid = next->get_tid();
255                         node_stack->pop_restofstack(2);
256                 } else if (nextnode->increment_relseq_break()) {
257                         /* The next node will try to resolve a release sequence differently */
258                         tid = next->get_tid();
259                         node_stack->pop_restofstack(2);
260                 } else {
261                         ASSERT(prevnode);
262                         /* Make a different thread execute for next step */
263                         scheduler->add_sleep(get_thread(next->get_tid()));
264                         tid = prevnode->get_next_backtrack();
265                         /* Make sure the backtracked thread isn't sleeping. */
266                         node_stack->pop_restofstack(1);
267                         if (diverge == earliest_diverge) {
268                                 earliest_diverge = prevnode->get_action();
269                         }
270                 }
271                 /* The correct sleep set is in the parent node. */
272                 execute_sleep_set();
273
274                 DEBUG("*** Divergence point ***\n");
275
276                 diverge = NULL;
277         } else {
278                 tid = next->get_tid();
279         }
280         DEBUG("*** ModelChecker chose next thread = %d ***\n", id_to_int(tid));
281         ASSERT(tid != THREAD_ID_T_NONE);
282         return thread_map->get(id_to_int(tid));
283 }
284
285 /**
286  * We need to know what the next actions of all threads in the sleep
287  * set will be.  This method computes them and stores the actions at
288  * the corresponding thread object's pending action.
289  */
290
291 void ModelChecker::execute_sleep_set()
292 {
293         for (unsigned int i = 0; i < get_num_threads(); i++) {
294                 thread_id_t tid = int_to_id(i);
295                 Thread *thr = get_thread(tid);
296                 if (scheduler->is_sleep_set(thr) && thr->get_pending() == NULL) {
297                         thr->set_state(THREAD_RUNNING);
298                         scheduler->next_thread(thr);
299                         Thread::swap(&system_context, thr);
300                         priv->current_action->set_sleep_flag();
301                         thr->set_pending(priv->current_action);
302                 }
303         }
304 }
305
306 void ModelChecker::wake_up_sleeping_actions(ModelAction *curr)
307 {
308         for (unsigned int i = 0; i < get_num_threads(); i++) {
309                 Thread *thr = get_thread(int_to_id(i));
310                 if (scheduler->is_sleep_set(thr)) {
311                         ModelAction *pending_act = thr->get_pending();
312                         if ((!curr->is_rmwr()) && pending_act->could_synchronize_with(curr))
313                                 //Remove this thread from sleep set
314                                 scheduler->remove_sleep(thr);
315                 }
316         }
317 }
318
319 /** @brief Alert the model-checker that an incorrectly-ordered
320  * synchronization was made */
321 void ModelChecker::set_bad_synchronization()
322 {
323         priv->bad_synchronization = true;
324 }
325
326 bool ModelChecker::has_asserted() const
327 {
328         return priv->asserted;
329 }
330
331 void ModelChecker::set_assert()
332 {
333         priv->asserted = true;
334 }
335
336 /**
337  * Check if we are in a deadlock. Should only be called at the end of an
338  * execution, although it should not give false positives in the middle of an
339  * execution (there should be some ENABLED thread).
340  *
341  * @return True if program is in a deadlock; false otherwise
342  */
343 bool ModelChecker::is_deadlocked() const
344 {
345         bool blocking_threads = false;
346         for (unsigned int i = 0; i < get_num_threads(); i++) {
347                 thread_id_t tid = int_to_id(i);
348                 if (is_enabled(tid))
349                         return false;
350                 Thread *t = get_thread(tid);
351                 if (!t->is_model_thread() && t->get_pending())
352                         blocking_threads = true;
353         }
354         return blocking_threads;
355 }
356
357 /**
358  * Check if this is a complete execution. That is, have all thread completed
359  * execution (rather than exiting because sleep sets have forced a redundant
360  * execution).
361  *
362  * @return True if the execution is complete.
363  */
364 bool ModelChecker::is_complete_execution() const
365 {
366         for (unsigned int i = 0; i < get_num_threads(); i++)
367                 if (is_enabled(int_to_id(i)))
368                         return false;
369         return true;
370 }
371
372 /**
373  * @brief Assert a bug in the executing program.
374  *
375  * Use this function to assert any sort of bug in the user program. If the
376  * current trace is feasible (actually, a prefix of some feasible execution),
377  * then this execution will be aborted, printing the appropriate message. If
378  * the current trace is not yet feasible, the error message will be stashed and
379  * printed if the execution ever becomes feasible.
380  *
381  * @param msg Descriptive message for the bug (do not include newline char)
382  * @return True if bug is immediately-feasible
383  */
384 bool ModelChecker::assert_bug(const char *msg)
385 {
386         priv->bugs.push_back(new bug_message(msg));
387
388         if (isfeasibleprefix()) {
389                 set_assert();
390                 return true;
391         }
392         return false;
393 }
394
395 /**
396  * @brief Assert a bug in the executing program, asserted by a user thread
397  * @see ModelChecker::assert_bug
398  * @param msg Descriptive message for the bug (do not include newline char)
399  */
400 void ModelChecker::assert_user_bug(const char *msg)
401 {
402         /* If feasible bug, bail out now */
403         if (assert_bug(msg))
404                 switch_to_master(NULL);
405 }
406
407 /** @return True, if any bugs have been reported for this execution */
408 bool ModelChecker::have_bug_reports() const
409 {
410         return priv->bugs.size() != 0;
411 }
412
413 /** @brief Print bug report listing for this execution (if any bugs exist) */
414 void ModelChecker::print_bugs() const
415 {
416         if (have_bug_reports()) {
417                 model_print("Bug report: %zu bug%s detected\n",
418                                 priv->bugs.size(),
419                                 priv->bugs.size() > 1 ? "s" : "");
420                 for (unsigned int i = 0; i < priv->bugs.size(); i++)
421                         priv->bugs[i]->print();
422         }
423 }
424
425 /**
426  * @brief Record end-of-execution stats
427  *
428  * Must be run when exiting an execution. Records various stats.
429  * @see struct execution_stats
430  */
431 void ModelChecker::record_stats()
432 {
433         stats.num_total++;
434         if (!isfeasibleprefix())
435                 stats.num_infeasible++;
436         else if (have_bug_reports())
437                 stats.num_buggy_executions++;
438         else if (is_complete_execution())
439                 stats.num_complete++;
440         else
441                 stats.num_redundant++;
442 }
443
444 /** @brief Print execution stats */
445 void ModelChecker::print_stats() const
446 {
447         model_print("Number of complete, bug-free executions: %d\n", stats.num_complete);
448         model_print("Number of redundant executions: %d\n", stats.num_redundant);
449         model_print("Number of buggy executions: %d\n", stats.num_buggy_executions);
450         model_print("Number of infeasible executions: %d\n", stats.num_infeasible);
451         model_print("Total executions: %d\n", stats.num_total);
452         model_print("Total nodes created: %d\n", node_stack->get_total_nodes());
453 }
454
455 /**
456  * @brief End-of-exeuction print
457  * @param printbugs Should any existing bugs be printed?
458  */
459 void ModelChecker::print_execution(bool printbugs) const
460 {
461         print_program_output();
462
463         if (DBG_ENABLED() || params.verbose) {
464                 model_print("Earliest divergence point since last feasible execution:\n");
465                 if (earliest_diverge)
466                         earliest_diverge->print();
467                 else
468                         model_print("(Not set)\n");
469
470                 model_print("\n");
471                 print_stats();
472         }
473
474         /* Don't print invalid bugs */
475         if (printbugs)
476                 print_bugs();
477
478         model_print("\n");
479         print_summary();
480 }
481
482 /**
483  * Queries the model-checker for more executions to explore and, if one
484  * exists, resets the model-checker state to execute a new execution.
485  *
486  * @return If there are more executions to explore, return true. Otherwise,
487  * return false.
488  */
489 bool ModelChecker::next_execution()
490 {
491         DBG();
492         /* Is this execution a feasible execution that's worth bug-checking? */
493         bool complete = isfeasibleprefix() && (is_complete_execution() ||
494                         have_bug_reports());
495
496         /* End-of-execution bug checks */
497         if (complete) {
498                 if (is_deadlocked())
499                         assert_bug("Deadlock detected");
500
501                 checkDataRaces();
502         }
503
504         record_stats();
505
506         /* Output */
507         if (DBG_ENABLED() || params.verbose || (complete && have_bug_reports()))
508                 print_execution(complete);
509         else
510                 clear_program_output();
511
512         if (complete)
513                 earliest_diverge = NULL;
514
515         if ((diverge = get_next_backtrack()) == NULL)
516                 return false;
517
518         if (DBG_ENABLED()) {
519                 model_print("Next execution will diverge at:\n");
520                 diverge->print();
521         }
522
523         reset_to_initial_state();
524         return true;
525 }
526
527 ModelAction * ModelChecker::get_last_conflict(ModelAction *act)
528 {
529         switch (act->get_type()) {
530         case ATOMIC_FENCE:
531         case ATOMIC_READ:
532         case ATOMIC_WRITE:
533         case ATOMIC_RMW: {
534                 /* Optimization: relaxed operations don't need backtracking */
535                 if (act->is_relaxed())
536                         return NULL;
537                 /* linear search: from most recent to oldest */
538                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
539                 action_list_t::reverse_iterator rit;
540                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
541                         ModelAction *prev = *rit;
542                         if (prev->could_synchronize_with(act))
543                                 return prev;
544                 }
545                 break;
546         }
547         case ATOMIC_LOCK:
548         case ATOMIC_TRYLOCK: {
549                 /* linear search: from most recent to oldest */
550                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
551                 action_list_t::reverse_iterator rit;
552                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
553                         ModelAction *prev = *rit;
554                         if (act->is_conflicting_lock(prev))
555                                 return prev;
556                 }
557                 break;
558         }
559         case ATOMIC_UNLOCK: {
560                 /* linear search: from most recent to oldest */
561                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
562                 action_list_t::reverse_iterator rit;
563                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
564                         ModelAction *prev = *rit;
565                         if (!act->same_thread(prev) && prev->is_failed_trylock())
566                                 return prev;
567                 }
568                 break;
569         }
570         case ATOMIC_WAIT: {
571                 /* linear search: from most recent to oldest */
572                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
573                 action_list_t::reverse_iterator rit;
574                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
575                         ModelAction *prev = *rit;
576                         if (!act->same_thread(prev) && prev->is_failed_trylock())
577                                 return prev;
578                         if (!act->same_thread(prev) && prev->is_notify())
579                                 return prev;
580                 }
581                 break;
582         }
583
584         case ATOMIC_NOTIFY_ALL:
585         case ATOMIC_NOTIFY_ONE: {
586                 /* linear search: from most recent to oldest */
587                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
588                 action_list_t::reverse_iterator rit;
589                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
590                         ModelAction *prev = *rit;
591                         if (!act->same_thread(prev) && prev->is_wait())
592                                 return prev;
593                 }
594                 break;
595         }
596         default:
597                 break;
598         }
599         return NULL;
600 }
601
602 /** This method finds backtracking points where we should try to
603  * reorder the parameter ModelAction against.
604  *
605  * @param the ModelAction to find backtracking points for.
606  */
607 void ModelChecker::set_backtracking(ModelAction *act)
608 {
609         Thread *t = get_thread(act);
610         ModelAction *prev = get_last_conflict(act);
611         if (prev == NULL)
612                 return;
613
614         Node *node = prev->get_node()->get_parent();
615
616         int low_tid, high_tid;
617         if (node->enabled_status(t->get_id()) == THREAD_ENABLED) {
618                 low_tid = id_to_int(act->get_tid());
619                 high_tid = low_tid + 1;
620         } else {
621                 low_tid = 0;
622                 high_tid = get_num_threads();
623         }
624
625         for (int i = low_tid; i < high_tid; i++) {
626                 thread_id_t tid = int_to_id(i);
627
628                 /* Make sure this thread can be enabled here. */
629                 if (i >= node->get_num_threads())
630                         break;
631
632                 /* Don't backtrack into a point where the thread is disabled or sleeping. */
633                 if (node->enabled_status(tid) != THREAD_ENABLED)
634                         continue;
635
636                 /* Check if this has been explored already */
637                 if (node->has_been_explored(tid))
638                         continue;
639
640                 /* See if fairness allows */
641                 if (model->params.fairwindow != 0 && !node->has_priority(tid)) {
642                         bool unfair = false;
643                         for (int t = 0; t < node->get_num_threads(); t++) {
644                                 thread_id_t tother = int_to_id(t);
645                                 if (node->is_enabled(tother) && node->has_priority(tother)) {
646                                         unfair = true;
647                                         break;
648                                 }
649                         }
650                         if (unfair)
651                                 continue;
652                 }
653                 /* Cache the latest backtracking point */
654                 set_latest_backtrack(prev);
655
656                 /* If this is a new backtracking point, mark the tree */
657                 if (!node->set_backtrack(tid))
658                         continue;
659                 DEBUG("Setting backtrack: conflict = %d, instead tid = %d\n",
660                                         id_to_int(prev->get_tid()),
661                                         id_to_int(t->get_id()));
662                 if (DBG_ENABLED()) {
663                         prev->print();
664                         act->print();
665                 }
666         }
667 }
668
669 /**
670  * @brief Cache the a backtracking point as the "most recent", if eligible
671  *
672  * Note that this does not prepare the NodeStack for this backtracking
673  * operation, it only caches the action on a per-execution basis
674  *
675  * @param act The operation at which we should explore a different next action
676  * (i.e., backtracking point)
677  * @return True, if this action is now the most recent backtracking point;
678  * false otherwise
679  */
680 bool ModelChecker::set_latest_backtrack(ModelAction *act)
681 {
682         if (!priv->next_backtrack || *act > *priv->next_backtrack) {
683                 priv->next_backtrack = act;
684                 return true;
685         }
686         return false;
687 }
688
689 /**
690  * Returns last backtracking point. The model checker will explore a different
691  * path for this point in the next execution.
692  * @return The ModelAction at which the next execution should diverge.
693  */
694 ModelAction * ModelChecker::get_next_backtrack()
695 {
696         ModelAction *next = priv->next_backtrack;
697         priv->next_backtrack = NULL;
698         return next;
699 }
700
701 /**
702  * Processes a read or rmw model action.
703  * @param curr is the read model action to process.
704  * @param second_part_of_rmw is boolean that is true is this is the second action of a rmw.
705  * @return True if processing this read updates the mo_graph.
706  */
707 bool ModelChecker::process_read(ModelAction *curr, bool second_part_of_rmw)
708 {
709         uint64_t value = VALUE_NONE;
710         bool updated = false;
711         while (true) {
712                 const ModelAction *reads_from = curr->get_node()->get_read_from();
713                 if (reads_from != NULL) {
714                         mo_graph->startChanges();
715
716                         value = reads_from->get_value();
717                         bool r_status = false;
718
719                         if (!second_part_of_rmw) {
720                                 check_recency(curr, reads_from);
721                                 r_status = r_modification_order(curr, reads_from);
722                         }
723
724                         if (!second_part_of_rmw && is_infeasible() && (curr->get_node()->increment_read_from() || curr->get_node()->increment_future_value())) {
725                                 mo_graph->rollbackChanges();
726                                 priv->too_many_reads = false;
727                                 continue;
728                         }
729
730                         read_from(curr, reads_from);
731                         mo_graph->commitChanges();
732                         mo_check_promises(curr->get_tid(), reads_from, NULL);
733
734                         updated |= r_status;
735                 } else if (!second_part_of_rmw) {
736                         /* Read from future value */
737                         struct future_value fv = curr->get_node()->get_future_value();
738                         value = fv.value;
739                         curr->set_value(fv.value);
740                         curr->set_read_from(NULL);
741                         promises->push_back(new Promise(curr, fv));
742                 }
743                 get_thread(curr)->set_return_value(value);
744                 return updated;
745         }
746 }
747
748 /**
749  * Processes a lock, trylock, or unlock model action.  @param curr is
750  * the read model action to process.
751  *
752  * The try lock operation checks whether the lock is taken.  If not,
753  * it falls to the normal lock operation case.  If so, it returns
754  * fail.
755  *
756  * The lock operation has already been checked that it is enabled, so
757  * it just grabs the lock and synchronizes with the previous unlock.
758  *
759  * The unlock operation has to re-enable all of the threads that are
760  * waiting on the lock.
761  *
762  * @return True if synchronization was updated; false otherwise
763  */
764 bool ModelChecker::process_mutex(ModelAction *curr)
765 {
766         std::mutex *mutex = NULL;
767         struct std::mutex_state *state = NULL;
768
769         if (curr->is_trylock() || curr->is_lock() || curr->is_unlock()) {
770                 mutex = (std::mutex *)curr->get_location();
771                 state = mutex->get_state();
772         } else if (curr->is_wait()) {
773                 mutex = (std::mutex *)curr->get_value();
774                 state = mutex->get_state();
775         }
776
777         switch (curr->get_type()) {
778         case ATOMIC_TRYLOCK: {
779                 bool success = !state->islocked;
780                 curr->set_try_lock(success);
781                 if (!success) {
782                         get_thread(curr)->set_return_value(0);
783                         break;
784                 }
785                 get_thread(curr)->set_return_value(1);
786         }
787                 //otherwise fall into the lock case
788         case ATOMIC_LOCK: {
789                 if (curr->get_cv()->getClock(state->alloc_tid) <= state->alloc_clock)
790                         assert_bug("Lock access before initialization");
791                 state->islocked = true;
792                 ModelAction *unlock = get_last_unlock(curr);
793                 //synchronize with the previous unlock statement
794                 if (unlock != NULL) {
795                         curr->synchronize_with(unlock);
796                         return true;
797                 }
798                 break;
799         }
800         case ATOMIC_UNLOCK: {
801                 //unlock the lock
802                 state->islocked = false;
803                 //wake up the other threads
804                 action_list_t *waiters = get_safe_ptr_action(lock_waiters_map, curr->get_location());
805                 //activate all the waiting threads
806                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
807                         scheduler->wake(get_thread(*rit));
808                 }
809                 waiters->clear();
810                 break;
811         }
812         case ATOMIC_WAIT: {
813                 //unlock the lock
814                 state->islocked = false;
815                 //wake up the other threads
816                 action_list_t *waiters = get_safe_ptr_action(lock_waiters_map, (void *) curr->get_value());
817                 //activate all the waiting threads
818                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
819                         scheduler->wake(get_thread(*rit));
820                 }
821                 waiters->clear();
822                 //check whether we should go to sleep or not...simulate spurious failures
823                 if (curr->get_node()->get_misc() == 0) {
824                         get_safe_ptr_action(condvar_waiters_map, curr->get_location())->push_back(curr);
825                         //disable us
826                         scheduler->sleep(get_thread(curr));
827                 }
828                 break;
829         }
830         case ATOMIC_NOTIFY_ALL: {
831                 action_list_t *waiters = get_safe_ptr_action(condvar_waiters_map, curr->get_location());
832                 //activate all the waiting threads
833                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
834                         scheduler->wake(get_thread(*rit));
835                 }
836                 waiters->clear();
837                 break;
838         }
839         case ATOMIC_NOTIFY_ONE: {
840                 action_list_t *waiters = get_safe_ptr_action(condvar_waiters_map, curr->get_location());
841                 int wakeupthread = curr->get_node()->get_misc();
842                 action_list_t::iterator it = waiters->begin();
843                 advance(it, wakeupthread);
844                 scheduler->wake(get_thread(*it));
845                 waiters->erase(it);
846                 break;
847         }
848
849         default:
850                 ASSERT(0);
851         }
852         return false;
853 }
854
855 void ModelChecker::add_future_value(const ModelAction *writer, ModelAction *reader)
856 {
857         /* Do more ambitious checks now that mo is more complete */
858         if (mo_may_allow(writer, reader)) {
859                 Node *node = reader->get_node();
860
861                 /* Find an ancestor thread which exists at the time of the reader */
862                 Thread *write_thread = get_thread(writer);
863                 while (id_to_int(write_thread->get_id()) >= node->get_num_threads())
864                         write_thread = write_thread->get_parent();
865
866                 struct future_value fv = {
867                         writer->get_value(),
868                         writer->get_seq_number() + params.maxfuturedelay,
869                         write_thread->get_id(),
870                 };
871                 if (node->add_future_value(fv))
872                         set_latest_backtrack(reader);
873         }
874 }
875
876 /**
877  * Process a write ModelAction
878  * @param curr The ModelAction to process
879  * @return True if the mo_graph was updated or promises were resolved
880  */
881 bool ModelChecker::process_write(ModelAction *curr)
882 {
883         bool updated_mod_order = w_modification_order(curr);
884         bool updated_promises = resolve_promises(curr);
885
886         if (promises->size() == 0) {
887                 for (unsigned int i = 0; i < futurevalues->size(); i++) {
888                         struct PendingFutureValue pfv = (*futurevalues)[i];
889                         add_future_value(pfv.writer, pfv.act);
890                 }
891                 futurevalues->clear();
892         }
893
894         mo_graph->commitChanges();
895         mo_check_promises(curr->get_tid(), curr, NULL);
896
897         get_thread(curr)->set_return_value(VALUE_NONE);
898         return updated_mod_order || updated_promises;
899 }
900
901 /**
902  * Process a fence ModelAction
903  * @param curr The ModelAction to process
904  * @return True if synchronization was updated
905  */
906 bool ModelChecker::process_fence(ModelAction *curr)
907 {
908         /*
909          * fence-relaxed: no-op
910          * fence-release: only log the occurence (not in this function), for
911          *   use in later synchronization
912          * fence-acquire (this function): search for hypothetical release
913          *   sequences
914          */
915         bool updated = false;
916         if (curr->is_acquire()) {
917                 action_list_t *list = action_trace;
918                 action_list_t::reverse_iterator rit;
919                 /* Find X : is_read(X) && X --sb-> curr */
920                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
921                         ModelAction *act = *rit;
922                         if (act == curr)
923                                 continue;
924                         if (act->get_tid() != curr->get_tid())
925                                 continue;
926                         /* Stop at the beginning of the thread */
927                         if (act->is_thread_start())
928                                 break;
929                         /* Stop once we reach a prior fence-acquire */
930                         if (act->is_fence() && act->is_acquire())
931                                 break;
932                         if (!act->is_read())
933                                 continue;
934                         /* read-acquire will find its own release sequences */
935                         if (act->is_acquire())
936                                 continue;
937
938                         /* Establish hypothetical release sequences */
939                         rel_heads_list_t release_heads;
940                         get_release_seq_heads(curr, act, &release_heads);
941                         for (unsigned int i = 0; i < release_heads.size(); i++)
942                                 if (!curr->synchronize_with(release_heads[i]))
943                                         set_bad_synchronization();
944                         if (release_heads.size() != 0)
945                                 updated = true;
946                 }
947         }
948         return updated;
949 }
950
951 /**
952  * @brief Process the current action for thread-related activity
953  *
954  * Performs current-action processing for a THREAD_* ModelAction. Proccesses
955  * may include setting Thread status, completing THREAD_FINISH/THREAD_JOIN
956  * synchronization, etc.  This function is a no-op for non-THREAD actions
957  * (e.g., ATOMIC_{READ,WRITE,RMW,LOCK}, etc.)
958  *
959  * @param curr The current action
960  * @return True if synchronization was updated or a thread completed
961  */
962 bool ModelChecker::process_thread_action(ModelAction *curr)
963 {
964         bool updated = false;
965
966         switch (curr->get_type()) {
967         case THREAD_CREATE: {
968                 Thread *th = curr->get_thread_operand();
969                 th->set_creation(curr);
970                 /* Promises can be satisfied by children */
971                 for (unsigned int i = 0; i < promises->size(); i++) {
972                         Promise *promise = (*promises)[i];
973                         if (promise->thread_is_available(curr->get_tid()))
974                                 promise->add_thread(th->get_id());
975                 }
976                 break;
977         }
978         case THREAD_JOIN: {
979                 Thread *blocking = curr->get_thread_operand();
980                 ModelAction *act = get_last_action(blocking->get_id());
981                 curr->synchronize_with(act);
982                 updated = true; /* trigger rel-seq checks */
983                 break;
984         }
985         case THREAD_FINISH: {
986                 Thread *th = get_thread(curr);
987                 while (!th->wait_list_empty()) {
988                         ModelAction *act = th->pop_wait_list();
989                         scheduler->wake(get_thread(act));
990                 }
991                 th->complete();
992                 /* Completed thread can't satisfy promises */
993                 for (unsigned int i = 0; i < promises->size(); i++) {
994                         Promise *promise = (*promises)[i];
995                         if (promise->thread_is_available(th->get_id()))
996                                 if (promise->eliminate_thread(th->get_id()))
997                                         priv->failed_promise = true;
998                 }
999                 updated = true; /* trigger rel-seq checks */
1000                 break;
1001         }
1002         case THREAD_START: {
1003                 check_promises(curr->get_tid(), NULL, curr->get_cv());
1004                 break;
1005         }
1006         default:
1007                 break;
1008         }
1009
1010         return updated;
1011 }
1012
1013 /**
1014  * @brief Process the current action for release sequence fixup activity
1015  *
1016  * Performs model-checker release sequence fixups for the current action,
1017  * forcing a single pending release sequence to break (with a given, potential
1018  * "loose" write) or to complete (i.e., synchronize). If a pending release
1019  * sequence forms a complete release sequence, then we must perform the fixup
1020  * synchronization, mo_graph additions, etc.
1021  *
1022  * @param curr The current action; must be a release sequence fixup action
1023  * @param work_queue The work queue to which to add work items as they are
1024  * generated
1025  */
1026 void ModelChecker::process_relseq_fixup(ModelAction *curr, work_queue_t *work_queue)
1027 {
1028         const ModelAction *write = curr->get_node()->get_relseq_break();
1029         struct release_seq *sequence = pending_rel_seqs->back();
1030         pending_rel_seqs->pop_back();
1031         ASSERT(sequence);
1032         ModelAction *acquire = sequence->acquire;
1033         const ModelAction *rf = sequence->rf;
1034         const ModelAction *release = sequence->release;
1035         ASSERT(acquire);
1036         ASSERT(release);
1037         ASSERT(rf);
1038         ASSERT(release->same_thread(rf));
1039
1040         if (write == NULL) {
1041                 /**
1042                  * @todo Forcing a synchronization requires that we set
1043                  * modification order constraints. For instance, we can't allow
1044                  * a fixup sequence in which two separate read-acquire
1045                  * operations read from the same sequence, where the first one
1046                  * synchronizes and the other doesn't. Essentially, we can't
1047                  * allow any writes to insert themselves between 'release' and
1048                  * 'rf'
1049                  */
1050
1051                 /* Must synchronize */
1052                 if (!acquire->synchronize_with(release)) {
1053                         set_bad_synchronization();
1054                         return;
1055                 }
1056                 /* Re-check all pending release sequences */
1057                 work_queue->push_back(CheckRelSeqWorkEntry(NULL));
1058                 /* Re-check act for mo_graph edges */
1059                 work_queue->push_back(MOEdgeWorkEntry(acquire));
1060
1061                 /* propagate synchronization to later actions */
1062                 action_list_t::reverse_iterator rit = action_trace->rbegin();
1063                 for (; (*rit) != acquire; rit++) {
1064                         ModelAction *propagate = *rit;
1065                         if (acquire->happens_before(propagate)) {
1066                                 propagate->synchronize_with(acquire);
1067                                 /* Re-check 'propagate' for mo_graph edges */
1068                                 work_queue->push_back(MOEdgeWorkEntry(propagate));
1069                         }
1070                 }
1071         } else {
1072                 /* Break release sequence with new edges:
1073                  *   release --mo--> write --mo--> rf */
1074                 mo_graph->addEdge(release, write);
1075                 mo_graph->addEdge(write, rf);
1076         }
1077
1078         /* See if we have realized a data race */
1079         checkDataRaces();
1080 }
1081
1082 /**
1083  * Initialize the current action by performing one or more of the following
1084  * actions, as appropriate: merging RMWR and RMWC/RMW actions, stepping forward
1085  * in the NodeStack, manipulating backtracking sets, allocating and
1086  * initializing clock vectors, and computing the promises to fulfill.
1087  *
1088  * @param curr The current action, as passed from the user context; may be
1089  * freed/invalidated after the execution of this function, with a different
1090  * action "returned" its place (pass-by-reference)
1091  * @return True if curr is a newly-explored action; false otherwise
1092  */
1093 bool ModelChecker::initialize_curr_action(ModelAction **curr)
1094 {
1095         ModelAction *newcurr;
1096
1097         if ((*curr)->is_rmwc() || (*curr)->is_rmw()) {
1098                 newcurr = process_rmw(*curr);
1099                 delete *curr;
1100
1101                 if (newcurr->is_rmw())
1102                         compute_promises(newcurr);
1103
1104                 *curr = newcurr;
1105                 return false;
1106         }
1107
1108         (*curr)->set_seq_number(get_next_seq_num());
1109
1110         newcurr = node_stack->explore_action(*curr, scheduler->get_enabled_array());
1111         if (newcurr) {
1112                 /* First restore type and order in case of RMW operation */
1113                 if ((*curr)->is_rmwr())
1114                         newcurr->copy_typeandorder(*curr);
1115
1116                 ASSERT((*curr)->get_location() == newcurr->get_location());
1117                 newcurr->copy_from_new(*curr);
1118
1119                 /* Discard duplicate ModelAction; use action from NodeStack */
1120                 delete *curr;
1121
1122                 /* Always compute new clock vector */
1123                 newcurr->create_cv(get_parent_action(newcurr->get_tid()));
1124
1125                 *curr = newcurr;
1126                 return false; /* Action was explored previously */
1127         } else {
1128                 newcurr = *curr;
1129
1130                 /* Always compute new clock vector */
1131                 newcurr->create_cv(get_parent_action(newcurr->get_tid()));
1132
1133                 /* Assign most recent release fence */
1134                 newcurr->set_last_fence_release(get_last_fence_release(newcurr->get_tid()));
1135
1136                 /*
1137                  * Perform one-time actions when pushing new ModelAction onto
1138                  * NodeStack
1139                  */
1140                 if (newcurr->is_write())
1141                         compute_promises(newcurr);
1142                 else if (newcurr->is_relseq_fixup())
1143                         compute_relseq_breakwrites(newcurr);
1144                 else if (newcurr->is_wait())
1145                         newcurr->get_node()->set_misc_max(2);
1146                 else if (newcurr->is_notify_one()) {
1147                         newcurr->get_node()->set_misc_max(get_safe_ptr_action(condvar_waiters_map, newcurr->get_location())->size());
1148                 }
1149                 return true; /* This was a new ModelAction */
1150         }
1151 }
1152
1153 /**
1154  * @brief Establish reads-from relation between two actions
1155  *
1156  * Perform basic operations involved with establishing a concrete rf relation,
1157  * including setting the ModelAction data and checking for release sequences.
1158  *
1159  * @param act The action that is reading (must be a read)
1160  * @param rf The action from which we are reading (must be a write)
1161  *
1162  * @return True if this read established synchronization
1163  */
1164 bool ModelChecker::read_from(ModelAction *act, const ModelAction *rf)
1165 {
1166         act->set_read_from(rf);
1167         if (rf != NULL && act->is_acquire()) {
1168                 rel_heads_list_t release_heads;
1169                 get_release_seq_heads(act, act, &release_heads);
1170                 int num_heads = release_heads.size();
1171                 for (unsigned int i = 0; i < release_heads.size(); i++)
1172                         if (!act->synchronize_with(release_heads[i])) {
1173                                 set_bad_synchronization();
1174                                 num_heads--;
1175                         }
1176                 return num_heads > 0;
1177         }
1178         return false;
1179 }
1180
1181 /**
1182  * @brief Check whether a model action is enabled.
1183  *
1184  * Checks whether a lock or join operation would be successful (i.e., is the
1185  * lock already locked, or is the joined thread already complete). If not, put
1186  * the action in a waiter list.
1187  *
1188  * @param curr is the ModelAction to check whether it is enabled.
1189  * @return a bool that indicates whether the action is enabled.
1190  */
1191 bool ModelChecker::check_action_enabled(ModelAction *curr) {
1192         if (curr->is_lock()) {
1193                 std::mutex *lock = (std::mutex *)curr->get_location();
1194                 struct std::mutex_state *state = lock->get_state();
1195                 if (state->islocked) {
1196                         //Stick the action in the appropriate waiting queue
1197                         get_safe_ptr_action(lock_waiters_map, curr->get_location())->push_back(curr);
1198                         return false;
1199                 }
1200         } else if (curr->get_type() == THREAD_JOIN) {
1201                 Thread *blocking = (Thread *)curr->get_location();
1202                 if (!blocking->is_complete()) {
1203                         blocking->push_wait_list(curr);
1204                         return false;
1205                 }
1206         }
1207
1208         return true;
1209 }
1210
1211 /**
1212  * Stores the ModelAction for the current thread action.  Call this
1213  * immediately before switching from user- to system-context to pass
1214  * data between them.
1215  * @param act The ModelAction created by the user-thread action
1216  */
1217 void ModelChecker::set_current_action(ModelAction *act) {
1218         priv->current_action = act;
1219 }
1220
1221 /**
1222  * This is the heart of the model checker routine. It performs model-checking
1223  * actions corresponding to a given "current action." Among other processes, it
1224  * calculates reads-from relationships, updates synchronization clock vectors,
1225  * forms a memory_order constraints graph, and handles replay/backtrack
1226  * execution when running permutations of previously-observed executions.
1227  *
1228  * @param curr The current action to process
1229  * @return The ModelAction that is actually executed; may be different than
1230  * curr; may be NULL, if the current action is not enabled to run
1231  */
1232 ModelAction * ModelChecker::check_current_action(ModelAction *curr)
1233 {
1234         ASSERT(curr);
1235         bool second_part_of_rmw = curr->is_rmwc() || curr->is_rmw();
1236
1237         if (!check_action_enabled(curr)) {
1238                 /* Make the execution look like we chose to run this action
1239                  * much later, when a lock/join can succeed */
1240                 get_thread(curr)->set_pending(curr);
1241                 scheduler->sleep(get_thread(curr));
1242                 return NULL;
1243         }
1244
1245         bool newly_explored = initialize_curr_action(&curr);
1246
1247         DBG();
1248         if (DBG_ENABLED())
1249                 curr->print();
1250
1251         wake_up_sleeping_actions(curr);
1252
1253         /* Add the action to lists before any other model-checking tasks */
1254         if (!second_part_of_rmw)
1255                 add_action_to_lists(curr);
1256
1257         /* Build may_read_from set for newly-created actions */
1258         if (newly_explored && curr->is_read())
1259                 build_reads_from_past(curr);
1260
1261         /* Initialize work_queue with the "current action" work */
1262         work_queue_t work_queue(1, CheckCurrWorkEntry(curr));
1263         while (!work_queue.empty() && !has_asserted()) {
1264                 WorkQueueEntry work = work_queue.front();
1265                 work_queue.pop_front();
1266
1267                 switch (work.type) {
1268                 case WORK_CHECK_CURR_ACTION: {
1269                         ModelAction *act = work.action;
1270                         bool update = false; /* update this location's release seq's */
1271                         bool update_all = false; /* update all release seq's */
1272
1273                         if (process_thread_action(curr))
1274                                 update_all = true;
1275
1276                         if (act->is_read() && process_read(act, second_part_of_rmw))
1277                                 update = true;
1278
1279                         if (act->is_write() && process_write(act))
1280                                 update = true;
1281
1282                         if (act->is_fence() && process_fence(act))
1283                                 update_all = true;
1284
1285                         if (act->is_mutex_op() && process_mutex(act))
1286                                 update_all = true;
1287
1288                         if (act->is_relseq_fixup())
1289                                 process_relseq_fixup(curr, &work_queue);
1290
1291                         if (update_all)
1292                                 work_queue.push_back(CheckRelSeqWorkEntry(NULL));
1293                         else if (update)
1294                                 work_queue.push_back(CheckRelSeqWorkEntry(act->get_location()));
1295                         break;
1296                 }
1297                 case WORK_CHECK_RELEASE_SEQ:
1298                         resolve_release_sequences(work.location, &work_queue);
1299                         break;
1300                 case WORK_CHECK_MO_EDGES: {
1301                         /** @todo Complete verification of work_queue */
1302                         ModelAction *act = work.action;
1303                         bool updated = false;
1304
1305                         if (act->is_read()) {
1306                                 const ModelAction *rf = act->get_reads_from();
1307                                 if (rf != NULL && r_modification_order(act, rf))
1308                                         updated = true;
1309                         }
1310                         if (act->is_write()) {
1311                                 if (w_modification_order(act))
1312                                         updated = true;
1313                         }
1314                         mo_graph->commitChanges();
1315
1316                         if (updated)
1317                                 work_queue.push_back(CheckRelSeqWorkEntry(act->get_location()));
1318                         break;
1319                 }
1320                 default:
1321                         ASSERT(false);
1322                         break;
1323                 }
1324         }
1325
1326         check_curr_backtracking(curr);
1327         set_backtracking(curr);
1328         return curr;
1329 }
1330
1331 void ModelChecker::check_curr_backtracking(ModelAction *curr)
1332 {
1333         Node *currnode = curr->get_node();
1334         Node *parnode = currnode->get_parent();
1335
1336         if ((parnode && !parnode->backtrack_empty()) ||
1337                          !currnode->misc_empty() ||
1338                          !currnode->read_from_empty() ||
1339                          !currnode->future_value_empty() ||
1340                          !currnode->promise_empty() ||
1341                          !currnode->relseq_break_empty()) {
1342                 set_latest_backtrack(curr);
1343         }
1344 }
1345
1346 bool ModelChecker::promises_expired() const
1347 {
1348         for (unsigned int i = 0; i < promises->size(); i++) {
1349                 Promise *promise = (*promises)[i];
1350                 if (promise->get_expiration() < priv->used_sequence_numbers)
1351                         return true;
1352         }
1353         return false;
1354 }
1355
1356 /**
1357  * This is the strongest feasibility check available.
1358  * @return whether the current trace (partial or complete) must be a prefix of
1359  * a feasible trace.
1360  */
1361 bool ModelChecker::isfeasibleprefix() const
1362 {
1363         return pending_rel_seqs->size() == 0 && is_feasible_prefix_ignore_relseq();
1364 }
1365
1366 /**
1367  * Print disagnostic information about an infeasible execution
1368  * @param prefix A string to prefix the output with; if NULL, then a default
1369  * message prefix will be provided
1370  */
1371 void ModelChecker::print_infeasibility(const char *prefix) const
1372 {
1373         char buf[100];
1374         char *ptr = buf;
1375         if (mo_graph->checkForRMWViolation())
1376                 ptr += sprintf(ptr, "[RMW atomicity]");
1377         if (mo_graph->checkForCycles())
1378                 ptr += sprintf(ptr, "[mo cycle]");
1379         if (priv->failed_promise)
1380                 ptr += sprintf(ptr, "[failed promise]");
1381         if (priv->too_many_reads)
1382                 ptr += sprintf(ptr, "[too many reads]");
1383         if (priv->bad_synchronization)
1384                 ptr += sprintf(ptr, "[bad sw ordering]");
1385         if (promises_expired())
1386                 ptr += sprintf(ptr, "[promise expired]");
1387         if (promises->size() != 0)
1388                 ptr += sprintf(ptr, "[unresolved promise]");
1389         if (ptr != buf)
1390                 model_print("%s: %s\n", prefix ? prefix : "Infeasible", buf);
1391 }
1392
1393 /**
1394  * Returns whether the current completed trace is feasible, except for pending
1395  * release sequences.
1396  */
1397 bool ModelChecker::is_feasible_prefix_ignore_relseq() const
1398 {
1399         return !is_infeasible() && promises->size() == 0;
1400 }
1401
1402 /**
1403  * Check if the current partial trace is infeasible. Does not check any
1404  * end-of-execution flags, which might rule out the execution. Thus, this is
1405  * useful only for ruling an execution as infeasible.
1406  * @return whether the current partial trace is infeasible.
1407  */
1408 bool ModelChecker::is_infeasible() const
1409 {
1410         return mo_graph->checkForRMWViolation() ||
1411                 mo_graph->checkForCycles() ||
1412                 priv->failed_promise ||
1413                 priv->too_many_reads ||
1414                 priv->bad_synchronization ||
1415                 promises_expired();
1416 }
1417
1418 /** Close out a RMWR by converting previous RMWR into a RMW or READ. */
1419 ModelAction * ModelChecker::process_rmw(ModelAction *act) {
1420         ModelAction *lastread = get_last_action(act->get_tid());
1421         lastread->process_rmw(act);
1422         if (act->is_rmw() && lastread->get_reads_from() != NULL) {
1423                 mo_graph->addRMWEdge(lastread->get_reads_from(), lastread);
1424                 mo_graph->commitChanges();
1425         }
1426         return lastread;
1427 }
1428
1429 /**
1430  * Checks whether a thread has read from the same write for too many times
1431  * without seeing the effects of a later write.
1432  *
1433  * Basic idea:
1434  * 1) there must a different write that we could read from that would satisfy the modification order,
1435  * 2) we must have read from the same value in excess of maxreads times, and
1436  * 3) that other write must have been in the reads_from set for maxreads times.
1437  *
1438  * If so, we decide that the execution is no longer feasible.
1439  */
1440 void ModelChecker::check_recency(ModelAction *curr, const ModelAction *rf)
1441 {
1442         if (params.maxreads != 0) {
1443                 if (curr->get_node()->get_read_from_size() <= 1)
1444                         return;
1445                 //Must make sure that execution is currently feasible...  We could
1446                 //accidentally clear by rolling back
1447                 if (is_infeasible())
1448                         return;
1449                 std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1450                 int tid = id_to_int(curr->get_tid());
1451
1452                 /* Skip checks */
1453                 if ((int)thrd_lists->size() <= tid)
1454                         return;
1455                 action_list_t *list = &(*thrd_lists)[tid];
1456
1457                 action_list_t::reverse_iterator rit = list->rbegin();
1458                 /* Skip past curr */
1459                 for (; (*rit) != curr; rit++)
1460                         ;
1461                 /* go past curr now */
1462                 rit++;
1463
1464                 action_list_t::reverse_iterator ritcopy = rit;
1465                 //See if we have enough reads from the same value
1466                 int count = 0;
1467                 for (; count < params.maxreads; rit++, count++) {
1468                         if (rit == list->rend())
1469                                 return;
1470                         ModelAction *act = *rit;
1471                         if (!act->is_read())
1472                                 return;
1473
1474                         if (act->get_reads_from() != rf)
1475                                 return;
1476                         if (act->get_node()->get_read_from_size() <= 1)
1477                                 return;
1478                 }
1479                 for (int i = 0; i < curr->get_node()->get_read_from_size(); i++) {
1480                         /* Get write */
1481                         const ModelAction *write = curr->get_node()->get_read_from_at(i);
1482
1483                         /* Need a different write */
1484                         if (write == rf)
1485                                 continue;
1486
1487                         /* Test to see whether this is a feasible write to read from */
1488                         mo_graph->startChanges();
1489                         r_modification_order(curr, write);
1490                         bool feasiblereadfrom = !is_infeasible();
1491                         mo_graph->rollbackChanges();
1492
1493                         if (!feasiblereadfrom)
1494                                 continue;
1495                         rit = ritcopy;
1496
1497                         bool feasiblewrite = true;
1498                         //new we need to see if this write works for everyone
1499
1500                         for (int loop = count; loop > 0; loop--, rit++) {
1501                                 ModelAction *act = *rit;
1502                                 bool foundvalue = false;
1503                                 for (int j = 0; j < act->get_node()->get_read_from_size(); j++) {
1504                                         if (act->get_node()->get_read_from_at(j) == write) {
1505                                                 foundvalue = true;
1506                                                 break;
1507                                         }
1508                                 }
1509                                 if (!foundvalue) {
1510                                         feasiblewrite = false;
1511                                         break;
1512                                 }
1513                         }
1514                         if (feasiblewrite) {
1515                                 priv->too_many_reads = true;
1516                                 return;
1517                         }
1518                 }
1519         }
1520 }
1521
1522 /**
1523  * Updates the mo_graph with the constraints imposed from the current
1524  * read.
1525  *
1526  * Basic idea is the following: Go through each other thread and find
1527  * the lastest action that happened before our read.  Two cases:
1528  *
1529  * (1) The action is a write => that write must either occur before
1530  * the write we read from or be the write we read from.
1531  *
1532  * (2) The action is a read => the write that that action read from
1533  * must occur before the write we read from or be the same write.
1534  *
1535  * @param curr The current action. Must be a read.
1536  * @param rf The action that curr reads from. Must be a write.
1537  * @return True if modification order edges were added; false otherwise
1538  */
1539 bool ModelChecker::r_modification_order(ModelAction *curr, const ModelAction *rf)
1540 {
1541         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1542         unsigned int i;
1543         bool added = false;
1544         ASSERT(curr->is_read());
1545
1546         /* Last SC fence in the current thread */
1547         ModelAction *last_sc_fence_local = get_last_seq_cst_fence(curr->get_tid(), NULL);
1548
1549         /* Iterate over all threads */
1550         for (i = 0; i < thrd_lists->size(); i++) {
1551                 /* Last SC fence in thread i */
1552                 ModelAction *last_sc_fence_thread_local = NULL;
1553                 if (int_to_id((int)i) != curr->get_tid())
1554                         last_sc_fence_thread_local = get_last_seq_cst_fence(int_to_id(i), NULL);
1555
1556                 /* Last SC fence in thread i, before last SC fence in current thread */
1557                 ModelAction *last_sc_fence_thread_before = NULL;
1558                 if (last_sc_fence_local)
1559                         last_sc_fence_thread_before = get_last_seq_cst_fence(int_to_id(i), last_sc_fence_local);
1560
1561                 /* Iterate over actions in thread, starting from most recent */
1562                 action_list_t *list = &(*thrd_lists)[i];
1563                 action_list_t::reverse_iterator rit;
1564                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1565                         ModelAction *act = *rit;
1566
1567                         if (act->is_write() && act != rf && act != curr) {
1568                                 /* C++, Section 29.3 statement 5 */
1569                                 if (curr->is_seqcst() && last_sc_fence_thread_local &&
1570                                                 *act < *last_sc_fence_thread_local) {
1571                                         mo_graph->addEdge(act, rf);
1572                                         added = true;
1573                                         break;
1574                                 }
1575                                 /* C++, Section 29.3 statement 4 */
1576                                 else if (act->is_seqcst() && last_sc_fence_local &&
1577                                                 *act < *last_sc_fence_local) {
1578                                         mo_graph->addEdge(act, rf);
1579                                         added = true;
1580                                         break;
1581                                 }
1582                                 /* C++, Section 29.3 statement 6 */
1583                                 else if (last_sc_fence_thread_before &&
1584                                                 *act < *last_sc_fence_thread_before) {
1585                                         mo_graph->addEdge(act, rf);
1586                                         added = true;
1587                                         break;
1588                                 }
1589                         }
1590
1591                         /*
1592                          * Include at most one act per-thread that "happens
1593                          * before" curr. Don't consider reflexively.
1594                          */
1595                         if (act->happens_before(curr) && act != curr) {
1596                                 if (act->is_write()) {
1597                                         if (rf != act) {
1598                                                 mo_graph->addEdge(act, rf);
1599                                                 added = true;
1600                                         }
1601                                 } else {
1602                                         const ModelAction *prevreadfrom = act->get_reads_from();
1603                                         //if the previous read is unresolved, keep going...
1604                                         if (prevreadfrom == NULL)
1605                                                 continue;
1606
1607                                         if (rf != prevreadfrom) {
1608                                                 mo_graph->addEdge(prevreadfrom, rf);
1609                                                 added = true;
1610                                         }
1611                                 }
1612                                 break;
1613                         }
1614                 }
1615         }
1616
1617         return added;
1618 }
1619
1620 /** This method fixes up the modification order when we resolve a
1621  *  promises.  The basic problem is that actions that occur after the
1622  *  read curr could not property add items to the modification order
1623  *  for our read.
1624  *
1625  *  So for each thread, we find the earliest item that happens after
1626  *  the read curr.  This is the item we have to fix up with additional
1627  *  constraints.  If that action is write, we add a MO edge between
1628  *  the Action rf and that action.  If the action is a read, we add a
1629  *  MO edge between the Action rf, and whatever the read accessed.
1630  *
1631  * @param curr is the read ModelAction that we are fixing up MO edges for.
1632  * @param rf is the write ModelAction that curr reads from.
1633  *
1634  */
1635 void ModelChecker::post_r_modification_order(ModelAction *curr, const ModelAction *rf)
1636 {
1637         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1638         unsigned int i;
1639         ASSERT(curr->is_read());
1640
1641         /* Iterate over all threads */
1642         for (i = 0; i < thrd_lists->size(); i++) {
1643                 /* Iterate over actions in thread, starting from most recent */
1644                 action_list_t *list = &(*thrd_lists)[i];
1645                 action_list_t::reverse_iterator rit;
1646                 ModelAction *lastact = NULL;
1647
1648                 /* Find last action that happens after curr that is either not curr or a rmw */
1649                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1650                         ModelAction *act = *rit;
1651                         if (curr->happens_before(act) && (curr != act || curr->is_rmw())) {
1652                                 lastact = act;
1653                         } else
1654                                 break;
1655                 }
1656
1657                         /* Include at most one act per-thread that "happens before" curr */
1658                 if (lastact != NULL) {
1659                         if (lastact == curr) {
1660                                 //Case 1: The resolved read is a RMW, and we need to make sure
1661                                 //that the write portion of the RMW mod order after rf
1662
1663                                 mo_graph->addEdge(rf, lastact);
1664                         } else if (lastact->is_read()) {
1665                                 //Case 2: The resolved read is a normal read and the next
1666                                 //operation is a read, and we need to make sure the value read
1667                                 //is mod ordered after rf
1668
1669                                 const ModelAction *postreadfrom = lastact->get_reads_from();
1670                                 if (postreadfrom != NULL && rf != postreadfrom)
1671                                         mo_graph->addEdge(rf, postreadfrom);
1672                         } else {
1673                                 //Case 3: The resolved read is a normal read and the next
1674                                 //operation is a write, and we need to make sure that the
1675                                 //write is mod ordered after rf
1676                                 if (lastact != rf)
1677                                         mo_graph->addEdge(rf, lastact);
1678                         }
1679                         break;
1680                 }
1681         }
1682 }
1683
1684 /**
1685  * Updates the mo_graph with the constraints imposed from the current write.
1686  *
1687  * Basic idea is the following: Go through each other thread and find
1688  * the lastest action that happened before our write.  Two cases:
1689  *
1690  * (1) The action is a write => that write must occur before
1691  * the current write
1692  *
1693  * (2) The action is a read => the write that that action read from
1694  * must occur before the current write.
1695  *
1696  * This method also handles two other issues:
1697  *
1698  * (I) Sequential Consistency: Making sure that if the current write is
1699  * seq_cst, that it occurs after the previous seq_cst write.
1700  *
1701  * (II) Sending the write back to non-synchronizing reads.
1702  *
1703  * @param curr The current action. Must be a write.
1704  * @return True if modification order edges were added; false otherwise
1705  */
1706 bool ModelChecker::w_modification_order(ModelAction *curr)
1707 {
1708         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1709         unsigned int i;
1710         bool added = false;
1711         ASSERT(curr->is_write());
1712
1713         if (curr->is_seqcst()) {
1714                 /* We have to at least see the last sequentially consistent write,
1715                          so we are initialized. */
1716                 ModelAction *last_seq_cst = get_last_seq_cst_write(curr);
1717                 if (last_seq_cst != NULL) {
1718                         mo_graph->addEdge(last_seq_cst, curr);
1719                         added = true;
1720                 }
1721         }
1722
1723         /* Last SC fence in the current thread */
1724         ModelAction *last_sc_fence_local = get_last_seq_cst_fence(curr->get_tid(), NULL);
1725
1726         /* Iterate over all threads */
1727         for (i = 0; i < thrd_lists->size(); i++) {
1728                 /* Last SC fence in thread i, before last SC fence in current thread */
1729                 ModelAction *last_sc_fence_thread_before = NULL;
1730                 if (last_sc_fence_local && int_to_id((int)i) != curr->get_tid())
1731                         last_sc_fence_thread_before = get_last_seq_cst_fence(int_to_id(i), last_sc_fence_local);
1732
1733                 /* Iterate over actions in thread, starting from most recent */
1734                 action_list_t *list = &(*thrd_lists)[i];
1735                 action_list_t::reverse_iterator rit;
1736                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1737                         ModelAction *act = *rit;
1738                         if (act == curr) {
1739                                 /*
1740                                  * 1) If RMW and it actually read from something, then we
1741                                  * already have all relevant edges, so just skip to next
1742                                  * thread.
1743                                  *
1744                                  * 2) If RMW and it didn't read from anything, we should
1745                                  * whatever edge we can get to speed up convergence.
1746                                  *
1747                                  * 3) If normal write, we need to look at earlier actions, so
1748                                  * continue processing list.
1749                                  */
1750                                 if (curr->is_rmw()) {
1751                                         if (curr->get_reads_from() != NULL)
1752                                                 break;
1753                                         else
1754                                                 continue;
1755                                 } else
1756                                         continue;
1757                         }
1758
1759                         /* C++, Section 29.3 statement 7 */
1760                         if (last_sc_fence_thread_before && act->is_write() &&
1761                                         *act < *last_sc_fence_thread_before) {
1762                                 mo_graph->addEdge(act, curr);
1763                                 added = true;
1764                                 break;
1765                         }
1766
1767                         /*
1768                          * Include at most one act per-thread that "happens
1769                          * before" curr
1770                          */
1771                         if (act->happens_before(curr)) {
1772                                 /*
1773                                  * Note: if act is RMW, just add edge:
1774                                  *   act --mo--> curr
1775                                  * The following edge should be handled elsewhere:
1776                                  *   readfrom(act) --mo--> act
1777                                  */
1778                                 if (act->is_write())
1779                                         mo_graph->addEdge(act, curr);
1780                                 else if (act->is_read()) {
1781                                         //if previous read accessed a null, just keep going
1782                                         if (act->get_reads_from() == NULL)
1783                                                 continue;
1784                                         mo_graph->addEdge(act->get_reads_from(), curr);
1785                                 }
1786                                 added = true;
1787                                 break;
1788                         } else if (act->is_read() && !act->could_synchronize_with(curr) &&
1789                                                      !act->same_thread(curr)) {
1790                                 /* We have an action that:
1791                                    (1) did not happen before us
1792                                    (2) is a read and we are a write
1793                                    (3) cannot synchronize with us
1794                                    (4) is in a different thread
1795                                    =>
1796                                    that read could potentially read from our write.  Note that
1797                                    these checks are overly conservative at this point, we'll
1798                                    do more checks before actually removing the
1799                                    pendingfuturevalue.
1800
1801                                  */
1802                                 if (thin_air_constraint_may_allow(curr, act)) {
1803                                         if (!is_infeasible())
1804                                                 futurevalues->push_back(PendingFutureValue(curr, act));
1805                                         else if (curr->is_rmw() && act->is_rmw() && curr->get_reads_from() && curr->get_reads_from() == act->get_reads_from())
1806                                                 add_future_value(curr, act);
1807                                 }
1808                         }
1809                 }
1810         }
1811
1812         return added;
1813 }
1814
1815 /** Arbitrary reads from the future are not allowed.  Section 29.3
1816  * part 9 places some constraints.  This method checks one result of constraint
1817  * constraint.  Others require compiler support. */
1818 bool ModelChecker::thin_air_constraint_may_allow(const ModelAction *writer, const ModelAction *reader)
1819 {
1820         if (!writer->is_rmw())
1821                 return true;
1822
1823         if (!reader->is_rmw())
1824                 return true;
1825
1826         for (const ModelAction *search = writer->get_reads_from(); search != NULL; search = search->get_reads_from()) {
1827                 if (search == reader)
1828                         return false;
1829                 if (search->get_tid() == reader->get_tid() &&
1830                                 search->happens_before(reader))
1831                         break;
1832         }
1833
1834         return true;
1835 }
1836
1837 /**
1838  * Arbitrary reads from the future are not allowed. Section 29.3 part 9 places
1839  * some constraints. This method checks one the following constraint (others
1840  * require compiler support):
1841  *
1842  *   If X --hb-> Y --mo-> Z, then X should not read from Z.
1843  */
1844 bool ModelChecker::mo_may_allow(const ModelAction *writer, const ModelAction *reader)
1845 {
1846         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, reader->get_location());
1847         unsigned int i;
1848         /* Iterate over all threads */
1849         for (i = 0; i < thrd_lists->size(); i++) {
1850                 const ModelAction *write_after_read = NULL;
1851
1852                 /* Iterate over actions in thread, starting from most recent */
1853                 action_list_t *list = &(*thrd_lists)[i];
1854                 action_list_t::reverse_iterator rit;
1855                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1856                         ModelAction *act = *rit;
1857
1858                         /* Don't disallow due to act == reader */
1859                         if (!reader->happens_before(act) || reader == act)
1860                                 break;
1861                         else if (act->is_write())
1862                                 write_after_read = act;
1863                         else if (act->is_read() && act->get_reads_from() != NULL)
1864                                 write_after_read = act->get_reads_from();
1865                 }
1866
1867                 if (write_after_read && write_after_read != writer && mo_graph->checkReachable(write_after_read, writer))
1868                         return false;
1869         }
1870         return true;
1871 }
1872
1873 /**
1874  * Finds the head(s) of the release sequence(s) containing a given ModelAction.
1875  * The ModelAction under consideration is expected to be taking part in
1876  * release/acquire synchronization as an object of the "reads from" relation.
1877  * Note that this can only provide release sequence support for RMW chains
1878  * which do not read from the future, as those actions cannot be traced until
1879  * their "promise" is fulfilled. Similarly, we may not even establish the
1880  * presence of a release sequence with certainty, as some modification order
1881  * constraints may be decided further in the future. Thus, this function
1882  * "returns" two pieces of data: a pass-by-reference vector of @a release_heads
1883  * and a boolean representing certainty.
1884  *
1885  * @param rf The action that might be part of a release sequence. Must be a
1886  * write.
1887  * @param release_heads A pass-by-reference style return parameter. After
1888  * execution of this function, release_heads will contain the heads of all the
1889  * relevant release sequences, if any exists with certainty
1890  * @param pending A pass-by-reference style return parameter which is only used
1891  * when returning false (i.e., uncertain). Returns most information regarding
1892  * an uncertain release sequence, including any write operations that might
1893  * break the sequence.
1894  * @return true, if the ModelChecker is certain that release_heads is complete;
1895  * false otherwise
1896  */
1897 bool ModelChecker::release_seq_heads(const ModelAction *rf,
1898                 rel_heads_list_t *release_heads,
1899                 struct release_seq *pending) const
1900 {
1901         /* Only check for release sequences if there are no cycles */
1902         if (mo_graph->checkForCycles())
1903                 return false;
1904
1905         while (rf) {
1906                 ASSERT(rf->is_write());
1907
1908                 if (rf->is_release())
1909                         release_heads->push_back(rf);
1910                 else if (rf->get_last_fence_release())
1911                         release_heads->push_back(rf->get_last_fence_release());
1912                 if (!rf->is_rmw())
1913                         break; /* End of RMW chain */
1914
1915                 /** @todo Need to be smarter here...  In the linux lock
1916                  * example, this will run to the beginning of the program for
1917                  * every acquire. */
1918                 /** @todo The way to be smarter here is to keep going until 1
1919                  * thread has a release preceded by an acquire and you've seen
1920                  *       both. */
1921
1922                 /* acq_rel RMW is a sufficient stopping condition */
1923                 if (rf->is_acquire() && rf->is_release())
1924                         return true; /* complete */
1925
1926                 rf = rf->get_reads_from();
1927         };
1928         if (!rf) {
1929                 /* read from future: need to settle this later */
1930                 pending->rf = NULL;
1931                 return false; /* incomplete */
1932         }
1933
1934         if (rf->is_release())
1935                 return true; /* complete */
1936
1937         /* else relaxed write
1938          * - check for fence-release in the same thread (29.8, stmt. 3)
1939          * - check modification order for contiguous subsequence
1940          *   -> rf must be same thread as release */
1941
1942         const ModelAction *fence_release = rf->get_last_fence_release();
1943         /* Synchronize with a fence-release unconditionally; we don't need to
1944          * find any more "contiguous subsequence..." for it */
1945         if (fence_release)
1946                 release_heads->push_back(fence_release);
1947
1948         int tid = id_to_int(rf->get_tid());
1949         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, rf->get_location());
1950         action_list_t *list = &(*thrd_lists)[tid];
1951         action_list_t::const_reverse_iterator rit;
1952
1953         /* Find rf in the thread list */
1954         rit = std::find(list->rbegin(), list->rend(), rf);
1955         ASSERT(rit != list->rend());
1956
1957         /* Find the last {write,fence}-release */
1958         for (; rit != list->rend(); rit++) {
1959                 if (fence_release && *(*rit) < *fence_release)
1960                         break;
1961                 if ((*rit)->is_release())
1962                         break;
1963         }
1964         if (rit == list->rend()) {
1965                 /* No write-release in this thread */
1966                 return true; /* complete */
1967         } else if (fence_release && *(*rit) < *fence_release) {
1968                 /* The fence-release is more recent (and so, "stronger") than
1969                  * the most recent write-release */
1970                 return true; /* complete */
1971         } /* else, need to establish contiguous release sequence */
1972         ModelAction *release = *rit;
1973
1974         ASSERT(rf->same_thread(release));
1975
1976         pending->writes.clear();
1977
1978         bool certain = true;
1979         for (unsigned int i = 0; i < thrd_lists->size(); i++) {
1980                 if (id_to_int(rf->get_tid()) == (int)i)
1981                         continue;
1982                 list = &(*thrd_lists)[i];
1983
1984                 /* Can we ensure no future writes from this thread may break
1985                  * the release seq? */
1986                 bool future_ordered = false;
1987
1988                 ModelAction *last = get_last_action(int_to_id(i));
1989                 Thread *th = get_thread(int_to_id(i));
1990                 if ((last && rf->happens_before(last)) ||
1991                                 !is_enabled(th) ||
1992                                 th->is_complete())
1993                         future_ordered = true;
1994
1995                 ASSERT(!th->is_model_thread() || future_ordered);
1996
1997                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1998                         const ModelAction *act = *rit;
1999                         /* Reach synchronization -> this thread is complete */
2000                         if (act->happens_before(release))
2001                                 break;
2002                         if (rf->happens_before(act)) {
2003                                 future_ordered = true;
2004                                 continue;
2005                         }
2006
2007                         /* Only non-RMW writes can break release sequences */
2008                         if (!act->is_write() || act->is_rmw())
2009                                 continue;
2010
2011                         /* Check modification order */
2012                         if (mo_graph->checkReachable(rf, act)) {
2013                                 /* rf --mo--> act */
2014                                 future_ordered = true;
2015                                 continue;
2016                         }
2017                         if (mo_graph->checkReachable(act, release))
2018                                 /* act --mo--> release */
2019                                 break;
2020                         if (mo_graph->checkReachable(release, act) &&
2021                                       mo_graph->checkReachable(act, rf)) {
2022                                 /* release --mo-> act --mo--> rf */
2023                                 return true; /* complete */
2024                         }
2025                         /* act may break release sequence */
2026                         pending->writes.push_back(act);
2027                         certain = false;
2028                 }
2029                 if (!future_ordered)
2030                         certain = false; /* This thread is uncertain */
2031         }
2032
2033         if (certain) {
2034                 release_heads->push_back(release);
2035                 pending->writes.clear();
2036         } else {
2037                 pending->release = release;
2038                 pending->rf = rf;
2039         }
2040         return certain;
2041 }
2042
2043 /**
2044  * An interface for getting the release sequence head(s) with which a
2045  * given ModelAction must synchronize. This function only returns a non-empty
2046  * result when it can locate a release sequence head with certainty. Otherwise,
2047  * it may mark the internal state of the ModelChecker so that it will handle
2048  * the release sequence at a later time, causing @a acquire to update its
2049  * synchronization at some later point in execution.
2050  *
2051  * @param acquire The 'acquire' action that may synchronize with a release
2052  * sequence
2053  * @param read The read action that may read from a release sequence; this may
2054  * be the same as acquire, or else an earlier action in the same thread (i.e.,
2055  * when 'acquire' is a fence-acquire)
2056  * @param release_heads A pass-by-reference return parameter. Will be filled
2057  * with the head(s) of the release sequence(s), if they exists with certainty.
2058  * @see ModelChecker::release_seq_heads
2059  */
2060 void ModelChecker::get_release_seq_heads(ModelAction *acquire,
2061                 ModelAction *read, rel_heads_list_t *release_heads)
2062 {
2063         const ModelAction *rf = read->get_reads_from();
2064         struct release_seq *sequence = (struct release_seq *)snapshot_calloc(1, sizeof(struct release_seq));
2065         sequence->acquire = acquire;
2066         sequence->read = read;
2067
2068         if (!release_seq_heads(rf, release_heads, sequence)) {
2069                 /* add act to 'lazy checking' list */
2070                 pending_rel_seqs->push_back(sequence);
2071         } else {
2072                 snapshot_free(sequence);
2073         }
2074 }
2075
2076 /**
2077  * Attempt to resolve all stashed operations that might synchronize with a
2078  * release sequence for a given location. This implements the "lazy" portion of
2079  * determining whether or not a release sequence was contiguous, since not all
2080  * modification order information is present at the time an action occurs.
2081  *
2082  * @param location The location/object that should be checked for release
2083  * sequence resolutions. A NULL value means to check all locations.
2084  * @param work_queue The work queue to which to add work items as they are
2085  * generated
2086  * @return True if any updates occurred (new synchronization, new mo_graph
2087  * edges)
2088  */
2089 bool ModelChecker::resolve_release_sequences(void *location, work_queue_t *work_queue)
2090 {
2091         bool updated = false;
2092         std::vector< struct release_seq *, SnapshotAlloc<struct release_seq *> >::iterator it = pending_rel_seqs->begin();
2093         while (it != pending_rel_seqs->end()) {
2094                 struct release_seq *pending = *it;
2095                 ModelAction *acquire = pending->acquire;
2096                 const ModelAction *read = pending->read;
2097
2098                 /* Only resolve sequences on the given location, if provided */
2099                 if (location && read->get_location() != location) {
2100                         it++;
2101                         continue;
2102                 }
2103
2104                 const ModelAction *rf = read->get_reads_from();
2105                 rel_heads_list_t release_heads;
2106                 bool complete;
2107                 complete = release_seq_heads(rf, &release_heads, pending);
2108                 for (unsigned int i = 0; i < release_heads.size(); i++) {
2109                         if (!acquire->has_synchronized_with(release_heads[i])) {
2110                                 if (acquire->synchronize_with(release_heads[i]))
2111                                         updated = true;
2112                                 else
2113                                         set_bad_synchronization();
2114                         }
2115                 }
2116
2117                 if (updated) {
2118                         /* Re-check all pending release sequences */
2119                         work_queue->push_back(CheckRelSeqWorkEntry(NULL));
2120                         /* Re-check read-acquire for mo_graph edges */
2121                         if (acquire->is_read())
2122                                 work_queue->push_back(MOEdgeWorkEntry(acquire));
2123
2124                         /* propagate synchronization to later actions */
2125                         action_list_t::reverse_iterator rit = action_trace->rbegin();
2126                         for (; (*rit) != acquire; rit++) {
2127                                 ModelAction *propagate = *rit;
2128                                 if (acquire->happens_before(propagate)) {
2129                                         propagate->synchronize_with(acquire);
2130                                         /* Re-check 'propagate' for mo_graph edges */
2131                                         work_queue->push_back(MOEdgeWorkEntry(propagate));
2132                                 }
2133                         }
2134                 }
2135                 if (complete) {
2136                         it = pending_rel_seqs->erase(it);
2137                         snapshot_free(pending);
2138                 } else {
2139                         it++;
2140                 }
2141         }
2142
2143         // If we resolved promises or data races, see if we have realized a data race.
2144         checkDataRaces();
2145
2146         return updated;
2147 }
2148
2149 /**
2150  * Performs various bookkeeping operations for the current ModelAction. For
2151  * instance, adds action to the per-object, per-thread action vector and to the
2152  * action trace list of all thread actions.
2153  *
2154  * @param act is the ModelAction to add.
2155  */
2156 void ModelChecker::add_action_to_lists(ModelAction *act)
2157 {
2158         int tid = id_to_int(act->get_tid());
2159         ModelAction *uninit = NULL;
2160         int uninit_id = -1;
2161         action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
2162         if (list->empty() && act->is_atomic_var()) {
2163                 uninit = new_uninitialized_action(act->get_location());
2164                 uninit_id = id_to_int(uninit->get_tid());
2165                 list->push_back(uninit);
2166         }
2167         list->push_back(act);
2168
2169         action_trace->push_back(act);
2170         if (uninit)
2171                 action_trace->push_front(uninit);
2172
2173         std::vector<action_list_t> *vec = get_safe_ptr_vect_action(obj_thrd_map, act->get_location());
2174         if (tid >= (int)vec->size())
2175                 vec->resize(priv->next_thread_id);
2176         (*vec)[tid].push_back(act);
2177         if (uninit)
2178                 (*vec)[uninit_id].push_front(uninit);
2179
2180         if ((int)thrd_last_action->size() <= tid)
2181                 thrd_last_action->resize(get_num_threads());
2182         (*thrd_last_action)[tid] = act;
2183         if (uninit)
2184                 (*thrd_last_action)[uninit_id] = uninit;
2185
2186         if (act->is_fence() && act->is_release()) {
2187                 if ((int)thrd_last_fence_release->size() <= tid)
2188                         thrd_last_fence_release->resize(get_num_threads());
2189                 (*thrd_last_fence_release)[tid] = act;
2190         }
2191
2192         if (act->is_wait()) {
2193                 void *mutex_loc = (void *) act->get_value();
2194                 get_safe_ptr_action(obj_map, mutex_loc)->push_back(act);
2195
2196                 std::vector<action_list_t> *vec = get_safe_ptr_vect_action(obj_thrd_map, mutex_loc);
2197                 if (tid >= (int)vec->size())
2198                         vec->resize(priv->next_thread_id);
2199                 (*vec)[tid].push_back(act);
2200         }
2201 }
2202
2203 /**
2204  * @brief Get the last action performed by a particular Thread
2205  * @param tid The thread ID of the Thread in question
2206  * @return The last action in the thread
2207  */
2208 ModelAction * ModelChecker::get_last_action(thread_id_t tid) const
2209 {
2210         int threadid = id_to_int(tid);
2211         if (threadid < (int)thrd_last_action->size())
2212                 return (*thrd_last_action)[id_to_int(tid)];
2213         else
2214                 return NULL;
2215 }
2216
2217 /**
2218  * @brief Get the last fence release performed by a particular Thread
2219  * @param tid The thread ID of the Thread in question
2220  * @return The last fence release in the thread, if one exists; NULL otherwise
2221  */
2222 ModelAction * ModelChecker::get_last_fence_release(thread_id_t tid) const
2223 {
2224         int threadid = id_to_int(tid);
2225         if (threadid < (int)thrd_last_fence_release->size())
2226                 return (*thrd_last_fence_release)[id_to_int(tid)];
2227         else
2228                 return NULL;
2229 }
2230
2231 /**
2232  * Gets the last memory_order_seq_cst write (in the total global sequence)
2233  * performed on a particular object (i.e., memory location), not including the
2234  * current action.
2235  * @param curr The current ModelAction; also denotes the object location to
2236  * check
2237  * @return The last seq_cst write
2238  */
2239 ModelAction * ModelChecker::get_last_seq_cst_write(ModelAction *curr) const
2240 {
2241         void *location = curr->get_location();
2242         action_list_t *list = get_safe_ptr_action(obj_map, location);
2243         /* Find: max({i in dom(S) | seq_cst(t_i) && isWrite(t_i) && samevar(t_i, t)}) */
2244         action_list_t::reverse_iterator rit;
2245         for (rit = list->rbegin(); rit != list->rend(); rit++)
2246                 if ((*rit)->is_write() && (*rit)->is_seqcst() && (*rit) != curr)
2247                         return *rit;
2248         return NULL;
2249 }
2250
2251 /**
2252  * Gets the last memory_order_seq_cst fence (in the total global sequence)
2253  * performed in a particular thread, prior to a particular fence.
2254  * @param tid The ID of the thread to check
2255  * @param before_fence The fence from which to begin the search; if NULL, then
2256  * search for the most recent fence in the thread.
2257  * @return The last prior seq_cst fence in the thread, if exists; otherwise, NULL
2258  */
2259 ModelAction * ModelChecker::get_last_seq_cst_fence(thread_id_t tid, const ModelAction *before_fence) const
2260 {
2261         /* All fences should have NULL location */
2262         action_list_t *list = get_safe_ptr_action(obj_map, NULL);
2263         action_list_t::reverse_iterator rit = list->rbegin();
2264
2265         if (before_fence) {
2266                 for (; rit != list->rend(); rit++)
2267                         if (*rit == before_fence)
2268                                 break;
2269
2270                 ASSERT(*rit == before_fence);
2271                 rit++;
2272         }
2273
2274         for (; rit != list->rend(); rit++)
2275                 if ((*rit)->is_fence() && (tid == (*rit)->get_tid()) && (*rit)->is_seqcst())
2276                         return *rit;
2277         return NULL;
2278 }
2279
2280 /**
2281  * Gets the last unlock operation performed on a particular mutex (i.e., memory
2282  * location). This function identifies the mutex according to the current
2283  * action, which is presumed to perform on the same mutex.
2284  * @param curr The current ModelAction; also denotes the object location to
2285  * check
2286  * @return The last unlock operation
2287  */
2288 ModelAction * ModelChecker::get_last_unlock(ModelAction *curr) const
2289 {
2290         void *location = curr->get_location();
2291         action_list_t *list = get_safe_ptr_action(obj_map, location);
2292         /* Find: max({i in dom(S) | isUnlock(t_i) && samevar(t_i, t)}) */
2293         action_list_t::reverse_iterator rit;
2294         for (rit = list->rbegin(); rit != list->rend(); rit++)
2295                 if ((*rit)->is_unlock() || (*rit)->is_wait())
2296                         return *rit;
2297         return NULL;
2298 }
2299
2300 ModelAction * ModelChecker::get_parent_action(thread_id_t tid) const
2301 {
2302         ModelAction *parent = get_last_action(tid);
2303         if (!parent)
2304                 parent = get_thread(tid)->get_creation();
2305         return parent;
2306 }
2307
2308 /**
2309  * Returns the clock vector for a given thread.
2310  * @param tid The thread whose clock vector we want
2311  * @return Desired clock vector
2312  */
2313 ClockVector * ModelChecker::get_cv(thread_id_t tid) const
2314 {
2315         return get_parent_action(tid)->get_cv();
2316 }
2317
2318 /**
2319  * Resolve a set of Promises with a current write. The set is provided in the
2320  * Node corresponding to @a write.
2321  * @param write The ModelAction that is fulfilling Promises
2322  * @return True if promises were resolved; false otherwise
2323  */
2324 bool ModelChecker::resolve_promises(ModelAction *write)
2325 {
2326         bool resolved = false;
2327         std::vector< ModelAction *, ModelAlloc<ModelAction *> > actions_to_check;
2328
2329         for (unsigned int i = 0, promise_index = 0; promise_index < promises->size(); i++) {
2330                 Promise *promise = (*promises)[promise_index];
2331                 if (write->get_node()->get_promise(i)) {
2332                         ModelAction *read = promise->get_action();
2333                         if (read->is_rmw()) {
2334                                 mo_graph->addRMWEdge(write, read);
2335                         }
2336                         read_from(read, write);
2337                         //First fix up the modification order for actions that happened
2338                         //before the read
2339                         r_modification_order(read, write);
2340                         //Next fix up the modification order for actions that happened
2341                         //after the read.
2342                         post_r_modification_order(read, write);
2343                         //Make sure the promise's value matches the write's value
2344                         ASSERT(promise->get_value() == write->get_value());
2345                         delete(promise);
2346
2347                         promises->erase(promises->begin() + promise_index);
2348                         actions_to_check.push_back(read);
2349
2350                         resolved = true;
2351                 } else
2352                         promise_index++;
2353         }
2354
2355         //Check whether reading these writes has made threads unable to
2356         //resolve promises
2357
2358         for (unsigned int i = 0; i < actions_to_check.size(); i++) {
2359                 ModelAction *read=actions_to_check[i];
2360                 mo_check_promises(read->get_tid(), write, read);
2361         }
2362
2363         return resolved;
2364 }
2365
2366 /**
2367  * Compute the set of promises that could potentially be satisfied by this
2368  * action. Note that the set computation actually appears in the Node, not in
2369  * ModelChecker.
2370  * @param curr The ModelAction that may satisfy promises
2371  */
2372 void ModelChecker::compute_promises(ModelAction *curr)
2373 {
2374         for (unsigned int i = 0; i < promises->size(); i++) {
2375                 Promise *promise = (*promises)[i];
2376                 const ModelAction *act = promise->get_action();
2377                 if (!act->happens_before(curr) &&
2378                                 act->is_read() &&
2379                                 !act->could_synchronize_with(curr) &&
2380                                 !act->same_thread(curr) &&
2381                                 act->get_location() == curr->get_location() &&
2382                                 promise->get_value() == curr->get_value()) {
2383                         curr->get_node()->set_promise(i, act->is_rmw());
2384                 }
2385         }
2386 }
2387
2388 /** Checks promises in response to change in ClockVector Threads. */
2389 void ModelChecker::check_promises(thread_id_t tid, ClockVector *old_cv, ClockVector *merge_cv)
2390 {
2391         for (unsigned int i = 0; i < promises->size(); i++) {
2392                 Promise *promise = (*promises)[i];
2393                 const ModelAction *act = promise->get_action();
2394                 if ((old_cv == NULL || !old_cv->synchronized_since(act)) &&
2395                                 merge_cv->synchronized_since(act)) {
2396                         if (promise->eliminate_thread(tid)) {
2397                                 //Promise has failed
2398                                 priv->failed_promise = true;
2399                                 return;
2400                         }
2401                 }
2402         }
2403 }
2404
2405 void ModelChecker::check_promises_thread_disabled()
2406 {
2407         for (unsigned int i = 0; i < promises->size(); i++) {
2408                 Promise *promise = (*promises)[i];
2409                 if (promise->has_failed()) {
2410                         priv->failed_promise = true;
2411                         return;
2412                 }
2413         }
2414 }
2415
2416 /**
2417  * @brief Checks promises in response to addition to modification order for
2418  * threads.
2419  *
2420  * Definitions:
2421  *
2422  * pthread is the thread that performed the read that created the promise
2423  *
2424  * pread is the read that created the promise
2425  *
2426  * pwrite is either the first write to same location as pread by
2427  * pthread that is sequenced after pread or the write read by the
2428  * first read to the same location as pread by pthread that is
2429  * sequenced after pread.
2430  *
2431  * 1. If tid=pthread, then we check what other threads are reachable
2432  * through the mod order starting with pwrite.  Those threads cannot
2433  * perform a write that will resolve the promise due to modification
2434  * order constraints.
2435  *
2436  * 2. If the tid is not pthread, we check whether pwrite can reach the
2437  * action write through the modification order.  If so, that thread
2438  * cannot perform a future write that will resolve the promise due to
2439  * modificatin order constraints.
2440  *
2441  * @param tid The thread that either read from the model action write, or
2442  * actually did the model action write.
2443  *
2444  * @param write The ModelAction representing the relevant write.
2445  * @param read  The ModelAction that reads a promised write, or NULL otherwise.
2446  */
2447 void ModelChecker::mo_check_promises(thread_id_t tid, const ModelAction *write, const ModelAction *read)
2448 {
2449         void *location = write->get_location();
2450         for (unsigned int i = 0; i < promises->size(); i++) {
2451                 Promise *promise = (*promises)[i];
2452                 const ModelAction *act = promise->get_action();
2453
2454                 // Is this promise on the same location?
2455                 if (act->get_location() != location)
2456                         continue;
2457
2458                 // same thread as the promise
2459                 if (act->get_tid() == tid) {
2460                         // make sure that the reader of this write happens after the promise
2461                         if ((read == NULL) || (promise->get_action()->happens_before(read))) {
2462                                 // do we have a pwrite for the promise, if not, set it
2463                                 if (promise->get_write() == NULL) {
2464                                         promise->set_write(write);
2465                                         // The pwrite cannot happen before the promise
2466                                         if (write->happens_before(act) && (write != act)) {
2467                                                 priv->failed_promise = true;
2468                                                 return;
2469                                         }
2470                                 }
2471
2472                                 if (mo_graph->checkPromise(write, promise)) {
2473                                         priv->failed_promise = true;
2474                                         return;
2475                                 }
2476                         }
2477                 }
2478
2479                 // Don't do any lookups twice for the same thread
2480                 if (!promise->thread_is_available(tid))
2481                         continue;
2482
2483                 if (promise->get_write() && mo_graph->checkReachable(promise->get_write(), write)) {
2484                         if (promise->eliminate_thread(tid)) {
2485                                 priv->failed_promise = true;
2486                                 return;
2487                         }
2488                 }
2489         }
2490 }
2491
2492 /**
2493  * Compute the set of writes that may break the current pending release
2494  * sequence. This information is extracted from previou release sequence
2495  * calculations.
2496  *
2497  * @param curr The current ModelAction. Must be a release sequence fixup
2498  * action.
2499  */
2500 void ModelChecker::compute_relseq_breakwrites(ModelAction *curr)
2501 {
2502         if (pending_rel_seqs->empty())
2503                 return;
2504
2505         struct release_seq *pending = pending_rel_seqs->back();
2506         for (unsigned int i = 0; i < pending->writes.size(); i++) {
2507                 const ModelAction *write = pending->writes[i];
2508                 curr->get_node()->add_relseq_break(write);
2509         }
2510
2511         /* NULL means don't break the sequence; just synchronize */
2512         curr->get_node()->add_relseq_break(NULL);
2513 }
2514
2515 /**
2516  * Build up an initial set of all past writes that this 'read' action may read
2517  * from. This set is determined by the clock vector's "happens before"
2518  * relationship.
2519  * @param curr is the current ModelAction that we are exploring; it must be a
2520  * 'read' operation.
2521  */
2522 void ModelChecker::build_reads_from_past(ModelAction *curr)
2523 {
2524         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
2525         unsigned int i;
2526         ASSERT(curr->is_read());
2527
2528         ModelAction *last_sc_write = NULL;
2529
2530         if (curr->is_seqcst())
2531                 last_sc_write = get_last_seq_cst_write(curr);
2532
2533         /* Iterate over all threads */
2534         for (i = 0; i < thrd_lists->size(); i++) {
2535                 /* Iterate over actions in thread, starting from most recent */
2536                 action_list_t *list = &(*thrd_lists)[i];
2537                 action_list_t::reverse_iterator rit;
2538                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
2539                         ModelAction *act = *rit;
2540
2541                         /* Only consider 'write' actions */
2542                         if (!act->is_write() || act == curr)
2543                                 continue;
2544
2545                         /* Don't consider more than one seq_cst write if we are a seq_cst read. */
2546                         bool allow_read = true;
2547
2548                         if (curr->is_seqcst() && (act->is_seqcst() || (last_sc_write != NULL && act->happens_before(last_sc_write))) && act != last_sc_write)
2549                                 allow_read = false;
2550                         else if (curr->get_sleep_flag() && !curr->is_seqcst() && !sleep_can_read_from(curr, act))
2551                                 allow_read = false;
2552
2553                         if (allow_read)
2554                                 curr->get_node()->add_read_from(act);
2555
2556                         /* Include at most one act per-thread that "happens before" curr */
2557                         if (act->happens_before(curr))
2558                                 break;
2559                 }
2560         }
2561
2562         if (DBG_ENABLED()) {
2563                 model_print("Reached read action:\n");
2564                 curr->print();
2565                 model_print("Printing may_read_from\n");
2566                 curr->get_node()->print_may_read_from();
2567                 model_print("End printing may_read_from\n");
2568         }
2569 }
2570
2571 bool ModelChecker::sleep_can_read_from(ModelAction *curr, const ModelAction *write)
2572 {
2573         while (true) {
2574                 /* UNINIT actions don't have a Node, and they never sleep */
2575                 if (write->is_uninitialized())
2576                         return true;
2577                 Node *prevnode = write->get_node()->get_parent();
2578
2579                 bool thread_sleep = prevnode->enabled_status(curr->get_tid()) == THREAD_SLEEP_SET;
2580                 if (write->is_release() && thread_sleep)
2581                         return true;
2582                 if (!write->is_rmw()) {
2583                         return false;
2584                 }
2585                 if (write->get_reads_from() == NULL)
2586                         return true;
2587                 write = write->get_reads_from();
2588         }
2589 }
2590
2591 /**
2592  * @brief Create a new action representing an uninitialized atomic
2593  * @param location The memory location of the atomic object
2594  * @return A pointer to a new ModelAction
2595  */
2596 ModelAction * ModelChecker::new_uninitialized_action(void *location) const
2597 {
2598         ModelAction *act = (ModelAction *)snapshot_malloc(sizeof(class ModelAction));
2599         act = new (act) ModelAction(ATOMIC_UNINIT, std::memory_order_relaxed, location, 0, model_thread);
2600         act->create_cv(NULL);
2601         return act;
2602 }
2603
2604 static void print_list(action_list_t *list)
2605 {
2606         action_list_t::iterator it;
2607
2608         model_print("---------------------------------------------------------------------\n");
2609
2610         unsigned int hash = 0;
2611
2612         for (it = list->begin(); it != list->end(); it++) {
2613                 (*it)->print();
2614                 hash = hash^(hash<<3)^((*it)->hash());
2615         }
2616         model_print("HASH %u\n", hash);
2617         model_print("---------------------------------------------------------------------\n");
2618 }
2619
2620 #if SUPPORT_MOD_ORDER_DUMP
2621 void ModelChecker::dumpGraph(char *filename) const
2622 {
2623         char buffer[200];
2624         sprintf(buffer, "%s.dot", filename);
2625         FILE *file = fopen(buffer, "w");
2626         fprintf(file, "digraph %s {\n", filename);
2627         mo_graph->dumpNodes(file);
2628         ModelAction **thread_array = (ModelAction **)model_calloc(1, sizeof(ModelAction *) * get_num_threads());
2629
2630         for (action_list_t::iterator it = action_trace->begin(); it != action_trace->end(); it++) {
2631                 ModelAction *action = *it;
2632                 if (action->is_read()) {
2633                         fprintf(file, "N%u [label=\"%u, T%u\"];\n", action->get_seq_number(), action->get_seq_number(), action->get_tid());
2634                         if (action->get_reads_from() != NULL)
2635                                 fprintf(file, "N%u -> N%u[label=\"rf\", color=red];\n", action->get_seq_number(), action->get_reads_from()->get_seq_number());
2636                 }
2637                 if (thread_array[action->get_tid()] != NULL) {
2638                         fprintf(file, "N%u -> N%u[label=\"sb\", color=blue];\n", thread_array[action->get_tid()]->get_seq_number(), action->get_seq_number());
2639                 }
2640
2641                 thread_array[action->get_tid()] = action;
2642         }
2643         fprintf(file, "}\n");
2644         model_free(thread_array);
2645         fclose(file);
2646 }
2647 #endif
2648
2649 /** @brief Prints an execution trace summary. */
2650 void ModelChecker::print_summary() const
2651 {
2652 #if SUPPORT_MOD_ORDER_DUMP
2653         scheduler->print();
2654         char buffername[100];
2655         sprintf(buffername, "exec%04u", stats.num_total);
2656         mo_graph->dumpGraphToFile(buffername);
2657         sprintf(buffername, "graph%04u", stats.num_total);
2658         dumpGraph(buffername);
2659 #endif
2660
2661         model_print("Execution %d:", stats.num_total);
2662         if (isfeasibleprefix())
2663                 model_print("\n");
2664         else
2665                 print_infeasibility(" INFEASIBLE");
2666         print_list(action_trace);
2667         model_print("\n");
2668 }
2669
2670 /**
2671  * Add a Thread to the system for the first time. Should only be called once
2672  * per thread.
2673  * @param t The Thread to add
2674  */
2675 void ModelChecker::add_thread(Thread *t)
2676 {
2677         thread_map->put(id_to_int(t->get_id()), t);
2678         scheduler->add_thread(t);
2679 }
2680
2681 /**
2682  * Removes a thread from the scheduler.
2683  * @param the thread to remove.
2684  */
2685 void ModelChecker::remove_thread(Thread *t)
2686 {
2687         scheduler->remove_thread(t);
2688 }
2689
2690 /**
2691  * @brief Get a Thread reference by its ID
2692  * @param tid The Thread's ID
2693  * @return A Thread reference
2694  */
2695 Thread * ModelChecker::get_thread(thread_id_t tid) const
2696 {
2697         return thread_map->get(id_to_int(tid));
2698 }
2699
2700 /**
2701  * @brief Get a reference to the Thread in which a ModelAction was executed
2702  * @param act The ModelAction
2703  * @return A Thread reference
2704  */
2705 Thread * ModelChecker::get_thread(const ModelAction *act) const
2706 {
2707         return get_thread(act->get_tid());
2708 }
2709
2710 /**
2711  * @brief Check if a Thread is currently enabled
2712  * @param t The Thread to check
2713  * @return True if the Thread is currently enabled
2714  */
2715 bool ModelChecker::is_enabled(Thread *t) const
2716 {
2717         return scheduler->is_enabled(t);
2718 }
2719
2720 /**
2721  * @brief Check if a Thread is currently enabled
2722  * @param tid The ID of the Thread to check
2723  * @return True if the Thread is currently enabled
2724  */
2725 bool ModelChecker::is_enabled(thread_id_t tid) const
2726 {
2727         return scheduler->is_enabled(tid);
2728 }
2729
2730 /**
2731  * Switch from a user-context to the "master thread" context (a.k.a. system
2732  * context). This switch is made with the intention of exploring a particular
2733  * model-checking action (described by a ModelAction object). Must be called
2734  * from a user-thread context.
2735  *
2736  * @param act The current action that will be explored. May be NULL only if
2737  * trace is exiting via an assertion (see ModelChecker::set_assert and
2738  * ModelChecker::has_asserted).
2739  * @return Return the value returned by the current action
2740  */
2741 uint64_t ModelChecker::switch_to_master(ModelAction *act)
2742 {
2743         DBG();
2744         Thread *old = thread_current();
2745         set_current_action(act);
2746         old->set_state(THREAD_READY);
2747         if (Thread::swap(old, &system_context) < 0) {
2748                 perror("swap threads");
2749                 exit(EXIT_FAILURE);
2750         }
2751         return old->get_return_value();
2752 }
2753
2754 /**
2755  * Takes the next step in the execution, if possible.
2756  * @param curr The current step to take
2757  * @return Returns true (success) if a step was taken and false otherwise.
2758  */
2759 bool ModelChecker::take_step(ModelAction *curr)
2760 {
2761         if (has_asserted())
2762                 return false;
2763
2764         Thread *curr_thrd = get_thread(curr);
2765         ASSERT(curr_thrd->get_state() == THREAD_READY);
2766
2767         curr = check_current_action(curr);
2768
2769         /* Infeasible -> don't take any more steps */
2770         if (is_infeasible())
2771                 return false;
2772         else if (isfeasibleprefix() && have_bug_reports()) {
2773                 set_assert();
2774                 return false;
2775         }
2776
2777         if (params.bound != 0)
2778                 if (priv->used_sequence_numbers > params.bound)
2779                         return false;
2780
2781         if (curr_thrd->is_blocked() || curr_thrd->is_complete())
2782                 scheduler->remove_thread(curr_thrd);
2783
2784         Thread *next_thrd = get_next_thread(curr);
2785         next_thrd = scheduler->next_thread(next_thrd);
2786
2787         DEBUG("(%d, %d)\n", curr_thrd ? id_to_int(curr_thrd->get_id()) : -1,
2788                         next_thrd ? id_to_int(next_thrd->get_id()) : -1);
2789
2790         /*
2791          * Launch end-of-execution release sequence fixups only when there are:
2792          *
2793          * (1) no more user threads to run (or when execution replay chooses
2794          *     the 'model_thread')
2795          * (2) pending release sequences
2796          * (3) pending assertions (i.e., data races)
2797          * (4) no pending promises
2798          */
2799         if (!pending_rel_seqs->empty() && (!next_thrd || next_thrd->is_model_thread()) &&
2800                         is_feasible_prefix_ignore_relseq() && !unrealizedraces.empty()) {
2801                 model_print("*** WARNING: release sequence fixup action (%zu pending release seuqences) ***\n",
2802                                 pending_rel_seqs->size());
2803                 ModelAction *fixup = new ModelAction(MODEL_FIXUP_RELSEQ,
2804                                 std::memory_order_seq_cst, NULL, VALUE_NONE,
2805                                 model_thread);
2806                 set_current_action(fixup);
2807                 return true;
2808         }
2809
2810         /* next_thrd == NULL -> don't take any more steps */
2811         if (!next_thrd)
2812                 return false;
2813
2814         next_thrd->set_state(THREAD_RUNNING);
2815
2816         if (next_thrd->get_pending() != NULL) {
2817                 /* restart a pending action */
2818                 set_current_action(next_thrd->get_pending());
2819                 next_thrd->set_pending(NULL);
2820                 next_thrd->set_state(THREAD_READY);
2821                 return true;
2822         }
2823
2824         /* Return false only if swap fails with an error */
2825         return (Thread::swap(&system_context, next_thrd) == 0);
2826 }
2827
2828 /** Wrapper to run the user's main function, with appropriate arguments */
2829 void user_main_wrapper(void *)
2830 {
2831         user_main(model->params.argc, model->params.argv);
2832 }
2833
2834 /** @brief Run ModelChecker for the user program */
2835 void ModelChecker::run()
2836 {
2837         do {
2838                 thrd_t user_thread;
2839                 Thread *t = new Thread(&user_thread, &user_main_wrapper, NULL);
2840
2841                 add_thread(t);
2842
2843                 /* Run user thread up to its first action */
2844                 scheduler->next_thread(t);
2845                 Thread::swap(&system_context, t);
2846
2847                 /* Wait for all threads to complete */
2848                 while (take_step(priv->current_action));
2849         } while (next_execution());
2850
2851         print_stats();
2852 }