From: Chris Lattner Date: Thu, 22 Jul 2004 21:30:35 +0000 (+0000) Subject: Remove some (LARGE) abandoned code for the release. If this is ever needed X-Git-Url: http://plrg.eecs.uci.edu/git/?a=commitdiff_plain;h=cc46c4fceeef4d5a359a1188b737689a69f5be5f;p=oota-llvm.git Remove some (LARGE) abandoned code for the release. If this is ever needed again in the future, it can be resurrected out of CVS git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15112 91177308-0d34-0410-b5e6-96231b3b80d8 --- diff --git a/lib/Target/X86/Makefile b/lib/Target/X86/Makefile index 896feae08dd..350a47348b7 100644 --- a/lib/Target/X86/Makefile +++ b/lib/Target/X86/Makefile @@ -13,8 +13,7 @@ include $(LEVEL)/Makefile.common # Make sure that tblgen is run, first thing. $(SourceDepend): X86GenRegisterInfo.h.inc X86GenRegisterNames.inc \ X86GenRegisterInfo.inc X86GenInstrNames.inc \ - X86GenInstrInfo.inc X86GenSimpInstrSelector.inc \ - X86GenInstrSelector.inc + X86GenInstrInfo.inc X86GenInstrSelector.inc X86GenRegisterNames.inc:: $(SourceDir)/X86.td $(SourceDir)/X86RegisterInfo.td \ $(SourceDir)/../Target.td $(TBLGEN) @@ -41,10 +40,6 @@ X86GenInstrInfo.inc:: $(SourceDir)/X86.td $(SourceDir)/X86InstrInfo.td \ @echo "Building X86.td instruction information with tblgen" $(VERB) $(TBLGEN) -I $(BUILD_SRC_DIR) $< -gen-instr-desc -o $@ -X86GenSimpInstrSelector.inc:: $(SourceDir)/X86InstrSel.td $(TBLGEN) - @echo "Building X86.td simple instruction selector with tblgen" - $(VERB) $(TBLGEN) -I $(BUILD_SRC_DIR) $< -gen-simp-instr-sel -o $@ - X86GenInstrSelector.inc:: $(SourceDir)/X86.td $(SourceDir)/X86InstrInfo.td \ $(SourceDir)/../Target.td $(TBLGEN) @echo "Building X86.td instruction selector with tblgen" diff --git a/lib/Target/X86/X86.h b/lib/Target/X86/X86.h index fde6bc61081..54e2861a5f6 100644 --- a/lib/Target/X86/X86.h +++ b/lib/Target/X86/X86.h @@ -29,12 +29,6 @@ class IntrinsicLowering; /// FunctionPass *createX86SimpleInstructionSelector(TargetMachine &TM); -/// createX86ReallySimpleInstructionSelector - This pass converts an LLVM -/// function into a machine code representation in an even simpler fashion -/// than above. -/// -FunctionPass *createX86ReallySimpleInstructionSelector(TargetMachine &TM); - /// createX86PatternInstructionSelector - This pass converts an LLVM function /// into a machine code representation using pattern matching and a machine /// description file. diff --git a/lib/Target/X86/X86SimpInstrSelector.cpp b/lib/Target/X86/X86SimpInstrSelector.cpp deleted file mode 100644 index 2ada795718b..00000000000 --- a/lib/Target/X86/X86SimpInstrSelector.cpp +++ /dev/null @@ -1,2826 +0,0 @@ -//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines a simple peephole instruction selector for the x86 target -// -//===----------------------------------------------------------------------===// - -#include "X86.h" -#include "X86InstrBuilder.h" -#include "X86InstrInfo.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Function.h" -#include "llvm/Instructions.h" -#include "llvm/Pass.h" -#include "llvm/CodeGen/IntrinsicLowering.h" -#include "llvm/CodeGen/MachineConstantPool.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/SSARegMap.h" -#include "llvm/Target/MRegisterInfo.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/Support/InstVisitor.h" -#include "llvm/Support/CFG.h" -#include "Support/Statistic.h" -using namespace llvm; - -namespace { - Statistic<> - NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added"); -} - -namespace { - struct ISel : public FunctionPass, InstVisitor { - TargetMachine &TM; - MachineFunction *F; // The function we are compiling into - MachineBasicBlock *BB; // The current MBB we are compiling - int VarArgsFrameIndex; // FrameIndex for start of varargs area - int ReturnAddressIndex; // FrameIndex for the return address - - std::map RegMap; // Mapping between Val's and SSA Regs - - // MBBMap - Mapping between LLVM BB -> Machine BB - std::map MBBMap; - - ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {} - - /// runOnFunction - Top level implementation of instruction selection for - /// the entire function. - /// - bool runOnFunction(Function &Fn) { - // First pass over the function, lower any unknown intrinsic functions - // with the IntrinsicLowering class. - LowerUnknownIntrinsicFunctionCalls(Fn); - - F = &MachineFunction::construct(&Fn, TM); - - // Create all of the machine basic blocks for the function... - for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) - F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); - - BB = &F->front(); - - // Set up a frame object for the return address. This is used by the - // llvm.returnaddress & llvm.frameaddress intrinisics. - ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4); - - // Copy incoming arguments off of the stack... - LoadArgumentsToVirtualRegs(Fn); - - // Instruction select everything except PHI nodes - visit(Fn); - - // Select the PHI nodes - SelectPHINodes(); - - // Insert the FP_REG_KILL instructions into blocks that need them. - InsertFPRegKills(); - - RegMap.clear(); - MBBMap.clear(); - F = 0; - // We always build a machine code representation for the function - return true; - } - - virtual const char *getPassName() const { - return "X86 Simple Instruction Selection"; - } - - /// visitBasicBlock - This method is called when we are visiting a new basic - /// block. This simply creates a new MachineBasicBlock to emit code into - /// and adds it to the current MachineFunction. Subsequent visit* for - /// instructions will be invoked for all instructions in the basic block. - /// - void visitBasicBlock(BasicBlock &LLVM_BB) { - BB = MBBMap[&LLVM_BB]; - } - - /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the - /// function, lowering any calls to unknown intrinsic functions into the - /// equivalent LLVM code. - /// - void LowerUnknownIntrinsicFunctionCalls(Function &F); - - /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function - /// from the stack into virtual registers. - /// - void LoadArgumentsToVirtualRegs(Function &F); - - /// SelectPHINodes - Insert machine code to generate phis. This is tricky - /// because we have to generate our sources into the source basic blocks, - /// not the current one. - /// - void SelectPHINodes(); - - /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks - /// that need them. This only occurs due to the floating point stackifier - /// not being aggressive enough to handle arbitrary global stackification. - /// - void InsertFPRegKills(); - - // Visitation methods for various instructions. These methods simply emit - // fixed X86 code for each instruction. - // - - // Control flow operators - void visitReturnInst(ReturnInst &RI); - void visitBranchInst(BranchInst &BI); - - struct ValueRecord { - Value *Val; - unsigned Reg; - const Type *Ty; - ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {} - ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {} - }; - void doCall(const ValueRecord &Ret, MachineInstr *CallMI, - const std::vector &Args); - void visitCallInst(CallInst &I); - void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I); - - // Arithmetic operators - void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); - void visitAdd(BinaryOperator &B);// visitSimpleBinary(B, 0); } - void visitSub(BinaryOperator &B);// { visitSimpleBinary(B, 1); } - void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, - unsigned DestReg, const Type *DestTy, - unsigned Op0Reg, unsigned Op1Reg); - void doMultiplyConst(MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI, - unsigned DestReg, const Type *DestTy, - unsigned Op0Reg, unsigned Op1Val); - void visitMul(BinaryOperator &B); - - void visitDiv(BinaryOperator &B) { visitDivRem(B); } - void visitRem(BinaryOperator &B) { visitDivRem(B); } - void visitDivRem(BinaryOperator &B); - - // Bitwise operators - void visitAnd(BinaryOperator &B);// { visitSimpleBinary(B, 2); } - void visitOr (BinaryOperator &B);// { visitSimpleBinary(B, 3); } - void visitXor(BinaryOperator &B);// { visitSimpleBinary(B, 4); } - - // Comparison operators... - void visitSetCondInst(SetCondInst &I); - unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, - MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI); - - // Memory Instructions - void visitLoadInst(LoadInst &I); - void visitStoreInst(StoreInst &I); - void visitGetElementPtrInst(GetElementPtrInst &I); - void visitAllocaInst(AllocaInst &I); - void visitMallocInst(MallocInst &I); - void visitFreeInst(FreeInst &I); - - // Other operators - void visitShiftInst(ShiftInst &I); - void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass - void visitCastInst(CastInst &I); - void visitVANextInst(VANextInst &I); - void visitVAArgInst(VAArgInst &I); - - void visitInstruction(Instruction &I) { - std::cerr << "Cannot instruction select: " << I; - abort(); - } - - /// promote32 - Make a value 32-bits wide, and put it somewhere. - /// - void promote32(unsigned targetReg, const ValueRecord &VR); - - /// getAddressingMode - Get the addressing mode to use to address the - /// specified value. The returned value should be used with addFullAddress. - void getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale, - unsigned &IndexReg, unsigned &Disp); - - - /// getGEPIndex - This is used to fold GEP instructions into X86 addressing - /// expressions. - void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, - std::vector &GEPOps, - std::vector &GEPTypes, unsigned &BaseReg, - unsigned &Scale, unsigned &IndexReg, unsigned &Disp); - - /// isGEPFoldable - Return true if the specified GEP can be completely - /// folded into the addressing mode of a load/store or lea instruction. - bool isGEPFoldable(MachineBasicBlock *MBB, - Value *Src, User::op_iterator IdxBegin, - User::op_iterator IdxEnd, unsigned &BaseReg, - unsigned &Scale, unsigned &IndexReg, unsigned &Disp); - - /// emitGEPOperation - Common code shared between visitGetElementPtrInst and - /// constant expression GEP support. - /// - void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, - Value *Src, User::op_iterator IdxBegin, - User::op_iterator IdxEnd, unsigned TargetReg); - - /// emitCastOperation - Common code shared between visitCastInst and - /// constant expression cast support. - /// - void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, - Value *Src, const Type *DestTy, unsigned TargetReg); - - /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary - /// and constant expression support. - /// - void emitSimpleBinaryOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, - unsigned OperatorClass, unsigned TargetReg); - - void emitDivRemOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - unsigned Op0Reg, unsigned Op1Reg, bool isDiv, - const Type *Ty, unsigned TargetReg); - - /// emitSetCCOperation - Common code shared between visitSetCondInst and - /// constant expression support. - /// - void emitSetCCOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned Opcode, - unsigned TargetReg); - - /// emitShiftOperation - Common code shared between visitShiftInst and - /// constant expression support. - /// - void emitShiftOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op, Value *ShiftAmount, bool isLeftShift, - const Type *ResultTy, unsigned DestReg); - - - /// copyConstantToRegister - Output the instructions required to put the - /// specified constant into the specified register. - /// - void copyConstantToRegister(MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI, - Constant *C, unsigned Reg); - - /// makeAnotherReg - This method returns the next register number we haven't - /// yet used. - /// - /// Long values are handled somewhat specially. They are always allocated - /// as pairs of 32 bit integer values. The register number returned is the - /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits - /// of the long value. - /// - unsigned makeAnotherReg(const Type *Ty) { - assert(dynamic_cast(TM.getRegisterInfo()) && - "Current target doesn't have X86 reg info??"); - const X86RegisterInfo *MRI = - static_cast(TM.getRegisterInfo()); - if (Ty == Type::LongTy || Ty == Type::ULongTy) { - const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy); - // Create the lower part - F->getSSARegMap()->createVirtualRegister(RC); - // Create the upper part. - return F->getSSARegMap()->createVirtualRegister(RC)-1; - } - - // Add the mapping of regnumber => reg class to MachineFunction - const TargetRegisterClass *RC = MRI->getRegClassForType(Ty); - return F->getSSARegMap()->createVirtualRegister(RC); - } - - /// getReg - This method turns an LLVM value into a register number. This - /// is guaranteed to produce the same register number for a particular value - /// every time it is queried. - /// - unsigned getReg(Value &V) { return getReg(&V); } // Allow references - unsigned getReg(Value *V) { - // Just append to the end of the current bb. - MachineBasicBlock::iterator It = BB->end(); - return getReg(V, BB, It); - } - unsigned getReg(Value *V, MachineBasicBlock *MBB, - MachineBasicBlock::iterator IPt) { - unsigned &Reg = RegMap[V]; - if (Reg == 0) { - Reg = makeAnotherReg(V->getType()); - RegMap[V] = Reg; - } - - // If this operand is a constant, emit the code to copy the constant into - // the register here... - // - if (GlobalValue *GV = dyn_cast(V)) { - // Move the address of the global into the register - BuildMI(*MBB, IPt, X86::MOV32ri, 1, Reg).addGlobalAddress(GV); - RegMap.erase(V); // Assign a new name to this address if ref'd again - } else if (Constant *C = dyn_cast(V)) { - copyConstantToRegister(MBB, IPt, C, Reg); - RegMap.erase(V); // Assign a new name to this constant if ref'd again - } - - return Reg; - } - }; -} - -/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86 -/// Representation. -/// -enum TypeClass { - cByte, cShort, cInt, cFP, cLong -}; - -enum Subclasses { - NegOne, PosOne, Cons, Other -}; - - - -/// getClass - Turn a primitive type into a "class" number which is based on the -/// size of the type, and whether or not it is floating point. -/// -static inline TypeClass getClass(const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::SByteTyID: - case Type::UByteTyID: return cByte; // Byte operands are class #0 - case Type::ShortTyID: - case Type::UShortTyID: return cShort; // Short operands are class #1 - case Type::IntTyID: - case Type::UIntTyID: - case Type::PointerTyID: return cInt; // Int's and pointers are class #2 - - case Type::FloatTyID: - case Type::DoubleTyID: return cFP; // Floating Point is #3 - - case Type::LongTyID: - case Type::ULongTyID: return cLong; // Longs are class #4 - default: - assert(0 && "Invalid type to getClass!"); - return cByte; // not reached - } -} - -// getClassB - Just like getClass, but treat boolean values as bytes. -static inline TypeClass getClassB(const Type *Ty) { - if (Ty == Type::BoolTy) return cByte; - return getClass(Ty); -} - - -/// copyConstantToRegister - Output the instructions required to put the -/// specified constant into the specified register. -/// -void ISel::copyConstantToRegister(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Constant *C, unsigned R) { - if (ConstantExpr *CE = dyn_cast(C)) { - unsigned Class = 0; - switch (CE->getOpcode()) { - case Instruction::GetElementPtr: - emitGEPOperation(MBB, IP, CE->getOperand(0), - CE->op_begin()+1, CE->op_end(), R); - return; - case Instruction::Cast: - emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R); - return; - - case Instruction::Xor: ++Class; // FALL THROUGH - case Instruction::Or: ++Class; // FALL THROUGH - case Instruction::And: ++Class; // FALL THROUGH - case Instruction::Sub: ++Class; // FALL THROUGH - case Instruction::Add: - emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), - Class, R); - return; - - case Instruction::Mul: { - unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP); - unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP); - doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg); - return; - } - case Instruction::Div: - case Instruction::Rem: { - unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP); - unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP); - emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg, - CE->getOpcode() == Instruction::Div, - CE->getType(), R); - return; - } - - case Instruction::SetNE: - case Instruction::SetEQ: - case Instruction::SetLT: - case Instruction::SetGT: - case Instruction::SetLE: - case Instruction::SetGE: - emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), - CE->getOpcode(), R); - return; - - case Instruction::Shl: - case Instruction::Shr: - emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), - CE->getOpcode() == Instruction::Shl, CE->getType(), R); - return; - - default: - std::cerr << "Offending expr: " << *C << "\n"; - assert(0 && "Constant expression not yet handled!\n"); - } - } - - if (C->getType()->isIntegral()) { - unsigned Class = getClassB(C->getType()); - - if (Class == cLong) { - // Copy the value into the register pair. - uint64_t Val = cast(C)->getRawValue(); - BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF); - BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32); - return; - } - - assert(Class <= cInt && "Type not handled yet!"); - - static const unsigned IntegralOpcodeTab[] = { - X86::MOV8ri, X86::MOV16ri, X86::MOV32ri - }; - - if (C->getType() == Type::BoolTy) { - BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True); - } else { - ConstantInt *CI = cast(C); - BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue()); - } - } else if (ConstantFP *CFP = dyn_cast(C)) { - if (CFP->isExactlyValue(+0.0)) - BuildMI(*MBB, IP, X86::FLD0, 0, R); - else if (CFP->isExactlyValue(+1.0)) - BuildMI(*MBB, IP, X86::FLD1, 0, R); - else { - // Otherwise we need to spill the constant to memory... - MachineConstantPool *CP = F->getConstantPool(); - unsigned CPI = CP->getConstantPoolIndex(CFP); - const Type *Ty = CFP->getType(); - - assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); - unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m; - addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI); - } - - } else if (isa(C)) { - // Copy zero (null pointer) to the register. - BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0); - } else if (GlobalValue *GV = dyn_cast(C)) { - BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(GV); - } else { - std::cerr << "Offending constant: " << *C << "\n"; - assert(0 && "Type not handled yet!"); - } -} - -/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from -/// the stack into virtual registers. -/// -void ISel::LoadArgumentsToVirtualRegs(Function &Fn) { - // Emit instructions to load the arguments... On entry to a function on the - // X86, the stack frame looks like this: - // - // [ESP] -- return address - // [ESP + 4] -- first argument (leftmost lexically) - // [ESP + 8] -- second argument, if first argument is four bytes in size - // ... - // - unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot - MachineFrameInfo *MFI = F->getFrameInfo(); - - for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) { - unsigned Reg = getReg(*I); - - int FI; // Frame object index - switch (getClassB(I->getType())) { - case cByte: - FI = MFI->CreateFixedObject(1, ArgOffset); - addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI); - break; - case cShort: - FI = MFI->CreateFixedObject(2, ArgOffset); - addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI); - break; - case cInt: - FI = MFI->CreateFixedObject(4, ArgOffset); - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI); - break; - case cLong: - FI = MFI->CreateFixedObject(8, ArgOffset); - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI); - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4); - ArgOffset += 4; // longs require 4 additional bytes - break; - case cFP: - unsigned Opcode; - if (I->getType() == Type::FloatTy) { - Opcode = X86::FLD32m; - FI = MFI->CreateFixedObject(4, ArgOffset); - } else { - Opcode = X86::FLD64m; - FI = MFI->CreateFixedObject(8, ArgOffset); - ArgOffset += 4; // doubles require 4 additional bytes - } - addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI); - break; - default: - assert(0 && "Unhandled argument type!"); - } - ArgOffset += 4; // Each argument takes at least 4 bytes on the stack... - } - - // If the function takes variable number of arguments, add a frame offset for - // the start of the first vararg value... this is used to expand - // llvm.va_start. - if (Fn.getFunctionType()->isVarArg()) - VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); -} - - -/// SelectPHINodes - Insert machine code to generate phis. This is tricky -/// because we have to generate our sources into the source basic blocks, not -/// the current one. -/// -void ISel::SelectPHINodes() { - const TargetInstrInfo &TII = *TM.getInstrInfo(); - const Function &LF = *F->getFunction(); // The LLVM function... - for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { - const BasicBlock *BB = I; - MachineBasicBlock &MBB = *MBBMap[I]; - - // Loop over all of the PHI nodes in the LLVM basic block... - MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); - for (BasicBlock::const_iterator I = BB->begin(); - PHINode *PN = const_cast(dyn_cast(I)); ++I) { - - // Create a new machine instr PHI node, and insert it. - unsigned PHIReg = getReg(*PN); - MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint, - X86::PHI, PN->getNumOperands(), PHIReg); - - MachineInstr *LongPhiMI = 0; - if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) - LongPhiMI = BuildMI(MBB, PHIInsertPoint, - X86::PHI, PN->getNumOperands(), PHIReg+1); - - // PHIValues - Map of blocks to incoming virtual registers. We use this - // so that we only initialize one incoming value for a particular block, - // even if the block has multiple entries in the PHI node. - // - std::map PHIValues; - - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { - MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)]; - unsigned ValReg; - std::map::iterator EntryIt = - PHIValues.lower_bound(PredMBB); - - if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) { - // We already inserted an initialization of the register for this - // predecessor. Recycle it. - ValReg = EntryIt->second; - - } else { - // Get the incoming value into a virtual register. - // - Value *Val = PN->getIncomingValue(i); - - // If this is a constant or GlobalValue, we may have to insert code - // into the basic block to compute it into a virtual register. - if (isa(Val)) { - // Because we don't want to clobber any values which might be in - // physical registers with the computation of this constant (which - // might be arbitrarily complex if it is a constant expression), - // just insert the computation at the top of the basic block. - MachineBasicBlock::iterator PI = PredMBB->begin(); - - // Skip over any PHI nodes though! - while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI) - ++PI; - - ValReg = getReg(Val, PredMBB, PI); - } else { - ValReg = getReg(Val); - } - - // Remember that we inserted a value for this PHI for this predecessor - PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg)); - } - - PhiMI->addRegOperand(ValReg); - PhiMI->addMachineBasicBlockOperand(PredMBB); - if (LongPhiMI) { - LongPhiMI->addRegOperand(ValReg+1); - LongPhiMI->addMachineBasicBlockOperand(PredMBB); - } - } - - // Now that we emitted all of the incoming values for the PHI node, make - // sure to reposition the InsertPoint after the PHI that we just added. - // This is needed because we might have inserted a constant into this - // block, right after the PHI's which is before the old insert point! - PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI; - ++PHIInsertPoint; - } - } -} - -/// RequiresFPRegKill - The floating point stackifier pass cannot insert -/// compensation code on critical edges. As such, it requires that we kill all -/// FP registers on the exit from any blocks that either ARE critical edges, or -/// branch to a block that has incoming critical edges. -/// -/// Note that this kill instruction will eventually be eliminated when -/// restrictions in the stackifier are relaxed. -/// -static bool RequiresFPRegKill(const BasicBlock *BB) { -#if 0 - for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) { - const BasicBlock *Succ = *SI; - pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ); - ++PI; // Block have at least one predecessory - if (PI != PE) { // If it has exactly one, this isn't crit edge - // If this block has more than one predecessor, check all of the - // predecessors to see if they have multiple successors. If so, then the - // block we are analyzing needs an FPRegKill. - for (PI = pred_begin(Succ); PI != PE; ++PI) { - const BasicBlock *Pred = *PI; - succ_const_iterator SI2 = succ_begin(Pred); - ++SI2; // There must be at least one successor of this block. - if (SI2 != succ_end(Pred)) - return true; // Yes, we must insert the kill on this edge. - } - } - } - // If we got this far, there is no need to insert the kill instruction. - return false; -#else - return true; -#endif -} - -// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that -// need them. This only occurs due to the floating point stackifier not being -// aggressive enough to handle arbitrary global stackification. -// -// Currently we insert an FP_REG_KILL instruction into each block that uses or -// defines a floating point virtual register. -// -// When the global register allocators (like linear scan) finally update live -// variable analysis, we can keep floating point values in registers across -// portions of the CFG that do not involve critical edges. This will be a big -// win, but we are waiting on the global allocators before we can do this. -// -// With a bit of work, the floating point stackifier pass can be enhanced to -// break critical edges as needed (to make a place to put compensation code), -// but this will require some infrastructure improvements as well. -// -void ISel::InsertFPRegKills() { - SSARegMap &RegMap = *F->getSSARegMap(); - - for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { - for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I) - for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { - MachineOperand& MO = I->getOperand(i); - if (MO.isRegister() && MO.getReg()) { - unsigned Reg = MO.getReg(); - if (MRegisterInfo::isVirtualRegister(Reg)) - if (RegMap.getRegClass(Reg)->getSize() == 10) - goto UsesFPReg; - } - } - // If we haven't found an FP register use or def in this basic block, check - // to see if any of our successors has an FP PHI node, which will cause a - // copy to be inserted into this block. - for (succ_const_iterator SI = succ_begin(BB->getBasicBlock()), - E = succ_end(BB->getBasicBlock()); SI != E; ++SI) { - MachineBasicBlock *SBB = MBBMap[*SI]; - for (MachineBasicBlock::iterator I = SBB->begin(); - I != SBB->end() && I->getOpcode() == X86::PHI; ++I) { - if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10) - goto UsesFPReg; - } - } - continue; - UsesFPReg: - // Okay, this block uses an FP register. If the block has successors (ie, - // it's not an unwind/return), insert the FP_REG_KILL instruction. - if (BB->getBasicBlock()->getTerminator()->getNumSuccessors() && - RequiresFPRegKill(BB->getBasicBlock())) { - BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0); - ++NumFPKill; - } - } -} - - -// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into -// the conditional branch instruction which is the only user of the cc -// instruction. This is the case if the conditional branch is the only user of -// the setcc, and if the setcc is in the same basic block as the conditional -// branch. We also don't handle long arguments below, so we reject them here as -// well. -// -static SetCondInst *canFoldSetCCIntoBranch(Value *V) { - if (SetCondInst *SCI = dyn_cast(V)) - if (SCI->hasOneUse() && isa(SCI->use_back()) && - SCI->getParent() == cast(SCI->use_back())->getParent()) { - const Type *Ty = SCI->getOperand(0)->getType(); - if (Ty != Type::LongTy && Ty != Type::ULongTy) - return SCI; - } - return 0; -} - -// Return a fixed numbering for setcc instructions which does not depend on the -// order of the opcodes. -// -static unsigned getSetCCNumber(unsigned Opcode) { - switch(Opcode) { - default: assert(0 && "Unknown setcc instruction!"); - case Instruction::SetEQ: return 0; - case Instruction::SetNE: return 1; - case Instruction::SetLT: return 2; - case Instruction::SetGE: return 3; - case Instruction::SetGT: return 4; - case Instruction::SetLE: return 5; - } -} - -// LLVM -> X86 signed X86 unsigned -// ----- ---------- ------------ -// seteq -> sete sete -// setne -> setne setne -// setlt -> setl setb -// setge -> setge setae -// setgt -> setg seta -// setle -> setle setbe -// ---- -// sets // Used by comparison with 0 optimization -// setns -static const unsigned SetCCOpcodeTab[2][8] = { - { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr, - 0, 0 }, - { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr, - X86::SETSr, X86::SETNSr }, -}; - -// EmitComparison - This function emits a comparison of the two operands, -// returning the extended setcc code to use. -unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, - MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP) { - // The arguments are already supposed to be of the same type. - const Type *CompTy = Op0->getType(); - unsigned Class = getClassB(CompTy); - unsigned Op0r = getReg(Op0, MBB, IP); - - // Special case handling of: cmp R, i - if (Class == cByte || Class == cShort || Class == cInt) - if (ConstantInt *CI = dyn_cast(Op1)) { - uint64_t Op1v = cast(CI)->getRawValue(); - - // Mask off any upper bits of the constant, if there are any... - Op1v &= (1ULL << (8 << Class)) - 1; - - // If this is a comparison against zero, emit more efficient code. We - // can't handle unsigned comparisons against zero unless they are == or - // !=. These should have been strength reduced already anyway. - if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) { - static const unsigned TESTTab[] = { - X86::TEST8rr, X86::TEST16rr, X86::TEST32rr - }; - BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r); - - if (OpNum == 2) return 6; // Map jl -> js - if (OpNum == 3) return 7; // Map jg -> jns - return OpNum; - } - - static const unsigned CMPTab[] = { - X86::CMP8ri, X86::CMP16ri, X86::CMP32ri - }; - - BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v); - return OpNum; - } - - // Special case handling of comparison against +/- 0.0 - if (ConstantFP *CFP = dyn_cast(Op1)) - if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) { - BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r); - BuildMI(*MBB, IP, X86::FNSTSW8r, 0); - BuildMI(*MBB, IP, X86::SAHF, 1); - return OpNum; - } - - unsigned Op1r = getReg(Op1, MBB, IP); - switch (Class) { - default: assert(0 && "Unknown type class!"); - // Emit: cmp , (do the comparison). We can - // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with - // 32-bit. - case cByte: - BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r); - break; - case cShort: - BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r); - break; - case cInt: - BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r); - break; - case cFP: - BuildMI(*MBB, IP, X86::FUCOMr, 2).addReg(Op0r).addReg(Op1r); - BuildMI(*MBB, IP, X86::FNSTSW8r, 0); - BuildMI(*MBB, IP, X86::SAHF, 1); - break; - - case cLong: - if (OpNum < 2) { // seteq, setne - unsigned LoTmp = makeAnotherReg(Type::IntTy); - unsigned HiTmp = makeAnotherReg(Type::IntTy); - unsigned FinalTmp = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r); - BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1); - BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); - break; // Allow the sete or setne to be generated from flags set by OR - } else { - // Emit a sequence of code which compares the high and low parts once - // each, then uses a conditional move to handle the overflow case. For - // example, a setlt for long would generate code like this: - // - // AL = lo(op1) < lo(op2) // Signedness depends on operands - // BL = hi(op1) < hi(op2) // Always unsigned comparison - // dest = hi(op1) == hi(op2) ? AL : BL; - // - - // FIXME: This would be much better if we had hierarchical register - // classes! Until then, hardcode registers so that we can deal with their - // aliases (because we don't have conditional byte moves). - // - BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r); - BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL); - BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1); - BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL); - BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH); - BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH); - BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX) - .addReg(X86::AX); - // NOTE: visitSetCondInst knows that the value is dumped into the BL - // register at this point for long values... - return OpNum; - } - } - return OpNum; -} - - -/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized -/// register, then move it to wherever the result should be. -/// -void ISel::visitSetCondInst(SetCondInst &I) { - if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch... - - unsigned DestReg = getReg(I); - MachineBasicBlock::iterator MII = BB->end(); - emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(), - DestReg); -} - -/// emitSetCCOperation - Common code shared between visitSetCondInst and -/// constant expression support. -/// -void ISel::emitSetCCOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned Opcode, - unsigned TargetReg) { - unsigned OpNum = getSetCCNumber(Opcode); - OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP); - - const Type *CompTy = Op0->getType(); - unsigned CompClass = getClassB(CompTy); - bool isSigned = CompTy->isSigned() && CompClass != cFP; - - if (CompClass != cLong || OpNum < 2) { - // Handle normal comparisons with a setcc instruction... - BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg); - } else { - // Handle long comparisons by copying the value which is already in BL into - // the register we want... - BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL); - } -} - - - - -/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide -/// operand, in the specified target register. -/// -void ISel::promote32(unsigned targetReg, const ValueRecord &VR) { - bool isUnsigned = VR.Ty->isUnsigned(); - - // Make sure we have the register number for this value... - unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg; - - switch (getClassB(VR.Ty)) { - case cByte: - // Extend value into target register (8->32) - if (isUnsigned) - BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg); - else - BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg); - break; - case cShort: - // Extend value into target register (16->32) - if (isUnsigned) - BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg); - else - BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg); - break; - case cInt: - // Move value into target register (32->32) - BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg); - break; - default: - assert(0 && "Unpromotable operand class in promote32"); - } -} - -/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such, -/// we have the following possibilities: -/// -/// ret void: No return value, simply emit a 'ret' instruction -/// ret sbyte, ubyte : Extend value into EAX and return -/// ret short, ushort: Extend value into EAX and return -/// ret int, uint : Move value into EAX and return -/// ret pointer : Move value into EAX and return -/// ret long, ulong : Move value into EAX/EDX and return -/// ret float/double : Top of FP stack -/// -void ISel::visitReturnInst(ReturnInst &I) { - if (I.getNumOperands() == 0) { - BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction - return; - } - - Value *RetVal = I.getOperand(0); - unsigned RetReg = getReg(RetVal); - switch (getClassB(RetVal->getType())) { - case cByte: // integral return values: extend or move into EAX and return - case cShort: - case cInt: - promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType())); - // Declare that EAX is live on exit - BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP); - break; - case cFP: // Floats & Doubles: Return in ST(0) - BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg); - // Declare that top-of-stack is live on exit - BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP); - break; - case cLong: - BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg); - BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1); - // Declare that EAX & EDX are live on exit - BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX) - .addReg(X86::ESP); - break; - default: - visitInstruction(I); - } - // Emit a 'ret' instruction - BuildMI(BB, X86::RET, 0); -} - -// getBlockAfter - Return the basic block which occurs lexically after the -// specified one. -static inline BasicBlock *getBlockAfter(BasicBlock *BB) { - Function::iterator I = BB; ++I; // Get iterator to next block - return I != BB->getParent()->end() ? &*I : 0; -} - -/// visitBranchInst - Handle conditional and unconditional branches here. Note -/// that since code layout is frozen at this point, that if we are trying to -/// jump to a block that is the immediate successor of the current block, we can -/// just make a fall-through (but we don't currently). -/// -void ISel::visitBranchInst(BranchInst &BI) { - BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one - - if (!BI.isConditional()) { // Unconditional branch? - if (BI.getSuccessor(0) != NextBB) - BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0)); - return; - } - - // See if we can fold the setcc into the branch itself... - SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition()); - if (SCI == 0) { - // Nope, cannot fold setcc into this branch. Emit a branch on a condition - // computed some other way... - unsigned condReg = getReg(BI.getCondition()); - BuildMI(BB, X86::CMP8ri, 2).addReg(condReg).addImm(0); - if (BI.getSuccessor(1) == NextBB) { - if (BI.getSuccessor(0) != NextBB) - BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0)); - } else { - BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1)); - - if (BI.getSuccessor(0) != NextBB) - BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0)); - } - return; - } - - unsigned OpNum = getSetCCNumber(SCI->getOpcode()); - MachineBasicBlock::iterator MII = BB->end(); - OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII); - - const Type *CompTy = SCI->getOperand(0)->getType(); - bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP; - - - // LLVM -> X86 signed X86 unsigned - // ----- ---------- ------------ - // seteq -> je je - // setne -> jne jne - // setlt -> jl jb - // setge -> jge jae - // setgt -> jg ja - // setle -> jle jbe - // ---- - // js // Used by comparison with 0 optimization - // jns - - static const unsigned OpcodeTab[2][8] = { - { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 }, - { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE, - X86::JS, X86::JNS }, - }; - - if (BI.getSuccessor(0) != NextBB) { - BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0)); - if (BI.getSuccessor(1) != NextBB) - BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1)); - } else { - // Change to the inverse condition... - if (BI.getSuccessor(1) != NextBB) { - OpNum ^= 1; - BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1)); - } - } -} - - -/// doCall - This emits an abstract call instruction, setting up the arguments -/// and the return value as appropriate. For the actual function call itself, -/// it inserts the specified CallMI instruction into the stream. -/// -void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI, - const std::vector &Args) { - - // Count how many bytes are to be pushed on the stack... - unsigned NumBytes = 0; - - if (!Args.empty()) { - for (unsigned i = 0, e = Args.size(); i != e; ++i) - switch (getClassB(Args[i].Ty)) { - case cByte: case cShort: case cInt: - NumBytes += 4; break; - case cLong: - NumBytes += 8; break; - case cFP: - NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8; - break; - default: assert(0 && "Unknown class!"); - } - - // Adjust the stack pointer for the new arguments... - BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes); - - // Arguments go on the stack in reverse order, as specified by the ABI. - unsigned ArgOffset = 0; - for (unsigned i = 0, e = Args.size(); i != e; ++i) { - unsigned ArgReg; - switch (getClassB(Args[i].Ty)) { - case cByte: - case cShort: - if (Args[i].Val && isa(Args[i].Val)) { - // Zero/Sign extend constant, then stuff into memory. - ConstantInt *Val = cast(Args[i].Val); - Val = cast(ConstantExpr::getCast(Val, Type::IntTy)); - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset) - .addImm(Val->getRawValue() & 0xFFFFFFFF); - } else { - // Promote arg to 32 bits wide into a temporary register... - ArgReg = makeAnotherReg(Type::UIntTy); - promote32(ArgReg, Args[i]); - addRegOffset(BuildMI(BB, X86::MOV32mr, 5), - X86::ESP, ArgOffset).addReg(ArgReg); - } - break; - case cInt: - if (Args[i].Val && isa(Args[i].Val)) { - unsigned Val = cast(Args[i].Val)->getRawValue(); - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), - X86::ESP, ArgOffset).addImm(Val); - } else { - ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; - addRegOffset(BuildMI(BB, X86::MOV32mr, 5), - X86::ESP, ArgOffset).addReg(ArgReg); - } - break; - case cLong: - ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; - addRegOffset(BuildMI(BB, X86::MOV32mr, 5), - X86::ESP, ArgOffset).addReg(ArgReg); - addRegOffset(BuildMI(BB, X86::MOV32mr, 5), - X86::ESP, ArgOffset+4).addReg(ArgReg+1); - ArgOffset += 4; // 8 byte entry, not 4. - break; - - case cFP: - ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; - if (Args[i].Ty == Type::FloatTy) { - addRegOffset(BuildMI(BB, X86::FST32m, 5), - X86::ESP, ArgOffset).addReg(ArgReg); - } else { - assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!"); - addRegOffset(BuildMI(BB, X86::FST64m, 5), - X86::ESP, ArgOffset).addReg(ArgReg); - ArgOffset += 4; // 8 byte entry, not 4. - } - break; - - default: assert(0 && "Unknown class!"); - } - ArgOffset += 4; - } - } else { - BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0); - } - - BB->push_back(CallMI); - - BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes); - - // If there is a return value, scavenge the result from the location the call - // leaves it in... - // - if (Ret.Ty != Type::VoidTy) { - unsigned DestClass = getClassB(Ret.Ty); - switch (DestClass) { - case cByte: - case cShort: - case cInt: { - // Integral results are in %eax, or the appropriate portion - // thereof. - static const unsigned regRegMove[] = { - X86::MOV8rr, X86::MOV16rr, X86::MOV32rr - }; - static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX }; - BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]); - break; - } - case cFP: // Floating-point return values live in %ST(0) - BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg); - break; - case cLong: // Long values are left in EDX:EAX - BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX); - BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX); - break; - default: assert(0 && "Unknown class!"); - } - } -} - - -/// visitCallInst - Push args on stack and do a procedure call instruction. -void ISel::visitCallInst(CallInst &CI) { - MachineInstr *TheCall; - if (Function *F = CI.getCalledFunction()) { - // Is it an intrinsic function call? - if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { - visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here - return; - } - - // Emit a CALL instruction with PC-relative displacement. - TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true); - } else { // Emit an indirect call... - unsigned Reg = getReg(CI.getCalledValue()); - TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg); - } - - std::vector Args; - for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i) - Args.push_back(ValueRecord(CI.getOperand(i))); - - unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0; - doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args); -} - - -/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the -/// function, lowering any calls to unknown intrinsic functions into the -/// equivalent LLVM code. -/// -void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) { - for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) - for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) - if (CallInst *CI = dyn_cast(I++)) - if (Function *F = CI->getCalledFunction()) - switch (F->getIntrinsicID()) { - case Intrinsic::not_intrinsic: - case Intrinsic::vastart: - case Intrinsic::vacopy: - case Intrinsic::vaend: - case Intrinsic::returnaddress: - case Intrinsic::frameaddress: - case Intrinsic::memcpy: - case Intrinsic::memset: - // We directly implement these intrinsics - break; - default: - // All other intrinsic calls we must lower. - Instruction *Before = CI->getPrev(); - TM.getIntrinsicLowering().LowerIntrinsicCall(CI); - if (Before) { // Move iterator to instruction after call - I = Before; ++I; - } else { - I = BB->begin(); - } - } - -} - -void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) { - unsigned TmpReg1, TmpReg2; - switch (ID) { - case Intrinsic::vastart: - // Get the address of the first vararg value... - TmpReg1 = getReg(CI); - addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex); - return; - - case Intrinsic::vacopy: - TmpReg1 = getReg(CI); - TmpReg2 = getReg(CI.getOperand(1)); - BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2); - return; - case Intrinsic::vaend: return; // Noop on X86 - - case Intrinsic::returnaddress: - case Intrinsic::frameaddress: - TmpReg1 = getReg(CI); - if (cast(CI.getOperand(1))->isNullValue()) { - if (ID == Intrinsic::returnaddress) { - // Just load the return address - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1), - ReturnAddressIndex); - } else { - addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1), - ReturnAddressIndex, -4); - } - } else { - // Values other than zero are not implemented yet. - BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0); - } - return; - - case Intrinsic::memcpy: { - assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!"); - unsigned Align = 1; - if (ConstantInt *AlignC = dyn_cast(CI.getOperand(4))) { - Align = AlignC->getRawValue(); - if (Align == 0) Align = 1; - } - - // Turn the byte code into # iterations - unsigned CountReg; - unsigned Opcode; - switch (Align & 3) { - case 2: // WORD aligned - if (ConstantInt *I = dyn_cast(CI.getOperand(3))) { - CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2)); - } else { - CountReg = makeAnotherReg(Type::IntTy); - unsigned ByteReg = getReg(CI.getOperand(3)); - BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); - } - Opcode = X86::REP_MOVSW; - break; - case 0: // DWORD aligned - if (ConstantInt *I = dyn_cast(CI.getOperand(3))) { - CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4)); - } else { - CountReg = makeAnotherReg(Type::IntTy); - unsigned ByteReg = getReg(CI.getOperand(3)); - BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); - } - Opcode = X86::REP_MOVSD; - break; - default: // BYTE aligned - CountReg = getReg(CI.getOperand(3)); - Opcode = X86::REP_MOVSB; - break; - } - - // No matter what the alignment is, we put the source in ESI, the - // destination in EDI, and the count in ECX. - TmpReg1 = getReg(CI.getOperand(1)); - TmpReg2 = getReg(CI.getOperand(2)); - BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); - BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); - BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2); - BuildMI(BB, Opcode, 0); - return; - } - case Intrinsic::memset: { - assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!"); - unsigned Align = 1; - if (ConstantInt *AlignC = dyn_cast(CI.getOperand(4))) { - Align = AlignC->getRawValue(); - if (Align == 0) Align = 1; - } - - // Turn the byte code into # iterations - unsigned CountReg; - unsigned Opcode; - if (ConstantInt *ValC = dyn_cast(CI.getOperand(2))) { - unsigned Val = ValC->getRawValue() & 255; - - // If the value is a constant, then we can potentially use larger copies. - switch (Align & 3) { - case 2: // WORD aligned - if (ConstantInt *I = dyn_cast(CI.getOperand(3))) { - CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2)); - } else { - CountReg = makeAnotherReg(Type::IntTy); - unsigned ByteReg = getReg(CI.getOperand(3)); - BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); - } - BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val); - Opcode = X86::REP_STOSW; - break; - case 0: // DWORD aligned - if (ConstantInt *I = dyn_cast(CI.getOperand(3))) { - CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4)); - } else { - CountReg = makeAnotherReg(Type::IntTy); - unsigned ByteReg = getReg(CI.getOperand(3)); - BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); - } - Val = (Val << 8) | Val; - BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val); - Opcode = X86::REP_STOSD; - break; - default: // BYTE aligned - CountReg = getReg(CI.getOperand(3)); - BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val); - Opcode = X86::REP_STOSB; - break; - } - } else { - // If it's not a constant value we are storing, just fall back. We could - // try to be clever to form 16 bit and 32 bit values, but we don't yet. - unsigned ValReg = getReg(CI.getOperand(2)); - BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg); - CountReg = getReg(CI.getOperand(3)); - Opcode = X86::REP_STOSB; - } - - // No matter what the alignment is, we put the source in ESI, the - // destination in EDI, and the count in ECX. - TmpReg1 = getReg(CI.getOperand(1)); - //TmpReg2 = getReg(CI.getOperand(2)); - BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); - BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); - BuildMI(BB, Opcode, 0); - return; - } - - default: assert(0 && "Error: unknown intrinsics should have been lowered!"); - } -} - -static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) { - if (LI.getParent() != User.getParent()) - return false; - BasicBlock::iterator It = &LI; - // Check all of the instructions between the load and the user. We should - // really use alias analysis here, but for now we just do something simple. - for (++It; It != BasicBlock::iterator(&User); ++It) { - switch (It->getOpcode()) { - case Instruction::Store: - case Instruction::Call: - case Instruction::Invoke: - return false; - } - } - return true; -} - - -/// visitSimpleBinary - Implement simple binary operators for integral types... -/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for -/// Xor. -/// -void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { - unsigned DestReg = getReg(B); - MachineBasicBlock::iterator MI = BB->end(); - Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1); - - // Special case: op Reg, load [mem] - if (isa(Op0) && !isa(Op1)) - if (!B.swapOperands()) - std::swap(Op0, Op1); // Make sure any loads are in the RHS. - - unsigned Class = getClassB(B.getType()); - if (isa(Op1) && Class < cFP && - isSafeToFoldLoadIntoInstruction(*cast(Op1), B)) { - - static const unsigned OpcodeTab[][3] = { - // Arithmetic operators - { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD - { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB - - // Bitwise operators - { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND - { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR - { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR - }; - - assert(Class < cFP && "General code handles 64-bit integer types!"); - unsigned Opcode = OpcodeTab[OperatorClass][Class]; - - unsigned BaseReg, Scale, IndexReg, Disp; - getAddressingMode(cast(Op1)->getOperand(0), BaseReg, - Scale, IndexReg, Disp); - - unsigned Op0r = getReg(Op0); - addFullAddress(BuildMI(BB, Opcode, 2, DestReg).addReg(Op0r), - BaseReg, Scale, IndexReg, Disp); - return; - } - - emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg); -} - -/// emitSimpleBinaryOperation - Implement simple binary operators for integral -/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for -/// Or, 4 for Xor. -/// -/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary -/// and constant expression support. -/// -void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, - unsigned OperatorClass, unsigned DestReg) { - unsigned Class = getClassB(Op0->getType()); - - // sub 0, X -> neg X - if (OperatorClass == 1 && Class != cLong) - if (ConstantInt *CI = dyn_cast(Op0)) { - if (CI->isNullValue()) { - unsigned op1Reg = getReg(Op1, MBB, IP); - switch (Class) { - default: assert(0 && "Unknown class for this function!"); - case cByte: - BuildMI(*MBB, IP, X86::NEG8r, 1, DestReg).addReg(op1Reg); - return; - case cShort: - BuildMI(*MBB, IP, X86::NEG16r, 1, DestReg).addReg(op1Reg); - return; - case cInt: - BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg).addReg(op1Reg); - return; - } - } - } else if (ConstantFP *CFP = dyn_cast(Op0)) - if (CFP->isExactlyValue(-0.0)) { - // -0.0 - X === -X - unsigned op1Reg = getReg(Op1, MBB, IP); - BuildMI(*MBB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg); - return; - } - - // Special case: op Reg, - if (Class != cLong && isa(Op1)) { - ConstantInt *Op1C = cast(Op1); - unsigned Op0r = getReg(Op0, MBB, IP); - - // xor X, -1 -> not X - if (OperatorClass == 4 && Op1C->isAllOnesValue()) { - static unsigned const NOTTab[] = { X86::NOT8r, X86::NOT16r, X86::NOT32r }; - BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r); - return; - } - - // add X, -1 -> dec X - if (OperatorClass == 0 && Op1C->isAllOnesValue()) { - static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r }; - BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r); - return; - } - - // add X, 1 -> inc X - if (OperatorClass == 0 && Op1C->equalsInt(1)) { - static unsigned const DECTab[] = { X86::INC8r, X86::INC16r, X86::INC32r }; - BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r); - return; - } - - static const unsigned OpcodeTab[][3] = { - // Arithmetic operators - { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri }, // ADD - { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri }, // SUB - - // Bitwise operators - { X86::AND8ri, X86::AND16ri, X86::AND32ri }, // AND - { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri }, // OR - { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri }, // XOR - }; - - assert(Class < cFP && "General code handles 64-bit integer types!"); - unsigned Opcode = OpcodeTab[OperatorClass][Class]; - - - uint64_t Op1v = cast(Op1C)->getRawValue(); - BuildMI(*MBB, IP, Opcode, 5, DestReg).addReg(Op0r).addImm(Op1v); - return; - } - - // Finally, handle the general case now. - static const unsigned OpcodeTab[][4] = { - // Arithmetic operators - { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, X86::FpADD }, // ADD - { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::FpSUB }, // SUB - - // Bitwise operators - { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0 }, // AND - { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0 }, // OR - { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0 }, // XOR - }; - - bool isLong = false; - if (Class == cLong) { - isLong = true; - Class = cInt; // Bottom 32 bits are handled just like ints - } - - unsigned Opcode = OpcodeTab[OperatorClass][Class]; - assert(Opcode && "Floating point arguments to logical inst?"); - unsigned Op0r = getReg(Op0, MBB, IP); - unsigned Op1r = getReg(Op1, MBB, IP); - BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); - - if (isLong) { // Handle the upper 32 bits of long values... - static const unsigned TopTab[] = { - X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr - }; - BuildMI(*MBB, IP, TopTab[OperatorClass], 2, - DestReg+1).addReg(Op0r+1).addReg(Op1r+1); - } -} - -/// doMultiply - Emit appropriate instructions to multiply together the -/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the -/// result should be given as DestTy. -/// -void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, - unsigned DestReg, const Type *DestTy, - unsigned op0Reg, unsigned op1Reg) { - unsigned Class = getClass(DestTy); - switch (Class) { - case cFP: // Floating point multiply - BuildMI(*MBB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg); - return; - case cInt: - case cShort: - BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg) - .addReg(op0Reg).addReg(op1Reg); - return; - case cByte: - // Must use the MUL instruction, which forces use of AL... - BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg); - BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg); - BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL); - return; - default: - case cLong: assert(0 && "doMultiply cannot operate on LONG values!"); - } -} - -// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It -// returns zero when the input is not exactly a power of two. -static unsigned ExactLog2(unsigned Val) { - if (Val == 0) return 0; - unsigned Count = 0; - while (Val != 1) { - if (Val & 1) return 0; - Val >>= 1; - ++Count; - } - return Count+1; -} - -void ISel::doMultiplyConst(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - unsigned DestReg, const Type *DestTy, - unsigned op0Reg, unsigned ConstRHS) { - unsigned Class = getClass(DestTy); - - // If the element size is exactly a power of 2, use a shift to get it. - if (unsigned Shift = ExactLog2(ConstRHS)) { - switch (Class) { - default: assert(0 && "Unknown class for this function!"); - case cByte: - BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); - return; - case cShort: - BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); - return; - case cInt: - BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); - return; - } - } - - if (Class == cShort) { - BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS); - return; - } else if (Class == cInt) { - BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS); - return; - } - - // Most general case, emit a normal multiply... - static const unsigned MOVriTab[] = { - X86::MOV8ri, X86::MOV16ri, X86::MOV32ri - }; - - unsigned TmpReg = makeAnotherReg(DestTy); - BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS); - - // Emit a MUL to multiply the register holding the index by - // elementSize, putting the result in OffsetReg. - doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg); -} - -/// visitMul - Multiplies are not simple binary operators because they must deal -/// with the EAX register explicitly. -/// -void ISel::visitMul(BinaryOperator &I) { - unsigned Op0Reg = getReg(I.getOperand(0)); - unsigned DestReg = getReg(I); - - // Simple scalar multiply? - if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) { - if (ConstantInt *CI = dyn_cast(I.getOperand(1))) { - unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant - MachineBasicBlock::iterator MBBI = BB->end(); - doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val); - } else { - unsigned Op1Reg = getReg(I.getOperand(1)); - MachineBasicBlock::iterator MBBI = BB->end(); - doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg); - } - } else { - unsigned Op1Reg = getReg(I.getOperand(1)); - - // Long value. We have to do things the hard way... - // Multiply the two low parts... capturing carry into EDX - BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg); - BuildMI(BB, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL - - unsigned OverflowReg = makeAnotherReg(Type::UIntTy); - BuildMI(BB, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL - BuildMI(BB, X86::MOV32rr, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32 - - MachineBasicBlock::iterator MBBI = BB->end(); - unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL - BuildMI(*BB, MBBI, X86::IMUL32rr,2,AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg); - - unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); - BuildMI(*BB, MBBI, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32) - AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); - - MBBI = BB->end(); - unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH - BuildMI(*BB, MBBI, X86::IMUL32rr,2,ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1); - - BuildMI(*BB, MBBI, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32) - DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); - } -} - - -/// visitDivRem - Handle division and remainder instructions... these -/// instruction both require the same instructions to be generated, they just -/// select the result from a different register. Note that both of these -/// instructions work differently for signed and unsigned operands. -/// -void ISel::visitDivRem(BinaryOperator &I) { - unsigned Op0Reg = getReg(I.getOperand(0)); - unsigned Op1Reg = getReg(I.getOperand(1)); - unsigned ResultReg = getReg(I); - - MachineBasicBlock::iterator IP = BB->end(); - emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div, - I.getType(), ResultReg); -} - -void ISel::emitDivRemOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - unsigned Op0Reg, unsigned Op1Reg, bool isDiv, - const Type *Ty, unsigned ResultReg) { - unsigned Class = getClass(Ty); - switch (Class) { - case cFP: // Floating point divide - if (isDiv) { - BuildMI(*BB, IP, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg); - } else { // Floating point remainder... - MachineInstr *TheCall = - BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true); - std::vector Args; - Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy)); - Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy)); - doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args); - } - return; - case cLong: { - static const char *FnName[] = - { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" }; - - unsigned NameIdx = Ty->isUnsigned()*2 + isDiv; - MachineInstr *TheCall = - BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true); - - std::vector Args; - Args.push_back(ValueRecord(Op0Reg, Type::LongTy)); - Args.push_back(ValueRecord(Op1Reg, Type::LongTy)); - doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args); - return; - } - case cByte: case cShort: case cInt: - break; // Small integrals, handled below... - default: assert(0 && "Unknown class!"); - } - - static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX }; - static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr }; - static const unsigned SarOpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri }; - static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri }; - static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX }; - - static const unsigned DivOpcode[][4] = { - { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division - { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division - }; - - bool isSigned = Ty->isSigned(); - unsigned Reg = Regs[Class]; - unsigned ExtReg = ExtRegs[Class]; - - // Put the first operand into one of the A registers... - BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg); - - if (isSigned) { - // Emit a sign extension instruction... - unsigned ShiftResult = makeAnotherReg(Ty); - BuildMI(*BB, IP, SarOpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31); - BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult); - } else { - // If unsigned, emit a zeroing instruction... (reg = 0) - BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0); - } - - // Emit the appropriate divide or remainder instruction... - BuildMI(*BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg); - - // Figure out which register we want to pick the result out of... - unsigned DestReg = isDiv ? Reg : ExtReg; - - // Put the result into the destination register... - BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg); -} - - -/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here -/// for constant immediate shift values, and for constant immediate -/// shift values equal to 1. Even the general case is sort of special, -/// because the shift amount has to be in CL, not just any old register. -/// -void ISel::visitShiftInst(ShiftInst &I) { - MachineBasicBlock::iterator IP = BB->end (); - emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1), - I.getOpcode () == Instruction::Shl, I.getType (), - getReg (I)); -} - -/// emitShiftOperation - Common code shared between visitShiftInst and -/// constant expression support. -void ISel::emitShiftOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op, Value *ShiftAmount, bool isLeftShift, - const Type *ResultTy, unsigned DestReg) { - unsigned SrcReg = getReg (Op, MBB, IP); - bool isSigned = ResultTy->isSigned (); - unsigned Class = getClass (ResultTy); - - static const unsigned ConstantOperand[][4] = { - { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 }, // SHR - { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 }, // SAR - { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SHL - { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SAL = SHL - }; - - static const unsigned NonConstantOperand[][4] = { - { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR - { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR - { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL - { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL - }; - - // Longs, as usual, are handled specially... - if (Class == cLong) { - // If we have a constant shift, we can generate much more efficient code - // than otherwise... - // - if (ConstantUInt *CUI = dyn_cast(ShiftAmount)) { - unsigned Amount = CUI->getValue(); - if (Amount < 32) { - const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned]; - if (isLeftShift) { - BuildMI(*MBB, IP, Opc[3], 3, - DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount); - BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount); - } else { - BuildMI(*MBB, IP, Opc[3], 3, - DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount); - BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount); - } - } else { // Shifting more than 32 bits - Amount -= 32; - if (isLeftShift) { - BuildMI(*MBB, IP, X86::SHL32ri, 2, - DestReg + 1).addReg(SrcReg).addImm(Amount); - BuildMI(*MBB, IP, X86::MOV32ri, 1, - DestReg).addImm(0); - } else { - unsigned Opcode = isSigned ? X86::SAR32ri : X86::SHR32ri; - BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(SrcReg+1).addImm(Amount); - BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); - } - } - } else { - unsigned TmpReg = makeAnotherReg(Type::IntTy); - - if (!isLeftShift && isSigned) { - // If this is a SHR of a Long, then we need to do funny sign extension - // stuff. TmpReg gets the value to use as the high-part if we are - // shifting more than 32 bits. - BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31); - } else { - // Other shifts use a fixed zero value if the shift is more than 32 - // bits. - BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0); - } - - // Initialize CL with the shift amount... - unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP); - BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); - - unsigned TmpReg2 = makeAnotherReg(Type::IntTy); - unsigned TmpReg3 = makeAnotherReg(Type::IntTy); - if (isLeftShift) { - // TmpReg2 = shld inHi, inLo - BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1) - .addReg(SrcReg); - // TmpReg3 = shl inLo, CL - BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg); - - // Set the flags to indicate whether the shift was by more than 32 bits. - BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); - - // DestHi = (>32) ? TmpReg3 : TmpReg2; - BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, - DestReg+1).addReg(TmpReg2).addReg(TmpReg3); - // DestLo = (>32) ? TmpReg : TmpReg3; - BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, - DestReg).addReg(TmpReg3).addReg(TmpReg); - } else { - // TmpReg2 = shrd inLo, inHi - BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg) - .addReg(SrcReg+1); - // TmpReg3 = s[ah]r inHi, CL - BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3) - .addReg(SrcReg+1); - - // Set the flags to indicate whether the shift was by more than 32 bits. - BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); - - // DestLo = (>32) ? TmpReg3 : TmpReg2; - BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, - DestReg).addReg(TmpReg2).addReg(TmpReg3); - - // DestHi = (>32) ? TmpReg : TmpReg3; - BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, - DestReg+1).addReg(TmpReg3).addReg(TmpReg); - } - } - return; - } - - if (ConstantUInt *CUI = dyn_cast(ShiftAmount)) { - // The shift amount is constant, guaranteed to be a ubyte. Get its value. - assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?"); - - const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned]; - BuildMI(*MBB, IP, Opc[Class], 2, - DestReg).addReg(SrcReg).addImm(CUI->getValue()); - } else { // The shift amount is non-constant. - unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP); - BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); - - const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned]; - BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg); - } -} - - -void ISel::getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale, - unsigned &IndexReg, unsigned &Disp) { - BaseReg = 0; Scale = 1; IndexReg = 0; Disp = 0; - if (GetElementPtrInst *GEP = dyn_cast(Addr)) { - if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(), - BaseReg, Scale, IndexReg, Disp)) - return; - } else if (ConstantExpr *CE = dyn_cast(Addr)) { - if (CE->getOpcode() == Instruction::GetElementPtr) - if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(), - BaseReg, Scale, IndexReg, Disp)) - return; - } - - // If it's not foldable, reset addr mode. - BaseReg = getReg(Addr); - Scale = 1; IndexReg = 0; Disp = 0; -} - - -/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov' -/// instruction. The load and store instructions are the only place where we -/// need to worry about the memory layout of the target machine. -/// -void ISel::visitLoadInst(LoadInst &I) { - // Check to see if this load instruction is going to be folded into a binary - // instruction, like add. If so, we don't want to emit it. Wouldn't a real - // pattern matching instruction selector be nice? - if (I.hasOneUse() && getClassB(I.getType()) < cFP) { - Instruction *User = cast(I.use_back()); - switch (User->getOpcode()) { - default: User = 0; break; - case Instruction::Add: - case Instruction::Sub: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: - break; - } - - if (User) { - // Okay, we found a user. If the load is the first operand and there is - // no second operand load, reverse the operand ordering. Note that this - // can fail for a subtract (ie, no change will be made). - if (!isa(User->getOperand(1))) - cast(User)->swapOperands(); - - // Okay, now that everything is set up, if this load is used by the second - // operand, and if there are no instructions that invalidate the load - // before the binary operator, eliminate the load. - if (User->getOperand(1) == &I && - isSafeToFoldLoadIntoInstruction(I, *User)) - return; // Eliminate the load! - } - } - - unsigned DestReg = getReg(I); - unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0; - getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp); - - unsigned Class = getClassB(I.getType()); - if (Class == cLong) { - addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg), - BaseReg, Scale, IndexReg, Disp); - addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), - BaseReg, Scale, IndexReg, Disp+4); - return; - } - - static const unsigned Opcodes[] = { - X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m - }; - unsigned Opcode = Opcodes[Class]; - if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m; - addFullAddress(BuildMI(BB, Opcode, 4, DestReg), - BaseReg, Scale, IndexReg, Disp); -} - -/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov' -/// instruction. -/// -void ISel::visitStoreInst(StoreInst &I) { - unsigned BaseReg, Scale, IndexReg, Disp; - getAddressingMode(I.getOperand(1), BaseReg, Scale, IndexReg, Disp); - - const Type *ValTy = I.getOperand(0)->getType(); - unsigned Class = getClassB(ValTy); - - if (ConstantInt *CI = dyn_cast(I.getOperand(0))) { - uint64_t Val = CI->getRawValue(); - if (Class == cLong) { - addFullAddress(BuildMI(BB, X86::MOV32mi, 5), - BaseReg, Scale, IndexReg, Disp).addImm(Val & ~0U); - addFullAddress(BuildMI(BB, X86::MOV32mi, 5), - BaseReg, Scale, IndexReg, Disp+4).addImm(Val>>32); - } else { - static const unsigned Opcodes[] = { - X86::MOV8mi, X86::MOV16mi, X86::MOV32mi - }; - unsigned Opcode = Opcodes[Class]; - addFullAddress(BuildMI(BB, Opcode, 5), - BaseReg, Scale, IndexReg, Disp).addImm(Val); - } - } else if (ConstantBool *CB = dyn_cast(I.getOperand(0))) { - addFullAddress(BuildMI(BB, X86::MOV8mi, 5), - BaseReg, Scale, IndexReg, Disp).addImm(CB->getValue()); - } else { - if (Class == cLong) { - unsigned ValReg = getReg(I.getOperand(0)); - addFullAddress(BuildMI(BB, X86::MOV32mr, 5), - BaseReg, Scale, IndexReg, Disp).addReg(ValReg); - addFullAddress(BuildMI(BB, X86::MOV32mr, 5), - BaseReg, Scale, IndexReg, Disp+4).addReg(ValReg+1); - } else { - unsigned ValReg = getReg(I.getOperand(0)); - static const unsigned Opcodes[] = { - X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m - }; - unsigned Opcode = Opcodes[Class]; - if (ValTy == Type::DoubleTy) Opcode = X86::FST64m; - addFullAddress(BuildMI(BB, Opcode, 1+4), - BaseReg, Scale, IndexReg, Disp).addReg(ValReg); - } - } -} - - -/// visitCastInst - Here we have various kinds of copying with or without sign -/// extension going on. -/// -void ISel::visitCastInst(CastInst &CI) { - Value *Op = CI.getOperand(0); - // If this is a cast from a 32-bit integer to a Long type, and the only uses - // of the case are GEP instructions, then the cast does not need to be - // generated explicitly, it will be folded into the GEP. - if (CI.getType() == Type::LongTy && - (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) { - bool AllUsesAreGEPs = true; - for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I) - if (!isa(*I)) { - AllUsesAreGEPs = false; - break; - } - - // No need to codegen this cast if all users are getelementptr instrs... - if (AllUsesAreGEPs) return; - } - - unsigned DestReg = getReg(CI); - MachineBasicBlock::iterator MI = BB->end(); - emitCastOperation(BB, MI, Op, CI.getType(), DestReg); -} - -/// emitCastOperation - Common code shared between visitCastInst and constant -/// expression cast support. -/// -void ISel::emitCastOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Src, const Type *DestTy, - unsigned DestReg) { - unsigned SrcReg = getReg(Src, BB, IP); - const Type *SrcTy = Src->getType(); - unsigned SrcClass = getClassB(SrcTy); - unsigned DestClass = getClassB(DestTy); - - // Implement casts to bool by using compare on the operand followed by set if - // not zero on the result. - if (DestTy == Type::BoolTy) { - switch (SrcClass) { - case cByte: - BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg); - break; - case cShort: - BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg); - break; - case cInt: - BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg); - break; - case cLong: { - unsigned TmpReg = makeAnotherReg(Type::IntTy); - BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1); - break; - } - case cFP: - BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg); - BuildMI(*BB, IP, X86::FNSTSW8r, 0); - BuildMI(*BB, IP, X86::SAHF, 1); - break; - } - - // If the zero flag is not set, then the value is true, set the byte to - // true. - BuildMI(*BB, IP, X86::SETNEr, 1, DestReg); - return; - } - - static const unsigned RegRegMove[] = { - X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr - }; - - // Implement casts between values of the same type class (as determined by - // getClass) by using a register-to-register move. - if (SrcClass == DestClass) { - if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) { - BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg); - } else if (SrcClass == cFP) { - if (SrcTy == Type::FloatTy) { // double -> float - assert(DestTy == Type::DoubleTy && "Unknown cFP member!"); - BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg); - } else { // float -> double - assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy && - "Unknown cFP member!"); - // Truncate from double to float by storing to memory as short, then - // reading it back. - unsigned FltAlign = TM.getTargetData().getFloatAlignment(); - int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign); - addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg); - addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx); - } - } else if (SrcClass == cLong) { - BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg); - BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1); - } else { - assert(0 && "Cannot handle this type of cast instruction!"); - abort(); - } - return; - } - - // Handle cast of SMALLER int to LARGER int using a move with sign extension - // or zero extension, depending on whether the source type was signed. - if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) && - SrcClass < DestClass) { - bool isLong = DestClass == cLong; - if (isLong) DestClass = cInt; - - static const unsigned Opc[][4] = { - { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s - { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u - }; - - bool isUnsigned = SrcTy->isUnsigned(); - BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1, - DestReg).addReg(SrcReg); - - if (isLong) { // Handle upper 32 bits as appropriate... - if (isUnsigned) // Zero out top bits... - BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); - else // Sign extend bottom half... - BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31); - } - return; - } - - // Special case long -> int ... - if (SrcClass == cLong && DestClass == cInt) { - BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg); - return; - } - - // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a - // move out of AX or AL. - if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt - && SrcClass > DestClass) { - static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX }; - BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg); - BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]); - return; - } - - // Handle casts from integer to floating point now... - if (DestClass == cFP) { - // Promote the integer to a type supported by FLD. We do this because there - // are no unsigned FLD instructions, so we must promote an unsigned value to - // a larger signed value, then use FLD on the larger value. - // - const Type *PromoteType = 0; - unsigned PromoteOpcode; - unsigned RealDestReg = DestReg; - switch (SrcTy->getTypeID()) { - case Type::BoolTyID: - case Type::SByteTyID: - // We don't have the facilities for directly loading byte sized data from - // memory (even signed). Promote it to 16 bits. - PromoteType = Type::ShortTy; - PromoteOpcode = X86::MOVSX16rr8; - break; - case Type::UByteTyID: - PromoteType = Type::ShortTy; - PromoteOpcode = X86::MOVZX16rr8; - break; - case Type::UShortTyID: - PromoteType = Type::IntTy; - PromoteOpcode = X86::MOVZX32rr16; - break; - case Type::UIntTyID: { - // Make a 64 bit temporary... and zero out the top of it... - unsigned TmpReg = makeAnotherReg(Type::LongTy); - BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg); - BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0); - SrcTy = Type::LongTy; - SrcClass = cLong; - SrcReg = TmpReg; - break; - } - case Type::ULongTyID: - // Don't fild into the read destination. - DestReg = makeAnotherReg(Type::DoubleTy); - break; - default: // No promotion needed... - break; - } - - if (PromoteType) { - unsigned TmpReg = makeAnotherReg(PromoteType); - unsigned Opc = SrcTy->isSigned() ? X86::MOVSX16rr8 : X86::MOVZX16rr8; - BuildMI(*BB, IP, Opc, 1, TmpReg).addReg(SrcReg); - SrcTy = PromoteType; - SrcClass = getClass(PromoteType); - SrcReg = TmpReg; - } - - // Spill the integer to memory and reload it from there... - int FrameIdx = - F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData()); - - if (SrcClass == cLong) { - addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5), - FrameIdx).addReg(SrcReg); - addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5), - FrameIdx, 4).addReg(SrcReg+1); - } else { - static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr }; - addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5), - FrameIdx).addReg(SrcReg); - } - - static const unsigned Op2[] = - { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m }; - addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx); - - // We need special handling for unsigned 64-bit integer sources. If the - // input number has the "sign bit" set, then we loaded it incorrectly as a - // negative 64-bit number. In this case, add an offset value. - if (SrcTy == Type::ULongTy) { - // Emit a test instruction to see if the dynamic input value was signed. - BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1); - - // If the sign bit is set, get a pointer to an offset, otherwise get a - // pointer to a zero. - MachineConstantPool *CP = F->getConstantPool(); - unsigned Zero = makeAnotherReg(Type::IntTy); - Constant *Null = Constant::getNullValue(Type::UIntTy); - addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero), - CP->getConstantPoolIndex(Null)); - unsigned Offset = makeAnotherReg(Type::IntTy); - Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000); - - addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset), - CP->getConstantPoolIndex(OffsetCst)); - unsigned Addr = makeAnotherReg(Type::IntTy); - BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset); - - // Load the constant for an add. FIXME: this could make an 'fadd' that - // reads directly from memory, but we don't support these yet. - unsigned ConstReg = makeAnotherReg(Type::DoubleTy); - addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr); - - BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg) - .addReg(ConstReg).addReg(DestReg); - } - - return; - } - - // Handle casts from floating point to integer now... - if (SrcClass == cFP) { - // Change the floating point control register to use "round towards zero" - // mode when truncating to an integer value. - // - int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); - addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx); - - // Load the old value of the high byte of the control word... - unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy); - addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW), - CWFrameIdx, 1); - - // Set the high part to be round to zero... - addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5), - CWFrameIdx, 1).addImm(12); - - // Reload the modified control word now... - addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx); - - // Restore the memory image of control word to original value - addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5), - CWFrameIdx, 1).addReg(HighPartOfCW); - - // We don't have the facilities for directly storing byte sized data to - // memory. Promote it to 16 bits. We also must promote unsigned values to - // larger classes because we only have signed FP stores. - unsigned StoreClass = DestClass; - const Type *StoreTy = DestTy; - if (StoreClass == cByte || DestTy->isUnsigned()) - switch (StoreClass) { - case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break; - case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break; - case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break; - // The following treatment of cLong may not be perfectly right, - // but it survives chains of casts of the form - // double->ulong->double. - case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break; - default: assert(0 && "Unknown store class!"); - } - - // Spill the integer to memory and reload it from there... - int FrameIdx = - F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData()); - - static const unsigned Op1[] = - { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m }; - addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5), - FrameIdx).addReg(SrcReg); - - if (DestClass == cLong) { - addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx); - addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1), - FrameIdx, 4); - } else { - static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm }; - addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx); - } - - // Reload the original control word now... - addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx); - return; - } - - // Anything we haven't handled already, we can't (yet) handle at all. - assert(0 && "Unhandled cast instruction!"); - abort(); -} - -/// visitVANextInst - Implement the va_next instruction... -/// -void ISel::visitVANextInst(VANextInst &I) { - unsigned VAList = getReg(I.getOperand(0)); - unsigned DestReg = getReg(I); - - unsigned Size; - switch (I.getArgType()->getTypeID()) { - default: - std::cerr << I; - assert(0 && "Error: bad type for va_next instruction!"); - return; - case Type::PointerTyID: - case Type::UIntTyID: - case Type::IntTyID: - Size = 4; - break; - case Type::ULongTyID: - case Type::LongTyID: - case Type::DoubleTyID: - Size = 8; - break; - } - - // Increment the VAList pointer... - BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size); -} - -void ISel::visitVAArgInst(VAArgInst &I) { - unsigned VAList = getReg(I.getOperand(0)); - unsigned DestReg = getReg(I); - - switch (I.getType()->getTypeID()) { - default: - std::cerr << I; - assert(0 && "Error: bad type for va_next instruction!"); - return; - case Type::PointerTyID: - case Type::UIntTyID: - case Type::IntTyID: - addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList); - break; - case Type::ULongTyID: - case Type::LongTyID: - addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList); - addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4); - break; - case Type::DoubleTyID: - addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList); - break; - } -} - -/// visitGetElementPtrInst - instruction-select GEP instructions -/// -void ISel::visitGetElementPtrInst(GetElementPtrInst &I) { - // If this GEP instruction will be folded into all of its users, we don't need - // to explicitly calculate it! - unsigned A, B, C, D; - if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), A,B,C,D)) { - // Check all of the users of the instruction to see if they are loads and - // stores. - bool AllWillFold = true; - for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) - if (cast(*UI)->getOpcode() != Instruction::Load) - if (cast(*UI)->getOpcode() != Instruction::Store || - cast(*UI)->getOperand(0) == &I) { - AllWillFold = false; - break; - } - - // If the instruction is foldable, and will be folded into all users, don't - // emit it! - if (AllWillFold) return; - } - - unsigned outputReg = getReg(I); - emitGEPOperation(BB, BB->end(), I.getOperand(0), - I.op_begin()+1, I.op_end(), outputReg); -} - -/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and -/// GEPTypes (the derived types being stepped through at each level). On return -/// from this function, if some indexes of the instruction are representable as -/// an X86 lea instruction, the machine operands are put into the Ops -/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes -/// lists. Otherwise, GEPOps.size() is returned. If this returns a an -/// addressing mode that only partially consumes the input, the BaseReg input of -/// the addressing mode must be left free. -/// -/// Note that there is one fewer entry in GEPTypes than there is in GEPOps. -/// -void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, - std::vector &GEPOps, - std::vector &GEPTypes, unsigned &BaseReg, - unsigned &Scale, unsigned &IndexReg, unsigned &Disp) { - const TargetData &TD = TM.getTargetData(); - - // Clear out the state we are working with... - BaseReg = 0; // No base register - Scale = 1; // Unit scale - IndexReg = 0; // No index register - Disp = 0; // No displacement - - // While there are GEP indexes that can be folded into the current address, - // keep processing them. - while (!GEPTypes.empty()) { - if (const StructType *StTy = dyn_cast(GEPTypes.back())) { - // It's a struct access. CUI is the index into the structure, - // which names the field. This index must have unsigned type. - const ConstantUInt *CUI = cast(GEPOps.back()); - - // Use the TargetData structure to pick out what the layout of the - // structure is in memory. Since the structure index must be constant, we - // can get its value and use it to find the right byte offset from the - // StructLayout class's list of structure member offsets. - Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()]; - GEPOps.pop_back(); // Consume a GEP operand - GEPTypes.pop_back(); - } else { - // It's an array or pointer access: [ArraySize x ElementType]. - const SequentialType *SqTy = cast(GEPTypes.back()); - Value *idx = GEPOps.back(); - - // idx is the index into the array. Unlike with structure - // indices, we may not know its actual value at code-generation - // time. - assert(idx->getType() == Type::LongTy && "Bad GEP array index!"); - - // If idx is a constant, fold it into the offset. - unsigned TypeSize = TD.getTypeSize(SqTy->getElementType()); - if (ConstantSInt *CSI = dyn_cast(idx)) { - Disp += TypeSize*CSI->getValue(); - } else { - // If the index reg is already taken, we can't handle this index. - if (IndexReg) return; - - // If this is a size that we can handle, then add the index as - switch (TypeSize) { - case 1: case 2: case 4: case 8: - // These are all acceptable scales on X86. - Scale = TypeSize; - break; - default: - // Otherwise, we can't handle this scale - return; - } - - if (CastInst *CI = dyn_cast(idx)) - if (CI->getOperand(0)->getType() == Type::IntTy || - CI->getOperand(0)->getType() == Type::UIntTy) - idx = CI->getOperand(0); - - IndexReg = MBB ? getReg(idx, MBB, IP) : 1; - } - - GEPOps.pop_back(); // Consume a GEP operand - GEPTypes.pop_back(); - } - } - - // GEPTypes is empty, which means we have a single operand left. See if we - // can set it as the base register. - // - // FIXME: When addressing modes are more powerful/correct, we could load - // global addresses directly as 32-bit immediates. - assert(BaseReg == 0); - BaseReg = MBB ? getReg(GEPOps[0], MBB, IP) : 1; - GEPOps.pop_back(); // Consume the last GEP operand -} - - -/// isGEPFoldable - Return true if the specified GEP can be completely -/// folded into the addressing mode of a load/store or lea instruction. -bool ISel::isGEPFoldable(MachineBasicBlock *MBB, - Value *Src, User::op_iterator IdxBegin, - User::op_iterator IdxEnd, unsigned &BaseReg, - unsigned &Scale, unsigned &IndexReg, unsigned &Disp) { - std::vector GEPOps; - GEPOps.resize(IdxEnd-IdxBegin+1); - GEPOps[0] = Src; - std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); - - std::vector GEPTypes; - GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), - gep_type_end(Src->getType(), IdxBegin, IdxEnd)); - - MachineBasicBlock::iterator IP; - if (MBB) IP = MBB->end(); - getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp); - - // We can fold it away iff the getGEPIndex call eliminated all operands. - return GEPOps.empty(); -} - -void ISel::emitGEPOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Src, User::op_iterator IdxBegin, - User::op_iterator IdxEnd, unsigned TargetReg) { - const TargetData &TD = TM.getTargetData(); - - std::vector GEPOps; - GEPOps.resize(IdxEnd-IdxBegin+1); - GEPOps[0] = Src; - std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); - - std::vector GEPTypes; - GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), - gep_type_end(Src->getType(), IdxBegin, IdxEnd)); - - // Keep emitting instructions until we consume the entire GEP instruction. - while (!GEPOps.empty()) { - unsigned OldSize = GEPOps.size(); - unsigned BaseReg, Scale, IndexReg, Disp; - getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp); - - if (GEPOps.size() != OldSize) { - // getGEPIndex consumed some of the input. Build an LEA instruction here. - unsigned NextTarget = 0; - if (!GEPOps.empty()) { - assert(BaseReg == 0 && - "getGEPIndex should have left the base register open for chaining!"); - NextTarget = BaseReg = makeAnotherReg(Type::UIntTy); - } - - if (IndexReg == 0 && Disp == 0) - BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg); - else - addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg), - BaseReg, Scale, IndexReg, Disp); - --IP; - TargetReg = NextTarget; - } else if (GEPTypes.empty()) { - // The getGEPIndex operation didn't want to build an LEA. Check to see if - // all operands are consumed but the base pointer. If so, just load it - // into the register. - if (GlobalValue *GV = dyn_cast(GEPOps[0])) { - BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV); - } else { - unsigned BaseReg = getReg(GEPOps[0], MBB, IP); - BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg); - } - break; // we are now done - - } else { - // It's an array or pointer access: [ArraySize x ElementType]. - const SequentialType *SqTy = cast(GEPTypes.back()); - Value *idx = GEPOps.back(); - GEPOps.pop_back(); // Consume a GEP operand - GEPTypes.pop_back(); - - // idx is the index into the array. Unlike with structure - // indices, we may not know its actual value at code-generation - // time. - assert(idx->getType() == Type::LongTy && "Bad GEP array index!"); - - // Most GEP instructions use a [cast (int/uint) to LongTy] as their - // operand on X86. Handle this case directly now... - if (CastInst *CI = dyn_cast(idx)) - if (CI->getOperand(0)->getType() == Type::IntTy || - CI->getOperand(0)->getType() == Type::UIntTy) - idx = CI->getOperand(0); - - // We want to add BaseReg to(idxReg * sizeof ElementType). First, we - // must find the size of the pointed-to type (Not coincidentally, the next - // type is the type of the elements in the array). - const Type *ElTy = SqTy->getElementType(); - unsigned elementSize = TD.getTypeSize(ElTy); - - // If idxReg is a constant, we don't need to perform the multiply! - if (ConstantSInt *CSI = dyn_cast(idx)) { - if (!CSI->isNullValue()) { - unsigned Offset = elementSize*CSI->getValue(); - unsigned Reg = makeAnotherReg(Type::UIntTy); - BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg) - .addReg(Reg).addImm(Offset); - --IP; // Insert the next instruction before this one. - TargetReg = Reg; // Codegen the rest of the GEP into this - } - } else if (elementSize == 1) { - // If the element size is 1, we don't have to multiply, just add - unsigned idxReg = getReg(idx, MBB, IP); - unsigned Reg = makeAnotherReg(Type::UIntTy); - BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg); - --IP; // Insert the next instruction before this one. - TargetReg = Reg; // Codegen the rest of the GEP into this - } else { - unsigned idxReg = getReg(idx, MBB, IP); - unsigned OffsetReg = makeAnotherReg(Type::UIntTy); - - // Make sure we can back the iterator up to point to the first - // instruction emitted. - MachineBasicBlock::iterator BeforeIt = IP; - if (IP == MBB->begin()) - BeforeIt = MBB->end(); - else - --BeforeIt; - doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize); - - // Emit an ADD to add OffsetReg to the basePtr. - unsigned Reg = makeAnotherReg(Type::UIntTy); - BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg) - .addReg(Reg).addReg(OffsetReg); - - // Step to the first instruction of the multiply. - if (BeforeIt == MBB->end()) - IP = MBB->begin(); - else - IP = ++BeforeIt; - - TargetReg = Reg; // Codegen the rest of the GEP into this - } - } - } -} - - -/// visitAllocaInst - If this is a fixed size alloca, allocate space from the -/// frame manager, otherwise do it the hard way. -/// -void ISel::visitAllocaInst(AllocaInst &I) { - // Find the data size of the alloca inst's getAllocatedType. - const Type *Ty = I.getAllocatedType(); - unsigned TySize = TM.getTargetData().getTypeSize(Ty); - - // If this is a fixed size alloca in the entry block for the function, - // statically stack allocate the space. - // - if (ConstantUInt *CUI = dyn_cast(I.getArraySize())) { - if (I.getParent() == I.getParent()->getParent()->begin()) { - TySize *= CUI->getValue(); // Get total allocated size... - unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty); - - // Create a new stack object using the frame manager... - int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment); - addFrameReference(BuildMI(BB, X86::LEA32r, 5, getReg(I)), FrameIdx); - return; - } - } - - // Create a register to hold the temporary result of multiplying the type size - // constant by the variable amount. - unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy); - unsigned SrcReg1 = getReg(I.getArraySize()); - - // TotalSizeReg = mul , - MachineBasicBlock::iterator MBBI = BB->end(); - doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize); - - // AddedSize = add , 15 - unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy); - BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15); - - // AlignedSize = and , ~15 - unsigned AlignedSize = makeAnotherReg(Type::UIntTy); - BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15); - - // Subtract size from stack pointer, thereby allocating some space. - BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize); - - // Put a pointer to the space into the result register, by copying - // the stack pointer. - BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP); - - // Inform the Frame Information that we have just allocated a variable-sized - // object. - F->getFrameInfo()->CreateVariableSizedObject(); -} - -/// visitMallocInst - Malloc instructions are code generated into direct calls -/// to the library malloc. -/// -void ISel::visitMallocInst(MallocInst &I) { - unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType()); - unsigned Arg; - - if (ConstantUInt *C = dyn_cast(I.getOperand(0))) { - Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize)); - } else { - Arg = makeAnotherReg(Type::UIntTy); - unsigned Op0Reg = getReg(I.getOperand(0)); - MachineBasicBlock::iterator MBBI = BB->end(); - doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize); - } - - std::vector Args; - Args.push_back(ValueRecord(Arg, Type::UIntTy)); - MachineInstr *TheCall = BuildMI(X86::CALLpcrel32, - 1).addExternalSymbol("malloc", true); - doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args); -} - - -/// visitFreeInst - Free instructions are code gen'd to call the free libc -/// function. -/// -void ISel::visitFreeInst(FreeInst &I) { - std::vector Args; - Args.push_back(ValueRecord(I.getOperand(0))); - MachineInstr *TheCall = BuildMI(X86::CALLpcrel32, - 1).addExternalSymbol("free", true); - doCall(ValueRecord(0, Type::VoidTy), TheCall, Args); -} - -/// createX86SimpleInstructionSelector - This pass converts an LLVM function -/// into a machine code representation is a very simple peep-hole fashion. The -/// generated code sucks but the implementation is nice and simple. -/// -FunctionPass *llvm::createX86ReallySimpleInstructionSelector(TargetMachine &TM) { - return new ISel(TM); -} - -#include "X86GenSimpInstrSelector.inc" diff --git a/lib/Target/X86/X86TargetMachine.cpp b/lib/Target/X86/X86TargetMachine.cpp index dc107385bdd..af033152804 100644 --- a/lib/Target/X86/X86TargetMachine.cpp +++ b/lib/Target/X86/X86TargetMachine.cpp @@ -34,8 +34,6 @@ namespace { cl::opt DisableOutput("disable-x86-llc-output", cl::Hidden, cl::desc("Disable the X86 asm printer, for use " "when profiling the code generator.")); - cl::opt NoSimpleISel("disable-simple-isel", cl::init(true), - cl::desc("Use the hand coded 'simple' X86 instruction selector")); // Register the target. RegisterTarget X("x86", " IA-32 (Pentium and above)"); @@ -85,10 +83,8 @@ bool X86TargetMachine::addPassesToEmitAssembly(PassManager &PM, // Make sure that no unreachable blocks are instruction selected. PM.add(createUnreachableBlockEliminationPass()); - if (NoPatternISel && NoSimpleISel) + if (NoPatternISel) PM.add(createX86SimpleInstructionSelector(*this)); - else if (NoPatternISel) - PM.add(createX86ReallySimpleInstructionSelector(*this)); else PM.add(createX86PatternInstructionSelector(*this));