action: add is_thread_start()
[c11tester.git] / model.cc
1 #include <stdio.h>
2 #include <algorithm>
3 #include <mutex>
4
5 #include "model.h"
6 #include "action.h"
7 #include "nodestack.h"
8 #include "schedule.h"
9 #include "snapshot-interface.h"
10 #include "common.h"
11 #include "clockvector.h"
12 #include "cyclegraph.h"
13 #include "promise.h"
14 #include "datarace.h"
15 #include "threads-model.h"
16 #include "output.h"
17
18 #define INITIAL_THREAD_ID       0
19
20 ModelChecker *model;
21
22 struct bug_message {
23         bug_message(const char *str) {
24                 const char *fmt = "  [BUG] %s\n";
25                 msg = (char *)snapshot_malloc(strlen(fmt) + strlen(str));
26                 sprintf(msg, fmt, str);
27         }
28         ~bug_message() { if (msg) snapshot_free(msg); }
29
30         char *msg;
31         void print() { model_print("%s", msg); }
32
33         SNAPSHOTALLOC
34 };
35
36 /**
37  * Structure for holding small ModelChecker members that should be snapshotted
38  */
39 struct model_snapshot_members {
40         model_snapshot_members() :
41                 current_action(NULL),
42                 /* First thread created will have id INITIAL_THREAD_ID */
43                 next_thread_id(INITIAL_THREAD_ID),
44                 used_sequence_numbers(0),
45                 nextThread(NULL),
46                 next_backtrack(NULL),
47                 bugs(),
48                 stats(),
49                 failed_promise(false),
50                 too_many_reads(false),
51                 bad_synchronization(false),
52                 asserted(false)
53         { }
54
55         ~model_snapshot_members() {
56                 for (unsigned int i = 0; i < bugs.size(); i++)
57                         delete bugs[i];
58                 bugs.clear();
59         }
60
61         ModelAction *current_action;
62         unsigned int next_thread_id;
63         modelclock_t used_sequence_numbers;
64         Thread *nextThread;
65         ModelAction *next_backtrack;
66         std::vector< bug_message *, SnapshotAlloc<bug_message *> > bugs;
67         struct execution_stats stats;
68         bool failed_promise;
69         bool too_many_reads;
70         /** @brief Incorrectly-ordered synchronization was made */
71         bool bad_synchronization;
72         bool asserted;
73
74         SNAPSHOTALLOC
75 };
76
77 /** @brief Constructor */
78 ModelChecker::ModelChecker(struct model_params params) :
79         /* Initialize default scheduler */
80         params(params),
81         scheduler(new Scheduler()),
82         diverge(NULL),
83         earliest_diverge(NULL),
84         action_trace(new action_list_t()),
85         thread_map(new HashTable<int, Thread *, int>()),
86         obj_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
87         lock_waiters_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
88         condvar_waiters_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
89         obj_thrd_map(new HashTable<void *, std::vector<action_list_t> *, uintptr_t, 4 >()),
90         promises(new std::vector< Promise *, SnapshotAlloc<Promise *> >()),
91         futurevalues(new std::vector< struct PendingFutureValue, SnapshotAlloc<struct PendingFutureValue> >()),
92         pending_rel_seqs(new std::vector< struct release_seq *, SnapshotAlloc<struct release_seq *> >()),
93         thrd_last_action(new std::vector< ModelAction *, SnapshotAlloc<ModelAction *> >(1)),
94         thrd_last_fence_release(new std::vector< ModelAction *, SnapshotAlloc<ModelAction *> >()),
95         node_stack(new NodeStack()),
96         priv(new struct model_snapshot_members()),
97         mo_graph(new CycleGraph())
98 {
99         /* Initialize a model-checker thread, for special ModelActions */
100         model_thread = new Thread(get_next_id());
101         thread_map->put(id_to_int(model_thread->get_id()), model_thread);
102 }
103
104 /** @brief Destructor */
105 ModelChecker::~ModelChecker()
106 {
107         for (unsigned int i = 0; i < get_num_threads(); i++)
108                 delete thread_map->get(i);
109         delete thread_map;
110
111         delete obj_thrd_map;
112         delete obj_map;
113         delete lock_waiters_map;
114         delete condvar_waiters_map;
115         delete action_trace;
116
117         for (unsigned int i = 0; i < promises->size(); i++)
118                 delete (*promises)[i];
119         delete promises;
120
121         delete pending_rel_seqs;
122
123         delete thrd_last_action;
124         delete thrd_last_fence_release;
125         delete node_stack;
126         delete scheduler;
127         delete mo_graph;
128         delete priv;
129 }
130
131 static action_list_t * get_safe_ptr_action(HashTable<const void *, action_list_t *, uintptr_t, 4> * hash, void * ptr) {
132         action_list_t * tmp=hash->get(ptr);
133         if (tmp==NULL) {
134                 tmp=new action_list_t();
135                 hash->put(ptr, tmp);
136         }
137         return tmp;
138 }
139
140 static std::vector<action_list_t> * get_safe_ptr_vect_action(HashTable<void *, std::vector<action_list_t> *, uintptr_t, 4> * hash, void * ptr) {
141         std::vector<action_list_t> * tmp=hash->get(ptr);
142         if (tmp==NULL) {
143                 tmp=new std::vector<action_list_t>();
144                 hash->put(ptr, tmp);
145         }
146         return tmp;
147 }
148
149 /**
150  * Restores user program to initial state and resets all model-checker data
151  * structures.
152  */
153 void ModelChecker::reset_to_initial_state()
154 {
155         DEBUG("+++ Resetting to initial state +++\n");
156         node_stack->reset_execution();
157
158         /* Print all model-checker output before rollback */
159         fflush(model_out);
160
161         snapshotObject->backTrackBeforeStep(0);
162 }
163
164 /** @return a thread ID for a new Thread */
165 thread_id_t ModelChecker::get_next_id()
166 {
167         return priv->next_thread_id++;
168 }
169
170 /** @return the number of user threads created during this execution */
171 unsigned int ModelChecker::get_num_threads() const
172 {
173         return priv->next_thread_id;
174 }
175
176 /** @return The currently executing Thread. */
177 Thread * ModelChecker::get_current_thread() const
178 {
179         return scheduler->get_current_thread();
180 }
181
182 /** @return a sequence number for a new ModelAction */
183 modelclock_t ModelChecker::get_next_seq_num()
184 {
185         return ++priv->used_sequence_numbers;
186 }
187
188 Node * ModelChecker::get_curr_node() const
189 {
190         return node_stack->get_head();
191 }
192
193 /**
194  * @brief Choose the next thread to execute.
195  *
196  * This function chooses the next thread that should execute. It can force the
197  * adjacency of read/write portions of a RMW action, force THREAD_CREATE to be
198  * followed by a THREAD_START, or it can enforce execution replay/backtracking.
199  * The model-checker may have no preference regarding the next thread (i.e.,
200  * when exploring a new execution ordering), in which case this will return
201  * NULL.
202  * @param curr The current ModelAction. This action might guide the choice of
203  * next thread.
204  * @return The next thread to run. If the model-checker has no preference, NULL.
205  */
206 Thread * ModelChecker::get_next_thread(ModelAction *curr)
207 {
208         thread_id_t tid;
209
210         if (curr!=NULL) {
211                 /* Do not split atomic actions. */
212                 if (curr->is_rmwr())
213                         return thread_current();
214                 /* The THREAD_CREATE action points to the created Thread */
215                 else if (curr->get_type() == THREAD_CREATE)
216                         return (Thread *)curr->get_location();
217         }
218
219         /* Have we completed exploring the preselected path? */
220         if (diverge == NULL)
221                 return NULL;
222
223         /* Else, we are trying to replay an execution */
224         ModelAction *next = node_stack->get_next()->get_action();
225
226         if (next == diverge) {
227                 if (earliest_diverge == NULL || *diverge < *earliest_diverge)
228                         earliest_diverge=diverge;
229
230                 Node *nextnode = next->get_node();
231                 Node *prevnode = nextnode->get_parent();
232                 scheduler->update_sleep_set(prevnode);
233
234                 /* Reached divergence point */
235                 if (nextnode->increment_misc()) {
236                         /* The next node will try to satisfy a different misc_index values. */
237                         tid = next->get_tid();
238                         node_stack->pop_restofstack(2);
239                 } else if (nextnode->increment_promise()) {
240                         /* The next node will try to satisfy a different set of promises. */
241                         tid = next->get_tid();
242                         node_stack->pop_restofstack(2);
243                 } else if (nextnode->increment_read_from()) {
244                         /* The next node will read from a different value. */
245                         tid = next->get_tid();
246                         node_stack->pop_restofstack(2);
247                 } else if (nextnode->increment_future_value()) {
248                         /* The next node will try to read from a different future value. */
249                         tid = next->get_tid();
250                         node_stack->pop_restofstack(2);
251                 } else if (nextnode->increment_relseq_break()) {
252                         /* The next node will try to resolve a release sequence differently */
253                         tid = next->get_tid();
254                         node_stack->pop_restofstack(2);
255                 } else {
256                         /* Make a different thread execute for next step */
257                         scheduler->add_sleep(thread_map->get(id_to_int(next->get_tid())));
258                         tid = prevnode->get_next_backtrack();
259                         /* Make sure the backtracked thread isn't sleeping. */
260                         node_stack->pop_restofstack(1);
261                         if (diverge==earliest_diverge) {
262                                 earliest_diverge=prevnode->get_action();
263                         }
264                 }
265                 /* The correct sleep set is in the parent node. */
266                 execute_sleep_set();
267
268                 DEBUG("*** Divergence point ***\n");
269
270                 diverge = NULL;
271         } else {
272                 tid = next->get_tid();
273         }
274         DEBUG("*** ModelChecker chose next thread = %d ***\n", id_to_int(tid));
275         ASSERT(tid != THREAD_ID_T_NONE);
276         return thread_map->get(id_to_int(tid));
277 }
278
279 /**
280  * We need to know what the next actions of all threads in the sleep
281  * set will be.  This method computes them and stores the actions at
282  * the corresponding thread object's pending action.
283  */
284
285 void ModelChecker::execute_sleep_set() {
286         for(unsigned int i=0;i<get_num_threads();i++) {
287                 thread_id_t tid=int_to_id(i);
288                 Thread *thr=get_thread(tid);
289                 if ( scheduler->get_enabled(thr) == THREAD_SLEEP_SET &&
290                                  thr->get_pending() == NULL ) {
291                         thr->set_state(THREAD_RUNNING);
292                         scheduler->next_thread(thr);
293                         Thread::swap(&system_context, thr);
294                         priv->current_action->set_sleep_flag();
295                         thr->set_pending(priv->current_action);
296                 }
297         }
298         priv->current_action = NULL;
299 }
300
301 void ModelChecker::wake_up_sleeping_actions(ModelAction * curr) {
302         for(unsigned int i=0;i<get_num_threads();i++) {
303                 thread_id_t tid=int_to_id(i);
304                 Thread *thr=get_thread(tid);
305                 if ( scheduler->get_enabled(thr) == THREAD_SLEEP_SET ) {
306                         ModelAction *pending_act=thr->get_pending();
307                         if ((!curr->is_rmwr())&&pending_act->could_synchronize_with(curr)) {
308                                 //Remove this thread from sleep set
309                                 scheduler->remove_sleep(thr);
310                         }
311                 }
312         }
313 }
314
315 /** @brief Alert the model-checker that an incorrectly-ordered
316  * synchronization was made */
317 void ModelChecker::set_bad_synchronization()
318 {
319         priv->bad_synchronization = true;
320 }
321
322 bool ModelChecker::has_asserted() const
323 {
324         return priv->asserted;
325 }
326
327 void ModelChecker::set_assert()
328 {
329         priv->asserted = true;
330 }
331
332 /**
333  * Check if we are in a deadlock. Should only be called at the end of an
334  * execution, although it should not give false positives in the middle of an
335  * execution (there should be some ENABLED thread).
336  *
337  * @return True if program is in a deadlock; false otherwise
338  */
339 bool ModelChecker::is_deadlocked() const
340 {
341         bool blocking_threads = false;
342         for (unsigned int i = 0; i < get_num_threads(); i++) {
343                 thread_id_t tid = int_to_id(i);
344                 if (is_enabled(tid))
345                         return false;
346                 Thread *t = get_thread(tid);
347                 if (!t->is_model_thread() && t->get_pending())
348                         blocking_threads = true;
349         }
350         return blocking_threads;
351 }
352
353 /**
354  * Check if this is a complete execution. That is, have all thread completed
355  * execution (rather than exiting because sleep sets have forced a redundant
356  * execution).
357  *
358  * @return True if the execution is complete.
359  */
360 bool ModelChecker::is_complete_execution() const
361 {
362         for (unsigned int i = 0; i < get_num_threads(); i++)
363                 if (is_enabled(int_to_id(i)))
364                         return false;
365         return true;
366 }
367
368 /**
369  * @brief Assert a bug in the executing program.
370  *
371  * Use this function to assert any sort of bug in the user program. If the
372  * current trace is feasible (actually, a prefix of some feasible execution),
373  * then this execution will be aborted, printing the appropriate message. If
374  * the current trace is not yet feasible, the error message will be stashed and
375  * printed if the execution ever becomes feasible.
376  *
377  * @param msg Descriptive message for the bug (do not include newline char)
378  * @return True if bug is immediately-feasible
379  */
380 bool ModelChecker::assert_bug(const char *msg)
381 {
382         priv->bugs.push_back(new bug_message(msg));
383
384         if (isfeasibleprefix()) {
385                 set_assert();
386                 return true;
387         }
388         return false;
389 }
390
391 /**
392  * @brief Assert a bug in the executing program, asserted by a user thread
393  * @see ModelChecker::assert_bug
394  * @param msg Descriptive message for the bug (do not include newline char)
395  */
396 void ModelChecker::assert_user_bug(const char *msg)
397 {
398         /* If feasible bug, bail out now */
399         if (assert_bug(msg))
400                 switch_to_master(NULL);
401 }
402
403 /** @return True, if any bugs have been reported for this execution */
404 bool ModelChecker::have_bug_reports() const
405 {
406         return priv->bugs.size() != 0;
407 }
408
409 /** @brief Print bug report listing for this execution (if any bugs exist) */
410 void ModelChecker::print_bugs() const
411 {
412         if (have_bug_reports()) {
413                 model_print("Bug report: %zu bug%s detected\n",
414                                 priv->bugs.size(),
415                                 priv->bugs.size() > 1 ? "s" : "");
416                 for (unsigned int i = 0; i < priv->bugs.size(); i++)
417                         priv->bugs[i]->print();
418         }
419 }
420
421 /**
422  * @brief Record end-of-execution stats
423  *
424  * Must be run when exiting an execution. Records various stats.
425  * @see struct execution_stats
426  */
427 void ModelChecker::record_stats()
428 {
429         stats.num_total++;
430         if (!isfeasibleprefix())
431                 stats.num_infeasible++;
432         else if (have_bug_reports())
433                 stats.num_buggy_executions++;
434         else if (is_complete_execution())
435                 stats.num_complete++;
436         else
437                 stats.num_redundant++;
438 }
439
440 /** @brief Print execution stats */
441 void ModelChecker::print_stats() const
442 {
443         model_print("Number of complete, bug-free executions: %d\n", stats.num_complete);
444         model_print("Number of redundant executions: %d\n", stats.num_redundant);
445         model_print("Number of buggy executions: %d\n", stats.num_buggy_executions);
446         model_print("Number of infeasible executions: %d\n", stats.num_infeasible);
447         model_print("Total executions: %d\n", stats.num_total);
448         model_print("Total nodes created: %d\n", node_stack->get_total_nodes());
449 }
450
451 /**
452  * @brief End-of-exeuction print
453  * @param printbugs Should any existing bugs be printed?
454  */
455 void ModelChecker::print_execution(bool printbugs) const
456 {
457         print_program_output();
458
459         if (DBG_ENABLED() || params.verbose) {
460                 model_print("Earliest divergence point since last feasible execution:\n");
461                 if (earliest_diverge)
462                         earliest_diverge->print();
463                 else
464                         model_print("(Not set)\n");
465
466                 model_print("\n");
467                 print_stats();
468         }
469
470         /* Don't print invalid bugs */
471         if (printbugs)
472                 print_bugs();
473
474         model_print("\n");
475         print_summary();
476 }
477
478 /**
479  * Queries the model-checker for more executions to explore and, if one
480  * exists, resets the model-checker state to execute a new execution.
481  *
482  * @return If there are more executions to explore, return true. Otherwise,
483  * return false.
484  */
485 bool ModelChecker::next_execution()
486 {
487         DBG();
488         /* Is this execution a feasible execution that's worth bug-checking? */
489         bool complete = isfeasibleprefix() && (is_complete_execution() ||
490                         have_bug_reports());
491
492         /* End-of-execution bug checks */
493         if (complete) {
494                 if (is_deadlocked())
495                         assert_bug("Deadlock detected");
496
497                 checkDataRaces();
498         }
499
500         record_stats();
501
502         /* Output */
503         if (DBG_ENABLED() || params.verbose || have_bug_reports())
504                 print_execution(complete);
505         else
506                 clear_program_output();
507
508         if (complete)
509                 earliest_diverge = NULL;
510
511         if ((diverge = get_next_backtrack()) == NULL)
512                 return false;
513
514         if (DBG_ENABLED()) {
515                 model_print("Next execution will diverge at:\n");
516                 diverge->print();
517         }
518
519         reset_to_initial_state();
520         return true;
521 }
522
523 ModelAction * ModelChecker::get_last_conflict(ModelAction *act)
524 {
525         switch (act->get_type()) {
526         case ATOMIC_FENCE:
527         case ATOMIC_READ:
528         case ATOMIC_WRITE:
529         case ATOMIC_RMW: {
530                 /* Optimization: relaxed operations don't need backtracking */
531                 if (act->is_relaxed())
532                         return NULL;
533                 /* linear search: from most recent to oldest */
534                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
535                 action_list_t::reverse_iterator rit;
536                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
537                         ModelAction *prev = *rit;
538                         if (prev->could_synchronize_with(act))
539                                 return prev;
540                 }
541                 break;
542         }
543         case ATOMIC_LOCK:
544         case ATOMIC_TRYLOCK: {
545                 /* linear search: from most recent to oldest */
546                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
547                 action_list_t::reverse_iterator rit;
548                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
549                         ModelAction *prev = *rit;
550                         if (act->is_conflicting_lock(prev))
551                                 return prev;
552                 }
553                 break;
554         }
555         case ATOMIC_UNLOCK: {
556                 /* linear search: from most recent to oldest */
557                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
558                 action_list_t::reverse_iterator rit;
559                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
560                         ModelAction *prev = *rit;
561                         if (!act->same_thread(prev)&&prev->is_failed_trylock())
562                                 return prev;
563                 }
564                 break;
565         }
566         case ATOMIC_WAIT: {
567                 /* linear search: from most recent to oldest */
568                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
569                 action_list_t::reverse_iterator rit;
570                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
571                         ModelAction *prev = *rit;
572                         if (!act->same_thread(prev)&&prev->is_failed_trylock())
573                                 return prev;
574                         if (!act->same_thread(prev)&&prev->is_notify())
575                                 return prev;
576                 }
577                 break;
578         }
579
580         case ATOMIC_NOTIFY_ALL:
581         case ATOMIC_NOTIFY_ONE: {
582                 /* linear search: from most recent to oldest */
583                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
584                 action_list_t::reverse_iterator rit;
585                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
586                         ModelAction *prev = *rit;
587                         if (!act->same_thread(prev)&&prev->is_wait())
588                                 return prev;
589                 }
590                 break;
591         }
592         default:
593                 break;
594         }
595         return NULL;
596 }
597
598 /** This method finds backtracking points where we should try to
599  * reorder the parameter ModelAction against.
600  *
601  * @param the ModelAction to find backtracking points for.
602  */
603 void ModelChecker::set_backtracking(ModelAction *act)
604 {
605         Thread *t = get_thread(act);
606         ModelAction * prev = get_last_conflict(act);
607         if (prev == NULL)
608                 return;
609
610         Node * node = prev->get_node()->get_parent();
611
612         int low_tid, high_tid;
613         if (node->is_enabled(t)) {
614                 low_tid = id_to_int(act->get_tid());
615                 high_tid = low_tid+1;
616         } else {
617                 low_tid = 0;
618                 high_tid = get_num_threads();
619         }
620
621         for(int i = low_tid; i < high_tid; i++) {
622                 thread_id_t tid = int_to_id(i);
623
624                 /* Make sure this thread can be enabled here. */
625                 if (i >= node->get_num_threads())
626                         break;
627
628                 /* Don't backtrack into a point where the thread is disabled or sleeping. */
629                 if (node->enabled_status(tid)!=THREAD_ENABLED)
630                         continue;
631
632                 /* Check if this has been explored already */
633                 if (node->has_been_explored(tid))
634                         continue;
635
636                 /* See if fairness allows */
637                 if (model->params.fairwindow != 0 && !node->has_priority(tid)) {
638                         bool unfair=false;
639                         for(int t=0;t<node->get_num_threads();t++) {
640                                 thread_id_t tother=int_to_id(t);
641                                 if (node->is_enabled(tother) && node->has_priority(tother)) {
642                                         unfair=true;
643                                         break;
644                                 }
645                         }
646                         if (unfair)
647                                 continue;
648                 }
649                 /* Cache the latest backtracking point */
650                 if (!priv->next_backtrack || *prev > *priv->next_backtrack)
651                         priv->next_backtrack = prev;
652
653                 /* If this is a new backtracking point, mark the tree */
654                 if (!node->set_backtrack(tid))
655                         continue;
656                 DEBUG("Setting backtrack: conflict = %d, instead tid = %d\n",
657                                         id_to_int(prev->get_tid()),
658                                         id_to_int(t->get_id()));
659                 if (DBG_ENABLED()) {
660                         prev->print();
661                         act->print();
662                 }
663         }
664 }
665
666 /**
667  * Returns last backtracking point. The model checker will explore a different
668  * path for this point in the next execution.
669  * @return The ModelAction at which the next execution should diverge.
670  */
671 ModelAction * ModelChecker::get_next_backtrack()
672 {
673         ModelAction *next = priv->next_backtrack;
674         priv->next_backtrack = NULL;
675         return next;
676 }
677
678 /**
679  * Processes a read or rmw model action.
680  * @param curr is the read model action to process.
681  * @param second_part_of_rmw is boolean that is true is this is the second action of a rmw.
682  * @return True if processing this read updates the mo_graph.
683  */
684 bool ModelChecker::process_read(ModelAction *curr, bool second_part_of_rmw)
685 {
686         uint64_t value = VALUE_NONE;
687         bool updated = false;
688         while (true) {
689                 const ModelAction *reads_from = curr->get_node()->get_read_from();
690                 if (reads_from != NULL) {
691                         mo_graph->startChanges();
692
693                         value = reads_from->get_value();
694                         bool r_status = false;
695
696                         if (!second_part_of_rmw) {
697                                 check_recency(curr, reads_from);
698                                 r_status = r_modification_order(curr, reads_from);
699                         }
700
701
702                         if (!second_part_of_rmw&&is_infeasible()&&(curr->get_node()->increment_read_from()||curr->get_node()->increment_future_value())) {
703                                 mo_graph->rollbackChanges();
704                                 priv->too_many_reads = false;
705                                 continue;
706                         }
707
708                         read_from(curr, reads_from);
709                         mo_graph->commitChanges();
710                         mo_check_promises(curr->get_tid(), reads_from);
711
712                         updated |= r_status;
713                 } else if (!second_part_of_rmw) {
714                         /* Read from future value */
715                         value = curr->get_node()->get_future_value();
716                         modelclock_t expiration = curr->get_node()->get_future_value_expiration();
717                         read_from(curr, NULL);
718                         Promise *valuepromise = new Promise(curr, value, expiration);
719                         promises->push_back(valuepromise);
720                 }
721                 get_thread(curr)->set_return_value(value);
722                 return updated;
723         }
724 }
725
726 /**
727  * Processes a lock, trylock, or unlock model action.  @param curr is
728  * the read model action to process.
729  *
730  * The try lock operation checks whether the lock is taken.  If not,
731  * it falls to the normal lock operation case.  If so, it returns
732  * fail.
733  *
734  * The lock operation has already been checked that it is enabled, so
735  * it just grabs the lock and synchronizes with the previous unlock.
736  *
737  * The unlock operation has to re-enable all of the threads that are
738  * waiting on the lock.
739  *
740  * @return True if synchronization was updated; false otherwise
741  */
742 bool ModelChecker::process_mutex(ModelAction *curr) {
743         std::mutex *mutex=NULL;
744         struct std::mutex_state *state=NULL;
745
746         if (curr->is_trylock() || curr->is_lock() || curr->is_unlock()) {
747                 mutex = (std::mutex *)curr->get_location();
748                 state = mutex->get_state();
749         } else if(curr->is_wait()) {
750                 mutex = (std::mutex *)curr->get_value();
751                 state = mutex->get_state();
752         }
753
754         switch (curr->get_type()) {
755         case ATOMIC_TRYLOCK: {
756                 bool success = !state->islocked;
757                 curr->set_try_lock(success);
758                 if (!success) {
759                         get_thread(curr)->set_return_value(0);
760                         break;
761                 }
762                 get_thread(curr)->set_return_value(1);
763         }
764                 //otherwise fall into the lock case
765         case ATOMIC_LOCK: {
766                 if (curr->get_cv()->getClock(state->alloc_tid) <= state->alloc_clock)
767                         assert_bug("Lock access before initialization");
768                 state->islocked = true;
769                 ModelAction *unlock = get_last_unlock(curr);
770                 //synchronize with the previous unlock statement
771                 if (unlock != NULL) {
772                         curr->synchronize_with(unlock);
773                         return true;
774                 }
775                 break;
776         }
777         case ATOMIC_UNLOCK: {
778                 //unlock the lock
779                 state->islocked = false;
780                 //wake up the other threads
781                 action_list_t *waiters = get_safe_ptr_action(lock_waiters_map, curr->get_location());
782                 //activate all the waiting threads
783                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
784                         scheduler->wake(get_thread(*rit));
785                 }
786                 waiters->clear();
787                 break;
788         }
789         case ATOMIC_WAIT: {
790                 //unlock the lock
791                 state->islocked = false;
792                 //wake up the other threads
793                 action_list_t *waiters = get_safe_ptr_action(lock_waiters_map, (void *) curr->get_value());
794                 //activate all the waiting threads
795                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
796                         scheduler->wake(get_thread(*rit));
797                 }
798                 waiters->clear();
799                 //check whether we should go to sleep or not...simulate spurious failures
800                 if (curr->get_node()->get_misc()==0) {
801                         get_safe_ptr_action(condvar_waiters_map, curr->get_location())->push_back(curr);
802                         //disable us
803                         scheduler->sleep(get_current_thread());
804                 }
805                 break;
806         }
807         case ATOMIC_NOTIFY_ALL: {
808                 action_list_t *waiters = get_safe_ptr_action(condvar_waiters_map, curr->get_location());
809                 //activate all the waiting threads
810                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
811                         scheduler->wake(get_thread(*rit));
812                 }
813                 waiters->clear();
814                 break;
815         }
816         case ATOMIC_NOTIFY_ONE: {
817                 action_list_t *waiters = get_safe_ptr_action(condvar_waiters_map, curr->get_location());
818                 int wakeupthread=curr->get_node()->get_misc();
819                 action_list_t::iterator it = waiters->begin();
820                 advance(it, wakeupthread);
821                 scheduler->wake(get_thread(*it));
822                 waiters->erase(it);
823                 break;
824         }
825
826         default:
827                 ASSERT(0);
828         }
829         return false;
830 }
831
832 /**
833  * Process a write ModelAction
834  * @param curr The ModelAction to process
835  * @return True if the mo_graph was updated or promises were resolved
836  */
837 bool ModelChecker::process_write(ModelAction *curr)
838 {
839         bool updated_mod_order = w_modification_order(curr);
840         bool updated_promises = resolve_promises(curr);
841
842         if (promises->size() == 0) {
843                 for (unsigned int i = 0; i < futurevalues->size(); i++) {
844                         struct PendingFutureValue pfv = (*futurevalues)[i];
845                         //Do more ambitious checks now that mo is more complete
846                         if (mo_may_allow(pfv.writer, pfv.act)&&
847                                         pfv.act->get_node()->add_future_value(pfv.writer->get_value(), pfv.writer->get_seq_number()+params.maxfuturedelay) &&
848                                         (!priv->next_backtrack || *pfv.act > *priv->next_backtrack))
849                                 priv->next_backtrack = pfv.act;
850                 }
851                 futurevalues->resize(0);
852         }
853
854         mo_graph->commitChanges();
855         mo_check_promises(curr->get_tid(), curr);
856
857         get_thread(curr)->set_return_value(VALUE_NONE);
858         return updated_mod_order || updated_promises;
859 }
860
861 /**
862  * @brief Process the current action for thread-related activity
863  *
864  * Performs current-action processing for a THREAD_* ModelAction. Proccesses
865  * may include setting Thread status, completing THREAD_FINISH/THREAD_JOIN
866  * synchronization, etc.  This function is a no-op for non-THREAD actions
867  * (e.g., ATOMIC_{READ,WRITE,RMW,LOCK}, etc.)
868  *
869  * @param curr The current action
870  * @return True if synchronization was updated or a thread completed
871  */
872 bool ModelChecker::process_thread_action(ModelAction *curr)
873 {
874         bool updated = false;
875
876         switch (curr->get_type()) {
877         case THREAD_CREATE: {
878                 Thread *th = (Thread *)curr->get_location();
879                 th->set_creation(curr);
880                 break;
881         }
882         case THREAD_JOIN: {
883                 Thread *blocking = (Thread *)curr->get_location();
884                 ModelAction *act = get_last_action(blocking->get_id());
885                 curr->synchronize_with(act);
886                 updated = true; /* trigger rel-seq checks */
887                 break;
888         }
889         case THREAD_FINISH: {
890                 Thread *th = get_thread(curr);
891                 while (!th->wait_list_empty()) {
892                         ModelAction *act = th->pop_wait_list();
893                         scheduler->wake(get_thread(act));
894                 }
895                 th->complete();
896                 updated = true; /* trigger rel-seq checks */
897                 break;
898         }
899         case THREAD_START: {
900                 check_promises(curr->get_tid(), NULL, curr->get_cv());
901                 break;
902         }
903         default:
904                 break;
905         }
906
907         return updated;
908 }
909
910 /**
911  * @brief Process the current action for release sequence fixup activity
912  *
913  * Performs model-checker release sequence fixups for the current action,
914  * forcing a single pending release sequence to break (with a given, potential
915  * "loose" write) or to complete (i.e., synchronize). If a pending release
916  * sequence forms a complete release sequence, then we must perform the fixup
917  * synchronization, mo_graph additions, etc.
918  *
919  * @param curr The current action; must be a release sequence fixup action
920  * @param work_queue The work queue to which to add work items as they are
921  * generated
922  */
923 void ModelChecker::process_relseq_fixup(ModelAction *curr, work_queue_t *work_queue)
924 {
925         const ModelAction *write = curr->get_node()->get_relseq_break();
926         struct release_seq *sequence = pending_rel_seqs->back();
927         pending_rel_seqs->pop_back();
928         ASSERT(sequence);
929         ModelAction *acquire = sequence->acquire;
930         const ModelAction *rf = sequence->rf;
931         const ModelAction *release = sequence->release;
932         ASSERT(acquire);
933         ASSERT(release);
934         ASSERT(rf);
935         ASSERT(release->same_thread(rf));
936
937         if (write == NULL) {
938                 /**
939                  * @todo Forcing a synchronization requires that we set
940                  * modification order constraints. For instance, we can't allow
941                  * a fixup sequence in which two separate read-acquire
942                  * operations read from the same sequence, where the first one
943                  * synchronizes and the other doesn't. Essentially, we can't
944                  * allow any writes to insert themselves between 'release' and
945                  * 'rf'
946                  */
947
948                 /* Must synchronize */
949                 if (!acquire->synchronize_with(release)) {
950                         set_bad_synchronization();
951                         return;
952                 }
953                 /* Re-check all pending release sequences */
954                 work_queue->push_back(CheckRelSeqWorkEntry(NULL));
955                 /* Re-check act for mo_graph edges */
956                 work_queue->push_back(MOEdgeWorkEntry(acquire));
957
958                 /* propagate synchronization to later actions */
959                 action_list_t::reverse_iterator rit = action_trace->rbegin();
960                 for (; (*rit) != acquire; rit++) {
961                         ModelAction *propagate = *rit;
962                         if (acquire->happens_before(propagate)) {
963                                 propagate->synchronize_with(acquire);
964                                 /* Re-check 'propagate' for mo_graph edges */
965                                 work_queue->push_back(MOEdgeWorkEntry(propagate));
966                         }
967                 }
968         } else {
969                 /* Break release sequence with new edges:
970                  *   release --mo--> write --mo--> rf */
971                 mo_graph->addEdge(release, write);
972                 mo_graph->addEdge(write, rf);
973         }
974
975         /* See if we have realized a data race */
976         checkDataRaces();
977 }
978
979 /**
980  * Initialize the current action by performing one or more of the following
981  * actions, as appropriate: merging RMWR and RMWC/RMW actions, stepping forward
982  * in the NodeStack, manipulating backtracking sets, allocating and
983  * initializing clock vectors, and computing the promises to fulfill.
984  *
985  * @param curr The current action, as passed from the user context; may be
986  * freed/invalidated after the execution of this function, with a different
987  * action "returned" its place (pass-by-reference)
988  * @return True if curr is a newly-explored action; false otherwise
989  */
990 bool ModelChecker::initialize_curr_action(ModelAction **curr)
991 {
992         ModelAction *newcurr;
993
994         if ((*curr)->is_rmwc() || (*curr)->is_rmw()) {
995                 newcurr = process_rmw(*curr);
996                 delete *curr;
997
998                 if (newcurr->is_rmw())
999                         compute_promises(newcurr);
1000
1001                 *curr = newcurr;
1002                 return false;
1003         }
1004
1005         (*curr)->set_seq_number(get_next_seq_num());
1006
1007         newcurr = node_stack->explore_action(*curr, scheduler->get_enabled_array());
1008         if (newcurr) {
1009                 /* First restore type and order in case of RMW operation */
1010                 if ((*curr)->is_rmwr())
1011                         newcurr->copy_typeandorder(*curr);
1012
1013                 ASSERT((*curr)->get_location() == newcurr->get_location());
1014                 newcurr->copy_from_new(*curr);
1015
1016                 /* Discard duplicate ModelAction; use action from NodeStack */
1017                 delete *curr;
1018
1019                 /* Always compute new clock vector */
1020                 newcurr->create_cv(get_parent_action(newcurr->get_tid()));
1021
1022                 *curr = newcurr;
1023                 return false; /* Action was explored previously */
1024         } else {
1025                 newcurr = *curr;
1026
1027                 /* Always compute new clock vector */
1028                 newcurr->create_cv(get_parent_action(newcurr->get_tid()));
1029
1030                 /* Assign most recent release fence */
1031                 newcurr->set_last_fence_release(get_last_fence_release(newcurr->get_tid()));
1032
1033                 /*
1034                  * Perform one-time actions when pushing new ModelAction onto
1035                  * NodeStack
1036                  */
1037                 if (newcurr->is_write())
1038                         compute_promises(newcurr);
1039                 else if (newcurr->is_relseq_fixup())
1040                         compute_relseq_breakwrites(newcurr);
1041                 else if (newcurr->is_wait())
1042                         newcurr->get_node()->set_misc_max(2);
1043                 else if (newcurr->is_notify_one()) {
1044                         newcurr->get_node()->set_misc_max(get_safe_ptr_action(condvar_waiters_map, newcurr->get_location())->size());
1045                 }
1046                 return true; /* This was a new ModelAction */
1047         }
1048 }
1049
1050 /**
1051  * @brief Establish reads-from relation between two actions
1052  *
1053  * Perform basic operations involved with establishing a concrete rf relation,
1054  * including setting the ModelAction data and checking for release sequences.
1055  *
1056  * @param act The action that is reading (must be a read)
1057  * @param rf The action from which we are reading (must be a write)
1058  *
1059  * @return True if this read established synchronization
1060  */
1061 bool ModelChecker::read_from(ModelAction *act, const ModelAction *rf)
1062 {
1063         act->set_read_from(rf);
1064         if (rf != NULL && act->is_acquire()) {
1065                 rel_heads_list_t release_heads;
1066                 get_release_seq_heads(act, &release_heads);
1067                 int num_heads = release_heads.size();
1068                 for (unsigned int i = 0; i < release_heads.size(); i++)
1069                         if (!act->synchronize_with(release_heads[i])) {
1070                                 set_bad_synchronization();
1071                                 num_heads--;
1072                         }
1073                 return num_heads > 0;
1074         }
1075         return false;
1076 }
1077
1078 /**
1079  * @brief Check whether a model action is enabled.
1080  *
1081  * Checks whether a lock or join operation would be successful (i.e., is the
1082  * lock already locked, or is the joined thread already complete). If not, put
1083  * the action in a waiter list.
1084  *
1085  * @param curr is the ModelAction to check whether it is enabled.
1086  * @return a bool that indicates whether the action is enabled.
1087  */
1088 bool ModelChecker::check_action_enabled(ModelAction *curr) {
1089         if (curr->is_lock()) {
1090                 std::mutex * lock = (std::mutex *)curr->get_location();
1091                 struct std::mutex_state * state = lock->get_state();
1092                 if (state->islocked) {
1093                         //Stick the action in the appropriate waiting queue
1094                         get_safe_ptr_action(lock_waiters_map, curr->get_location())->push_back(curr);
1095                         return false;
1096                 }
1097         } else if (curr->get_type() == THREAD_JOIN) {
1098                 Thread *blocking = (Thread *)curr->get_location();
1099                 if (!blocking->is_complete()) {
1100                         blocking->push_wait_list(curr);
1101                         return false;
1102                 }
1103         }
1104
1105         return true;
1106 }
1107
1108 /**
1109  * Stores the ModelAction for the current thread action.  Call this
1110  * immediately before switching from user- to system-context to pass
1111  * data between them.
1112  * @param act The ModelAction created by the user-thread action
1113  */
1114 void ModelChecker::set_current_action(ModelAction *act) {
1115         priv->current_action = act;
1116 }
1117
1118 /**
1119  * This is the heart of the model checker routine. It performs model-checking
1120  * actions corresponding to a given "current action." Among other processes, it
1121  * calculates reads-from relationships, updates synchronization clock vectors,
1122  * forms a memory_order constraints graph, and handles replay/backtrack
1123  * execution when running permutations of previously-observed executions.
1124  *
1125  * @param curr The current action to process
1126  * @return The next Thread that must be executed. May be NULL if ModelChecker
1127  * makes no choice (e.g., according to replay execution, combining RMW actions,
1128  * etc.)
1129  */
1130 Thread * ModelChecker::check_current_action(ModelAction *curr)
1131 {
1132         ASSERT(curr);
1133         bool second_part_of_rmw = curr->is_rmwc() || curr->is_rmw();
1134
1135         if (!check_action_enabled(curr)) {
1136                 /* Make the execution look like we chose to run this action
1137                  * much later, when a lock/join can succeed */
1138                 get_current_thread()->set_pending(curr);
1139                 scheduler->sleep(get_current_thread());
1140                 return get_next_thread(NULL);
1141         }
1142
1143         bool newly_explored = initialize_curr_action(&curr);
1144
1145         wake_up_sleeping_actions(curr);
1146
1147         /* Add the action to lists before any other model-checking tasks */
1148         if (!second_part_of_rmw)
1149                 add_action_to_lists(curr);
1150
1151         /* Build may_read_from set for newly-created actions */
1152         if (newly_explored && curr->is_read())
1153                 build_reads_from_past(curr);
1154
1155         /* Initialize work_queue with the "current action" work */
1156         work_queue_t work_queue(1, CheckCurrWorkEntry(curr));
1157         while (!work_queue.empty() && !has_asserted()) {
1158                 WorkQueueEntry work = work_queue.front();
1159                 work_queue.pop_front();
1160
1161                 switch (work.type) {
1162                 case WORK_CHECK_CURR_ACTION: {
1163                         ModelAction *act = work.action;
1164                         bool update = false; /* update this location's release seq's */
1165                         bool update_all = false; /* update all release seq's */
1166
1167                         if (process_thread_action(curr))
1168                                 update_all = true;
1169
1170                         if (act->is_read() && process_read(act, second_part_of_rmw))
1171                                 update = true;
1172
1173                         if (act->is_write() && process_write(act))
1174                                 update = true;
1175
1176                         if (act->is_mutex_op() && process_mutex(act))
1177                                 update_all = true;
1178
1179                         if (act->is_relseq_fixup())
1180                                 process_relseq_fixup(curr, &work_queue);
1181
1182                         if (update_all)
1183                                 work_queue.push_back(CheckRelSeqWorkEntry(NULL));
1184                         else if (update)
1185                                 work_queue.push_back(CheckRelSeqWorkEntry(act->get_location()));
1186                         break;
1187                 }
1188                 case WORK_CHECK_RELEASE_SEQ:
1189                         resolve_release_sequences(work.location, &work_queue);
1190                         break;
1191                 case WORK_CHECK_MO_EDGES: {
1192                         /** @todo Complete verification of work_queue */
1193                         ModelAction *act = work.action;
1194                         bool updated = false;
1195
1196                         if (act->is_read()) {
1197                                 const ModelAction *rf = act->get_reads_from();
1198                                 if (rf != NULL && r_modification_order(act, rf))
1199                                         updated = true;
1200                         }
1201                         if (act->is_write()) {
1202                                 if (w_modification_order(act))
1203                                         updated = true;
1204                         }
1205                         mo_graph->commitChanges();
1206
1207                         if (updated)
1208                                 work_queue.push_back(CheckRelSeqWorkEntry(act->get_location()));
1209                         break;
1210                 }
1211                 default:
1212                         ASSERT(false);
1213                         break;
1214                 }
1215         }
1216
1217         check_curr_backtracking(curr);
1218         set_backtracking(curr);
1219         return get_next_thread(curr);
1220 }
1221
1222 void ModelChecker::check_curr_backtracking(ModelAction * curr) {
1223         Node *currnode = curr->get_node();
1224         Node *parnode = currnode->get_parent();
1225
1226         if ((!parnode->backtrack_empty() ||
1227                          !currnode->misc_empty() ||
1228                          !currnode->read_from_empty() ||
1229                          !currnode->future_value_empty() ||
1230                          !currnode->promise_empty() ||
1231                          !currnode->relseq_break_empty())
1232                         && (!priv->next_backtrack ||
1233                                         *curr > *priv->next_backtrack)) {
1234                 priv->next_backtrack = curr;
1235         }
1236 }
1237
1238 bool ModelChecker::promises_expired() const
1239 {
1240         for (unsigned int promise_index = 0; promise_index < promises->size(); promise_index++) {
1241                 Promise *promise = (*promises)[promise_index];
1242                 if (promise->get_expiration()<priv->used_sequence_numbers) {
1243                         return true;
1244                 }
1245         }
1246         return false;
1247 }
1248
1249 /**
1250  * This is the strongest feasibility check available.
1251  * @return whether the current trace (partial or complete) must be a prefix of
1252  * a feasible trace.
1253  */
1254 bool ModelChecker::isfeasibleprefix() const
1255 {
1256         return pending_rel_seqs->size() == 0 && is_feasible_prefix_ignore_relseq();
1257 }
1258
1259 /**
1260  * Returns whether the current completed trace is feasible, except for pending
1261  * release sequences.
1262  */
1263 bool ModelChecker::is_feasible_prefix_ignore_relseq() const
1264 {
1265         if (DBG_ENABLED() && promises->size() != 0)
1266                 DEBUG("Infeasible: unrevolved promises\n");
1267
1268         return !is_infeasible() && promises->size() == 0;
1269 }
1270
1271 /**
1272  * Check if the current partial trace is infeasible. Does not check any
1273  * end-of-execution flags, which might rule out the execution. Thus, this is
1274  * useful only for ruling an execution as infeasible.
1275  * @return whether the current partial trace is infeasible.
1276  */
1277 bool ModelChecker::is_infeasible() const
1278 {
1279         if (DBG_ENABLED() && mo_graph->checkForRMWViolation())
1280                 DEBUG("Infeasible: RMW violation\n");
1281
1282         return mo_graph->checkForRMWViolation() || is_infeasible_ignoreRMW();
1283 }
1284
1285 /**
1286  * Check If the current partial trace is infeasible, while ignoring
1287  * infeasibility related to 2 RMW's reading from the same store. It does not
1288  * check end-of-execution feasibility.
1289  * @see ModelChecker::is_infeasible
1290  * @return whether the current partial trace is infeasible, ignoring multiple
1291  * RMWs reading from the same store.
1292  * */
1293 bool ModelChecker::is_infeasible_ignoreRMW() const
1294 {
1295         if (DBG_ENABLED()) {
1296                 if (mo_graph->checkForCycles())
1297                         DEBUG("Infeasible: modification order cycles\n");
1298                 if (priv->failed_promise)
1299                         DEBUG("Infeasible: failed promise\n");
1300                 if (priv->too_many_reads)
1301                         DEBUG("Infeasible: too many reads\n");
1302                 if (priv->bad_synchronization)
1303                         DEBUG("Infeasible: bad synchronization ordering\n");
1304                 if (promises_expired())
1305                         DEBUG("Infeasible: promises expired\n");
1306         }
1307         return mo_graph->checkForCycles() || priv->failed_promise ||
1308                 priv->too_many_reads || priv->bad_synchronization ||
1309                 promises_expired();
1310 }
1311
1312 /** Close out a RMWR by converting previous RMWR into a RMW or READ. */
1313 ModelAction * ModelChecker::process_rmw(ModelAction *act) {
1314         ModelAction *lastread = get_last_action(act->get_tid());
1315         lastread->process_rmw(act);
1316         if (act->is_rmw() && lastread->get_reads_from()!=NULL) {
1317                 mo_graph->addRMWEdge(lastread->get_reads_from(), lastread);
1318                 mo_graph->commitChanges();
1319         }
1320         return lastread;
1321 }
1322
1323 /**
1324  * Checks whether a thread has read from the same write for too many times
1325  * without seeing the effects of a later write.
1326  *
1327  * Basic idea:
1328  * 1) there must a different write that we could read from that would satisfy the modification order,
1329  * 2) we must have read from the same value in excess of maxreads times, and
1330  * 3) that other write must have been in the reads_from set for maxreads times.
1331  *
1332  * If so, we decide that the execution is no longer feasible.
1333  */
1334 void ModelChecker::check_recency(ModelAction *curr, const ModelAction *rf) {
1335         if (params.maxreads != 0) {
1336
1337                 if (curr->get_node()->get_read_from_size() <= 1)
1338                         return;
1339                 //Must make sure that execution is currently feasible...  We could
1340                 //accidentally clear by rolling back
1341                 if (is_infeasible())
1342                         return;
1343                 std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1344                 int tid = id_to_int(curr->get_tid());
1345
1346                 /* Skip checks */
1347                 if ((int)thrd_lists->size() <= tid)
1348                         return;
1349                 action_list_t *list = &(*thrd_lists)[tid];
1350
1351                 action_list_t::reverse_iterator rit = list->rbegin();
1352                 /* Skip past curr */
1353                 for (; (*rit) != curr; rit++)
1354                         ;
1355                 /* go past curr now */
1356                 rit++;
1357
1358                 action_list_t::reverse_iterator ritcopy = rit;
1359                 //See if we have enough reads from the same value
1360                 int count = 0;
1361                 for (; count < params.maxreads; rit++,count++) {
1362                         if (rit==list->rend())
1363                                 return;
1364                         ModelAction *act = *rit;
1365                         if (!act->is_read())
1366                                 return;
1367
1368                         if (act->get_reads_from() != rf)
1369                                 return;
1370                         if (act->get_node()->get_read_from_size() <= 1)
1371                                 return;
1372                 }
1373                 for (int i = 0; i<curr->get_node()->get_read_from_size(); i++) {
1374                         //Get write
1375                         const ModelAction * write = curr->get_node()->get_read_from_at(i);
1376
1377                         //Need a different write
1378                         if (write==rf)
1379                                 continue;
1380
1381                         /* Test to see whether this is a feasible write to read from*/
1382                         mo_graph->startChanges();
1383                         r_modification_order(curr, write);
1384                         bool feasiblereadfrom = !is_infeasible();
1385                         mo_graph->rollbackChanges();
1386
1387                         if (!feasiblereadfrom)
1388                                 continue;
1389                         rit = ritcopy;
1390
1391                         bool feasiblewrite = true;
1392                         //new we need to see if this write works for everyone
1393
1394                         for (int loop = count; loop>0; loop--,rit++) {
1395                                 ModelAction *act=*rit;
1396                                 bool foundvalue = false;
1397                                 for (int j = 0; j<act->get_node()->get_read_from_size(); j++) {
1398                                         if (act->get_node()->get_read_from_at(j)==write) {
1399                                                 foundvalue = true;
1400                                                 break;
1401                                         }
1402                                 }
1403                                 if (!foundvalue) {
1404                                         feasiblewrite = false;
1405                                         break;
1406                                 }
1407                         }
1408                         if (feasiblewrite) {
1409                                 priv->too_many_reads = true;
1410                                 return;
1411                         }
1412                 }
1413         }
1414 }
1415
1416 /**
1417  * Updates the mo_graph with the constraints imposed from the current
1418  * read.
1419  *
1420  * Basic idea is the following: Go through each other thread and find
1421  * the lastest action that happened before our read.  Two cases:
1422  *
1423  * (1) The action is a write => that write must either occur before
1424  * the write we read from or be the write we read from.
1425  *
1426  * (2) The action is a read => the write that that action read from
1427  * must occur before the write we read from or be the same write.
1428  *
1429  * @param curr The current action. Must be a read.
1430  * @param rf The action that curr reads from. Must be a write.
1431  * @return True if modification order edges were added; false otherwise
1432  */
1433 bool ModelChecker::r_modification_order(ModelAction *curr, const ModelAction *rf)
1434 {
1435         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1436         unsigned int i;
1437         bool added = false;
1438         ASSERT(curr->is_read());
1439
1440         /* Last SC fence in the current thread */
1441         ModelAction *last_sc_fence_local = get_last_seq_cst_fence(curr->get_tid(), NULL);
1442
1443         /* Iterate over all threads */
1444         for (i = 0; i < thrd_lists->size(); i++) {
1445                 /* Last SC fence in thread i */
1446                 ModelAction *last_sc_fence_thread_local = NULL;
1447                 if (int_to_id((int)i) != curr->get_tid())
1448                         last_sc_fence_thread_local = get_last_seq_cst_fence(int_to_id(i), NULL);
1449
1450                 /* Last SC fence in thread i, before last SC fence in current thread */
1451                 ModelAction *last_sc_fence_thread_before = NULL;
1452                 if (last_sc_fence_local)
1453                         last_sc_fence_thread_before = get_last_seq_cst_fence(int_to_id(i), last_sc_fence_local);
1454
1455                 /* Iterate over actions in thread, starting from most recent */
1456                 action_list_t *list = &(*thrd_lists)[i];
1457                 action_list_t::reverse_iterator rit;
1458                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1459                         ModelAction *act = *rit;
1460
1461                         if (act->is_write() && act != rf && act != curr) {
1462                                 /* C++, Section 29.3 statement 5 */
1463                                 if (curr->is_seqcst() && last_sc_fence_thread_local &&
1464                                                 *act < *last_sc_fence_thread_local) {
1465                                         mo_graph->addEdge(act, rf);
1466                                         added = true;
1467                                 }
1468                                 /* C++, Section 29.3 statement 4 */
1469                                 else if (act->is_seqcst() && last_sc_fence_local &&
1470                                                 *act < *last_sc_fence_local) {
1471                                         mo_graph->addEdge(act, rf);
1472                                         added = true;
1473                                 }
1474                                 /* C++, Section 29.3 statement 6 */
1475                                 else if (last_sc_fence_thread_before &&
1476                                                 *act < *last_sc_fence_thread_before) {
1477                                         mo_graph->addEdge(act, rf);
1478                                         added = true;
1479                                 }
1480                         }
1481
1482                         /*
1483                          * Include at most one act per-thread that "happens
1484                          * before" curr. Don't consider reflexively.
1485                          */
1486                         if (act->happens_before(curr) && act != curr) {
1487                                 if (act->is_write()) {
1488                                         if (rf != act) {
1489                                                 mo_graph->addEdge(act, rf);
1490                                                 added = true;
1491                                         }
1492                                 } else {
1493                                         const ModelAction *prevreadfrom = act->get_reads_from();
1494                                         //if the previous read is unresolved, keep going...
1495                                         if (prevreadfrom == NULL)
1496                                                 continue;
1497
1498                                         if (rf != prevreadfrom) {
1499                                                 mo_graph->addEdge(prevreadfrom, rf);
1500                                                 added = true;
1501                                         }
1502                                 }
1503                                 break;
1504                         }
1505                 }
1506         }
1507
1508         return added;
1509 }
1510
1511 /** This method fixes up the modification order when we resolve a
1512  *  promises.  The basic problem is that actions that occur after the
1513  *  read curr could not property add items to the modification order
1514  *  for our read.
1515  *
1516  *  So for each thread, we find the earliest item that happens after
1517  *  the read curr.  This is the item we have to fix up with additional
1518  *  constraints.  If that action is write, we add a MO edge between
1519  *  the Action rf and that action.  If the action is a read, we add a
1520  *  MO edge between the Action rf, and whatever the read accessed.
1521  *
1522  * @param curr is the read ModelAction that we are fixing up MO edges for.
1523  * @param rf is the write ModelAction that curr reads from.
1524  *
1525  */
1526 void ModelChecker::post_r_modification_order(ModelAction *curr, const ModelAction *rf)
1527 {
1528         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1529         unsigned int i;
1530         ASSERT(curr->is_read());
1531
1532         /* Iterate over all threads */
1533         for (i = 0; i < thrd_lists->size(); i++) {
1534                 /* Iterate over actions in thread, starting from most recent */
1535                 action_list_t *list = &(*thrd_lists)[i];
1536                 action_list_t::reverse_iterator rit;
1537                 ModelAction *lastact = NULL;
1538
1539                 /* Find last action that happens after curr that is either not curr or a rmw */
1540                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1541                         ModelAction *act = *rit;
1542                         if (curr->happens_before(act) && (curr != act || curr->is_rmw())) {
1543                                 lastact = act;
1544                         } else
1545                                 break;
1546                 }
1547
1548                         /* Include at most one act per-thread that "happens before" curr */
1549                 if (lastact != NULL) {
1550                         if (lastact==curr) {
1551                                 //Case 1: The resolved read is a RMW, and we need to make sure
1552                                 //that the write portion of the RMW mod order after rf
1553
1554                                 mo_graph->addEdge(rf, lastact);
1555                         } else if (lastact->is_read()) {
1556                                 //Case 2: The resolved read is a normal read and the next
1557                                 //operation is a read, and we need to make sure the value read
1558                                 //is mod ordered after rf
1559
1560                                 const ModelAction *postreadfrom = lastact->get_reads_from();
1561                                 if (postreadfrom != NULL&&rf != postreadfrom)
1562                                         mo_graph->addEdge(rf, postreadfrom);
1563                         } else {
1564                                 //Case 3: The resolved read is a normal read and the next
1565                                 //operation is a write, and we need to make sure that the
1566                                 //write is mod ordered after rf
1567                                 if (lastact!=rf)
1568                                         mo_graph->addEdge(rf, lastact);
1569                         }
1570                         break;
1571                 }
1572         }
1573 }
1574
1575 /**
1576  * Updates the mo_graph with the constraints imposed from the current write.
1577  *
1578  * Basic idea is the following: Go through each other thread and find
1579  * the lastest action that happened before our write.  Two cases:
1580  *
1581  * (1) The action is a write => that write must occur before
1582  * the current write
1583  *
1584  * (2) The action is a read => the write that that action read from
1585  * must occur before the current write.
1586  *
1587  * This method also handles two other issues:
1588  *
1589  * (I) Sequential Consistency: Making sure that if the current write is
1590  * seq_cst, that it occurs after the previous seq_cst write.
1591  *
1592  * (II) Sending the write back to non-synchronizing reads.
1593  *
1594  * @param curr The current action. Must be a write.
1595  * @return True if modification order edges were added; false otherwise
1596  */
1597 bool ModelChecker::w_modification_order(ModelAction *curr)
1598 {
1599         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1600         unsigned int i;
1601         bool added = false;
1602         ASSERT(curr->is_write());
1603
1604         if (curr->is_seqcst()) {
1605                 /* We have to at least see the last sequentially consistent write,
1606                          so we are initialized. */
1607                 ModelAction *last_seq_cst = get_last_seq_cst_write(curr);
1608                 if (last_seq_cst != NULL) {
1609                         mo_graph->addEdge(last_seq_cst, curr);
1610                         added = true;
1611                 }
1612         }
1613
1614         /* Last SC fence in the current thread */
1615         ModelAction *last_sc_fence_local = get_last_seq_cst_fence(curr->get_tid(), NULL);
1616
1617         /* Iterate over all threads */
1618         for (i = 0; i < thrd_lists->size(); i++) {
1619                 /* Last SC fence in thread i, before last SC fence in current thread */
1620                 ModelAction *last_sc_fence_thread_before = NULL;
1621                 if (last_sc_fence_local && int_to_id((int)i) != curr->get_tid())
1622                         last_sc_fence_thread_before = get_last_seq_cst_fence(int_to_id(i), last_sc_fence_local);
1623
1624                 /* Iterate over actions in thread, starting from most recent */
1625                 action_list_t *list = &(*thrd_lists)[i];
1626                 action_list_t::reverse_iterator rit;
1627                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1628                         ModelAction *act = *rit;
1629                         if (act == curr) {
1630                                 /*
1631                                  * 1) If RMW and it actually read from something, then we
1632                                  * already have all relevant edges, so just skip to next
1633                                  * thread.
1634                                  *
1635                                  * 2) If RMW and it didn't read from anything, we should
1636                                  * whatever edge we can get to speed up convergence.
1637                                  *
1638                                  * 3) If normal write, we need to look at earlier actions, so
1639                                  * continue processing list.
1640                                  */
1641                                 if (curr->is_rmw()) {
1642                                         if (curr->get_reads_from()!=NULL)
1643                                                 break;
1644                                         else
1645                                                 continue;
1646                                 } else
1647                                         continue;
1648                         }
1649
1650                         /* C++, Section 29.3 statement 7 */
1651                         if (last_sc_fence_thread_before && act->is_write() &&
1652                                         *act < *last_sc_fence_thread_before) {
1653                                 mo_graph->addEdge(act, curr);
1654                                 added = true;
1655                         }
1656
1657                         /*
1658                          * Include at most one act per-thread that "happens
1659                          * before" curr
1660                          */
1661                         if (act->happens_before(curr)) {
1662                                 /*
1663                                  * Note: if act is RMW, just add edge:
1664                                  *   act --mo--> curr
1665                                  * The following edge should be handled elsewhere:
1666                                  *   readfrom(act) --mo--> act
1667                                  */
1668                                 if (act->is_write())
1669                                         mo_graph->addEdge(act, curr);
1670                                 else if (act->is_read()) {
1671                                         //if previous read accessed a null, just keep going
1672                                         if (act->get_reads_from() == NULL)
1673                                                 continue;
1674                                         mo_graph->addEdge(act->get_reads_from(), curr);
1675                                 }
1676                                 added = true;
1677                                 break;
1678                         } else if (act->is_read() && !act->could_synchronize_with(curr) &&
1679                                                      !act->same_thread(curr)) {
1680                                 /* We have an action that:
1681                                    (1) did not happen before us
1682                                    (2) is a read and we are a write
1683                                    (3) cannot synchronize with us
1684                                    (4) is in a different thread
1685                                    =>
1686                                    that read could potentially read from our write.  Note that
1687                                    these checks are overly conservative at this point, we'll
1688                                    do more checks before actually removing the
1689                                    pendingfuturevalue.
1690
1691                                  */
1692                                 if (thin_air_constraint_may_allow(curr, act)) {
1693                                         if (!is_infeasible() ||
1694                                                         (curr->is_rmw() && act->is_rmw() && curr->get_reads_from() == act->get_reads_from() && !is_infeasible_ignoreRMW())) {
1695                                                 struct PendingFutureValue pfv = {curr,act};
1696                                                 futurevalues->push_back(pfv);
1697                                         }
1698                                 }
1699                         }
1700                 }
1701         }
1702
1703         return added;
1704 }
1705
1706 /** Arbitrary reads from the future are not allowed.  Section 29.3
1707  * part 9 places some constraints.  This method checks one result of constraint
1708  * constraint.  Others require compiler support. */
1709 bool ModelChecker::thin_air_constraint_may_allow(const ModelAction * writer, const ModelAction *reader) {
1710         if (!writer->is_rmw())
1711                 return true;
1712
1713         if (!reader->is_rmw())
1714                 return true;
1715
1716         for (const ModelAction *search = writer->get_reads_from(); search != NULL; search = search->get_reads_from()) {
1717                 if (search == reader)
1718                         return false;
1719                 if (search->get_tid() == reader->get_tid() &&
1720                                 search->happens_before(reader))
1721                         break;
1722         }
1723
1724         return true;
1725 }
1726
1727 /**
1728  * Arbitrary reads from the future are not allowed. Section 29.3 part 9 places
1729  * some constraints. This method checks one the following constraint (others
1730  * require compiler support):
1731  *
1732  *   If X --hb-> Y --mo-> Z, then X should not read from Z.
1733  */
1734 bool ModelChecker::mo_may_allow(const ModelAction *writer, const ModelAction *reader)
1735 {
1736         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, reader->get_location());
1737         unsigned int i;
1738         /* Iterate over all threads */
1739         for (i = 0; i < thrd_lists->size(); i++) {
1740                 const ModelAction *write_after_read = NULL;
1741
1742                 /* Iterate over actions in thread, starting from most recent */
1743                 action_list_t *list = &(*thrd_lists)[i];
1744                 action_list_t::reverse_iterator rit;
1745                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1746                         ModelAction *act = *rit;
1747
1748                         if (!reader->happens_before(act))
1749                                 break;
1750                         else if (act->is_write())
1751                                 write_after_read = act;
1752                         else if (act->is_read() && act->get_reads_from() != NULL && act != reader) {
1753                                 write_after_read = act->get_reads_from();
1754                         }
1755                 }
1756
1757                 if (write_after_read && write_after_read!=writer && mo_graph->checkReachable(write_after_read, writer))
1758                         return false;
1759         }
1760         return true;
1761 }
1762
1763 /**
1764  * Finds the head(s) of the release sequence(s) containing a given ModelAction.
1765  * The ModelAction under consideration is expected to be taking part in
1766  * release/acquire synchronization as an object of the "reads from" relation.
1767  * Note that this can only provide release sequence support for RMW chains
1768  * which do not read from the future, as those actions cannot be traced until
1769  * their "promise" is fulfilled. Similarly, we may not even establish the
1770  * presence of a release sequence with certainty, as some modification order
1771  * constraints may be decided further in the future. Thus, this function
1772  * "returns" two pieces of data: a pass-by-reference vector of @a release_heads
1773  * and a boolean representing certainty.
1774  *
1775  * @param rf The action that might be part of a release sequence. Must be a
1776  * write.
1777  * @param release_heads A pass-by-reference style return parameter. After
1778  * execution of this function, release_heads will contain the heads of all the
1779  * relevant release sequences, if any exists with certainty
1780  * @param pending A pass-by-reference style return parameter which is only used
1781  * when returning false (i.e., uncertain). Returns most information regarding
1782  * an uncertain release sequence, including any write operations that might
1783  * break the sequence.
1784  * @return true, if the ModelChecker is certain that release_heads is complete;
1785  * false otherwise
1786  */
1787 bool ModelChecker::release_seq_heads(const ModelAction *rf,
1788                 rel_heads_list_t *release_heads,
1789                 struct release_seq *pending) const
1790 {
1791         /* Only check for release sequences if there are no cycles */
1792         if (mo_graph->checkForCycles())
1793                 return false;
1794
1795         while (rf) {
1796                 ASSERT(rf->is_write());
1797
1798                 if (rf->is_release())
1799                         release_heads->push_back(rf);
1800                 if (!rf->is_rmw())
1801                         break; /* End of RMW chain */
1802
1803                 /** @todo Need to be smarter here...  In the linux lock
1804                  * example, this will run to the beginning of the program for
1805                  * every acquire. */
1806                 /** @todo The way to be smarter here is to keep going until 1
1807                  * thread has a release preceded by an acquire and you've seen
1808                  *       both. */
1809
1810                 /* acq_rel RMW is a sufficient stopping condition */
1811                 if (rf->is_acquire() && rf->is_release())
1812                         return true; /* complete */
1813
1814                 rf = rf->get_reads_from();
1815         };
1816         if (!rf) {
1817                 /* read from future: need to settle this later */
1818                 pending->rf = NULL;
1819                 return false; /* incomplete */
1820         }
1821
1822         if (rf->is_release())
1823                 return true; /* complete */
1824
1825         /* else relaxed write; check modification order for contiguous subsequence
1826          * -> rf must be same thread as release */
1827         int tid = id_to_int(rf->get_tid());
1828         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, rf->get_location());
1829         action_list_t *list = &(*thrd_lists)[tid];
1830         action_list_t::const_reverse_iterator rit;
1831
1832         /* Find rf in the thread list */
1833         rit = std::find(list->rbegin(), list->rend(), rf);
1834         ASSERT(rit != list->rend());
1835
1836         /* Find the last write/release */
1837         for (; rit != list->rend(); rit++)
1838                 if ((*rit)->is_release())
1839                         break;
1840         if (rit == list->rend()) {
1841                 /* No write-release in this thread */
1842                 return true; /* complete */
1843         }
1844         ModelAction *release = *rit;
1845
1846         ASSERT(rf->same_thread(release));
1847
1848         pending->writes.clear();
1849
1850         bool certain = true;
1851         for (unsigned int i = 0; i < thrd_lists->size(); i++) {
1852                 if (id_to_int(rf->get_tid()) == (int)i)
1853                         continue;
1854                 list = &(*thrd_lists)[i];
1855
1856                 /* Can we ensure no future writes from this thread may break
1857                  * the release seq? */
1858                 bool future_ordered = false;
1859
1860                 ModelAction *last = get_last_action(int_to_id(i));
1861                 Thread *th = get_thread(int_to_id(i));
1862                 if ((last && rf->happens_before(last)) ||
1863                                 !is_enabled(th) ||
1864                                 th->is_complete())
1865                         future_ordered = true;
1866
1867                 ASSERT(!th->is_model_thread() || future_ordered);
1868
1869                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1870                         const ModelAction *act = *rit;
1871                         /* Reach synchronization -> this thread is complete */
1872                         if (act->happens_before(release))
1873                                 break;
1874                         if (rf->happens_before(act)) {
1875                                 future_ordered = true;
1876                                 continue;
1877                         }
1878
1879                         /* Only non-RMW writes can break release sequences */
1880                         if (!act->is_write() || act->is_rmw())
1881                                 continue;
1882
1883                         /* Check modification order */
1884                         if (mo_graph->checkReachable(rf, act)) {
1885                                 /* rf --mo--> act */
1886                                 future_ordered = true;
1887                                 continue;
1888                         }
1889                         if (mo_graph->checkReachable(act, release))
1890                                 /* act --mo--> release */
1891                                 break;
1892                         if (mo_graph->checkReachable(release, act) &&
1893                                       mo_graph->checkReachable(act, rf)) {
1894                                 /* release --mo-> act --mo--> rf */
1895                                 return true; /* complete */
1896                         }
1897                         /* act may break release sequence */
1898                         pending->writes.push_back(act);
1899                         certain = false;
1900                 }
1901                 if (!future_ordered)
1902                         certain = false; /* This thread is uncertain */
1903         }
1904
1905         if (certain) {
1906                 release_heads->push_back(release);
1907                 pending->writes.clear();
1908         } else {
1909                 pending->release = release;
1910                 pending->rf = rf;
1911         }
1912         return certain;
1913 }
1914
1915 /**
1916  * An interface for getting the release sequence head(s) with which a
1917  * given ModelAction must synchronize. This function only returns a non-empty
1918  * result when it can locate a release sequence head with certainty. Otherwise,
1919  * it may mark the internal state of the ModelChecker so that it will handle
1920  * the release sequence at a later time, causing @a act to update its
1921  * synchronization at some later point in execution.
1922  * @param act The 'acquire' action that may read from a release sequence
1923  * @param release_heads A pass-by-reference return parameter. Will be filled
1924  * with the head(s) of the release sequence(s), if they exists with certainty.
1925  * @see ModelChecker::release_seq_heads
1926  */
1927 void ModelChecker::get_release_seq_heads(ModelAction *act, rel_heads_list_t *release_heads)
1928 {
1929         const ModelAction *rf = act->get_reads_from();
1930         struct release_seq *sequence = (struct release_seq *)snapshot_calloc(1, sizeof(struct release_seq));
1931         sequence->acquire = act;
1932
1933         if (!release_seq_heads(rf, release_heads, sequence)) {
1934                 /* add act to 'lazy checking' list */
1935                 pending_rel_seqs->push_back(sequence);
1936         } else {
1937                 snapshot_free(sequence);
1938         }
1939 }
1940
1941 /**
1942  * Attempt to resolve all stashed operations that might synchronize with a
1943  * release sequence for a given location. This implements the "lazy" portion of
1944  * determining whether or not a release sequence was contiguous, since not all
1945  * modification order information is present at the time an action occurs.
1946  *
1947  * @param location The location/object that should be checked for release
1948  * sequence resolutions. A NULL value means to check all locations.
1949  * @param work_queue The work queue to which to add work items as they are
1950  * generated
1951  * @return True if any updates occurred (new synchronization, new mo_graph
1952  * edges)
1953  */
1954 bool ModelChecker::resolve_release_sequences(void *location, work_queue_t *work_queue)
1955 {
1956         bool updated = false;
1957         std::vector< struct release_seq *, SnapshotAlloc<struct release_seq *> >::iterator it = pending_rel_seqs->begin();
1958         while (it != pending_rel_seqs->end()) {
1959                 struct release_seq *pending = *it;
1960                 ModelAction *act = pending->acquire;
1961
1962                 /* Only resolve sequences on the given location, if provided */
1963                 if (location && act->get_location() != location) {
1964                         it++;
1965                         continue;
1966                 }
1967
1968                 const ModelAction *rf = act->get_reads_from();
1969                 rel_heads_list_t release_heads;
1970                 bool complete;
1971                 complete = release_seq_heads(rf, &release_heads, pending);
1972                 for (unsigned int i = 0; i < release_heads.size(); i++) {
1973                         if (!act->has_synchronized_with(release_heads[i])) {
1974                                 if (act->synchronize_with(release_heads[i]))
1975                                         updated = true;
1976                                 else
1977                                         set_bad_synchronization();
1978                         }
1979                 }
1980
1981                 if (updated) {
1982                         /* Re-check all pending release sequences */
1983                         work_queue->push_back(CheckRelSeqWorkEntry(NULL));
1984                         /* Re-check act for mo_graph edges */
1985                         work_queue->push_back(MOEdgeWorkEntry(act));
1986
1987                         /* propagate synchronization to later actions */
1988                         action_list_t::reverse_iterator rit = action_trace->rbegin();
1989                         for (; (*rit) != act; rit++) {
1990                                 ModelAction *propagate = *rit;
1991                                 if (act->happens_before(propagate)) {
1992                                         propagate->synchronize_with(act);
1993                                         /* Re-check 'propagate' for mo_graph edges */
1994                                         work_queue->push_back(MOEdgeWorkEntry(propagate));
1995                                 }
1996                         }
1997                 }
1998                 if (complete) {
1999                         it = pending_rel_seqs->erase(it);
2000                         snapshot_free(pending);
2001                 } else {
2002                         it++;
2003                 }
2004         }
2005
2006         // If we resolved promises or data races, see if we have realized a data race.
2007         checkDataRaces();
2008
2009         return updated;
2010 }
2011
2012 /**
2013  * Performs various bookkeeping operations for the current ModelAction. For
2014  * instance, adds action to the per-object, per-thread action vector and to the
2015  * action trace list of all thread actions.
2016  *
2017  * @param act is the ModelAction to add.
2018  */
2019 void ModelChecker::add_action_to_lists(ModelAction *act)
2020 {
2021         int tid = id_to_int(act->get_tid());
2022         action_trace->push_back(act);
2023
2024         get_safe_ptr_action(obj_map, act->get_location())->push_back(act);
2025
2026         std::vector<action_list_t> *vec = get_safe_ptr_vect_action(obj_thrd_map, act->get_location());
2027         if (tid >= (int)vec->size())
2028                 vec->resize(priv->next_thread_id);
2029         (*vec)[tid].push_back(act);
2030
2031         if ((int)thrd_last_action->size() <= tid)
2032                 thrd_last_action->resize(get_num_threads());
2033         (*thrd_last_action)[tid] = act;
2034
2035         if (act->is_fence() && act->is_release()) {
2036                 if ((int)thrd_last_fence_release->size() <= tid)
2037                         thrd_last_fence_release->resize(get_num_threads());
2038                 (*thrd_last_fence_release)[tid] = act;
2039         }
2040
2041         if (act->is_wait()) {
2042                 void *mutex_loc=(void *) act->get_value();
2043                 get_safe_ptr_action(obj_map, mutex_loc)->push_back(act);
2044
2045                 std::vector<action_list_t> *vec = get_safe_ptr_vect_action(obj_thrd_map, mutex_loc);
2046                 if (tid >= (int)vec->size())
2047                         vec->resize(priv->next_thread_id);
2048                 (*vec)[tid].push_back(act);
2049         }
2050 }
2051
2052 /**
2053  * @brief Get the last action performed by a particular Thread
2054  * @param tid The thread ID of the Thread in question
2055  * @return The last action in the thread
2056  */
2057 ModelAction * ModelChecker::get_last_action(thread_id_t tid) const
2058 {
2059         int threadid = id_to_int(tid);
2060         if (threadid < (int)thrd_last_action->size())
2061                 return (*thrd_last_action)[id_to_int(tid)];
2062         else
2063                 return NULL;
2064 }
2065
2066 /**
2067  * @brief Get the last fence release performed by a particular Thread
2068  * @param tid The thread ID of the Thread in question
2069  * @return The last fence release in the thread, if one exists; NULL otherwise
2070  */
2071 ModelAction * ModelChecker::get_last_fence_release(thread_id_t tid) const
2072 {
2073         int threadid = id_to_int(tid);
2074         if (threadid < (int)thrd_last_fence_release->size())
2075                 return (*thrd_last_fence_release)[id_to_int(tid)];
2076         else
2077                 return NULL;
2078 }
2079
2080 /**
2081  * Gets the last memory_order_seq_cst write (in the total global sequence)
2082  * performed on a particular object (i.e., memory location), not including the
2083  * current action.
2084  * @param curr The current ModelAction; also denotes the object location to
2085  * check
2086  * @return The last seq_cst write
2087  */
2088 ModelAction * ModelChecker::get_last_seq_cst_write(ModelAction *curr) const
2089 {
2090         void *location = curr->get_location();
2091         action_list_t *list = get_safe_ptr_action(obj_map, location);
2092         /* Find: max({i in dom(S) | seq_cst(t_i) && isWrite(t_i) && samevar(t_i, t)}) */
2093         action_list_t::reverse_iterator rit;
2094         for (rit = list->rbegin(); rit != list->rend(); rit++)
2095                 if ((*rit)->is_write() && (*rit)->is_seqcst() && (*rit) != curr)
2096                         return *rit;
2097         return NULL;
2098 }
2099
2100 /**
2101  * Gets the last memory_order_seq_cst fence (in the total global sequence)
2102  * performed in a particular thread, prior to a particular fence.
2103  * @param tid The ID of the thread to check
2104  * @param before_fence The fence from which to begin the search; if NULL, then
2105  * search for the most recent fence in the thread.
2106  * @return The last prior seq_cst fence in the thread, if exists; otherwise, NULL
2107  */
2108 ModelAction * ModelChecker::get_last_seq_cst_fence(thread_id_t tid, const ModelAction *before_fence) const
2109 {
2110         /* All fences should have NULL location */
2111         action_list_t *list = get_safe_ptr_action(obj_map, NULL);
2112         action_list_t::reverse_iterator rit = list->rbegin();
2113
2114         if (before_fence) {
2115                 for (; rit != list->rend(); rit++)
2116                         if (*rit == before_fence)
2117                                 break;
2118
2119                 ASSERT(*rit == before_fence);
2120                 rit++;
2121         }
2122
2123         for (; rit != list->rend(); rit++)
2124                 if ((*rit)->is_fence() && (tid == (*rit)->get_tid()) && (*rit)->is_seqcst())
2125                         return *rit;
2126         return NULL;
2127 }
2128
2129 /**
2130  * Gets the last unlock operation performed on a particular mutex (i.e., memory
2131  * location). This function identifies the mutex according to the current
2132  * action, which is presumed to perform on the same mutex.
2133  * @param curr The current ModelAction; also denotes the object location to
2134  * check
2135  * @return The last unlock operation
2136  */
2137 ModelAction * ModelChecker::get_last_unlock(ModelAction *curr) const
2138 {
2139         void *location = curr->get_location();
2140         action_list_t *list = get_safe_ptr_action(obj_map, location);
2141         /* Find: max({i in dom(S) | isUnlock(t_i) && samevar(t_i, t)}) */
2142         action_list_t::reverse_iterator rit;
2143         for (rit = list->rbegin(); rit != list->rend(); rit++)
2144                 if ((*rit)->is_unlock() || (*rit)->is_wait())
2145                         return *rit;
2146         return NULL;
2147 }
2148
2149 ModelAction * ModelChecker::get_parent_action(thread_id_t tid) const
2150 {
2151         ModelAction *parent = get_last_action(tid);
2152         if (!parent)
2153                 parent = get_thread(tid)->get_creation();
2154         return parent;
2155 }
2156
2157 /**
2158  * Returns the clock vector for a given thread.
2159  * @param tid The thread whose clock vector we want
2160  * @return Desired clock vector
2161  */
2162 ClockVector * ModelChecker::get_cv(thread_id_t tid) const
2163 {
2164         return get_parent_action(tid)->get_cv();
2165 }
2166
2167 /**
2168  * Resolve a set of Promises with a current write. The set is provided in the
2169  * Node corresponding to @a write.
2170  * @param write The ModelAction that is fulfilling Promises
2171  * @return True if promises were resolved; false otherwise
2172  */
2173 bool ModelChecker::resolve_promises(ModelAction *write)
2174 {
2175         bool resolved = false;
2176         std::vector< thread_id_t, ModelAlloc<thread_id_t> > threads_to_check;
2177
2178         for (unsigned int i = 0, promise_index = 0; promise_index < promises->size(); i++) {
2179                 Promise *promise = (*promises)[promise_index];
2180                 if (write->get_node()->get_promise(i)) {
2181                         ModelAction *read = promise->get_action();
2182                         if (read->is_rmw()) {
2183                                 mo_graph->addRMWEdge(write, read);
2184                         }
2185                         read_from(read, write);
2186                         //First fix up the modification order for actions that happened
2187                         //before the read
2188                         r_modification_order(read, write);
2189                         //Next fix up the modification order for actions that happened
2190                         //after the read.
2191                         post_r_modification_order(read, write);
2192                         //Make sure the promise's value matches the write's value
2193                         ASSERT(promise->get_value() == write->get_value());
2194                         delete(promise);
2195
2196                         promises->erase(promises->begin() + promise_index);
2197                         threads_to_check.push_back(read->get_tid());
2198
2199                         resolved = true;
2200                 } else
2201                         promise_index++;
2202         }
2203
2204         //Check whether reading these writes has made threads unable to
2205         //resolve promises
2206
2207         for(unsigned int i=0;i<threads_to_check.size();i++)
2208                 mo_check_promises(threads_to_check[i], write);
2209
2210         return resolved;
2211 }
2212
2213 /**
2214  * Compute the set of promises that could potentially be satisfied by this
2215  * action. Note that the set computation actually appears in the Node, not in
2216  * ModelChecker.
2217  * @param curr The ModelAction that may satisfy promises
2218  */
2219 void ModelChecker::compute_promises(ModelAction *curr)
2220 {
2221         for (unsigned int i = 0; i < promises->size(); i++) {
2222                 Promise *promise = (*promises)[i];
2223                 const ModelAction *act = promise->get_action();
2224                 if (!act->happens_before(curr) &&
2225                                 act->is_read() &&
2226                                 !act->could_synchronize_with(curr) &&
2227                                 !act->same_thread(curr) &&
2228                                 act->get_location() == curr->get_location() &&
2229                                 promise->get_value() == curr->get_value()) {
2230                         curr->get_node()->set_promise(i, act->is_rmw());
2231                 }
2232         }
2233 }
2234
2235 /** Checks promises in response to change in ClockVector Threads. */
2236 void ModelChecker::check_promises(thread_id_t tid, ClockVector *old_cv, ClockVector *merge_cv)
2237 {
2238         for (unsigned int i = 0; i < promises->size(); i++) {
2239                 Promise *promise = (*promises)[i];
2240                 const ModelAction *act = promise->get_action();
2241                 if ((old_cv == NULL || !old_cv->synchronized_since(act)) &&
2242                                 merge_cv->synchronized_since(act)) {
2243                         if (promise->increment_threads(tid)) {
2244                                 //Promise has failed
2245                                 priv->failed_promise = true;
2246                                 return;
2247                         }
2248                 }
2249         }
2250 }
2251
2252 void ModelChecker::check_promises_thread_disabled() {
2253         for (unsigned int i = 0; i < promises->size(); i++) {
2254                 Promise *promise = (*promises)[i];
2255                 if (promise->check_promise()) {
2256                         priv->failed_promise = true;
2257                         return;
2258                 }
2259         }
2260 }
2261
2262 /** Checks promises in response to addition to modification order for threads.
2263  * Definitions:
2264  * pthread is the thread that performed the read that created the promise
2265  *
2266  * pread is the read that created the promise
2267  *
2268  * pwrite is either the first write to same location as pread by
2269  * pthread that is sequenced after pread or the value read by the
2270  * first read to the same lcoation as pread by pthread that is
2271  * sequenced after pread..
2272  *
2273  *      1. If tid=pthread, then we check what other threads are reachable
2274  * through the mode order starting with pwrite.  Those threads cannot
2275  * perform a write that will resolve the promise due to modification
2276  * order constraints.
2277  *
2278  * 2. If the tid is not pthread, we check whether pwrite can reach the
2279  * action write through the modification order.  If so, that thread
2280  * cannot perform a future write that will resolve the promise due to
2281  * modificatin order constraints.
2282  *
2283  *      @parem tid The thread that either read from the model action
2284  *      write, or actually did the model action write.
2285  *
2286  *      @parem write The ModelAction representing the relevant write.
2287  */
2288
2289 void ModelChecker::mo_check_promises(thread_id_t tid, const ModelAction *write) {
2290         void * location = write->get_location();
2291         for (unsigned int i = 0; i < promises->size(); i++) {
2292                 Promise *promise = (*promises)[i];
2293                 const ModelAction *act = promise->get_action();
2294
2295                 //Is this promise on the same location?
2296                 if ( act->get_location() != location )
2297                         continue;
2298
2299                 //same thread as the promise
2300                 if ( act->get_tid()==tid ) {
2301
2302                         //do we have a pwrite for the promise, if not, set it
2303                         if (promise->get_write() == NULL ) {
2304                                 promise->set_write(write);
2305                                 //The pwrite cannot happen before the promise
2306                                 if (write->happens_before(act) && (write != act)) {
2307                                         priv->failed_promise = true;
2308                                         return;
2309                                 }
2310                         }
2311                         if (mo_graph->checkPromise(write, promise)) {
2312                                 priv->failed_promise = true;
2313                                 return;
2314                         }
2315                 }
2316
2317                 //Don't do any lookups twice for the same thread
2318                 if (promise->has_sync_thread(tid))
2319                         continue;
2320
2321                 if (promise->get_write()&&mo_graph->checkReachable(promise->get_write(), write)) {
2322                         if (promise->increment_threads(tid)) {
2323                                 priv->failed_promise = true;
2324                                 return;
2325                         }
2326                 }
2327         }
2328 }
2329
2330 /**
2331  * Compute the set of writes that may break the current pending release
2332  * sequence. This information is extracted from previou release sequence
2333  * calculations.
2334  *
2335  * @param curr The current ModelAction. Must be a release sequence fixup
2336  * action.
2337  */
2338 void ModelChecker::compute_relseq_breakwrites(ModelAction *curr)
2339 {
2340         if (pending_rel_seqs->empty())
2341                 return;
2342
2343         struct release_seq *pending = pending_rel_seqs->back();
2344         for (unsigned int i = 0; i < pending->writes.size(); i++) {
2345                 const ModelAction *write = pending->writes[i];
2346                 curr->get_node()->add_relseq_break(write);
2347         }
2348
2349         /* NULL means don't break the sequence; just synchronize */
2350         curr->get_node()->add_relseq_break(NULL);
2351 }
2352
2353 /**
2354  * Build up an initial set of all past writes that this 'read' action may read
2355  * from. This set is determined by the clock vector's "happens before"
2356  * relationship.
2357  * @param curr is the current ModelAction that we are exploring; it must be a
2358  * 'read' operation.
2359  */
2360 void ModelChecker::build_reads_from_past(ModelAction *curr)
2361 {
2362         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
2363         unsigned int i;
2364         ASSERT(curr->is_read());
2365
2366         ModelAction *last_sc_write = NULL;
2367
2368         /* Track whether this object has been initialized */
2369         bool initialized = false;
2370
2371         if (curr->is_seqcst()) {
2372                 last_sc_write = get_last_seq_cst_write(curr);
2373                 /* We have to at least see the last sequentially consistent write,
2374                          so we are initialized. */
2375                 if (last_sc_write != NULL)
2376                         initialized = true;
2377         }
2378
2379         /* Iterate over all threads */
2380         for (i = 0; i < thrd_lists->size(); i++) {
2381                 /* Iterate over actions in thread, starting from most recent */
2382                 action_list_t *list = &(*thrd_lists)[i];
2383                 action_list_t::reverse_iterator rit;
2384                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
2385                         ModelAction *act = *rit;
2386
2387                         /* Only consider 'write' actions */
2388                         if (!act->is_write() || act == curr)
2389                                 continue;
2390
2391                         /* Don't consider more than one seq_cst write if we are a seq_cst read. */
2392                         bool allow_read = true;
2393
2394                         if (curr->is_seqcst() && (act->is_seqcst() || (last_sc_write != NULL && act->happens_before(last_sc_write))) && act != last_sc_write)
2395                                 allow_read = false;
2396                         else if (curr->get_sleep_flag() && !curr->is_seqcst() && !sleep_can_read_from(curr, act))
2397                                 allow_read = false;
2398
2399                         if (allow_read) {
2400                                 DEBUG("Adding action to may_read_from:\n");
2401                                 if (DBG_ENABLED()) {
2402                                         act->print();
2403                                         curr->print();
2404                                 }
2405                                 curr->get_node()->add_read_from(act);
2406                         }
2407
2408                         /* Include at most one act per-thread that "happens before" curr */
2409                         if (act->happens_before(curr)) {
2410                                 initialized = true;
2411                                 break;
2412                         }
2413                 }
2414         }
2415
2416         if (!initialized)
2417                 assert_bug("May read from uninitialized atomic");
2418
2419         if (DBG_ENABLED() || !initialized) {
2420                 model_print("Reached read action:\n");
2421                 curr->print();
2422                 model_print("Printing may_read_from\n");
2423                 curr->get_node()->print_may_read_from();
2424                 model_print("End printing may_read_from\n");
2425         }
2426 }
2427
2428 bool ModelChecker::sleep_can_read_from(ModelAction * curr, const ModelAction *write) {
2429         while(true) {
2430                 Node *prevnode=write->get_node()->get_parent();
2431
2432                 bool thread_sleep=prevnode->enabled_status(curr->get_tid())==THREAD_SLEEP_SET;
2433                 if (write->is_release()&&thread_sleep)
2434                         return true;
2435                 if (!write->is_rmw()) {
2436                         return false;
2437                 }
2438                 if (write->get_reads_from()==NULL)
2439                         return true;
2440                 write=write->get_reads_from();
2441         }
2442 }
2443
2444 static void print_list(action_list_t *list, int exec_num = -1)
2445 {
2446         action_list_t::iterator it;
2447
2448         model_print("---------------------------------------------------------------------\n");
2449         if (exec_num >= 0)
2450                 model_print("Execution %d:\n", exec_num);
2451
2452         unsigned int hash=0;
2453
2454         for (it = list->begin(); it != list->end(); it++) {
2455                 (*it)->print();
2456                 hash=hash^(hash<<3)^((*it)->hash());
2457         }
2458         model_print("HASH %u\n", hash);
2459         model_print("---------------------------------------------------------------------\n");
2460 }
2461
2462 #if SUPPORT_MOD_ORDER_DUMP
2463 void ModelChecker::dumpGraph(char *filename) {
2464         char buffer[200];
2465         sprintf(buffer, "%s.dot",filename);
2466         FILE *file=fopen(buffer, "w");
2467         fprintf(file, "digraph %s {\n",filename);
2468         mo_graph->dumpNodes(file);
2469         ModelAction ** thread_array=(ModelAction **)model_calloc(1, sizeof(ModelAction *)*get_num_threads());
2470
2471         for (action_list_t::iterator it = action_trace->begin(); it != action_trace->end(); it++) {
2472                 ModelAction *action=*it;
2473                 if (action->is_read()) {
2474                         fprintf(file, "N%u [label=\"%u, T%u\"];\n", action->get_seq_number(),action->get_seq_number(), action->get_tid());
2475                         if (action->get_reads_from()!=NULL)
2476                                 fprintf(file, "N%u -> N%u[label=\"rf\", color=red];\n", action->get_seq_number(), action->get_reads_from()->get_seq_number());
2477                 }
2478                 if (thread_array[action->get_tid()] != NULL) {
2479                         fprintf(file, "N%u -> N%u[label=\"sb\", color=blue];\n", thread_array[action->get_tid()]->get_seq_number(), action->get_seq_number());
2480                 }
2481
2482                 thread_array[action->get_tid()]=action;
2483         }
2484         fprintf(file,"}\n");
2485         model_free(thread_array);
2486         fclose(file);
2487 }
2488 #endif
2489
2490 /** @brief Prints an execution trace summary. */
2491 void ModelChecker::print_summary() const
2492 {
2493 #if SUPPORT_MOD_ORDER_DUMP
2494         scheduler->print();
2495         char buffername[100];
2496         sprintf(buffername, "exec%04u", stats.num_total);
2497         mo_graph->dumpGraphToFile(buffername);
2498         sprintf(buffername, "graph%04u", stats.num_total);
2499         dumpGraph(buffername);
2500 #endif
2501
2502         if (!isfeasibleprefix())
2503                 model_print("INFEASIBLE EXECUTION!\n");
2504         print_list(action_trace, stats.num_total);
2505         model_print("\n");
2506 }
2507
2508 /**
2509  * Add a Thread to the system for the first time. Should only be called once
2510  * per thread.
2511  * @param t The Thread to add
2512  */
2513 void ModelChecker::add_thread(Thread *t)
2514 {
2515         thread_map->put(id_to_int(t->get_id()), t);
2516         scheduler->add_thread(t);
2517 }
2518
2519 /**
2520  * Removes a thread from the scheduler.
2521  * @param the thread to remove.
2522  */
2523 void ModelChecker::remove_thread(Thread *t)
2524 {
2525         scheduler->remove_thread(t);
2526 }
2527
2528 /**
2529  * @brief Get a Thread reference by its ID
2530  * @param tid The Thread's ID
2531  * @return A Thread reference
2532  */
2533 Thread * ModelChecker::get_thread(thread_id_t tid) const
2534 {
2535         return thread_map->get(id_to_int(tid));
2536 }
2537
2538 /**
2539  * @brief Get a reference to the Thread in which a ModelAction was executed
2540  * @param act The ModelAction
2541  * @return A Thread reference
2542  */
2543 Thread * ModelChecker::get_thread(ModelAction *act) const
2544 {
2545         return get_thread(act->get_tid());
2546 }
2547
2548 /**
2549  * @brief Check if a Thread is currently enabled
2550  * @param t The Thread to check
2551  * @return True if the Thread is currently enabled
2552  */
2553 bool ModelChecker::is_enabled(Thread *t) const
2554 {
2555         return scheduler->is_enabled(t);
2556 }
2557
2558 /**
2559  * @brief Check if a Thread is currently enabled
2560  * @param tid The ID of the Thread to check
2561  * @return True if the Thread is currently enabled
2562  */
2563 bool ModelChecker::is_enabled(thread_id_t tid) const
2564 {
2565         return scheduler->is_enabled(tid);
2566 }
2567
2568 /**
2569  * Switch from a user-context to the "master thread" context (a.k.a. system
2570  * context). This switch is made with the intention of exploring a particular
2571  * model-checking action (described by a ModelAction object). Must be called
2572  * from a user-thread context.
2573  *
2574  * @param act The current action that will be explored. May be NULL only if
2575  * trace is exiting via an assertion (see ModelChecker::set_assert and
2576  * ModelChecker::has_asserted).
2577  * @return Return status from the 'swap' call (i.e., success/fail, 0/-1)
2578  */
2579 int ModelChecker::switch_to_master(ModelAction *act)
2580 {
2581         DBG();
2582         Thread *old = thread_current();
2583         set_current_action(act);
2584         old->set_state(THREAD_READY);
2585         return Thread::swap(old, &system_context);
2586 }
2587
2588 /**
2589  * Takes the next step in the execution, if possible.
2590  * @return Returns true (success) if a step was taken and false otherwise.
2591  */
2592 bool ModelChecker::take_step() {
2593         if (has_asserted())
2594                 return false;
2595
2596         Thread *curr = priv->current_action ? get_thread(priv->current_action) : NULL;
2597         if (curr) {
2598                 if (curr->get_state() == THREAD_READY) {
2599                         ASSERT(priv->current_action);
2600
2601                         priv->nextThread = check_current_action(priv->current_action);
2602                         priv->current_action = NULL;
2603
2604                         if (curr->is_blocked() || curr->is_complete())
2605                                 scheduler->remove_thread(curr);
2606                 } else {
2607                         ASSERT(false);
2608                 }
2609         }
2610         Thread *next = scheduler->next_thread(priv->nextThread);
2611
2612         /* Infeasible -> don't take any more steps */
2613         if (is_infeasible())
2614                 return false;
2615         else if (isfeasibleprefix() && have_bug_reports()) {
2616                 set_assert();
2617                 return false;
2618         }
2619
2620         if (params.bound != 0) {
2621                 if (priv->used_sequence_numbers > params.bound) {
2622                         return false;
2623                 }
2624         }
2625
2626         DEBUG("(%d, %d)\n", curr ? id_to_int(curr->get_id()) : -1,
2627                         next ? id_to_int(next->get_id()) : -1);
2628
2629         /*
2630          * Launch end-of-execution release sequence fixups only when there are:
2631          *
2632          * (1) no more user threads to run (or when execution replay chooses
2633          *     the 'model_thread')
2634          * (2) pending release sequences
2635          * (3) pending assertions (i.e., data races)
2636          * (4) no pending promises
2637          */
2638         if (!pending_rel_seqs->empty() && (!next || next->is_model_thread()) &&
2639                         is_feasible_prefix_ignore_relseq() && !unrealizedraces.empty()) {
2640                 model_print("*** WARNING: release sequence fixup action (%zu pending release seuqences) ***\n",
2641                                 pending_rel_seqs->size());
2642                 ModelAction *fixup = new ModelAction(MODEL_FIXUP_RELSEQ,
2643                                 std::memory_order_seq_cst, NULL, VALUE_NONE,
2644                                 model_thread);
2645                 set_current_action(fixup);
2646                 return true;
2647         }
2648
2649         /* next == NULL -> don't take any more steps */
2650         if (!next)
2651                 return false;
2652
2653         next->set_state(THREAD_RUNNING);
2654
2655         if (next->get_pending() != NULL) {
2656                 /* restart a pending action */
2657                 set_current_action(next->get_pending());
2658                 next->set_pending(NULL);
2659                 next->set_state(THREAD_READY);
2660                 return true;
2661         }
2662
2663         /* Return false only if swap fails with an error */
2664         return (Thread::swap(&system_context, next) == 0);
2665 }
2666
2667 /** Wrapper to run the user's main function, with appropriate arguments */
2668 void user_main_wrapper(void *)
2669 {
2670         user_main(model->params.argc, model->params.argv);
2671 }
2672
2673 /** @brief Run ModelChecker for the user program */
2674 void ModelChecker::run()
2675 {
2676         do {
2677                 thrd_t user_thread;
2678
2679                 /* Start user program */
2680                 add_thread(new Thread(&user_thread, &user_main_wrapper, NULL));
2681
2682                 /* Wait for all threads to complete */
2683                 while (take_step());
2684         } while (next_execution());
2685
2686         print_stats();
2687 }