
1 Correctness

Correctness: A sequence of transactions are said to be consistent if and
only if a total ordeing of them according to precedence relationship can be
established that demonstrates the same behavior as the execution of the
program. Behavior for an operation means the data it has read or wants to
write. Demonstrating the same behavior thus means all the read operations
should still see the same data in the new sequence as they have seen in the
actual sequence. However writs always writes the same value no matter
what. Hence the behavior of a write operation is not alterable.

Def 1- Set of Primitive Operations: Operations are taken from the set
{force-readoffset(filedescriptor), writeoffset(filedescriptor), readdata(inode,
offset, length), writedata(inode, offset, length), commit}.

Def 2- Set of User-Level Operations: User-Level Operations are taken
from the set {Read(fildescriptor), GetFilePointer(filedescriptor), Write(filedescriptor),
Seek(filedescriptor), EndTransaction}.

Note 1- Assignment Operations Need Not Be Shown In OPexcecuted:
Operations like offset = offset + length and other assignment operations
in OPTi need not be shown in the actual sequence of operations namely
OPexecuted that consists of operations executed by different transaction so
far, the reason is simply all such operations are local to the transaction and
do not affect any other transaction’s state and hence do not restrict the
commution of other operations in any manner.

Note 2 Forced-Readoffset(fd): Reads the offset for the filedescriptor and
makes the transaction bound to this value.

2 FileDescriptor Offset State per Transaction

:
Each filedescriptor has an associated offset with it, within each transac-

tion this offset can be in 4 different states, these states indicate the depen-
dency the transaction has on the value of this offset:

1- No Access: This is the default state for all filedescriptors in a trans-
action and is changed as soon as there is an access to the the descriptor
within the transaction (any of the use-level operations are invoked).

2- None: Meaning there is no dependency for any operation in this

1

transaction on the value of the offset associated with this descriptor regard-
ing other transactions.

3- Write Dependency: This kind of dependency means there is at
least one operation in OPTi having an unknown offset(essentially a write
operation) value as argument. The value of this unknown offset will be de-
termined at commit instant.

4- Read Dependency: This kind of dependency means there is at least
one operation acting on an offset value for fd, where the value for fd has
been determined by a previously committed transaction.

The state machine below depicts the behavior of the user level operations
regarding how the offset corresponding to that transaction changes:

Explanation: Whenever the offset status for the transaction goes to
”Read Dependence”, a ”forced-readoffset(fd)” operation is issued immedi-
ately preceding the operation that caused this transformation. The forced-
radoofset(fd) is only issued if there is not a forced-readoffset(fd) in the OPTi

already.

Axiom For Diagram: If the first access to a filedescriptor is a Seek(fd),
then the following operation on fd gets the offset value from the assignment
made by the Seek(fd) and advances the offset. Hence, the following oper-
ations get this offset and the offset value the filedescriptor had had before
this transaction accesses fd is never referenced (thats why it is an absorbing
state). This conforms to the definition of ”None” state.

If Read(fd.inode, offset, length) or GetF ilePointer(fd) is the first ac-
cess made by this transaction, the offset is read (since the data needs to be
read at this instant), this offset should be the one committed by a previously
committed transaction (as this is the first access to fd in this transaction).

2

Once the offset is read, it is always dependent on this value (hence an ab-
sorbing state). For all the following operations, the offset value is known.
This conforms to the definition that there is at least (the first read ever on
fd by this transaction) one operation that acts on the offset value for fd and
rules out the ”Write Dependency” and ”None” states.

If Write(fd.inode, offset, length) is the first access made to fd by this
transaction, then the offset to write to, can be decided at commit instant
since the Write functions means start writing at the most recent committed
fd.offset, hence offset realization can be postponed till commit instant. Any
Writes or Seeks would still leave this dependency, since operations after a
Seek act on absolute offset, and Writes preceding any Seek can all determine
the offset at commit instant for the same reason as before.

However, if a Read on the same fd in the transaction is invoked there
are two possibilities:

1- A Seek precedes this Read, hence the offset value is absolute and is
not read, however the ranges that are supposed to be written by Writes pre-
ceding the Seek, may overlap with the range Read is willing to Read from,
and according to Rules(Most Recent Changes Should Be Visible) if thats
the case the Read should be able to see this data, this suggests the ranges
that all the Writes are going to write to should be realized now and this
requires settling down on a value for all file descriptors offsets for this inode
at this instant. Based on these, the most recent committed offset value for
all these descriptors should be assigned to the offsets for the Writes that for
the first time accessed the descriptor. Other for writes preceding the Seek,
get this value as being advance by prior writes.

2- No Seek precedes the Read, hence the offset value the Read has to
read from is unknown, since preceding Writes to fd have all used unknown
offsets, the offset value given to Read is an unknown once, however it has
to be known, follows that the offset value for the Write that for the first
time accessed this fd should be decided upon and as shown before, the value
should be the most recent committed offset value for fd. The offset value
for this read or other writes, is the offset value obtained as being advanced
by those operations.

The two same possibilities exist when a GetFilePointer operation is in-
voked on the same fd:

1- If a Seek precedes it, then the offset value becomes absolute and hence
the getFilePointer could retrieve the value assigned by Seek.

3

2- Otherwise, the offset value is still unknown, hence to be able to deter-
mine the offset value at this instant, the value obtained by reading the last
committed offset value should be assigned to the offset value. for the first
Write to fd.

3 User-Level Operations Structure

The user-level operation cab be broken as follows:

1- Seek(fd): This operation sets the offset for filedescriptor. We define
it as demonstarted below:

Just an internal assignment in the transaction, {fd.offset = value}.

2- Write(fd):

1- {writedata(fd.inode, offset, length), fd.offset = fd.offset +
length}

3- GetFilePointer(fd):

{{forcedreadoffset(fd) issued as demonstrated at the state dia-
gram if any, it is issued when the state for fd in this transaction is not in
”No Dependency” or ”Write Dependency 2”}}

4- Read(fd):

∀filedescriptorfdi where fdi.inode = fd.inode and the state for
fdi in this transaction is not NoDependency, Read(fd) ={{forcedreadoffset(fdi)}}, readdata(fd.inode, offset, length), offset =
offset + length}

5- EndTransaction:
∀fdi such that the state for fdi in this transaction is not ”No

State”, EndTransaction = {{writeoffset(fdi)}, commit}

Essentially for any fd that the correspondent state diagram in the trans-
actions shows is in a state other than ”No Access”, a writeoffset(fd) is issued
while committing.

4

4 FileDescriptor Offset State per writedata Oper-
ation

Any writedata operation within a transaction gets fd and an offset as argu-
ments. There writes are reflected in the commit instant, however the offset
to write to as we saw earlier for some writes i s determined at commit in-
stant and for other is bound to a specific value before commit instant. We
should have a policy to be able to diffrenciate between these two. The 3
rules below odes this.

1- If the state for fd a given distinguish in a transaction is ”Write De-
pendency 1” all writes by that transaction to that fd will get the value of
the offset to write to at commit instant (since in ”Write Dependency 1” all
writes are at unknown offsets) .

2- If the state for fd is ”Read Dependency” or ”No Dependency” then
all writes on fd within this transaction should be done at offset determined
for them when they were invoked (since all writes are to known offsets either
determined by the transaction itself or a previously committed transaction).

3- Otherwise, if the state is ”Write Dependency 2”, then if the writedata(fd.inode, ...)
operation precedes a Seek(fd) then the offset is determined at commit in-
stant (since all such writes are at unknown offset). Otherwise, the writes
should be done at the offset decided upon earlier (the write after a Seek
write the offset determined by Seek and hence to a known offset).

We could also think of this as a state machine for each writedata opera-
tion. The state diagram is created for each operation when it is first invoked
and is subject to two things:

1- If there ∃Seek(fd)orforced−readoffset(fd) ∈ OPTi such that those
precede the writedata(fd.inode,) then the initial state in the state dia-
gram for this writedata is Absolute.

2- Otherwise the initial state is Unknown offset.

The final state for all writedata operations is Absolute, since the write
should be perfomed at a specefic offset eventually. However, depending on

5

the prevuious circumstances the system would immediately prior to commit
determine the offset or would have realized it earlier.

5 Guidelines for Implementaion

As we saw earlier in Rule 4, any two operations can commute across each
other unless they are subject to one of the two conditions in Rule 3.

Guideline 1: Commuting forced-readoffset Operations: A forced −
readoffset(fd) ∈ OPTi can go past a commitTj if and only 6 ∃writeoffset(fd)inOPTj .

Axiom: It follows immediately from Rule 4 and conditions in Rule
3, that this forced − readoffset(fd) can go pats the commit. What re-
mains to be proven is 6 ∃writeoffset(fd) ∈ OPTi such that it precedes
forced− readoffset(fd), as this would mean even if ∃writeoffset ∈ OPTj

still the forced− readoffset(fd) could commute with commitTj .

This stems from the definition of EndTransaction operation, and the
state diagram. A forced− readoffset can be issued at any place in OPT i
however it would always precede the writeoffset(fd) ∈ OPTi since this is
last operation in OPTi before commit.

Guideline 2: Commuting readdata Operations: A readdata(fdi.inode, offseti, lenghti) ∈
OPTi can go past a commitTj if and only if

1- 6 ∃writedata(fdj .inode, offsetj , lengthj)inOPTj such that fdj .inode =
fdi.inode and the two ranges (offseti, offseti+lengthi) and (offseti, offsetj+
lengthj) have an intersection.

OR

2- ∃ a set of writedata(fdj .inode, offsetj , lenghtj)inOPTi such that for
all of them writedata→ readdata and fdi.inode = fdj .inode and the range
(offseti, offseti + length) is a subrange for a combiantion of ranges for
these writedata operations.

Axiom: This follows imeediately from Rule 4 (1 and 2 are concrete rep-
resentations for conditions 1 and 2 in Rule 3). However, it should be noted
that whenever a readata operation wants to commute across a commit op-
eration ∈ Tj , if ∃writedata ∈ OPTj , the offset for the wtitedata operation is
known at this instant (according to the state diagram demonstarted below
and regardless of whether i = j or not), hence it would be trivial to see

6

whether these writedata operations intersect (or include in case they are in
the same transaction as the readata) with the readdata or not.

Guideline 3: Reads Should be Validated At Commit Instant : If an oper-
ation a that ”reads” some data rn (reads the data at some t < tcommit−of−the−transaction(the
commit instant)), it should be ensured that the data rn is still valid in the
actual file system at tcommit−of−the−transaction (commit instant) or Ti has to
abort.

Axiom: If the data is not valid anymore it means the data rn has been
written since ti−1. This implies at least one operation b has written the
data since the use and b does not precede a and a precedes b. b is either
an operation in the same transaction or a different one. However, if b is
in the same transaction, then the data read is valid at commit instant by
defenition. On the other hand, assume b belongs to a different transaction
namely Tj . Since Tj should have already commited, according to Corrolary
2 all operation in OPTj should precede those in OPTi , however, we know
there is at least an operation b that does not precede a (since a has not seen
the ”writes” made to rn by b). Hence, Ti can not commit.

Guideline 4: If Reads Are Valid At Commit Instant, the Transaction
Commits: If by applying Guideline 3 for Ti it is ensured that ∀ri ∈ RTi (all
data read by Ti) is still valid at commit instant, then ∀Tj ∈ TcommittedTj →
Tj and hence according to Rule 4 Ti commits.

proof: If all data read is still valid at commit instant, means all operation
in the set of operations belonging to committed transactions, precede those
in Ti (since no writes have been seen), and consequently all those transac-
tions precede Ti. Rule 5 ensures such transaction would be able to commit.

7

