From: Dan Gohman Date: Mon, 23 Nov 2009 18:04:58 +0000 (+0000) Subject: Rename SelectionDAGLowering to SelectionDAGBuilder, and rename X-Git-Url: http://plrg.eecs.uci.edu/git/?a=commitdiff_plain;h=2048b85c7c2c987874b9423e682ec8e60b60574b;p=oota-llvm.git Rename SelectionDAGLowering to SelectionDAGBuilder, and rename SelectionDAGBuild.cpp to SelectionDAGBuilder.cpp. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89681 91177308-0d34-0410-b5e6-96231b3b80d8 --- diff --git a/include/llvm/CodeGen/SelectionDAGISel.h b/include/llvm/CodeGen/SelectionDAGISel.h index adf89b0ce03..4130d2c0a25 100644 --- a/include/llvm/CodeGen/SelectionDAGISel.h +++ b/include/llvm/CodeGen/SelectionDAGISel.h @@ -23,7 +23,7 @@ namespace llvm { class FastISel; - class SelectionDAGLowering; + class SelectionDAGBuilder; class SDValue; class MachineRegisterInfo; class MachineBasicBlock; @@ -48,7 +48,7 @@ public: MachineFunction *MF; MachineRegisterInfo *RegInfo; SelectionDAG *CurDAG; - SelectionDAGLowering *SDL; + SelectionDAGBuilder *SDB; MachineBasicBlock *BB; AliasAnalysis *AA; GCFunctionInfo *GFI; diff --git a/lib/CodeGen/SelectionDAG/CMakeLists.txt b/lib/CodeGen/SelectionDAG/CMakeLists.txt index 9076f85b1b8..80c7d7c9eb9 100644 --- a/lib/CodeGen/SelectionDAG/CMakeLists.txt +++ b/lib/CodeGen/SelectionDAG/CMakeLists.txt @@ -16,7 +16,7 @@ add_llvm_library(LLVMSelectionDAG ScheduleDAGRRList.cpp ScheduleDAGSDNodes.cpp SelectionDAG.cpp - SelectionDAGBuild.cpp + SelectionDAGBuilder.cpp SelectionDAGISel.cpp SelectionDAGPrinter.cpp TargetLowering.cpp diff --git a/lib/CodeGen/SelectionDAG/FastISel.cpp b/lib/CodeGen/SelectionDAG/FastISel.cpp index 3a2c22b7f69..5eb9ca1ebe0 100644 --- a/lib/CodeGen/SelectionDAG/FastISel.cpp +++ b/lib/CodeGen/SelectionDAG/FastISel.cpp @@ -54,7 +54,7 @@ #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" -#include "SelectionDAGBuild.h" +#include "SelectionDAGBuilder.h" #include "FunctionLoweringInfo.h" using namespace llvm; diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp deleted file mode 100644 index cb6be3fc525..00000000000 --- a/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp +++ /dev/null @@ -1,5821 +0,0 @@ -//===-- SelectionDAGBuild.cpp - Selection-DAG building --------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This implements routines for translating from LLVM IR into SelectionDAG IR. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "isel" -#include "SelectionDAGBuild.h" -#include "FunctionLoweringInfo.h" -#include "llvm/ADT/BitVector.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Constants.h" -#include "llvm/CallingConv.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Function.h" -#include "llvm/GlobalVariable.h" -#include "llvm/InlineAsm.h" -#include "llvm/Instructions.h" -#include "llvm/Intrinsics.h" -#include "llvm/IntrinsicInst.h" -#include "llvm/LLVMContext.h" -#include "llvm/Module.h" -#include "llvm/CodeGen/FastISel.h" -#include "llvm/CodeGen/GCStrategy.h" -#include "llvm/CodeGen/GCMetadata.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineJumpTableInfo.h" -#include "llvm/CodeGen/MachineModuleInfo.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/PseudoSourceValue.h" -#include "llvm/CodeGen/SelectionDAG.h" -#include "llvm/CodeGen/DwarfWriter.h" -#include "llvm/Analysis/DebugInfo.h" -#include "llvm/Target/TargetRegisterInfo.h" -#include "llvm/Target/TargetData.h" -#include "llvm/Target/TargetFrameInfo.h" -#include "llvm/Target/TargetInstrInfo.h" -#include "llvm/Target/TargetIntrinsicInfo.h" -#include "llvm/Target/TargetLowering.h" -#include "llvm/Target/TargetOptions.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include -using namespace llvm; - -/// LimitFloatPrecision - Generate low-precision inline sequences for -/// some float libcalls (6, 8 or 12 bits). -static unsigned LimitFloatPrecision; - -static cl::opt -LimitFPPrecision("limit-float-precision", - cl::desc("Generate low-precision inline sequences " - "for some float libcalls"), - cl::location(LimitFloatPrecision), - cl::init(0)); - -namespace { - /// RegsForValue - This struct represents the registers (physical or virtual) - /// that a particular set of values is assigned, and the type information about - /// the value. The most common situation is to represent one value at a time, - /// but struct or array values are handled element-wise as multiple values. - /// The splitting of aggregates is performed recursively, so that we never - /// have aggregate-typed registers. The values at this point do not necessarily - /// have legal types, so each value may require one or more registers of some - /// legal type. - /// - struct RegsForValue { - /// TLI - The TargetLowering object. - /// - const TargetLowering *TLI; - - /// ValueVTs - The value types of the values, which may not be legal, and - /// may need be promoted or synthesized from one or more registers. - /// - SmallVector ValueVTs; - - /// RegVTs - The value types of the registers. This is the same size as - /// ValueVTs and it records, for each value, what the type of the assigned - /// register or registers are. (Individual values are never synthesized - /// from more than one type of register.) - /// - /// With virtual registers, the contents of RegVTs is redundant with TLI's - /// getRegisterType member function, however when with physical registers - /// it is necessary to have a separate record of the types. - /// - SmallVector RegVTs; - - /// Regs - This list holds the registers assigned to the values. - /// Each legal or promoted value requires one register, and each - /// expanded value requires multiple registers. - /// - SmallVector Regs; - - RegsForValue() : TLI(0) {} - - RegsForValue(const TargetLowering &tli, - const SmallVector ®s, - EVT regvt, EVT valuevt) - : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} - RegsForValue(const TargetLowering &tli, - const SmallVector ®s, - const SmallVector ®vts, - const SmallVector &valuevts) - : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} - RegsForValue(LLVMContext &Context, const TargetLowering &tli, - unsigned Reg, const Type *Ty) : TLI(&tli) { - ComputeValueVTs(tli, Ty, ValueVTs); - - for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { - EVT ValueVT = ValueVTs[Value]; - unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT); - EVT RegisterVT = TLI->getRegisterType(Context, ValueVT); - for (unsigned i = 0; i != NumRegs; ++i) - Regs.push_back(Reg + i); - RegVTs.push_back(RegisterVT); - Reg += NumRegs; - } - } - - /// append - Add the specified values to this one. - void append(const RegsForValue &RHS) { - TLI = RHS.TLI; - ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); - RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); - Regs.append(RHS.Regs.begin(), RHS.Regs.end()); - } - - - /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from - /// this value and returns the result as a ValueVTs value. This uses - /// Chain/Flag as the input and updates them for the output Chain/Flag. - /// If the Flag pointer is NULL, no flag is used. - SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, - SDValue &Chain, SDValue *Flag) const; - - /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the - /// specified value into the registers specified by this object. This uses - /// Chain/Flag as the input and updates them for the output Chain/Flag. - /// If the Flag pointer is NULL, no flag is used. - void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, - SDValue &Chain, SDValue *Flag) const; - - /// AddInlineAsmOperands - Add this value to the specified inlineasm node - /// operand list. This adds the code marker, matching input operand index - /// (if applicable), and includes the number of values added into it. - void AddInlineAsmOperands(unsigned Code, - bool HasMatching, unsigned MatchingIdx, - SelectionDAG &DAG, std::vector &Ops) const; - }; -} - -/// getCopyFromParts - Create a value that contains the specified legal parts -/// combined into the value they represent. If the parts combine to a type -/// larger then ValueVT then AssertOp can be used to specify whether the extra -/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT -/// (ISD::AssertSext). -static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, - const SDValue *Parts, - unsigned NumParts, EVT PartVT, EVT ValueVT, - ISD::NodeType AssertOp = ISD::DELETED_NODE) { - assert(NumParts > 0 && "No parts to assemble!"); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SDValue Val = Parts[0]; - - if (NumParts > 1) { - // Assemble the value from multiple parts. - if (!ValueVT.isVector() && ValueVT.isInteger()) { - unsigned PartBits = PartVT.getSizeInBits(); - unsigned ValueBits = ValueVT.getSizeInBits(); - - // Assemble the power of 2 part. - unsigned RoundParts = NumParts & (NumParts - 1) ? - 1 << Log2_32(NumParts) : NumParts; - unsigned RoundBits = PartBits * RoundParts; - EVT RoundVT = RoundBits == ValueBits ? - ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); - SDValue Lo, Hi; - - EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); - - if (RoundParts > 2) { - Lo = getCopyFromParts(DAG, dl, Parts, RoundParts/2, PartVT, HalfVT); - Hi = getCopyFromParts(DAG, dl, Parts+RoundParts/2, RoundParts/2, - PartVT, HalfVT); - } else { - Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]); - Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]); - } - if (TLI.isBigEndian()) - std::swap(Lo, Hi); - Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi); - - if (RoundParts < NumParts) { - // Assemble the trailing non-power-of-2 part. - unsigned OddParts = NumParts - RoundParts; - EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); - Hi = getCopyFromParts(DAG, dl, - Parts+RoundParts, OddParts, PartVT, OddVT); - - // Combine the round and odd parts. - Lo = Val; - if (TLI.isBigEndian()) - std::swap(Lo, Hi); - EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); - Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi); - Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi, - DAG.getConstant(Lo.getValueType().getSizeInBits(), - TLI.getPointerTy())); - Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo); - Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi); - } - } else if (ValueVT.isVector()) { - // Handle a multi-element vector. - EVT IntermediateVT, RegisterVT; - unsigned NumIntermediates; - unsigned NumRegs = - TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, - NumIntermediates, RegisterVT); - assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); - NumParts = NumRegs; // Silence a compiler warning. - assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); - assert(RegisterVT == Parts[0].getValueType() && - "Part type doesn't match part!"); - - // Assemble the parts into intermediate operands. - SmallVector Ops(NumIntermediates); - if (NumIntermediates == NumParts) { - // If the register was not expanded, truncate or copy the value, - // as appropriate. - for (unsigned i = 0; i != NumParts; ++i) - Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1, - PartVT, IntermediateVT); - } else if (NumParts > 0) { - // If the intermediate type was expanded, build the intermediate operands - // from the parts. - assert(NumParts % NumIntermediates == 0 && - "Must expand into a divisible number of parts!"); - unsigned Factor = NumParts / NumIntermediates; - for (unsigned i = 0; i != NumIntermediates; ++i) - Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor, - PartVT, IntermediateVT); - } - - // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate - // operands. - Val = DAG.getNode(IntermediateVT.isVector() ? - ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl, - ValueVT, &Ops[0], NumIntermediates); - } else if (PartVT.isFloatingPoint()) { - // FP split into multiple FP parts (for ppcf128) - assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && - "Unexpected split"); - SDValue Lo, Hi; - Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]); - Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]); - if (TLI.isBigEndian()) - std::swap(Lo, Hi); - Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi); - } else { - // FP split into integer parts (soft fp) - assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && - !PartVT.isVector() && "Unexpected split"); - EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); - Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT); - } - } - - // There is now one part, held in Val. Correct it to match ValueVT. - PartVT = Val.getValueType(); - - if (PartVT == ValueVT) - return Val; - - if (PartVT.isVector()) { - assert(ValueVT.isVector() && "Unknown vector conversion!"); - return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); - } - - if (ValueVT.isVector()) { - assert(ValueVT.getVectorElementType() == PartVT && - ValueVT.getVectorNumElements() == 1 && - "Only trivial scalar-to-vector conversions should get here!"); - return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val); - } - - if (PartVT.isInteger() && - ValueVT.isInteger()) { - if (ValueVT.bitsLT(PartVT)) { - // For a truncate, see if we have any information to - // indicate whether the truncated bits will always be - // zero or sign-extension. - if (AssertOp != ISD::DELETED_NODE) - Val = DAG.getNode(AssertOp, dl, PartVT, Val, - DAG.getValueType(ValueVT)); - return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); - } else { - return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val); - } - } - - if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { - if (ValueVT.bitsLT(Val.getValueType())) - // FP_ROUND's are always exact here. - return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val, - DAG.getIntPtrConstant(1)); - return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val); - } - - if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) - return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); - - llvm_unreachable("Unknown mismatch!"); - return SDValue(); -} - -/// getCopyToParts - Create a series of nodes that contain the specified value -/// split into legal parts. If the parts contain more bits than Val, then, for -/// integers, ExtendKind can be used to specify how to generate the extra bits. -static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val, - SDValue *Parts, unsigned NumParts, EVT PartVT, - ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - EVT PtrVT = TLI.getPointerTy(); - EVT ValueVT = Val.getValueType(); - unsigned PartBits = PartVT.getSizeInBits(); - unsigned OrigNumParts = NumParts; - assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); - - if (!NumParts) - return; - - if (!ValueVT.isVector()) { - if (PartVT == ValueVT) { - assert(NumParts == 1 && "No-op copy with multiple parts!"); - Parts[0] = Val; - return; - } - - if (NumParts * PartBits > ValueVT.getSizeInBits()) { - // If the parts cover more bits than the value has, promote the value. - if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { - assert(NumParts == 1 && "Do not know what to promote to!"); - Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val); - } else if (PartVT.isInteger() && ValueVT.isInteger()) { - ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); - Val = DAG.getNode(ExtendKind, dl, ValueVT, Val); - } else { - llvm_unreachable("Unknown mismatch!"); - } - } else if (PartBits == ValueVT.getSizeInBits()) { - // Different types of the same size. - assert(NumParts == 1 && PartVT != ValueVT); - Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); - } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { - // If the parts cover less bits than value has, truncate the value. - if (PartVT.isInteger() && ValueVT.isInteger()) { - ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); - Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); - } else { - llvm_unreachable("Unknown mismatch!"); - } - } - - // The value may have changed - recompute ValueVT. - ValueVT = Val.getValueType(); - assert(NumParts * PartBits == ValueVT.getSizeInBits() && - "Failed to tile the value with PartVT!"); - - if (NumParts == 1) { - assert(PartVT == ValueVT && "Type conversion failed!"); - Parts[0] = Val; - return; - } - - // Expand the value into multiple parts. - if (NumParts & (NumParts - 1)) { - // The number of parts is not a power of 2. Split off and copy the tail. - assert(PartVT.isInteger() && ValueVT.isInteger() && - "Do not know what to expand to!"); - unsigned RoundParts = 1 << Log2_32(NumParts); - unsigned RoundBits = RoundParts * PartBits; - unsigned OddParts = NumParts - RoundParts; - SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val, - DAG.getConstant(RoundBits, - TLI.getPointerTy())); - getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, OddParts, PartVT); - if (TLI.isBigEndian()) - // The odd parts were reversed by getCopyToParts - unreverse them. - std::reverse(Parts + RoundParts, Parts + NumParts); - NumParts = RoundParts; - ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); - Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); - } - - // The number of parts is a power of 2. Repeatedly bisect the value using - // EXTRACT_ELEMENT. - Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl, - EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()), - Val); - for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { - for (unsigned i = 0; i < NumParts; i += StepSize) { - unsigned ThisBits = StepSize * PartBits / 2; - EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); - SDValue &Part0 = Parts[i]; - SDValue &Part1 = Parts[i+StepSize/2]; - - Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, - ThisVT, Part0, - DAG.getConstant(1, PtrVT)); - Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, - ThisVT, Part0, - DAG.getConstant(0, PtrVT)); - - if (ThisBits == PartBits && ThisVT != PartVT) { - Part0 = DAG.getNode(ISD::BIT_CONVERT, dl, - PartVT, Part0); - Part1 = DAG.getNode(ISD::BIT_CONVERT, dl, - PartVT, Part1); - } - } - } - - if (TLI.isBigEndian()) - std::reverse(Parts, Parts + OrigNumParts); - - return; - } - - // Vector ValueVT. - if (NumParts == 1) { - if (PartVT != ValueVT) { - if (PartVT.isVector()) { - Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); - } else { - assert(ValueVT.getVectorElementType() == PartVT && - ValueVT.getVectorNumElements() == 1 && - "Only trivial vector-to-scalar conversions should get here!"); - Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, - PartVT, Val, - DAG.getConstant(0, PtrVT)); - } - } - - Parts[0] = Val; - return; - } - - // Handle a multi-element vector. - EVT IntermediateVT, RegisterVT; - unsigned NumIntermediates; - unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, - IntermediateVT, NumIntermediates, RegisterVT); - unsigned NumElements = ValueVT.getVectorNumElements(); - - assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); - NumParts = NumRegs; // Silence a compiler warning. - assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); - - // Split the vector into intermediate operands. - SmallVector Ops(NumIntermediates); - for (unsigned i = 0; i != NumIntermediates; ++i) - if (IntermediateVT.isVector()) - Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, - IntermediateVT, Val, - DAG.getConstant(i * (NumElements / NumIntermediates), - PtrVT)); - else - Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, - IntermediateVT, Val, - DAG.getConstant(i, PtrVT)); - - // Split the intermediate operands into legal parts. - if (NumParts == NumIntermediates) { - // If the register was not expanded, promote or copy the value, - // as appropriate. - for (unsigned i = 0; i != NumParts; ++i) - getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT); - } else if (NumParts > 0) { - // If the intermediate type was expanded, split each the value into - // legal parts. - assert(NumParts % NumIntermediates == 0 && - "Must expand into a divisible number of parts!"); - unsigned Factor = NumParts / NumIntermediates; - for (unsigned i = 0; i != NumIntermediates; ++i) - getCopyToParts(DAG, dl, Ops[i], &Parts[i * Factor], Factor, PartVT); - } -} - - -void SelectionDAGLowering::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { - AA = &aa; - GFI = gfi; - TD = DAG.getTarget().getTargetData(); -} - -/// clear - Clear out the curret SelectionDAG and the associated -/// state and prepare this SelectionDAGLowering object to be used -/// for a new block. This doesn't clear out information about -/// additional blocks that are needed to complete switch lowering -/// or PHI node updating; that information is cleared out as it is -/// consumed. -void SelectionDAGLowering::clear() { - NodeMap.clear(); - PendingLoads.clear(); - PendingExports.clear(); - EdgeMapping.clear(); - DAG.clear(); - CurDebugLoc = DebugLoc::getUnknownLoc(); - HasTailCall = false; -} - -/// getRoot - Return the current virtual root of the Selection DAG, -/// flushing any PendingLoad items. This must be done before emitting -/// a store or any other node that may need to be ordered after any -/// prior load instructions. -/// -SDValue SelectionDAGLowering::getRoot() { - if (PendingLoads.empty()) - return DAG.getRoot(); - - if (PendingLoads.size() == 1) { - SDValue Root = PendingLoads[0]; - DAG.setRoot(Root); - PendingLoads.clear(); - return Root; - } - - // Otherwise, we have to make a token factor node. - SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, - &PendingLoads[0], PendingLoads.size()); - PendingLoads.clear(); - DAG.setRoot(Root); - return Root; -} - -/// getControlRoot - Similar to getRoot, but instead of flushing all the -/// PendingLoad items, flush all the PendingExports items. It is necessary -/// to do this before emitting a terminator instruction. -/// -SDValue SelectionDAGLowering::getControlRoot() { - SDValue Root = DAG.getRoot(); - - if (PendingExports.empty()) - return Root; - - // Turn all of the CopyToReg chains into one factored node. - if (Root.getOpcode() != ISD::EntryToken) { - unsigned i = 0, e = PendingExports.size(); - for (; i != e; ++i) { - assert(PendingExports[i].getNode()->getNumOperands() > 1); - if (PendingExports[i].getNode()->getOperand(0) == Root) - break; // Don't add the root if we already indirectly depend on it. - } - - if (i == e) - PendingExports.push_back(Root); - } - - Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, - &PendingExports[0], - PendingExports.size()); - PendingExports.clear(); - DAG.setRoot(Root); - return Root; -} - -void SelectionDAGLowering::visit(Instruction &I) { - visit(I.getOpcode(), I); -} - -void SelectionDAGLowering::visit(unsigned Opcode, User &I) { - // Note: this doesn't use InstVisitor, because it has to work with - // ConstantExpr's in addition to instructions. - switch (Opcode) { - default: llvm_unreachable("Unknown instruction type encountered!"); - // Build the switch statement using the Instruction.def file. -#define HANDLE_INST(NUM, OPCODE, CLASS) \ - case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); -#include "llvm/Instruction.def" - } -} - -SDValue SelectionDAGLowering::getValue(const Value *V) { - SDValue &N = NodeMap[V]; - if (N.getNode()) return N; - - if (Constant *C = const_cast(dyn_cast(V))) { - EVT VT = TLI.getValueType(V->getType(), true); - - if (ConstantInt *CI = dyn_cast(C)) - return N = DAG.getConstant(*CI, VT); - - if (GlobalValue *GV = dyn_cast(C)) - return N = DAG.getGlobalAddress(GV, VT); - - if (isa(C)) - return N = DAG.getConstant(0, TLI.getPointerTy()); - - if (ConstantFP *CFP = dyn_cast(C)) - return N = DAG.getConstantFP(*CFP, VT); - - if (isa(C) && !V->getType()->isAggregateType()) - return N = DAG.getUNDEF(VT); - - if (ConstantExpr *CE = dyn_cast(C)) { - visit(CE->getOpcode(), *CE); - SDValue N1 = NodeMap[V]; - assert(N1.getNode() && "visit didn't populate the ValueMap!"); - return N1; - } - - if (isa(C) || isa(C)) { - SmallVector Constants; - for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); - OI != OE; ++OI) { - SDNode *Val = getValue(*OI).getNode(); - // If the operand is an empty aggregate, there are no values. - if (!Val) continue; - // Add each leaf value from the operand to the Constants list - // to form a flattened list of all the values. - for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) - Constants.push_back(SDValue(Val, i)); - } - return DAG.getMergeValues(&Constants[0], Constants.size(), - getCurDebugLoc()); - } - - if (isa(C->getType()) || isa(C->getType())) { - assert((isa(C) || isa(C)) && - "Unknown struct or array constant!"); - - SmallVector ValueVTs; - ComputeValueVTs(TLI, C->getType(), ValueVTs); - unsigned NumElts = ValueVTs.size(); - if (NumElts == 0) - return SDValue(); // empty struct - SmallVector Constants(NumElts); - for (unsigned i = 0; i != NumElts; ++i) { - EVT EltVT = ValueVTs[i]; - if (isa(C)) - Constants[i] = DAG.getUNDEF(EltVT); - else if (EltVT.isFloatingPoint()) - Constants[i] = DAG.getConstantFP(0, EltVT); - else - Constants[i] = DAG.getConstant(0, EltVT); - } - return DAG.getMergeValues(&Constants[0], NumElts, getCurDebugLoc()); - } - - if (BlockAddress *BA = dyn_cast(C)) - return DAG.getBlockAddress(BA, VT); - - const VectorType *VecTy = cast(V->getType()); - unsigned NumElements = VecTy->getNumElements(); - - // Now that we know the number and type of the elements, get that number of - // elements into the Ops array based on what kind of constant it is. - SmallVector Ops; - if (ConstantVector *CP = dyn_cast(C)) { - for (unsigned i = 0; i != NumElements; ++i) - Ops.push_back(getValue(CP->getOperand(i))); - } else { - assert(isa(C) && "Unknown vector constant!"); - EVT EltVT = TLI.getValueType(VecTy->getElementType()); - - SDValue Op; - if (EltVT.isFloatingPoint()) - Op = DAG.getConstantFP(0, EltVT); - else - Op = DAG.getConstant(0, EltVT); - Ops.assign(NumElements, Op); - } - - // Create a BUILD_VECTOR node. - return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), - VT, &Ops[0], Ops.size()); - } - - // If this is a static alloca, generate it as the frameindex instead of - // computation. - if (const AllocaInst *AI = dyn_cast(V)) { - DenseMap::iterator SI = - FuncInfo.StaticAllocaMap.find(AI); - if (SI != FuncInfo.StaticAllocaMap.end()) - return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); - } - - unsigned InReg = FuncInfo.ValueMap[V]; - assert(InReg && "Value not in map!"); - - RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); - SDValue Chain = DAG.getEntryNode(); - return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL); -} - -/// Get the EVTs and ArgFlags collections that represent the return type -/// of the given function. This does not require a DAG or a return value, and -/// is suitable for use before any DAGs for the function are constructed. -static void getReturnInfo(const Type* ReturnType, - Attributes attr, SmallVectorImpl &OutVTs, - SmallVectorImpl &OutFlags, - TargetLowering &TLI, - SmallVectorImpl *Offsets = 0) { - SmallVector ValueVTs; - ComputeValueVTs(TLI, ReturnType, ValueVTs, Offsets); - unsigned NumValues = ValueVTs.size(); - if ( NumValues == 0 ) return; - - for (unsigned j = 0, f = NumValues; j != f; ++j) { - EVT VT = ValueVTs[j]; - ISD::NodeType ExtendKind = ISD::ANY_EXTEND; - - if (attr & Attribute::SExt) - ExtendKind = ISD::SIGN_EXTEND; - else if (attr & Attribute::ZExt) - ExtendKind = ISD::ZERO_EXTEND; - - // FIXME: C calling convention requires the return type to be promoted to - // at least 32-bit. But this is not necessary for non-C calling - // conventions. The frontend should mark functions whose return values - // require promoting with signext or zeroext attributes. - if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { - EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); - if (VT.bitsLT(MinVT)) - VT = MinVT; - } - - unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); - EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); - // 'inreg' on function refers to return value - ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); - if (attr & Attribute::InReg) - Flags.setInReg(); - - // Propagate extension type if any - if (attr & Attribute::SExt) - Flags.setSExt(); - else if (attr & Attribute::ZExt) - Flags.setZExt(); - - for (unsigned i = 0; i < NumParts; ++i) { - OutVTs.push_back(PartVT); - OutFlags.push_back(Flags); - } - } -} - -void SelectionDAGLowering::visitRet(ReturnInst &I) { - SDValue Chain = getControlRoot(); - SmallVector Outs; - FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); - - if (!FLI.CanLowerReturn) { - unsigned DemoteReg = FLI.DemoteRegister; - const Function *F = I.getParent()->getParent(); - - // Emit a store of the return value through the virtual register. - // Leave Outs empty so that LowerReturn won't try to load return - // registers the usual way. - SmallVector PtrValueVTs; - ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), - PtrValueVTs); - - SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); - SDValue RetOp = getValue(I.getOperand(0)); - - SmallVector ValueVTs; - SmallVector Offsets; - ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); - unsigned NumValues = ValueVTs.size(); - - SmallVector Chains(NumValues); - EVT PtrVT = PtrValueVTs[0]; - for (unsigned i = 0; i != NumValues; ++i) - Chains[i] = DAG.getStore(Chain, getCurDebugLoc(), - SDValue(RetOp.getNode(), RetOp.getResNo() + i), - DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr, - DAG.getConstant(Offsets[i], PtrVT)), - NULL, Offsets[i], false, 0); - Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), - MVT::Other, &Chains[0], NumValues); - } - else { - for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { - SmallVector ValueVTs; - ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs); - unsigned NumValues = ValueVTs.size(); - if (NumValues == 0) continue; - - SDValue RetOp = getValue(I.getOperand(i)); - for (unsigned j = 0, f = NumValues; j != f; ++j) { - EVT VT = ValueVTs[j]; - - ISD::NodeType ExtendKind = ISD::ANY_EXTEND; - - const Function *F = I.getParent()->getParent(); - if (F->paramHasAttr(0, Attribute::SExt)) - ExtendKind = ISD::SIGN_EXTEND; - else if (F->paramHasAttr(0, Attribute::ZExt)) - ExtendKind = ISD::ZERO_EXTEND; - - // FIXME: C calling convention requires the return type to be promoted to - // at least 32-bit. But this is not necessary for non-C calling - // conventions. The frontend should mark functions whose return values - // require promoting with signext or zeroext attributes. - if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { - EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); - if (VT.bitsLT(MinVT)) - VT = MinVT; - } - - unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); - EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); - SmallVector Parts(NumParts); - getCopyToParts(DAG, getCurDebugLoc(), - SDValue(RetOp.getNode(), RetOp.getResNo() + j), - &Parts[0], NumParts, PartVT, ExtendKind); - - // 'inreg' on function refers to return value - ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); - if (F->paramHasAttr(0, Attribute::InReg)) - Flags.setInReg(); - - // Propagate extension type if any - if (F->paramHasAttr(0, Attribute::SExt)) - Flags.setSExt(); - else if (F->paramHasAttr(0, Attribute::ZExt)) - Flags.setZExt(); - - for (unsigned i = 0; i < NumParts; ++i) - Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true)); - } - } - } - - bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); - CallingConv::ID CallConv = - DAG.getMachineFunction().getFunction()->getCallingConv(); - Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, - Outs, getCurDebugLoc(), DAG); - - // Verify that the target's LowerReturn behaved as expected. - assert(Chain.getNode() && Chain.getValueType() == MVT::Other && - "LowerReturn didn't return a valid chain!"); - - // Update the DAG with the new chain value resulting from return lowering. - DAG.setRoot(Chain); -} - -/// CopyToExportRegsIfNeeded - If the given value has virtual registers -/// created for it, emit nodes to copy the value into the virtual -/// registers. -void SelectionDAGLowering::CopyToExportRegsIfNeeded(Value *V) { - if (!V->use_empty()) { - DenseMap::iterator VMI = FuncInfo.ValueMap.find(V); - if (VMI != FuncInfo.ValueMap.end()) - CopyValueToVirtualRegister(V, VMI->second); - } -} - -/// ExportFromCurrentBlock - If this condition isn't known to be exported from -/// the current basic block, add it to ValueMap now so that we'll get a -/// CopyTo/FromReg. -void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) { - // No need to export constants. - if (!isa(V) && !isa(V)) return; - - // Already exported? - if (FuncInfo.isExportedInst(V)) return; - - unsigned Reg = FuncInfo.InitializeRegForValue(V); - CopyValueToVirtualRegister(V, Reg); -} - -bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V, - const BasicBlock *FromBB) { - // The operands of the setcc have to be in this block. We don't know - // how to export them from some other block. - if (Instruction *VI = dyn_cast(V)) { - // Can export from current BB. - if (VI->getParent() == FromBB) - return true; - - // Is already exported, noop. - return FuncInfo.isExportedInst(V); - } - - // If this is an argument, we can export it if the BB is the entry block or - // if it is already exported. - if (isa(V)) { - if (FromBB == &FromBB->getParent()->getEntryBlock()) - return true; - - // Otherwise, can only export this if it is already exported. - return FuncInfo.isExportedInst(V); - } - - // Otherwise, constants can always be exported. - return true; -} - -static bool InBlock(const Value *V, const BasicBlock *BB) { - if (const Instruction *I = dyn_cast(V)) - return I->getParent() == BB; - return true; -} - -/// getFCmpCondCode - Return the ISD condition code corresponding to -/// the given LLVM IR floating-point condition code. This includes -/// consideration of global floating-point math flags. -/// -static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) { - ISD::CondCode FPC, FOC; - switch (Pred) { - case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; - case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; - case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; - case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; - case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; - case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; - case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; - case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; - case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; - case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; - case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; - case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; - case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; - case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; - case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; - case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; - default: - llvm_unreachable("Invalid FCmp predicate opcode!"); - FOC = FPC = ISD::SETFALSE; - break; - } - if (FiniteOnlyFPMath()) - return FOC; - else - return FPC; -} - -/// getICmpCondCode - Return the ISD condition code corresponding to -/// the given LLVM IR integer condition code. -/// -static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) { - switch (Pred) { - case ICmpInst::ICMP_EQ: return ISD::SETEQ; - case ICmpInst::ICMP_NE: return ISD::SETNE; - case ICmpInst::ICMP_SLE: return ISD::SETLE; - case ICmpInst::ICMP_ULE: return ISD::SETULE; - case ICmpInst::ICMP_SGE: return ISD::SETGE; - case ICmpInst::ICMP_UGE: return ISD::SETUGE; - case ICmpInst::ICMP_SLT: return ISD::SETLT; - case ICmpInst::ICMP_ULT: return ISD::SETULT; - case ICmpInst::ICMP_SGT: return ISD::SETGT; - case ICmpInst::ICMP_UGT: return ISD::SETUGT; - default: - llvm_unreachable("Invalid ICmp predicate opcode!"); - return ISD::SETNE; - } -} - -/// EmitBranchForMergedCondition - Helper method for FindMergedConditions. -/// This function emits a branch and is used at the leaves of an OR or an -/// AND operator tree. -/// -void -SelectionDAGLowering::EmitBranchForMergedCondition(Value *Cond, - MachineBasicBlock *TBB, - MachineBasicBlock *FBB, - MachineBasicBlock *CurBB) { - const BasicBlock *BB = CurBB->getBasicBlock(); - - // If the leaf of the tree is a comparison, merge the condition into - // the caseblock. - if (CmpInst *BOp = dyn_cast(Cond)) { - // The operands of the cmp have to be in this block. We don't know - // how to export them from some other block. If this is the first block - // of the sequence, no exporting is needed. - if (CurBB == CurMBB || - (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && - isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { - ISD::CondCode Condition; - if (ICmpInst *IC = dyn_cast(Cond)) { - Condition = getICmpCondCode(IC->getPredicate()); - } else if (FCmpInst *FC = dyn_cast(Cond)) { - Condition = getFCmpCondCode(FC->getPredicate()); - } else { - Condition = ISD::SETEQ; // silence warning. - llvm_unreachable("Unknown compare instruction"); - } - - CaseBlock CB(Condition, BOp->getOperand(0), - BOp->getOperand(1), NULL, TBB, FBB, CurBB); - SwitchCases.push_back(CB); - return; - } - } - - // Create a CaseBlock record representing this branch. - CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), - NULL, TBB, FBB, CurBB); - SwitchCases.push_back(CB); -} - -/// FindMergedConditions - If Cond is an expression like -void SelectionDAGLowering::FindMergedConditions(Value *Cond, - MachineBasicBlock *TBB, - MachineBasicBlock *FBB, - MachineBasicBlock *CurBB, - unsigned Opc) { - // If this node is not part of the or/and tree, emit it as a branch. - Instruction *BOp = dyn_cast(Cond); - if (!BOp || !(isa(BOp) || isa(BOp)) || - (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || - BOp->getParent() != CurBB->getBasicBlock() || - !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || - !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { - EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB); - return; - } - - // Create TmpBB after CurBB. - MachineFunction::iterator BBI = CurBB; - MachineFunction &MF = DAG.getMachineFunction(); - MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); - CurBB->getParent()->insert(++BBI, TmpBB); - - if (Opc == Instruction::Or) { - // Codegen X | Y as: - // jmp_if_X TBB - // jmp TmpBB - // TmpBB: - // jmp_if_Y TBB - // jmp FBB - // - - // Emit the LHS condition. - FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); - - // Emit the RHS condition into TmpBB. - FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); - } else { - assert(Opc == Instruction::And && "Unknown merge op!"); - // Codegen X & Y as: - // jmp_if_X TmpBB - // jmp FBB - // TmpBB: - // jmp_if_Y TBB - // jmp FBB - // - // This requires creation of TmpBB after CurBB. - - // Emit the LHS condition. - FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); - - // Emit the RHS condition into TmpBB. - FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); - } -} - -/// If the set of cases should be emitted as a series of branches, return true. -/// If we should emit this as a bunch of and/or'd together conditions, return -/// false. -bool -SelectionDAGLowering::ShouldEmitAsBranches(const std::vector &Cases){ - if (Cases.size() != 2) return true; - - // If this is two comparisons of the same values or'd or and'd together, they - // will get folded into a single comparison, so don't emit two blocks. - if ((Cases[0].CmpLHS == Cases[1].CmpLHS && - Cases[0].CmpRHS == Cases[1].CmpRHS) || - (Cases[0].CmpRHS == Cases[1].CmpLHS && - Cases[0].CmpLHS == Cases[1].CmpRHS)) { - return false; - } - - return true; -} - -void SelectionDAGLowering::visitBr(BranchInst &I) { - // Update machine-CFG edges. - MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; - - // Figure out which block is immediately after the current one. - MachineBasicBlock *NextBlock = 0; - MachineFunction::iterator BBI = CurMBB; - if (++BBI != FuncInfo.MF->end()) - NextBlock = BBI; - - if (I.isUnconditional()) { - // Update machine-CFG edges. - CurMBB->addSuccessor(Succ0MBB); - - // If this is not a fall-through branch, emit the branch. - if (Succ0MBB != NextBlock) - DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), - MVT::Other, getControlRoot(), - DAG.getBasicBlock(Succ0MBB))); - return; - } - - // If this condition is one of the special cases we handle, do special stuff - // now. - Value *CondVal = I.getCondition(); - MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; - - // If this is a series of conditions that are or'd or and'd together, emit - // this as a sequence of branches instead of setcc's with and/or operations. - // For example, instead of something like: - // cmp A, B - // C = seteq - // cmp D, E - // F = setle - // or C, F - // jnz foo - // Emit: - // cmp A, B - // je foo - // cmp D, E - // jle foo - // - if (BinaryOperator *BOp = dyn_cast(CondVal)) { - if (BOp->hasOneUse() && - (BOp->getOpcode() == Instruction::And || - BOp->getOpcode() == Instruction::Or)) { - FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); - // If the compares in later blocks need to use values not currently - // exported from this block, export them now. This block should always - // be the first entry. - assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); - - // Allow some cases to be rejected. - if (ShouldEmitAsBranches(SwitchCases)) { - for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { - ExportFromCurrentBlock(SwitchCases[i].CmpLHS); - ExportFromCurrentBlock(SwitchCases[i].CmpRHS); - } - - // Emit the branch for this block. - visitSwitchCase(SwitchCases[0]); - SwitchCases.erase(SwitchCases.begin()); - return; - } - - // Okay, we decided not to do this, remove any inserted MBB's and clear - // SwitchCases. - for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) - FuncInfo.MF->erase(SwitchCases[i].ThisBB); - - SwitchCases.clear(); - } - } - - // Create a CaseBlock record representing this branch. - CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), - NULL, Succ0MBB, Succ1MBB, CurMBB); - // Use visitSwitchCase to actually insert the fast branch sequence for this - // cond branch. - visitSwitchCase(CB); -} - -/// visitSwitchCase - Emits the necessary code to represent a single node in -/// the binary search tree resulting from lowering a switch instruction. -void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) { - SDValue Cond; - SDValue CondLHS = getValue(CB.CmpLHS); - DebugLoc dl = getCurDebugLoc(); - - // Build the setcc now. - if (CB.CmpMHS == NULL) { - // Fold "(X == true)" to X and "(X == false)" to !X to - // handle common cases produced by branch lowering. - if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && - CB.CC == ISD::SETEQ) - Cond = CondLHS; - else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && - CB.CC == ISD::SETEQ) { - SDValue True = DAG.getConstant(1, CondLHS.getValueType()); - Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); - } else - Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); - } else { - assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); - - const APInt& Low = cast(CB.CmpLHS)->getValue(); - const APInt& High = cast(CB.CmpRHS)->getValue(); - - SDValue CmpOp = getValue(CB.CmpMHS); - EVT VT = CmpOp.getValueType(); - - if (cast(CB.CmpLHS)->isMinValue(true)) { - Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), - ISD::SETLE); - } else { - SDValue SUB = DAG.getNode(ISD::SUB, dl, - VT, CmpOp, DAG.getConstant(Low, VT)); - Cond = DAG.getSetCC(dl, MVT::i1, SUB, - DAG.getConstant(High-Low, VT), ISD::SETULE); - } - } - - // Update successor info - CurMBB->addSuccessor(CB.TrueBB); - CurMBB->addSuccessor(CB.FalseBB); - - // Set NextBlock to be the MBB immediately after the current one, if any. - // This is used to avoid emitting unnecessary branches to the next block. - MachineBasicBlock *NextBlock = 0; - MachineFunction::iterator BBI = CurMBB; - if (++BBI != FuncInfo.MF->end()) - NextBlock = BBI; - - // If the lhs block is the next block, invert the condition so that we can - // fall through to the lhs instead of the rhs block. - if (CB.TrueBB == NextBlock) { - std::swap(CB.TrueBB, CB.FalseBB); - SDValue True = DAG.getConstant(1, Cond.getValueType()); - Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); - } - SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, - MVT::Other, getControlRoot(), Cond, - DAG.getBasicBlock(CB.TrueBB)); - - // If the branch was constant folded, fix up the CFG. - if (BrCond.getOpcode() == ISD::BR) { - CurMBB->removeSuccessor(CB.FalseBB); - DAG.setRoot(BrCond); - } else { - // Otherwise, go ahead and insert the false branch. - if (BrCond == getControlRoot()) - CurMBB->removeSuccessor(CB.TrueBB); - - if (CB.FalseBB == NextBlock) - DAG.setRoot(BrCond); - else - DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, - DAG.getBasicBlock(CB.FalseBB))); - } -} - -/// visitJumpTable - Emit JumpTable node in the current MBB -void SelectionDAGLowering::visitJumpTable(JumpTable &JT) { - // Emit the code for the jump table - assert(JT.Reg != -1U && "Should lower JT Header first!"); - EVT PTy = TLI.getPointerTy(); - SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), - JT.Reg, PTy); - SDValue Table = DAG.getJumpTable(JT.JTI, PTy); - DAG.setRoot(DAG.getNode(ISD::BR_JT, getCurDebugLoc(), - MVT::Other, Index.getValue(1), - Table, Index)); -} - -/// visitJumpTableHeader - This function emits necessary code to produce index -/// in the JumpTable from switch case. -void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT, - JumpTableHeader &JTH) { - // Subtract the lowest switch case value from the value being switched on and - // conditional branch to default mbb if the result is greater than the - // difference between smallest and largest cases. - SDValue SwitchOp = getValue(JTH.SValue); - EVT VT = SwitchOp.getValueType(); - SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, - DAG.getConstant(JTH.First, VT)); - - // The SDNode we just created, which holds the value being switched on minus - // the the smallest case value, needs to be copied to a virtual register so it - // can be used as an index into the jump table in a subsequent basic block. - // This value may be smaller or larger than the target's pointer type, and - // therefore require extension or truncating. - SwitchOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy()); - - unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); - SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), - JumpTableReg, SwitchOp); - JT.Reg = JumpTableReg; - - // Emit the range check for the jump table, and branch to the default block - // for the switch statement if the value being switched on exceeds the largest - // case in the switch. - SDValue CMP = DAG.getSetCC(getCurDebugLoc(), - TLI.getSetCCResultType(SUB.getValueType()), SUB, - DAG.getConstant(JTH.Last-JTH.First,VT), - ISD::SETUGT); - - // Set NextBlock to be the MBB immediately after the current one, if any. - // This is used to avoid emitting unnecessary branches to the next block. - MachineBasicBlock *NextBlock = 0; - MachineFunction::iterator BBI = CurMBB; - if (++BBI != FuncInfo.MF->end()) - NextBlock = BBI; - - SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), - MVT::Other, CopyTo, CMP, - DAG.getBasicBlock(JT.Default)); - - if (JT.MBB == NextBlock) - DAG.setRoot(BrCond); - else - DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, - DAG.getBasicBlock(JT.MBB))); -} - -/// visitBitTestHeader - This function emits necessary code to produce value -/// suitable for "bit tests" -void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) { - // Subtract the minimum value - SDValue SwitchOp = getValue(B.SValue); - EVT VT = SwitchOp.getValueType(); - SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, - DAG.getConstant(B.First, VT)); - - // Check range - SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), - TLI.getSetCCResultType(SUB.getValueType()), - SUB, DAG.getConstant(B.Range, VT), - ISD::SETUGT); - - SDValue ShiftOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy()); - - B.Reg = FuncInfo.MakeReg(TLI.getPointerTy()); - SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), - B.Reg, ShiftOp); - - // Set NextBlock to be the MBB immediately after the current one, if any. - // This is used to avoid emitting unnecessary branches to the next block. - MachineBasicBlock *NextBlock = 0; - MachineFunction::iterator BBI = CurMBB; - if (++BBI != FuncInfo.MF->end()) - NextBlock = BBI; - - MachineBasicBlock* MBB = B.Cases[0].ThisBB; - - CurMBB->addSuccessor(B.Default); - CurMBB->addSuccessor(MBB); - - SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), - MVT::Other, CopyTo, RangeCmp, - DAG.getBasicBlock(B.Default)); - - if (MBB == NextBlock) - DAG.setRoot(BrRange); - else - DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, - DAG.getBasicBlock(MBB))); -} - -/// visitBitTestCase - this function produces one "bit test" -void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB, - unsigned Reg, - BitTestCase &B) { - // Make desired shift - SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, - TLI.getPointerTy()); - SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), - TLI.getPointerTy(), - DAG.getConstant(1, TLI.getPointerTy()), - ShiftOp); - - // Emit bit tests and jumps - SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), - TLI.getPointerTy(), SwitchVal, - DAG.getConstant(B.Mask, TLI.getPointerTy())); - SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(), - TLI.getSetCCResultType(AndOp.getValueType()), - AndOp, DAG.getConstant(0, TLI.getPointerTy()), - ISD::SETNE); - - CurMBB->addSuccessor(B.TargetBB); - CurMBB->addSuccessor(NextMBB); - - SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), - MVT::Other, getControlRoot(), - AndCmp, DAG.getBasicBlock(B.TargetBB)); - - // Set NextBlock to be the MBB immediately after the current one, if any. - // This is used to avoid emitting unnecessary branches to the next block. - MachineBasicBlock *NextBlock = 0; - MachineFunction::iterator BBI = CurMBB; - if (++BBI != FuncInfo.MF->end()) - NextBlock = BBI; - - if (NextMBB == NextBlock) - DAG.setRoot(BrAnd); - else - DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, - DAG.getBasicBlock(NextMBB))); -} - -void SelectionDAGLowering::visitInvoke(InvokeInst &I) { - // Retrieve successors. - MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; - MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; - - const Value *Callee(I.getCalledValue()); - if (isa(Callee)) - visitInlineAsm(&I); - else - LowerCallTo(&I, getValue(Callee), false, LandingPad); - - // If the value of the invoke is used outside of its defining block, make it - // available as a virtual register. - CopyToExportRegsIfNeeded(&I); - - // Update successor info - CurMBB->addSuccessor(Return); - CurMBB->addSuccessor(LandingPad); - - // Drop into normal successor. - DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), - MVT::Other, getControlRoot(), - DAG.getBasicBlock(Return))); -} - -void SelectionDAGLowering::visitUnwind(UnwindInst &I) { -} - -/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for -/// small case ranges). -bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR, - CaseRecVector& WorkList, - Value* SV, - MachineBasicBlock* Default) { - Case& BackCase = *(CR.Range.second-1); - - // Size is the number of Cases represented by this range. - size_t Size = CR.Range.second - CR.Range.first; - if (Size > 3) - return false; - - // Get the MachineFunction which holds the current MBB. This is used when - // inserting any additional MBBs necessary to represent the switch. - MachineFunction *CurMF = FuncInfo.MF; - - // Figure out which block is immediately after the current one. - MachineBasicBlock *NextBlock = 0; - MachineFunction::iterator BBI = CR.CaseBB; - - if (++BBI != FuncInfo.MF->end()) - NextBlock = BBI; - - // TODO: If any two of the cases has the same destination, and if one value - // is the same as the other, but has one bit unset that the other has set, - // use bit manipulation to do two compares at once. For example: - // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" - - // Rearrange the case blocks so that the last one falls through if possible. - if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { - // The last case block won't fall through into 'NextBlock' if we emit the - // branches in this order. See if rearranging a case value would help. - for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { - if (I->BB == NextBlock) { - std::swap(*I, BackCase); - break; - } - } - } - - // Create a CaseBlock record representing a conditional branch to - // the Case's target mbb if the value being switched on SV is equal - // to C. - MachineBasicBlock *CurBlock = CR.CaseBB; - for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { - MachineBasicBlock *FallThrough; - if (I != E-1) { - FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); - CurMF->insert(BBI, FallThrough); - - // Put SV in a virtual register to make it available from the new blocks. - ExportFromCurrentBlock(SV); - } else { - // If the last case doesn't match, go to the default block. - FallThrough = Default; - } - - Value *RHS, *LHS, *MHS; - ISD::CondCode CC; - if (I->High == I->Low) { - // This is just small small case range :) containing exactly 1 case - CC = ISD::SETEQ; - LHS = SV; RHS = I->High; MHS = NULL; - } else { - CC = ISD::SETLE; - LHS = I->Low; MHS = SV; RHS = I->High; - } - CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); - - // If emitting the first comparison, just call visitSwitchCase to emit the - // code into the current block. Otherwise, push the CaseBlock onto the - // vector to be later processed by SDISel, and insert the node's MBB - // before the next MBB. - if (CurBlock == CurMBB) - visitSwitchCase(CB); - else - SwitchCases.push_back(CB); - - CurBlock = FallThrough; - } - - return true; -} - -static inline bool areJTsAllowed(const TargetLowering &TLI) { - return !DisableJumpTables && - (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || - TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); -} - -static APInt ComputeRange(const APInt &First, const APInt &Last) { - APInt LastExt(Last), FirstExt(First); - uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; - LastExt.sext(BitWidth); FirstExt.sext(BitWidth); - return (LastExt - FirstExt + 1ULL); -} - -/// handleJTSwitchCase - Emit jumptable for current switch case range -bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR, - CaseRecVector& WorkList, - Value* SV, - MachineBasicBlock* Default) { - Case& FrontCase = *CR.Range.first; - Case& BackCase = *(CR.Range.second-1); - - const APInt &First = cast(FrontCase.Low)->getValue(); - const APInt &Last = cast(BackCase.High)->getValue(); - - APInt TSize(First.getBitWidth(), 0); - for (CaseItr I = CR.Range.first, E = CR.Range.second; - I!=E; ++I) - TSize += I->size(); - - if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4))) - return false; - - APInt Range = ComputeRange(First, Last); - double Density = TSize.roundToDouble() / Range.roundToDouble(); - if (Density < 0.4) - return false; - - DEBUG(errs() << "Lowering jump table\n" - << "First entry: " << First << ". Last entry: " << Last << '\n' - << "Range: " << Range - << "Size: " << TSize << ". Density: " << Density << "\n\n"); - - // Get the MachineFunction which holds the current MBB. This is used when - // inserting any additional MBBs necessary to represent the switch. - MachineFunction *CurMF = FuncInfo.MF; - - // Figure out which block is immediately after the current one. - MachineFunction::iterator BBI = CR.CaseBB; - ++BBI; - - const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); - - // Create a new basic block to hold the code for loading the address - // of the jump table, and jumping to it. Update successor information; - // we will either branch to the default case for the switch, or the jump - // table. - MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); - CurMF->insert(BBI, JumpTableBB); - CR.CaseBB->addSuccessor(Default); - CR.CaseBB->addSuccessor(JumpTableBB); - - // Build a vector of destination BBs, corresponding to each target - // of the jump table. If the value of the jump table slot corresponds to - // a case statement, push the case's BB onto the vector, otherwise, push - // the default BB. - std::vector DestBBs; - APInt TEI = First; - for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { - const APInt& Low = cast(I->Low)->getValue(); - const APInt& High = cast(I->High)->getValue(); - - if (Low.sle(TEI) && TEI.sle(High)) { - DestBBs.push_back(I->BB); - if (TEI==High) - ++I; - } else { - DestBBs.push_back(Default); - } - } - - // Update successor info. Add one edge to each unique successor. - BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); - for (std::vector::iterator I = DestBBs.begin(), - E = DestBBs.end(); I != E; ++I) { - if (!SuccsHandled[(*I)->getNumber()]) { - SuccsHandled[(*I)->getNumber()] = true; - JumpTableBB->addSuccessor(*I); - } - } - - // Create a jump table index for this jump table, or return an existing - // one. - unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs); - - // Set the jump table information so that we can codegen it as a second - // MachineBasicBlock - JumpTable JT(-1U, JTI, JumpTableBB, Default); - JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB)); - if (CR.CaseBB == CurMBB) - visitJumpTableHeader(JT, JTH); - - JTCases.push_back(JumpTableBlock(JTH, JT)); - - return true; -} - -/// handleBTSplitSwitchCase - emit comparison and split binary search tree into -/// 2 subtrees. -bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR, - CaseRecVector& WorkList, - Value* SV, - MachineBasicBlock* Default) { - // Get the MachineFunction which holds the current MBB. This is used when - // inserting any additional MBBs necessary to represent the switch. - MachineFunction *CurMF = FuncInfo.MF; - - // Figure out which block is immediately after the current one. - MachineFunction::iterator BBI = CR.CaseBB; - ++BBI; - - Case& FrontCase = *CR.Range.first; - Case& BackCase = *(CR.Range.second-1); - const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); - - // Size is the number of Cases represented by this range. - unsigned Size = CR.Range.second - CR.Range.first; - - const APInt &First = cast(FrontCase.Low)->getValue(); - const APInt &Last = cast(BackCase.High)->getValue(); - double FMetric = 0; - CaseItr Pivot = CR.Range.first + Size/2; - - // Select optimal pivot, maximizing sum density of LHS and RHS. This will - // (heuristically) allow us to emit JumpTable's later. - APInt TSize(First.getBitWidth(), 0); - for (CaseItr I = CR.Range.first, E = CR.Range.second; - I!=E; ++I) - TSize += I->size(); - - APInt LSize = FrontCase.size(); - APInt RSize = TSize-LSize; - DEBUG(errs() << "Selecting best pivot: \n" - << "First: " << First << ", Last: " << Last <<'\n' - << "LSize: " << LSize << ", RSize: " << RSize << '\n'); - for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; - J!=E; ++I, ++J) { - const APInt &LEnd = cast(I->High)->getValue(); - const APInt &RBegin = cast(J->Low)->getValue(); - APInt Range = ComputeRange(LEnd, RBegin); - assert((Range - 2ULL).isNonNegative() && - "Invalid case distance"); - double LDensity = (double)LSize.roundToDouble() / - (LEnd - First + 1ULL).roundToDouble(); - double RDensity = (double)RSize.roundToDouble() / - (Last - RBegin + 1ULL).roundToDouble(); - double Metric = Range.logBase2()*(LDensity+RDensity); - // Should always split in some non-trivial place - DEBUG(errs() <<"=>Step\n" - << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' - << "LDensity: " << LDensity - << ", RDensity: " << RDensity << '\n' - << "Metric: " << Metric << '\n'); - if (FMetric < Metric) { - Pivot = J; - FMetric = Metric; - DEBUG(errs() << "Current metric set to: " << FMetric << '\n'); - } - - LSize += J->size(); - RSize -= J->size(); - } - if (areJTsAllowed(TLI)) { - // If our case is dense we *really* should handle it earlier! - assert((FMetric > 0) && "Should handle dense range earlier!"); - } else { - Pivot = CR.Range.first + Size/2; - } - - CaseRange LHSR(CR.Range.first, Pivot); - CaseRange RHSR(Pivot, CR.Range.second); - Constant *C = Pivot->Low; - MachineBasicBlock *FalseBB = 0, *TrueBB = 0; - - // We know that we branch to the LHS if the Value being switched on is - // less than the Pivot value, C. We use this to optimize our binary - // tree a bit, by recognizing that if SV is greater than or equal to the - // LHS's Case Value, and that Case Value is exactly one less than the - // Pivot's Value, then we can branch directly to the LHS's Target, - // rather than creating a leaf node for it. - if ((LHSR.second - LHSR.first) == 1 && - LHSR.first->High == CR.GE && - cast(C)->getValue() == - (cast(CR.GE)->getValue() + 1LL)) { - TrueBB = LHSR.first->BB; - } else { - TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); - CurMF->insert(BBI, TrueBB); - WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); - - // Put SV in a virtual register to make it available from the new blocks. - ExportFromCurrentBlock(SV); - } - - // Similar to the optimization above, if the Value being switched on is - // known to be less than the Constant CR.LT, and the current Case Value - // is CR.LT - 1, then we can branch directly to the target block for - // the current Case Value, rather than emitting a RHS leaf node for it. - if ((RHSR.second - RHSR.first) == 1 && CR.LT && - cast(RHSR.first->Low)->getValue() == - (cast(CR.LT)->getValue() - 1LL)) { - FalseBB = RHSR.first->BB; - } else { - FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); - CurMF->insert(BBI, FalseBB); - WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); - - // Put SV in a virtual register to make it available from the new blocks. - ExportFromCurrentBlock(SV); - } - - // Create a CaseBlock record representing a conditional branch to - // the LHS node if the value being switched on SV is less than C. - // Otherwise, branch to LHS. - CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); - - if (CR.CaseBB == CurMBB) - visitSwitchCase(CB); - else - SwitchCases.push_back(CB); - - return true; -} - -/// handleBitTestsSwitchCase - if current case range has few destination and -/// range span less, than machine word bitwidth, encode case range into series -/// of masks and emit bit tests with these masks. -bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR, - CaseRecVector& WorkList, - Value* SV, - MachineBasicBlock* Default){ - EVT PTy = TLI.getPointerTy(); - unsigned IntPtrBits = PTy.getSizeInBits(); - - Case& FrontCase = *CR.Range.first; - Case& BackCase = *(CR.Range.second-1); - - // Get the MachineFunction which holds the current MBB. This is used when - // inserting any additional MBBs necessary to represent the switch. - MachineFunction *CurMF = FuncInfo.MF; - - // If target does not have legal shift left, do not emit bit tests at all. - if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) - return false; - - size_t numCmps = 0; - for (CaseItr I = CR.Range.first, E = CR.Range.second; - I!=E; ++I) { - // Single case counts one, case range - two. - numCmps += (I->Low == I->High ? 1 : 2); - } - - // Count unique destinations - SmallSet Dests; - for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { - Dests.insert(I->BB); - if (Dests.size() > 3) - // Don't bother the code below, if there are too much unique destinations - return false; - } - DEBUG(errs() << "Total number of unique destinations: " << Dests.size() << '\n' - << "Total number of comparisons: " << numCmps << '\n'); - - // Compute span of values. - const APInt& minValue = cast(FrontCase.Low)->getValue(); - const APInt& maxValue = cast(BackCase.High)->getValue(); - APInt cmpRange = maxValue - minValue; - - DEBUG(errs() << "Compare range: " << cmpRange << '\n' - << "Low bound: " << minValue << '\n' - << "High bound: " << maxValue << '\n'); - - if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) || - (!(Dests.size() == 1 && numCmps >= 3) && - !(Dests.size() == 2 && numCmps >= 5) && - !(Dests.size() >= 3 && numCmps >= 6))) - return false; - - DEBUG(errs() << "Emitting bit tests\n"); - APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); - - // Optimize the case where all the case values fit in a - // word without having to subtract minValue. In this case, - // we can optimize away the subtraction. - if (minValue.isNonNegative() && - maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) { - cmpRange = maxValue; - } else { - lowBound = minValue; - } - - CaseBitsVector CasesBits; - unsigned i, count = 0; - - for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { - MachineBasicBlock* Dest = I->BB; - for (i = 0; i < count; ++i) - if (Dest == CasesBits[i].BB) - break; - - if (i == count) { - assert((count < 3) && "Too much destinations to test!"); - CasesBits.push_back(CaseBits(0, Dest, 0)); - count++; - } - - const APInt& lowValue = cast(I->Low)->getValue(); - const APInt& highValue = cast(I->High)->getValue(); - - uint64_t lo = (lowValue - lowBound).getZExtValue(); - uint64_t hi = (highValue - lowBound).getZExtValue(); - - for (uint64_t j = lo; j <= hi; j++) { - CasesBits[i].Mask |= 1ULL << j; - CasesBits[i].Bits++; - } - - } - std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); - - BitTestInfo BTC; - - // Figure out which block is immediately after the current one. - MachineFunction::iterator BBI = CR.CaseBB; - ++BBI; - - const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); - - DEBUG(errs() << "Cases:\n"); - for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { - DEBUG(errs() << "Mask: " << CasesBits[i].Mask - << ", Bits: " << CasesBits[i].Bits - << ", BB: " << CasesBits[i].BB << '\n'); - - MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); - CurMF->insert(BBI, CaseBB); - BTC.push_back(BitTestCase(CasesBits[i].Mask, - CaseBB, - CasesBits[i].BB)); - - // Put SV in a virtual register to make it available from the new blocks. - ExportFromCurrentBlock(SV); - } - - BitTestBlock BTB(lowBound, cmpRange, SV, - -1U, (CR.CaseBB == CurMBB), - CR.CaseBB, Default, BTC); - - if (CR.CaseBB == CurMBB) - visitBitTestHeader(BTB); - - BitTestCases.push_back(BTB); - - return true; -} - - -/// Clusterify - Transform simple list of Cases into list of CaseRange's -size_t SelectionDAGLowering::Clusterify(CaseVector& Cases, - const SwitchInst& SI) { - size_t numCmps = 0; - - // Start with "simple" cases - for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { - MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; - Cases.push_back(Case(SI.getSuccessorValue(i), - SI.getSuccessorValue(i), - SMBB)); - } - std::sort(Cases.begin(), Cases.end(), CaseCmp()); - - // Merge case into clusters - if (Cases.size() >= 2) - // Must recompute end() each iteration because it may be - // invalidated by erase if we hold on to it - for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { - const APInt& nextValue = cast(J->Low)->getValue(); - const APInt& currentValue = cast(I->High)->getValue(); - MachineBasicBlock* nextBB = J->BB; - MachineBasicBlock* currentBB = I->BB; - - // If the two neighboring cases go to the same destination, merge them - // into a single case. - if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { - I->High = J->High; - J = Cases.erase(J); - } else { - I = J++; - } - } - - for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { - if (I->Low != I->High) - // A range counts double, since it requires two compares. - ++numCmps; - } - - return numCmps; -} - -void SelectionDAGLowering::visitSwitch(SwitchInst &SI) { - // Figure out which block is immediately after the current one. - MachineBasicBlock *NextBlock = 0; - - MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; - - // If there is only the default destination, branch to it if it is not the - // next basic block. Otherwise, just fall through. - if (SI.getNumOperands() == 2) { - // Update machine-CFG edges. - - // If this is not a fall-through branch, emit the branch. - CurMBB->addSuccessor(Default); - if (Default != NextBlock) - DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), - MVT::Other, getControlRoot(), - DAG.getBasicBlock(Default))); - return; - } - - // If there are any non-default case statements, create a vector of Cases - // representing each one, and sort the vector so that we can efficiently - // create a binary search tree from them. - CaseVector Cases; - size_t numCmps = Clusterify(Cases, SI); - DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size() - << ". Total compares: " << numCmps << '\n'); - numCmps = 0; - - // Get the Value to be switched on and default basic blocks, which will be - // inserted into CaseBlock records, representing basic blocks in the binary - // search tree. - Value *SV = SI.getOperand(0); - - // Push the initial CaseRec onto the worklist - CaseRecVector WorkList; - WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); - - while (!WorkList.empty()) { - // Grab a record representing a case range to process off the worklist - CaseRec CR = WorkList.back(); - WorkList.pop_back(); - - if (handleBitTestsSwitchCase(CR, WorkList, SV, Default)) - continue; - - // If the range has few cases (two or less) emit a series of specific - // tests. - if (handleSmallSwitchRange(CR, WorkList, SV, Default)) - continue; - - // If the switch has more than 5 blocks, and at least 40% dense, and the - // target supports indirect branches, then emit a jump table rather than - // lowering the switch to a binary tree of conditional branches. - if (handleJTSwitchCase(CR, WorkList, SV, Default)) - continue; - - // Emit binary tree. We need to pick a pivot, and push left and right ranges - // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. - handleBTSplitSwitchCase(CR, WorkList, SV, Default); - } -} - -void SelectionDAGLowering::visitIndirectBr(IndirectBrInst &I) { - // Update machine-CFG edges. - for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) - CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]); - - DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), - MVT::Other, getControlRoot(), - getValue(I.getAddress()))); -} - - -void SelectionDAGLowering::visitFSub(User &I) { - // -0.0 - X --> fneg - const Type *Ty = I.getType(); - if (isa(Ty)) { - if (ConstantVector *CV = dyn_cast(I.getOperand(0))) { - const VectorType *DestTy = cast(I.getType()); - const Type *ElTy = DestTy->getElementType(); - unsigned VL = DestTy->getNumElements(); - std::vector NZ(VL, ConstantFP::getNegativeZero(ElTy)); - Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); - if (CV == CNZ) { - SDValue Op2 = getValue(I.getOperand(1)); - setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), - Op2.getValueType(), Op2)); - return; - } - } - } - if (ConstantFP *CFP = dyn_cast(I.getOperand(0))) - if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { - SDValue Op2 = getValue(I.getOperand(1)); - setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), - Op2.getValueType(), Op2)); - return; - } - - visitBinary(I, ISD::FSUB); -} - -void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) { - SDValue Op1 = getValue(I.getOperand(0)); - SDValue Op2 = getValue(I.getOperand(1)); - - setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), - Op1.getValueType(), Op1, Op2)); -} - -void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) { - SDValue Op1 = getValue(I.getOperand(0)); - SDValue Op2 = getValue(I.getOperand(1)); - if (!isa(I.getType()) && - Op2.getValueType() != TLI.getShiftAmountTy()) { - // If the operand is smaller than the shift count type, promote it. - EVT PTy = TLI.getPointerTy(); - EVT STy = TLI.getShiftAmountTy(); - if (STy.bitsGT(Op2.getValueType())) - Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), - TLI.getShiftAmountTy(), Op2); - // If the operand is larger than the shift count type but the shift - // count type has enough bits to represent any shift value, truncate - // it now. This is a common case and it exposes the truncate to - // optimization early. - else if (STy.getSizeInBits() >= - Log2_32_Ceil(Op2.getValueType().getSizeInBits())) - Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), - TLI.getShiftAmountTy(), Op2); - // Otherwise we'll need to temporarily settle for some other - // convenient type; type legalization will make adjustments as - // needed. - else if (PTy.bitsLT(Op2.getValueType())) - Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), - TLI.getPointerTy(), Op2); - else if (PTy.bitsGT(Op2.getValueType())) - Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), - TLI.getPointerTy(), Op2); - } - - setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), - Op1.getValueType(), Op1, Op2)); -} - -void SelectionDAGLowering::visitICmp(User &I) { - ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; - if (ICmpInst *IC = dyn_cast(&I)) - predicate = IC->getPredicate(); - else if (ConstantExpr *IC = dyn_cast(&I)) - predicate = ICmpInst::Predicate(IC->getPredicate()); - SDValue Op1 = getValue(I.getOperand(0)); - SDValue Op2 = getValue(I.getOperand(1)); - ISD::CondCode Opcode = getICmpCondCode(predicate); - - EVT DestVT = TLI.getValueType(I.getType()); - setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); -} - -void SelectionDAGLowering::visitFCmp(User &I) { - FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; - if (FCmpInst *FC = dyn_cast(&I)) - predicate = FC->getPredicate(); - else if (ConstantExpr *FC = dyn_cast(&I)) - predicate = FCmpInst::Predicate(FC->getPredicate()); - SDValue Op1 = getValue(I.getOperand(0)); - SDValue Op2 = getValue(I.getOperand(1)); - ISD::CondCode Condition = getFCmpCondCode(predicate); - EVT DestVT = TLI.getValueType(I.getType()); - setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); -} - -void SelectionDAGLowering::visitSelect(User &I) { - SmallVector ValueVTs; - ComputeValueVTs(TLI, I.getType(), ValueVTs); - unsigned NumValues = ValueVTs.size(); - if (NumValues != 0) { - SmallVector Values(NumValues); - SDValue Cond = getValue(I.getOperand(0)); - SDValue TrueVal = getValue(I.getOperand(1)); - SDValue FalseVal = getValue(I.getOperand(2)); - - for (unsigned i = 0; i != NumValues; ++i) - Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), - TrueVal.getValueType(), Cond, - SDValue(TrueVal.getNode(), TrueVal.getResNo() + i), - SDValue(FalseVal.getNode(), FalseVal.getResNo() + i)); - - setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), - DAG.getVTList(&ValueVTs[0], NumValues), - &Values[0], NumValues)); - } -} - - -void SelectionDAGLowering::visitTrunc(User &I) { - // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = TLI.getValueType(I.getType()); - setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); -} - -void SelectionDAGLowering::visitZExt(User &I) { - // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). - // ZExt also can't be a cast to bool for same reason. So, nothing much to do - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = TLI.getValueType(I.getType()); - setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); -} - -void SelectionDAGLowering::visitSExt(User &I) { - // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). - // SExt also can't be a cast to bool for same reason. So, nothing much to do - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = TLI.getValueType(I.getType()); - setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); -} - -void SelectionDAGLowering::visitFPTrunc(User &I) { - // FPTrunc is never a no-op cast, no need to check - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = TLI.getValueType(I.getType()); - setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), - DestVT, N, DAG.getIntPtrConstant(0))); -} - -void SelectionDAGLowering::visitFPExt(User &I){ - // FPTrunc is never a no-op cast, no need to check - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = TLI.getValueType(I.getType()); - setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); -} - -void SelectionDAGLowering::visitFPToUI(User &I) { - // FPToUI is never a no-op cast, no need to check - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = TLI.getValueType(I.getType()); - setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); -} - -void SelectionDAGLowering::visitFPToSI(User &I) { - // FPToSI is never a no-op cast, no need to check - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = TLI.getValueType(I.getType()); - setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); -} - -void SelectionDAGLowering::visitUIToFP(User &I) { - // UIToFP is never a no-op cast, no need to check - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = TLI.getValueType(I.getType()); - setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); -} - -void SelectionDAGLowering::visitSIToFP(User &I){ - // SIToFP is never a no-op cast, no need to check - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = TLI.getValueType(I.getType()); - setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); -} - -void SelectionDAGLowering::visitPtrToInt(User &I) { - // What to do depends on the size of the integer and the size of the pointer. - // We can either truncate, zero extend, or no-op, accordingly. - SDValue N = getValue(I.getOperand(0)); - EVT SrcVT = N.getValueType(); - EVT DestVT = TLI.getValueType(I.getType()); - SDValue Result = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT); - setValue(&I, Result); -} - -void SelectionDAGLowering::visitIntToPtr(User &I) { - // What to do depends on the size of the integer and the size of the pointer. - // We can either truncate, zero extend, or no-op, accordingly. - SDValue N = getValue(I.getOperand(0)); - EVT SrcVT = N.getValueType(); - EVT DestVT = TLI.getValueType(I.getType()); - setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); -} - -void SelectionDAGLowering::visitBitCast(User &I) { - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = TLI.getValueType(I.getType()); - - // BitCast assures us that source and destination are the same size so this - // is either a BIT_CONVERT or a no-op. - if (DestVT != N.getValueType()) - setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), - DestVT, N)); // convert types - else - setValue(&I, N); // noop cast. -} - -void SelectionDAGLowering::visitInsertElement(User &I) { - SDValue InVec = getValue(I.getOperand(0)); - SDValue InVal = getValue(I.getOperand(1)); - SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), - TLI.getPointerTy(), - getValue(I.getOperand(2))); - - setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), - TLI.getValueType(I.getType()), - InVec, InVal, InIdx)); -} - -void SelectionDAGLowering::visitExtractElement(User &I) { - SDValue InVec = getValue(I.getOperand(0)); - SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), - TLI.getPointerTy(), - getValue(I.getOperand(1))); - setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), - TLI.getValueType(I.getType()), InVec, InIdx)); -} - - -// Utility for visitShuffleVector - Returns true if the mask is mask starting -// from SIndx and increasing to the element length (undefs are allowed). -static bool SequentialMask(SmallVectorImpl &Mask, unsigned SIndx) { - unsigned MaskNumElts = Mask.size(); - for (unsigned i = 0; i != MaskNumElts; ++i) - if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) - return false; - return true; -} - -void SelectionDAGLowering::visitShuffleVector(User &I) { - SmallVector Mask; - SDValue Src1 = getValue(I.getOperand(0)); - SDValue Src2 = getValue(I.getOperand(1)); - - // Convert the ConstantVector mask operand into an array of ints, with -1 - // representing undef values. - SmallVector MaskElts; - cast(I.getOperand(2))->getVectorElements(*DAG.getContext(), - MaskElts); - unsigned MaskNumElts = MaskElts.size(); - for (unsigned i = 0; i != MaskNumElts; ++i) { - if (isa(MaskElts[i])) - Mask.push_back(-1); - else - Mask.push_back(cast(MaskElts[i])->getSExtValue()); - } - - EVT VT = TLI.getValueType(I.getType()); - EVT SrcVT = Src1.getValueType(); - unsigned SrcNumElts = SrcVT.getVectorNumElements(); - - if (SrcNumElts == MaskNumElts) { - setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, - &Mask[0])); - return; - } - - // Normalize the shuffle vector since mask and vector length don't match. - if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { - // Mask is longer than the source vectors and is a multiple of the source - // vectors. We can use concatenate vector to make the mask and vectors - // lengths match. - if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { - // The shuffle is concatenating two vectors together. - setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), - VT, Src1, Src2)); - return; - } - - // Pad both vectors with undefs to make them the same length as the mask. - unsigned NumConcat = MaskNumElts / SrcNumElts; - bool Src1U = Src1.getOpcode() == ISD::UNDEF; - bool Src2U = Src2.getOpcode() == ISD::UNDEF; - SDValue UndefVal = DAG.getUNDEF(SrcVT); - - SmallVector MOps1(NumConcat, UndefVal); - SmallVector MOps2(NumConcat, UndefVal); - MOps1[0] = Src1; - MOps2[0] = Src2; - - Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, - getCurDebugLoc(), VT, - &MOps1[0], NumConcat); - Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, - getCurDebugLoc(), VT, - &MOps2[0], NumConcat); - - // Readjust mask for new input vector length. - SmallVector MappedOps; - for (unsigned i = 0; i != MaskNumElts; ++i) { - int Idx = Mask[i]; - if (Idx < (int)SrcNumElts) - MappedOps.push_back(Idx); - else - MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); - } - setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, - &MappedOps[0])); - return; - } - - if (SrcNumElts > MaskNumElts) { - // Analyze the access pattern of the vector to see if we can extract - // two subvectors and do the shuffle. The analysis is done by calculating - // the range of elements the mask access on both vectors. - int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; - int MaxRange[2] = {-1, -1}; - - for (unsigned i = 0; i != MaskNumElts; ++i) { - int Idx = Mask[i]; - int Input = 0; - if (Idx < 0) - continue; - - if (Idx >= (int)SrcNumElts) { - Input = 1; - Idx -= SrcNumElts; - } - if (Idx > MaxRange[Input]) - MaxRange[Input] = Idx; - if (Idx < MinRange[Input]) - MinRange[Input] = Idx; - } - - // Check if the access is smaller than the vector size and can we find - // a reasonable extract index. - int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not Extract. - int StartIdx[2]; // StartIdx to extract from - for (int Input=0; Input < 2; ++Input) { - if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { - RangeUse[Input] = 0; // Unused - StartIdx[Input] = 0; - } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { - // Fits within range but we should see if we can find a good - // start index that is a multiple of the mask length. - if (MaxRange[Input] < (int)MaskNumElts) { - RangeUse[Input] = 1; // Extract from beginning of the vector - StartIdx[Input] = 0; - } else { - StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; - if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && - StartIdx[Input] + MaskNumElts < SrcNumElts) - RangeUse[Input] = 1; // Extract from a multiple of the mask length. - } - } - } - - if (RangeUse[0] == 0 && RangeUse[1] == 0) { - setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. - return; - } - else if (RangeUse[0] < 2 && RangeUse[1] < 2) { - // Extract appropriate subvector and generate a vector shuffle - for (int Input=0; Input < 2; ++Input) { - SDValue& Src = Input == 0 ? Src1 : Src2; - if (RangeUse[Input] == 0) { - Src = DAG.getUNDEF(VT); - } else { - Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, - Src, DAG.getIntPtrConstant(StartIdx[Input])); - } - } - // Calculate new mask. - SmallVector MappedOps; - for (unsigned i = 0; i != MaskNumElts; ++i) { - int Idx = Mask[i]; - if (Idx < 0) - MappedOps.push_back(Idx); - else if (Idx < (int)SrcNumElts) - MappedOps.push_back(Idx - StartIdx[0]); - else - MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); - } - setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, - &MappedOps[0])); - return; - } - } - - // We can't use either concat vectors or extract subvectors so fall back to - // replacing the shuffle with extract and build vector. - // to insert and build vector. - EVT EltVT = VT.getVectorElementType(); - EVT PtrVT = TLI.getPointerTy(); - SmallVector Ops; - for (unsigned i = 0; i != MaskNumElts; ++i) { - if (Mask[i] < 0) { - Ops.push_back(DAG.getUNDEF(EltVT)); - } else { - int Idx = Mask[i]; - if (Idx < (int)SrcNumElts) - Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), - EltVT, Src1, DAG.getConstant(Idx, PtrVT))); - else - Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), - EltVT, Src2, - DAG.getConstant(Idx - SrcNumElts, PtrVT))); - } - } - setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), - VT, &Ops[0], Ops.size())); -} - -void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) { - const Value *Op0 = I.getOperand(0); - const Value *Op1 = I.getOperand(1); - const Type *AggTy = I.getType(); - const Type *ValTy = Op1->getType(); - bool IntoUndef = isa(Op0); - bool FromUndef = isa(Op1); - - unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, - I.idx_begin(), I.idx_end()); - - SmallVector AggValueVTs; - ComputeValueVTs(TLI, AggTy, AggValueVTs); - SmallVector ValValueVTs; - ComputeValueVTs(TLI, ValTy, ValValueVTs); - - unsigned NumAggValues = AggValueVTs.size(); - unsigned NumValValues = ValValueVTs.size(); - SmallVector Values(NumAggValues); - - SDValue Agg = getValue(Op0); - SDValue Val = getValue(Op1); - unsigned i = 0; - // Copy the beginning value(s) from the original aggregate. - for (; i != LinearIndex; ++i) - Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : - SDValue(Agg.getNode(), Agg.getResNo() + i); - // Copy values from the inserted value(s). - for (; i != LinearIndex + NumValValues; ++i) - Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : - SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); - // Copy remaining value(s) from the original aggregate. - for (; i != NumAggValues; ++i) - Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : - SDValue(Agg.getNode(), Agg.getResNo() + i); - - setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), - DAG.getVTList(&AggValueVTs[0], NumAggValues), - &Values[0], NumAggValues)); -} - -void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) { - const Value *Op0 = I.getOperand(0); - const Type *AggTy = Op0->getType(); - const Type *ValTy = I.getType(); - bool OutOfUndef = isa(Op0); - - unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, - I.idx_begin(), I.idx_end()); - - SmallVector ValValueVTs; - ComputeValueVTs(TLI, ValTy, ValValueVTs); - - unsigned NumValValues = ValValueVTs.size(); - SmallVector Values(NumValValues); - - SDValue Agg = getValue(Op0); - // Copy out the selected value(s). - for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) - Values[i - LinearIndex] = - OutOfUndef ? - DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : - SDValue(Agg.getNode(), Agg.getResNo() + i); - - setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), - DAG.getVTList(&ValValueVTs[0], NumValValues), - &Values[0], NumValValues)); -} - - -void SelectionDAGLowering::visitGetElementPtr(User &I) { - SDValue N = getValue(I.getOperand(0)); - const Type *Ty = I.getOperand(0)->getType(); - - for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); - OI != E; ++OI) { - Value *Idx = *OI; - if (const StructType *StTy = dyn_cast(Ty)) { - unsigned Field = cast(Idx)->getZExtValue(); - if (Field) { - // N = N + Offset - uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); - N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, - DAG.getIntPtrConstant(Offset)); - } - Ty = StTy->getElementType(Field); - } else { - Ty = cast(Ty)->getElementType(); - - // If this is a constant subscript, handle it quickly. - if (ConstantInt *CI = dyn_cast(Idx)) { - if (CI->getZExtValue() == 0) continue; - uint64_t Offs = - TD->getTypeAllocSize(Ty)*cast(CI)->getSExtValue(); - SDValue OffsVal; - EVT PTy = TLI.getPointerTy(); - unsigned PtrBits = PTy.getSizeInBits(); - if (PtrBits < 64) { - OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), - TLI.getPointerTy(), - DAG.getConstant(Offs, MVT::i64)); - } else - OffsVal = DAG.getIntPtrConstant(Offs); - N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, - OffsVal); - continue; - } - - // N = N + Idx * ElementSize; - APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), - TD->getTypeAllocSize(Ty)); - SDValue IdxN = getValue(Idx); - - // If the index is smaller or larger than intptr_t, truncate or extend - // it. - IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); - - // If this is a multiply by a power of two, turn it into a shl - // immediately. This is a very common case. - if (ElementSize != 1) { - if (ElementSize.isPowerOf2()) { - unsigned Amt = ElementSize.logBase2(); - IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), - N.getValueType(), IdxN, - DAG.getConstant(Amt, TLI.getPointerTy())); - } else { - SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); - IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), - N.getValueType(), IdxN, Scale); - } - } - - N = DAG.getNode(ISD::ADD, getCurDebugLoc(), - N.getValueType(), N, IdxN); - } - } - setValue(&I, N); -} - -void SelectionDAGLowering::visitAlloca(AllocaInst &I) { - // If this is a fixed sized alloca in the entry block of the function, - // allocate it statically on the stack. - if (FuncInfo.StaticAllocaMap.count(&I)) - return; // getValue will auto-populate this. - - const Type *Ty = I.getAllocatedType(); - uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); - unsigned Align = - std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), - I.getAlignment()); - - SDValue AllocSize = getValue(I.getArraySize()); - - AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(), - AllocSize, - DAG.getConstant(TySize, AllocSize.getValueType())); - - - - EVT IntPtr = TLI.getPointerTy(); - AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); - - // Handle alignment. If the requested alignment is less than or equal to - // the stack alignment, ignore it. If the size is greater than or equal to - // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. - unsigned StackAlign = - TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); - if (Align <= StackAlign) - Align = 0; - - // Round the size of the allocation up to the stack alignment size - // by add SA-1 to the size. - AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), - AllocSize.getValueType(), AllocSize, - DAG.getIntPtrConstant(StackAlign-1)); - // Mask out the low bits for alignment purposes. - AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), - AllocSize.getValueType(), AllocSize, - DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); - - SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; - SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); - SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), - VTs, Ops, 3); - setValue(&I, DSA); - DAG.setRoot(DSA.getValue(1)); - - // Inform the Frame Information that we have just allocated a variable-sized - // object. - FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(); -} - -void SelectionDAGLowering::visitLoad(LoadInst &I) { - const Value *SV = I.getOperand(0); - SDValue Ptr = getValue(SV); - - const Type *Ty = I.getType(); - bool isVolatile = I.isVolatile(); - unsigned Alignment = I.getAlignment(); - - SmallVector ValueVTs; - SmallVector Offsets; - ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); - unsigned NumValues = ValueVTs.size(); - if (NumValues == 0) - return; - - SDValue Root; - bool ConstantMemory = false; - if (I.isVolatile()) - // Serialize volatile loads with other side effects. - Root = getRoot(); - else if (AA->pointsToConstantMemory(SV)) { - // Do not serialize (non-volatile) loads of constant memory with anything. - Root = DAG.getEntryNode(); - ConstantMemory = true; - } else { - // Do not serialize non-volatile loads against each other. - Root = DAG.getRoot(); - } - - SmallVector Values(NumValues); - SmallVector Chains(NumValues); - EVT PtrVT = Ptr.getValueType(); - for (unsigned i = 0; i != NumValues; ++i) { - SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, - DAG.getNode(ISD::ADD, getCurDebugLoc(), - PtrVT, Ptr, - DAG.getConstant(Offsets[i], PtrVT)), - SV, Offsets[i], isVolatile, Alignment); - Values[i] = L; - Chains[i] = L.getValue(1); - } - - if (!ConstantMemory) { - SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), - MVT::Other, - &Chains[0], NumValues); - if (isVolatile) - DAG.setRoot(Chain); - else - PendingLoads.push_back(Chain); - } - - setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), - DAG.getVTList(&ValueVTs[0], NumValues), - &Values[0], NumValues)); -} - - -void SelectionDAGLowering::visitStore(StoreInst &I) { - Value *SrcV = I.getOperand(0); - Value *PtrV = I.getOperand(1); - - SmallVector ValueVTs; - SmallVector Offsets; - ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); - unsigned NumValues = ValueVTs.size(); - if (NumValues == 0) - return; - - // Get the lowered operands. Note that we do this after - // checking if NumResults is zero, because with zero results - // the operands won't have values in the map. - SDValue Src = getValue(SrcV); - SDValue Ptr = getValue(PtrV); - - SDValue Root = getRoot(); - SmallVector Chains(NumValues); - EVT PtrVT = Ptr.getValueType(); - bool isVolatile = I.isVolatile(); - unsigned Alignment = I.getAlignment(); - for (unsigned i = 0; i != NumValues; ++i) - Chains[i] = DAG.getStore(Root, getCurDebugLoc(), - SDValue(Src.getNode(), Src.getResNo() + i), - DAG.getNode(ISD::ADD, getCurDebugLoc(), - PtrVT, Ptr, - DAG.getConstant(Offsets[i], PtrVT)), - PtrV, Offsets[i], isVolatile, Alignment); - - DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), - MVT::Other, &Chains[0], NumValues)); -} - -/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC -/// node. -void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I, - unsigned Intrinsic) { - bool HasChain = !I.doesNotAccessMemory(); - bool OnlyLoad = HasChain && I.onlyReadsMemory(); - - // Build the operand list. - SmallVector Ops; - if (HasChain) { // If this intrinsic has side-effects, chainify it. - if (OnlyLoad) { - // We don't need to serialize loads against other loads. - Ops.push_back(DAG.getRoot()); - } else { - Ops.push_back(getRoot()); - } - } - - // Info is set by getTgtMemInstrinsic - TargetLowering::IntrinsicInfo Info; - bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); - - // Add the intrinsic ID as an integer operand if it's not a target intrinsic. - if (!IsTgtIntrinsic) - Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); - - // Add all operands of the call to the operand list. - for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { - SDValue Op = getValue(I.getOperand(i)); - assert(TLI.isTypeLegal(Op.getValueType()) && - "Intrinsic uses a non-legal type?"); - Ops.push_back(Op); - } - - SmallVector ValueVTs; - ComputeValueVTs(TLI, I.getType(), ValueVTs); -#ifndef NDEBUG - for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { - assert(TLI.isTypeLegal(ValueVTs[Val]) && - "Intrinsic uses a non-legal type?"); - } -#endif // NDEBUG - if (HasChain) - ValueVTs.push_back(MVT::Other); - - SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); - - // Create the node. - SDValue Result; - if (IsTgtIntrinsic) { - // This is target intrinsic that touches memory - Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), - VTs, &Ops[0], Ops.size(), - Info.memVT, Info.ptrVal, Info.offset, - Info.align, Info.vol, - Info.readMem, Info.writeMem); - } - else if (!HasChain) - Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), - VTs, &Ops[0], Ops.size()); - else if (I.getType() != Type::getVoidTy(*DAG.getContext())) - Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), - VTs, &Ops[0], Ops.size()); - else - Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), - VTs, &Ops[0], Ops.size()); - - if (HasChain) { - SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); - if (OnlyLoad) - PendingLoads.push_back(Chain); - else - DAG.setRoot(Chain); - } - if (I.getType() != Type::getVoidTy(*DAG.getContext())) { - if (const VectorType *PTy = dyn_cast(I.getType())) { - EVT VT = TLI.getValueType(PTy); - Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); - } - setValue(&I, Result); - } -} - -/// GetSignificand - Get the significand and build it into a floating-point -/// number with exponent of 1: -/// -/// Op = (Op & 0x007fffff) | 0x3f800000; -/// -/// where Op is the hexidecimal representation of floating point value. -static SDValue -GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { - SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, - DAG.getConstant(0x007fffff, MVT::i32)); - SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, - DAG.getConstant(0x3f800000, MVT::i32)); - return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); -} - -/// GetExponent - Get the exponent: -/// -/// (float)(int)(((Op & 0x7f800000) >> 23) - 127); -/// -/// where Op is the hexidecimal representation of floating point value. -static SDValue -GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, - DebugLoc dl) { - SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, - DAG.getConstant(0x7f800000, MVT::i32)); - SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, - DAG.getConstant(23, TLI.getPointerTy())); - SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, - DAG.getConstant(127, MVT::i32)); - return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); -} - -/// getF32Constant - Get 32-bit floating point constant. -static SDValue -getF32Constant(SelectionDAG &DAG, unsigned Flt) { - return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); -} - -/// Inlined utility function to implement binary input atomic intrinsics for -/// visitIntrinsicCall: I is a call instruction -/// Op is the associated NodeType for I -const char * -SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) { - SDValue Root = getRoot(); - SDValue L = - DAG.getAtomic(Op, getCurDebugLoc(), - getValue(I.getOperand(2)).getValueType().getSimpleVT(), - Root, - getValue(I.getOperand(1)), - getValue(I.getOperand(2)), - I.getOperand(1)); - setValue(&I, L); - DAG.setRoot(L.getValue(1)); - return 0; -} - -// implVisitAluOverflow - Lower arithmetic overflow instrinsics. -const char * -SelectionDAGLowering::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) { - SDValue Op1 = getValue(I.getOperand(1)); - SDValue Op2 = getValue(I.getOperand(2)); - - SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); - SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2); - - setValue(&I, Result); - return 0; -} - -/// visitExp - Lower an exp intrinsic. Handles the special sequences for -/// limited-precision mode. -void -SelectionDAGLowering::visitExp(CallInst &I) { - SDValue result; - DebugLoc dl = getCurDebugLoc(); - - if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && - LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { - SDValue Op = getValue(I.getOperand(1)); - - // Put the exponent in the right bit position for later addition to the - // final result: - // - // #define LOG2OFe 1.4426950f - // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, - getF32Constant(DAG, 0x3fb8aa3b)); - SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); - - // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; - SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); - SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); - - // IntegerPartOfX <<= 23; - IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, - DAG.getConstant(23, TLI.getPointerTy())); - - if (LimitFloatPrecision <= 6) { - // For floating-point precision of 6: - // - // TwoToFractionalPartOfX = - // 0.997535578f + - // (0.735607626f + 0.252464424f * x) * x; - // - // error 0.0144103317, which is 6 bits - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0x3e814304)); - SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3f3c50c8)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x3f7f5e7e)); - SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); - - // Add the exponent into the result in integer domain. - SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, - TwoToFracPartOfX, IntegerPartOfX); - - result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); - } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { - // For floating-point precision of 12: - // - // TwoToFractionalPartOfX = - // 0.999892986f + - // (0.696457318f + - // (0.224338339f + 0.792043434e-1f * x) * x) * x; - // - // 0.000107046256 error, which is 13 to 14 bits - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0x3da235e3)); - SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3e65b8f3)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x3f324b07)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, - getF32Constant(DAG, 0x3f7ff8fd)); - SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); - - // Add the exponent into the result in integer domain. - SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, - TwoToFracPartOfX, IntegerPartOfX); - - result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); - } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 - // For floating-point precision of 18: - // - // TwoToFractionalPartOfX = - // 0.999999982f + - // (0.693148872f + - // (0.240227044f + - // (0.554906021e-1f + - // (0.961591928e-2f + - // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; - // - // error 2.47208000*10^(-7), which is better than 18 bits - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0x3924b03e)); - SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3ab24b87)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x3c1d8c17)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, - getF32Constant(DAG, 0x3d634a1d)); - SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); - SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, - getF32Constant(DAG, 0x3e75fe14)); - SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); - SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, - getF32Constant(DAG, 0x3f317234)); - SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); - SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, - getF32Constant(DAG, 0x3f800000)); - SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, - MVT::i32, t13); - - // Add the exponent into the result in integer domain. - SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, - TwoToFracPartOfX, IntegerPartOfX); - - result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); - } - } else { - // No special expansion. - result = DAG.getNode(ISD::FEXP, dl, - getValue(I.getOperand(1)).getValueType(), - getValue(I.getOperand(1))); - } - - setValue(&I, result); -} - -/// visitLog - Lower a log intrinsic. Handles the special sequences for -/// limited-precision mode. -void -SelectionDAGLowering::visitLog(CallInst &I) { - SDValue result; - DebugLoc dl = getCurDebugLoc(); - - if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && - LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { - SDValue Op = getValue(I.getOperand(1)); - SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); - - // Scale the exponent by log(2) [0.69314718f]. - SDValue Exp = GetExponent(DAG, Op1, TLI, dl); - SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, - getF32Constant(DAG, 0x3f317218)); - - // Get the significand and build it into a floating-point number with - // exponent of 1. - SDValue X = GetSignificand(DAG, Op1, dl); - - if (LimitFloatPrecision <= 6) { - // For floating-point precision of 6: - // - // LogofMantissa = - // -1.1609546f + - // (1.4034025f - 0.23903021f * x) * x; - // - // error 0.0034276066, which is better than 8 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0xbe74c456)); - SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, - getF32Constant(DAG, 0x3fb3a2b1)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3f949a29)); - - result = DAG.getNode(ISD::FADD, dl, - MVT::f32, LogOfExponent, LogOfMantissa); - } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { - // For floating-point precision of 12: - // - // LogOfMantissa = - // -1.7417939f + - // (2.8212026f + - // (-1.4699568f + - // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; - // - // error 0.000061011436, which is 14 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0xbd67b6d6)); - SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, - getF32Constant(DAG, 0x3ee4f4b8)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3fbc278b)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x40348e95)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, - getF32Constant(DAG, 0x3fdef31a)); - - result = DAG.getNode(ISD::FADD, dl, - MVT::f32, LogOfExponent, LogOfMantissa); - } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 - // For floating-point precision of 18: - // - // LogOfMantissa = - // -2.1072184f + - // (4.2372794f + - // (-3.7029485f + - // (2.2781945f + - // (-0.87823314f + - // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; - // - // error 0.0000023660568, which is better than 18 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0xbc91e5ac)); - SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, - getF32Constant(DAG, 0x3e4350aa)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3f60d3e3)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x4011cdf0)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, - getF32Constant(DAG, 0x406cfd1c)); - SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); - SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, - getF32Constant(DAG, 0x408797cb)); - SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); - SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, - getF32Constant(DAG, 0x4006dcab)); - - result = DAG.getNode(ISD::FADD, dl, - MVT::f32, LogOfExponent, LogOfMantissa); - } - } else { - // No special expansion. - result = DAG.getNode(ISD::FLOG, dl, - getValue(I.getOperand(1)).getValueType(), - getValue(I.getOperand(1))); - } - - setValue(&I, result); -} - -/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for -/// limited-precision mode. -void -SelectionDAGLowering::visitLog2(CallInst &I) { - SDValue result; - DebugLoc dl = getCurDebugLoc(); - - if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && - LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { - SDValue Op = getValue(I.getOperand(1)); - SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); - - // Get the exponent. - SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); - - // Get the significand and build it into a floating-point number with - // exponent of 1. - SDValue X = GetSignificand(DAG, Op1, dl); - - // Different possible minimax approximations of significand in - // floating-point for various degrees of accuracy over [1,2]. - if (LimitFloatPrecision <= 6) { - // For floating-point precision of 6: - // - // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; - // - // error 0.0049451742, which is more than 7 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0xbeb08fe0)); - SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, - getF32Constant(DAG, 0x40019463)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3fd6633d)); - - result = DAG.getNode(ISD::FADD, dl, - MVT::f32, LogOfExponent, Log2ofMantissa); - } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { - // For floating-point precision of 12: - // - // Log2ofMantissa = - // -2.51285454f + - // (4.07009056f + - // (-2.12067489f + - // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; - // - // error 0.0000876136000, which is better than 13 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0xbda7262e)); - SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, - getF32Constant(DAG, 0x3f25280b)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, - getF32Constant(DAG, 0x4007b923)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x40823e2f)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, - getF32Constant(DAG, 0x4020d29c)); - - result = DAG.getNode(ISD::FADD, dl, - MVT::f32, LogOfExponent, Log2ofMantissa); - } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 - // For floating-point precision of 18: - // - // Log2ofMantissa = - // -3.0400495f + - // (6.1129976f + - // (-5.3420409f + - // (3.2865683f + - // (-1.2669343f + - // (0.27515199f - - // 0.25691327e-1f * x) * x) * x) * x) * x) * x; - // - // error 0.0000018516, which is better than 18 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0xbcd2769e)); - SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, - getF32Constant(DAG, 0x3e8ce0b9)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3fa22ae7)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x40525723)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, - getF32Constant(DAG, 0x40aaf200)); - SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); - SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, - getF32Constant(DAG, 0x40c39dad)); - SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); - SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, - getF32Constant(DAG, 0x4042902c)); - - result = DAG.getNode(ISD::FADD, dl, - MVT::f32, LogOfExponent, Log2ofMantissa); - } - } else { - // No special expansion. - result = DAG.getNode(ISD::FLOG2, dl, - getValue(I.getOperand(1)).getValueType(), - getValue(I.getOperand(1))); - } - - setValue(&I, result); -} - -/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for -/// limited-precision mode. -void -SelectionDAGLowering::visitLog10(CallInst &I) { - SDValue result; - DebugLoc dl = getCurDebugLoc(); - - if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && - LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { - SDValue Op = getValue(I.getOperand(1)); - SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); - - // Scale the exponent by log10(2) [0.30102999f]. - SDValue Exp = GetExponent(DAG, Op1, TLI, dl); - SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, - getF32Constant(DAG, 0x3e9a209a)); - - // Get the significand and build it into a floating-point number with - // exponent of 1. - SDValue X = GetSignificand(DAG, Op1, dl); - - if (LimitFloatPrecision <= 6) { - // For floating-point precision of 6: - // - // Log10ofMantissa = - // -0.50419619f + - // (0.60948995f - 0.10380950f * x) * x; - // - // error 0.0014886165, which is 6 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0xbdd49a13)); - SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, - getF32Constant(DAG, 0x3f1c0789)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3f011300)); - - result = DAG.getNode(ISD::FADD, dl, - MVT::f32, LogOfExponent, Log10ofMantissa); - } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { - // For floating-point precision of 12: - // - // Log10ofMantissa = - // -0.64831180f + - // (0.91751397f + - // (-0.31664806f + 0.47637168e-1f * x) * x) * x; - // - // error 0.00019228036, which is better than 12 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0x3d431f31)); - SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, - getF32Constant(DAG, 0x3ea21fb2)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3f6ae232)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, - getF32Constant(DAG, 0x3f25f7c3)); - - result = DAG.getNode(ISD::FADD, dl, - MVT::f32, LogOfExponent, Log10ofMantissa); - } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 - // For floating-point precision of 18: - // - // Log10ofMantissa = - // -0.84299375f + - // (1.5327582f + - // (-1.0688956f + - // (0.49102474f + - // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; - // - // error 0.0000037995730, which is better than 18 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0x3c5d51ce)); - SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, - getF32Constant(DAG, 0x3e00685a)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3efb6798)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, - getF32Constant(DAG, 0x3f88d192)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, - getF32Constant(DAG, 0x3fc4316c)); - SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); - SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, - getF32Constant(DAG, 0x3f57ce70)); - - result = DAG.getNode(ISD::FADD, dl, - MVT::f32, LogOfExponent, Log10ofMantissa); - } - } else { - // No special expansion. - result = DAG.getNode(ISD::FLOG10, dl, - getValue(I.getOperand(1)).getValueType(), - getValue(I.getOperand(1))); - } - - setValue(&I, result); -} - -/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for -/// limited-precision mode. -void -SelectionDAGLowering::visitExp2(CallInst &I) { - SDValue result; - DebugLoc dl = getCurDebugLoc(); - - if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && - LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { - SDValue Op = getValue(I.getOperand(1)); - - SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); - - // FractionalPartOfX = x - (float)IntegerPartOfX; - SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); - SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); - - // IntegerPartOfX <<= 23; - IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, - DAG.getConstant(23, TLI.getPointerTy())); - - if (LimitFloatPrecision <= 6) { - // For floating-point precision of 6: - // - // TwoToFractionalPartOfX = - // 0.997535578f + - // (0.735607626f + 0.252464424f * x) * x; - // - // error 0.0144103317, which is 6 bits - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0x3e814304)); - SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3f3c50c8)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x3f7f5e7e)); - SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); - SDValue TwoToFractionalPartOfX = - DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); - - result = DAG.getNode(ISD::BIT_CONVERT, dl, - MVT::f32, TwoToFractionalPartOfX); - } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { - // For floating-point precision of 12: - // - // TwoToFractionalPartOfX = - // 0.999892986f + - // (0.696457318f + - // (0.224338339f + 0.792043434e-1f * x) * x) * x; - // - // error 0.000107046256, which is 13 to 14 bits - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0x3da235e3)); - SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3e65b8f3)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x3f324b07)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, - getF32Constant(DAG, 0x3f7ff8fd)); - SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); - SDValue TwoToFractionalPartOfX = - DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); - - result = DAG.getNode(ISD::BIT_CONVERT, dl, - MVT::f32, TwoToFractionalPartOfX); - } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 - // For floating-point precision of 18: - // - // TwoToFractionalPartOfX = - // 0.999999982f + - // (0.693148872f + - // (0.240227044f + - // (0.554906021e-1f + - // (0.961591928e-2f + - // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; - // error 2.47208000*10^(-7), which is better than 18 bits - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0x3924b03e)); - SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3ab24b87)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x3c1d8c17)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, - getF32Constant(DAG, 0x3d634a1d)); - SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); - SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, - getF32Constant(DAG, 0x3e75fe14)); - SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); - SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, - getF32Constant(DAG, 0x3f317234)); - SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); - SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, - getF32Constant(DAG, 0x3f800000)); - SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); - SDValue TwoToFractionalPartOfX = - DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); - - result = DAG.getNode(ISD::BIT_CONVERT, dl, - MVT::f32, TwoToFractionalPartOfX); - } - } else { - // No special expansion. - result = DAG.getNode(ISD::FEXP2, dl, - getValue(I.getOperand(1)).getValueType(), - getValue(I.getOperand(1))); - } - - setValue(&I, result); -} - -/// visitPow - Lower a pow intrinsic. Handles the special sequences for -/// limited-precision mode with x == 10.0f. -void -SelectionDAGLowering::visitPow(CallInst &I) { - SDValue result; - Value *Val = I.getOperand(1); - DebugLoc dl = getCurDebugLoc(); - bool IsExp10 = false; - - if (getValue(Val).getValueType() == MVT::f32 && - getValue(I.getOperand(2)).getValueType() == MVT::f32 && - LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { - if (Constant *C = const_cast(dyn_cast(Val))) { - if (ConstantFP *CFP = dyn_cast(C)) { - APFloat Ten(10.0f); - IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); - } - } - } - - if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { - SDValue Op = getValue(I.getOperand(2)); - - // Put the exponent in the right bit position for later addition to the - // final result: - // - // #define LOG2OF10 3.3219281f - // IntegerPartOfX = (int32_t)(x * LOG2OF10); - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, - getF32Constant(DAG, 0x40549a78)); - SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); - - // FractionalPartOfX = x - (float)IntegerPartOfX; - SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); - SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); - - // IntegerPartOfX <<= 23; - IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, - DAG.getConstant(23, TLI.getPointerTy())); - - if (LimitFloatPrecision <= 6) { - // For floating-point precision of 6: - // - // twoToFractionalPartOfX = - // 0.997535578f + - // (0.735607626f + 0.252464424f * x) * x; - // - // error 0.0144103317, which is 6 bits - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0x3e814304)); - SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3f3c50c8)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x3f7f5e7e)); - SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); - SDValue TwoToFractionalPartOfX = - DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); - - result = DAG.getNode(ISD::BIT_CONVERT, dl, - MVT::f32, TwoToFractionalPartOfX); - } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { - // For floating-point precision of 12: - // - // TwoToFractionalPartOfX = - // 0.999892986f + - // (0.696457318f + - // (0.224338339f + 0.792043434e-1f * x) * x) * x; - // - // error 0.000107046256, which is 13 to 14 bits - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0x3da235e3)); - SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3e65b8f3)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x3f324b07)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, - getF32Constant(DAG, 0x3f7ff8fd)); - SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); - SDValue TwoToFractionalPartOfX = - DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); - - result = DAG.getNode(ISD::BIT_CONVERT, dl, - MVT::f32, TwoToFractionalPartOfX); - } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 - // For floating-point precision of 18: - // - // TwoToFractionalPartOfX = - // 0.999999982f + - // (0.693148872f + - // (0.240227044f + - // (0.554906021e-1f + - // (0.961591928e-2f + - // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; - // error 2.47208000*10^(-7), which is better than 18 bits - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0x3924b03e)); - SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3ab24b87)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x3c1d8c17)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, - getF32Constant(DAG, 0x3d634a1d)); - SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); - SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, - getF32Constant(DAG, 0x3e75fe14)); - SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); - SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, - getF32Constant(DAG, 0x3f317234)); - SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); - SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, - getF32Constant(DAG, 0x3f800000)); - SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); - SDValue TwoToFractionalPartOfX = - DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); - - result = DAG.getNode(ISD::BIT_CONVERT, dl, - MVT::f32, TwoToFractionalPartOfX); - } - } else { - // No special expansion. - result = DAG.getNode(ISD::FPOW, dl, - getValue(I.getOperand(1)).getValueType(), - getValue(I.getOperand(1)), - getValue(I.getOperand(2))); - } - - setValue(&I, result); -} - -/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If -/// we want to emit this as a call to a named external function, return the name -/// otherwise lower it and return null. -const char * -SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { - DebugLoc dl = getCurDebugLoc(); - switch (Intrinsic) { - default: - // By default, turn this into a target intrinsic node. - visitTargetIntrinsic(I, Intrinsic); - return 0; - case Intrinsic::vastart: visitVAStart(I); return 0; - case Intrinsic::vaend: visitVAEnd(I); return 0; - case Intrinsic::vacopy: visitVACopy(I); return 0; - case Intrinsic::returnaddress: - setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), - getValue(I.getOperand(1)))); - return 0; - case Intrinsic::frameaddress: - setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), - getValue(I.getOperand(1)))); - return 0; - case Intrinsic::setjmp: - return "_setjmp"+!TLI.usesUnderscoreSetJmp(); - break; - case Intrinsic::longjmp: - return "_longjmp"+!TLI.usesUnderscoreLongJmp(); - break; - case Intrinsic::memcpy: { - SDValue Op1 = getValue(I.getOperand(1)); - SDValue Op2 = getValue(I.getOperand(2)); - SDValue Op3 = getValue(I.getOperand(3)); - unsigned Align = cast(I.getOperand(4))->getZExtValue(); - DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, - I.getOperand(1), 0, I.getOperand(2), 0)); - return 0; - } - case Intrinsic::memset: { - SDValue Op1 = getValue(I.getOperand(1)); - SDValue Op2 = getValue(I.getOperand(2)); - SDValue Op3 = getValue(I.getOperand(3)); - unsigned Align = cast(I.getOperand(4))->getZExtValue(); - DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, - I.getOperand(1), 0)); - return 0; - } - case Intrinsic::memmove: { - SDValue Op1 = getValue(I.getOperand(1)); - SDValue Op2 = getValue(I.getOperand(2)); - SDValue Op3 = getValue(I.getOperand(3)); - unsigned Align = cast(I.getOperand(4))->getZExtValue(); - - // If the source and destination are known to not be aliases, we can - // lower memmove as memcpy. - uint64_t Size = -1ULL; - if (ConstantSDNode *C = dyn_cast(Op3)) - Size = C->getZExtValue(); - if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == - AliasAnalysis::NoAlias) { - DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, - I.getOperand(1), 0, I.getOperand(2), 0)); - return 0; - } - - DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, - I.getOperand(1), 0, I.getOperand(2), 0)); - return 0; - } - case Intrinsic::dbg_stoppoint: - case Intrinsic::dbg_region_start: - case Intrinsic::dbg_region_end: - case Intrinsic::dbg_func_start: - // FIXME - Remove this instructions once the dust settles. - return 0; - case Intrinsic::dbg_declare: { - if (OptLevel != CodeGenOpt::None) - // FIXME: Variable debug info is not supported here. - return 0; - DwarfWriter *DW = DAG.getDwarfWriter(); - if (!DW) - return 0; - DbgDeclareInst &DI = cast(I); - if (!isValidDebugInfoIntrinsic(DI, CodeGenOpt::None)) - return 0; - - MDNode *Variable = DI.getVariable(); - Value *Address = DI.getAddress(); - if (BitCastInst *BCI = dyn_cast(Address)) - Address = BCI->getOperand(0); - AllocaInst *AI = dyn_cast(Address); - // Don't handle byval struct arguments or VLAs, for example. - if (!AI) - return 0; - DenseMap::iterator SI = - FuncInfo.StaticAllocaMap.find(AI); - if (SI == FuncInfo.StaticAllocaMap.end()) - return 0; // VLAs. - int FI = SI->second; - - MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); - if (MMI) { - MetadataContext &TheMetadata = - DI.getParent()->getContext().getMetadata(); - unsigned MDDbgKind = TheMetadata.getMDKind("dbg"); - MDNode *Dbg = TheMetadata.getMD(MDDbgKind, &DI); - MMI->setVariableDbgInfo(Variable, FI, Dbg); - } - return 0; - } - case Intrinsic::eh_exception: { - // Insert the EXCEPTIONADDR instruction. - assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!"); - SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); - SDValue Ops[1]; - Ops[0] = DAG.getRoot(); - SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); - setValue(&I, Op); - DAG.setRoot(Op.getValue(1)); - return 0; - } - - case Intrinsic::eh_selector: { - MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); - - if (CurMBB->isLandingPad()) - AddCatchInfo(I, MMI, CurMBB); - else { -#ifndef NDEBUG - FuncInfo.CatchInfoLost.insert(&I); -#endif - // FIXME: Mark exception selector register as live in. Hack for PR1508. - unsigned Reg = TLI.getExceptionSelectorRegister(); - if (Reg) CurMBB->addLiveIn(Reg); - } - - // Insert the EHSELECTION instruction. - SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); - SDValue Ops[2]; - Ops[0] = getValue(I.getOperand(1)); - Ops[1] = getRoot(); - SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); - - DAG.setRoot(Op.getValue(1)); - - setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); - return 0; - } - - case Intrinsic::eh_typeid_for: { - MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); - - if (MMI) { - // Find the type id for the given typeinfo. - GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); - - unsigned TypeID = MMI->getTypeIDFor(GV); - setValue(&I, DAG.getConstant(TypeID, MVT::i32)); - } else { - // Return something different to eh_selector. - setValue(&I, DAG.getConstant(1, MVT::i32)); - } - - return 0; - } - - case Intrinsic::eh_return_i32: - case Intrinsic::eh_return_i64: - if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { - MMI->setCallsEHReturn(true); - DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, - MVT::Other, - getControlRoot(), - getValue(I.getOperand(1)), - getValue(I.getOperand(2)))); - } else { - setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); - } - - return 0; - case Intrinsic::eh_unwind_init: - if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { - MMI->setCallsUnwindInit(true); - } - - return 0; - - case Intrinsic::eh_dwarf_cfa: { - EVT VT = getValue(I.getOperand(1)).getValueType(); - SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl, - TLI.getPointerTy()); - - SDValue Offset = DAG.getNode(ISD::ADD, dl, - TLI.getPointerTy(), - DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, - TLI.getPointerTy()), - CfaArg); - setValue(&I, DAG.getNode(ISD::ADD, dl, - TLI.getPointerTy(), - DAG.getNode(ISD::FRAMEADDR, dl, - TLI.getPointerTy(), - DAG.getConstant(0, - TLI.getPointerTy())), - Offset)); - return 0; - } - case Intrinsic::convertff: - case Intrinsic::convertfsi: - case Intrinsic::convertfui: - case Intrinsic::convertsif: - case Intrinsic::convertuif: - case Intrinsic::convertss: - case Intrinsic::convertsu: - case Intrinsic::convertus: - case Intrinsic::convertuu: { - ISD::CvtCode Code = ISD::CVT_INVALID; - switch (Intrinsic) { - case Intrinsic::convertff: Code = ISD::CVT_FF; break; - case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; - case Intrinsic::convertfui: Code = ISD::CVT_FU; break; - case Intrinsic::convertsif: Code = ISD::CVT_SF; break; - case Intrinsic::convertuif: Code = ISD::CVT_UF; break; - case Intrinsic::convertss: Code = ISD::CVT_SS; break; - case Intrinsic::convertsu: Code = ISD::CVT_SU; break; - case Intrinsic::convertus: Code = ISD::CVT_US; break; - case Intrinsic::convertuu: Code = ISD::CVT_UU; break; - } - EVT DestVT = TLI.getValueType(I.getType()); - Value* Op1 = I.getOperand(1); - setValue(&I, DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), - DAG.getValueType(DestVT), - DAG.getValueType(getValue(Op1).getValueType()), - getValue(I.getOperand(2)), - getValue(I.getOperand(3)), - Code)); - return 0; - } - - case Intrinsic::sqrt: - setValue(&I, DAG.getNode(ISD::FSQRT, dl, - getValue(I.getOperand(1)).getValueType(), - getValue(I.getOperand(1)))); - return 0; - case Intrinsic::powi: - setValue(&I, DAG.getNode(ISD::FPOWI, dl, - getValue(I.getOperand(1)).getValueType(), - getValue(I.getOperand(1)), - getValue(I.getOperand(2)))); - return 0; - case Intrinsic::sin: - setValue(&I, DAG.getNode(ISD::FSIN, dl, - getValue(I.getOperand(1)).getValueType(), - getValue(I.getOperand(1)))); - return 0; - case Intrinsic::cos: - setValue(&I, DAG.getNode(ISD::FCOS, dl, - getValue(I.getOperand(1)).getValueType(), - getValue(I.getOperand(1)))); - return 0; - case Intrinsic::log: - visitLog(I); - return 0; - case Intrinsic::log2: - visitLog2(I); - return 0; - case Intrinsic::log10: - visitLog10(I); - return 0; - case Intrinsic::exp: - visitExp(I); - return 0; - case Intrinsic::exp2: - visitExp2(I); - return 0; - case Intrinsic::pow: - visitPow(I); - return 0; - case Intrinsic::pcmarker: { - SDValue Tmp = getValue(I.getOperand(1)); - DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); - return 0; - } - case Intrinsic::readcyclecounter: { - SDValue Op = getRoot(); - SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER, dl, - DAG.getVTList(MVT::i64, MVT::Other), - &Op, 1); - setValue(&I, Tmp); - DAG.setRoot(Tmp.getValue(1)); - return 0; - } - case Intrinsic::bswap: - setValue(&I, DAG.getNode(ISD::BSWAP, dl, - getValue(I.getOperand(1)).getValueType(), - getValue(I.getOperand(1)))); - return 0; - case Intrinsic::cttz: { - SDValue Arg = getValue(I.getOperand(1)); - EVT Ty = Arg.getValueType(); - SDValue result = DAG.getNode(ISD::CTTZ, dl, Ty, Arg); - setValue(&I, result); - return 0; - } - case Intrinsic::ctlz: { - SDValue Arg = getValue(I.getOperand(1)); - EVT Ty = Arg.getValueType(); - SDValue result = DAG.getNode(ISD::CTLZ, dl, Ty, Arg); - setValue(&I, result); - return 0; - } - case Intrinsic::ctpop: { - SDValue Arg = getValue(I.getOperand(1)); - EVT Ty = Arg.getValueType(); - SDValue result = DAG.getNode(ISD::CTPOP, dl, Ty, Arg); - setValue(&I, result); - return 0; - } - case Intrinsic::stacksave: { - SDValue Op = getRoot(); - SDValue Tmp = DAG.getNode(ISD::STACKSAVE, dl, - DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); - setValue(&I, Tmp); - DAG.setRoot(Tmp.getValue(1)); - return 0; - } - case Intrinsic::stackrestore: { - SDValue Tmp = getValue(I.getOperand(1)); - DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Tmp)); - return 0; - } - case Intrinsic::stackprotector: { - // Emit code into the DAG to store the stack guard onto the stack. - MachineFunction &MF = DAG.getMachineFunction(); - MachineFrameInfo *MFI = MF.getFrameInfo(); - EVT PtrTy = TLI.getPointerTy(); - - SDValue Src = getValue(I.getOperand(1)); // The guard's value. - AllocaInst *Slot = cast(I.getOperand(2)); - - int FI = FuncInfo.StaticAllocaMap[Slot]; - MFI->setStackProtectorIndex(FI); - - SDValue FIN = DAG.getFrameIndex(FI, PtrTy); - - // Store the stack protector onto the stack. - SDValue Result = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, - PseudoSourceValue::getFixedStack(FI), - 0, true); - setValue(&I, Result); - DAG.setRoot(Result); - return 0; - } - case Intrinsic::objectsize: { - // If we don't know by now, we're never going to know. - ConstantInt *CI = dyn_cast(I.getOperand(2)); - - assert(CI && "Non-constant type in __builtin_object_size?"); - - SDValue Arg = getValue(I.getOperand(0)); - EVT Ty = Arg.getValueType(); - - if (CI->getZExtValue() < 2) - setValue(&I, DAG.getConstant(-1ULL, Ty)); - else - setValue(&I, DAG.getConstant(0, Ty)); - return 0; - } - case Intrinsic::var_annotation: - // Discard annotate attributes - return 0; - - case Intrinsic::init_trampoline: { - const Function *F = cast(I.getOperand(2)->stripPointerCasts()); - - SDValue Ops[6]; - Ops[0] = getRoot(); - Ops[1] = getValue(I.getOperand(1)); - Ops[2] = getValue(I.getOperand(2)); - Ops[3] = getValue(I.getOperand(3)); - Ops[4] = DAG.getSrcValue(I.getOperand(1)); - Ops[5] = DAG.getSrcValue(F); - - SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE, dl, - DAG.getVTList(TLI.getPointerTy(), MVT::Other), - Ops, 6); - - setValue(&I, Tmp); - DAG.setRoot(Tmp.getValue(1)); - return 0; - } - - case Intrinsic::gcroot: - if (GFI) { - Value *Alloca = I.getOperand(1); - Constant *TypeMap = cast(I.getOperand(2)); - - FrameIndexSDNode *FI = cast(getValue(Alloca).getNode()); - GFI->addStackRoot(FI->getIndex(), TypeMap); - } - return 0; - - case Intrinsic::gcread: - case Intrinsic::gcwrite: - llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); - return 0; - - case Intrinsic::flt_rounds: { - setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); - return 0; - } - - case Intrinsic::trap: { - DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); - return 0; - } - - case Intrinsic::uadd_with_overflow: - return implVisitAluOverflow(I, ISD::UADDO); - case Intrinsic::sadd_with_overflow: - return implVisitAluOverflow(I, ISD::SADDO); - case Intrinsic::usub_with_overflow: - return implVisitAluOverflow(I, ISD::USUBO); - case Intrinsic::ssub_with_overflow: - return implVisitAluOverflow(I, ISD::SSUBO); - case Intrinsic::umul_with_overflow: - return implVisitAluOverflow(I, ISD::UMULO); - case Intrinsic::smul_with_overflow: - return implVisitAluOverflow(I, ISD::SMULO); - - case Intrinsic::prefetch: { - SDValue Ops[4]; - Ops[0] = getRoot(); - Ops[1] = getValue(I.getOperand(1)); - Ops[2] = getValue(I.getOperand(2)); - Ops[3] = getValue(I.getOperand(3)); - DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); - return 0; - } - - case Intrinsic::memory_barrier: { - SDValue Ops[6]; - Ops[0] = getRoot(); - for (int x = 1; x < 6; ++x) - Ops[x] = getValue(I.getOperand(x)); - - DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); - return 0; - } - case Intrinsic::atomic_cmp_swap: { - SDValue Root = getRoot(); - SDValue L = - DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), - getValue(I.getOperand(2)).getValueType().getSimpleVT(), - Root, - getValue(I.getOperand(1)), - getValue(I.getOperand(2)), - getValue(I.getOperand(3)), - I.getOperand(1)); - setValue(&I, L); - DAG.setRoot(L.getValue(1)); - return 0; - } - case Intrinsic::atomic_load_add: - return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); - case Intrinsic::atomic_load_sub: - return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); - case Intrinsic::atomic_load_or: - return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); - case Intrinsic::atomic_load_xor: - return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); - case Intrinsic::atomic_load_and: - return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); - case Intrinsic::atomic_load_nand: - return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); - case Intrinsic::atomic_load_max: - return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); - case Intrinsic::atomic_load_min: - return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); - case Intrinsic::atomic_load_umin: - return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); - case Intrinsic::atomic_load_umax: - return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); - case Intrinsic::atomic_swap: - return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); - - case Intrinsic::invariant_start: - case Intrinsic::lifetime_start: - // Discard region information. - setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); - return 0; - case Intrinsic::invariant_end: - case Intrinsic::lifetime_end: - // Discard region information. - return 0; - } -} - -/// Test if the given instruction is in a position to be optimized -/// with a tail-call. This roughly means that it's in a block with -/// a return and there's nothing that needs to be scheduled -/// between it and the return. -/// -/// This function only tests target-independent requirements. -/// For target-dependent requirements, a target should override -/// TargetLowering::IsEligibleForTailCallOptimization. -/// -static bool -isInTailCallPosition(const Instruction *I, Attributes CalleeRetAttr, - const TargetLowering &TLI) { - const BasicBlock *ExitBB = I->getParent(); - const TerminatorInst *Term = ExitBB->getTerminator(); - const ReturnInst *Ret = dyn_cast(Term); - const Function *F = ExitBB->getParent(); - - // The block must end in a return statement or an unreachable. - if (!Ret && !isa(Term)) return false; - - // If I will have a chain, make sure no other instruction that will have a - // chain interposes between I and the return. - if (I->mayHaveSideEffects() || I->mayReadFromMemory() || - !I->isSafeToSpeculativelyExecute()) - for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; - --BBI) { - if (&*BBI == I) - break; - if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || - !BBI->isSafeToSpeculativelyExecute()) - return false; - } - - // If the block ends with a void return or unreachable, it doesn't matter - // what the call's return type is. - if (!Ret || Ret->getNumOperands() == 0) return true; - - // If the return value is undef, it doesn't matter what the call's - // return type is. - if (isa(Ret->getOperand(0))) return true; - - // Conservatively require the attributes of the call to match those of - // the return. Ignore noalias because it doesn't affect the call sequence. - unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); - if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) - return false; - - // Otherwise, make sure the unmodified return value of I is the return value. - for (const Instruction *U = dyn_cast(Ret->getOperand(0)); ; - U = dyn_cast(U->getOperand(0))) { - if (!U) - return false; - if (!U->hasOneUse()) - return false; - if (U == I) - break; - // Check for a truly no-op truncate. - if (isa(U) && - TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) - continue; - // Check for a truly no-op bitcast. - if (isa(U) && - (U->getOperand(0)->getType() == U->getType() || - (isa(U->getOperand(0)->getType()) && - isa(U->getType())))) - continue; - // Otherwise it's not a true no-op. - return false; - } - - return true; -} - -void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee, - bool isTailCall, - MachineBasicBlock *LandingPad) { - const PointerType *PT = cast(CS.getCalledValue()->getType()); - const FunctionType *FTy = cast(PT->getElementType()); - const Type *RetTy = FTy->getReturnType(); - MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); - unsigned BeginLabel = 0, EndLabel = 0; - - TargetLowering::ArgListTy Args; - TargetLowering::ArgListEntry Entry; - Args.reserve(CS.arg_size()); - - // Check whether the function can return without sret-demotion. - SmallVector OutVTs; - SmallVector OutsFlags; - SmallVector Offsets; - getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), - OutVTs, OutsFlags, TLI, &Offsets); - - - bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), - FTy->isVarArg(), OutVTs, OutsFlags, DAG); - - SDValue DemoteStackSlot; - - if (!CanLowerReturn) { - uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( - FTy->getReturnType()); - unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( - FTy->getReturnType()); - MachineFunction &MF = DAG.getMachineFunction(); - int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); - const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); - - DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); - Entry.Node = DemoteStackSlot; - Entry.Ty = StackSlotPtrType; - Entry.isSExt = false; - Entry.isZExt = false; - Entry.isInReg = false; - Entry.isSRet = true; - Entry.isNest = false; - Entry.isByVal = false; - Entry.Alignment = Align; - Args.push_back(Entry); - RetTy = Type::getVoidTy(FTy->getContext()); - } - - for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); - i != e; ++i) { - SDValue ArgNode = getValue(*i); - Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); - - unsigned attrInd = i - CS.arg_begin() + 1; - Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); - Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); - Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); - Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); - Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); - Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); - Entry.Alignment = CS.getParamAlignment(attrInd); - Args.push_back(Entry); - } - - if (LandingPad && MMI) { - // Insert a label before the invoke call to mark the try range. This can be - // used to detect deletion of the invoke via the MachineModuleInfo. - BeginLabel = MMI->NextLabelID(); - - // Both PendingLoads and PendingExports must be flushed here; - // this call might not return. - (void)getRoot(); - DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), - getControlRoot(), BeginLabel)); - } - - // Check if target-independent constraints permit a tail call here. - // Target-dependent constraints are checked within TLI.LowerCallTo. - if (isTailCall && - !isInTailCallPosition(CS.getInstruction(), - CS.getAttributes().getRetAttributes(), - TLI)) - isTailCall = false; - - std::pair Result = - TLI.LowerCallTo(getRoot(), RetTy, - CS.paramHasAttr(0, Attribute::SExt), - CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), - CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), - CS.getCallingConv(), - isTailCall, - !CS.getInstruction()->use_empty(), - Callee, Args, DAG, getCurDebugLoc()); - assert((isTailCall || Result.second.getNode()) && - "Non-null chain expected with non-tail call!"); - assert((Result.second.getNode() || !Result.first.getNode()) && - "Null value expected with tail call!"); - if (Result.first.getNode()) - setValue(CS.getInstruction(), Result.first); - else if (!CanLowerReturn && Result.second.getNode()) { - // The instruction result is the result of loading from the - // hidden sret parameter. - SmallVector PVTs; - const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); - - ComputeValueVTs(TLI, PtrRetTy, PVTs); - assert(PVTs.size() == 1 && "Pointers should fit in one register"); - EVT PtrVT = PVTs[0]; - unsigned NumValues = OutVTs.size(); - SmallVector Values(NumValues); - SmallVector Chains(NumValues); - - for (unsigned i = 0; i < NumValues; ++i) { - SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second, - DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, DemoteStackSlot, - DAG.getConstant(Offsets[i], PtrVT)), - NULL, Offsets[i], false, 1); - Values[i] = L; - Chains[i] = L.getValue(1); - } - SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), - MVT::Other, &Chains[0], NumValues); - PendingLoads.push_back(Chain); - - setValue(CS.getInstruction(), DAG.getNode(ISD::MERGE_VALUES, - getCurDebugLoc(), DAG.getVTList(&OutVTs[0], NumValues), - &Values[0], NumValues)); - } - // As a special case, a null chain means that a tail call has - // been emitted and the DAG root is already updated. - if (Result.second.getNode()) - DAG.setRoot(Result.second); - else - HasTailCall = true; - - if (LandingPad && MMI) { - // Insert a label at the end of the invoke call to mark the try range. This - // can be used to detect deletion of the invoke via the MachineModuleInfo. - EndLabel = MMI->NextLabelID(); - DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), - getRoot(), EndLabel)); - - // Inform MachineModuleInfo of range. - MMI->addInvoke(LandingPad, BeginLabel, EndLabel); - } -} - - -void SelectionDAGLowering::visitCall(CallInst &I) { - const char *RenameFn = 0; - if (Function *F = I.getCalledFunction()) { - if (F->isDeclaration()) { - const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo(); - if (II) { - if (unsigned IID = II->getIntrinsicID(F)) { - RenameFn = visitIntrinsicCall(I, IID); - if (!RenameFn) - return; - } - } - if (unsigned IID = F->getIntrinsicID()) { - RenameFn = visitIntrinsicCall(I, IID); - if (!RenameFn) - return; - } - } - - // Check for well-known libc/libm calls. If the function is internal, it - // can't be a library call. - if (!F->hasLocalLinkage() && F->hasName()) { - StringRef Name = F->getName(); - if (Name == "copysign" || Name == "copysignf") { - if (I.getNumOperands() == 3 && // Basic sanity checks. - I.getOperand(1)->getType()->isFloatingPoint() && - I.getType() == I.getOperand(1)->getType() && - I.getType() == I.getOperand(2)->getType()) { - SDValue LHS = getValue(I.getOperand(1)); - SDValue RHS = getValue(I.getOperand(2)); - setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), - LHS.getValueType(), LHS, RHS)); - return; - } - } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { - if (I.getNumOperands() == 2 && // Basic sanity checks. - I.getOperand(1)->getType()->isFloatingPoint() && - I.getType() == I.getOperand(1)->getType()) { - SDValue Tmp = getValue(I.getOperand(1)); - setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), - Tmp.getValueType(), Tmp)); - return; - } - } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { - if (I.getNumOperands() == 2 && // Basic sanity checks. - I.getOperand(1)->getType()->isFloatingPoint() && - I.getType() == I.getOperand(1)->getType() && - I.onlyReadsMemory()) { - SDValue Tmp = getValue(I.getOperand(1)); - setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), - Tmp.getValueType(), Tmp)); - return; - } - } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { - if (I.getNumOperands() == 2 && // Basic sanity checks. - I.getOperand(1)->getType()->isFloatingPoint() && - I.getType() == I.getOperand(1)->getType() && - I.onlyReadsMemory()) { - SDValue Tmp = getValue(I.getOperand(1)); - setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), - Tmp.getValueType(), Tmp)); - return; - } - } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { - if (I.getNumOperands() == 2 && // Basic sanity checks. - I.getOperand(1)->getType()->isFloatingPoint() && - I.getType() == I.getOperand(1)->getType() && - I.onlyReadsMemory()) { - SDValue Tmp = getValue(I.getOperand(1)); - setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), - Tmp.getValueType(), Tmp)); - return; - } - } - } - } else if (isa(I.getOperand(0))) { - visitInlineAsm(&I); - return; - } - - SDValue Callee; - if (!RenameFn) - Callee = getValue(I.getOperand(0)); - else - Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); - - // Check if we can potentially perform a tail call. More detailed - // checking is be done within LowerCallTo, after more information - // about the call is known. - bool isTailCall = PerformTailCallOpt && I.isTailCall(); - - LowerCallTo(&I, Callee, isTailCall); -} - - -/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from -/// this value and returns the result as a ValueVT value. This uses -/// Chain/Flag as the input and updates them for the output Chain/Flag. -/// If the Flag pointer is NULL, no flag is used. -SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, - SDValue &Chain, - SDValue *Flag) const { - // Assemble the legal parts into the final values. - SmallVector Values(ValueVTs.size()); - SmallVector Parts; - for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { - // Copy the legal parts from the registers. - EVT ValueVT = ValueVTs[Value]; - unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT); - EVT RegisterVT = RegVTs[Value]; - - Parts.resize(NumRegs); - for (unsigned i = 0; i != NumRegs; ++i) { - SDValue P; - if (Flag == 0) - P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); - else { - P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); - *Flag = P.getValue(2); - } - Chain = P.getValue(1); - - // If the source register was virtual and if we know something about it, - // add an assert node. - if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && - RegisterVT.isInteger() && !RegisterVT.isVector()) { - unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; - FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); - if (FLI.LiveOutRegInfo.size() > SlotNo) { - FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; - - unsigned RegSize = RegisterVT.getSizeInBits(); - unsigned NumSignBits = LOI.NumSignBits; - unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); - - // FIXME: We capture more information than the dag can represent. For - // now, just use the tightest assertzext/assertsext possible. - bool isSExt = true; - EVT FromVT(MVT::Other); - if (NumSignBits == RegSize) - isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 - else if (NumZeroBits >= RegSize-1) - isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 - else if (NumSignBits > RegSize-8) - isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 - else if (NumZeroBits >= RegSize-8) - isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 - else if (NumSignBits > RegSize-16) - isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 - else if (NumZeroBits >= RegSize-16) - isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 - else if (NumSignBits > RegSize-32) - isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 - else if (NumZeroBits >= RegSize-32) - isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 - - if (FromVT != MVT::Other) { - P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, - RegisterVT, P, DAG.getValueType(FromVT)); - - } - } - } - - Parts[i] = P; - } - - Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), - NumRegs, RegisterVT, ValueVT); - Part += NumRegs; - Parts.clear(); - } - - return DAG.getNode(ISD::MERGE_VALUES, dl, - DAG.getVTList(&ValueVTs[0], ValueVTs.size()), - &Values[0], ValueVTs.size()); -} - -/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the -/// specified value into the registers specified by this object. This uses -/// Chain/Flag as the input and updates them for the output Chain/Flag. -/// If the Flag pointer is NULL, no flag is used. -void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, - SDValue &Chain, SDValue *Flag) const { - // Get the list of the values's legal parts. - unsigned NumRegs = Regs.size(); - SmallVector Parts(NumRegs); - for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { - EVT ValueVT = ValueVTs[Value]; - unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT); - EVT RegisterVT = RegVTs[Value]; - - getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), - &Parts[Part], NumParts, RegisterVT); - Part += NumParts; - } - - // Copy the parts into the registers. - SmallVector Chains(NumRegs); - for (unsigned i = 0; i != NumRegs; ++i) { - SDValue Part; - if (Flag == 0) - Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); - else { - Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); - *Flag = Part.getValue(1); - } - Chains[i] = Part.getValue(0); - } - - if (NumRegs == 1 || Flag) - // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is - // flagged to it. That is the CopyToReg nodes and the user are considered - // a single scheduling unit. If we create a TokenFactor and return it as - // chain, then the TokenFactor is both a predecessor (operand) of the - // user as well as a successor (the TF operands are flagged to the user). - // c1, f1 = CopyToReg - // c2, f2 = CopyToReg - // c3 = TokenFactor c1, c2 - // ... - // = op c3, ..., f2 - Chain = Chains[NumRegs-1]; - else - Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); -} - -/// AddInlineAsmOperands - Add this value to the specified inlineasm node -/// operand list. This adds the code marker and includes the number of -/// values added into it. -void RegsForValue::AddInlineAsmOperands(unsigned Code, - bool HasMatching,unsigned MatchingIdx, - SelectionDAG &DAG, - std::vector &Ops) const { - EVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy(); - assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!"); - unsigned Flag = Code | (Regs.size() << 3); - if (HasMatching) - Flag |= 0x80000000 | (MatchingIdx << 16); - Ops.push_back(DAG.getTargetConstant(Flag, IntPtrTy)); - for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { - unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]); - EVT RegisterVT = RegVTs[Value]; - for (unsigned i = 0; i != NumRegs; ++i) { - assert(Reg < Regs.size() && "Mismatch in # registers expected"); - Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); - } - } -} - -/// isAllocatableRegister - If the specified register is safe to allocate, -/// i.e. it isn't a stack pointer or some other special register, return the -/// register class for the register. Otherwise, return null. -static const TargetRegisterClass * -isAllocatableRegister(unsigned Reg, MachineFunction &MF, - const TargetLowering &TLI, - const TargetRegisterInfo *TRI) { - EVT FoundVT = MVT::Other; - const TargetRegisterClass *FoundRC = 0; - for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), - E = TRI->regclass_end(); RCI != E; ++RCI) { - EVT ThisVT = MVT::Other; - - const TargetRegisterClass *RC = *RCI; - // If none of the the value types for this register class are valid, we - // can't use it. For example, 64-bit reg classes on 32-bit targets. - for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); - I != E; ++I) { - if (TLI.isTypeLegal(*I)) { - // If we have already found this register in a different register class, - // choose the one with the largest VT specified. For example, on - // PowerPC, we favor f64 register classes over f32. - if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { - ThisVT = *I; - break; - } - } - } - - if (ThisVT == MVT::Other) continue; - - // NOTE: This isn't ideal. In particular, this might allocate the - // frame pointer in functions that need it (due to them not being taken - // out of allocation, because a variable sized allocation hasn't been seen - // yet). This is a slight code pessimization, but should still work. - for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), - E = RC->allocation_order_end(MF); I != E; ++I) - if (*I == Reg) { - // We found a matching register class. Keep looking at others in case - // we find one with larger registers that this physreg is also in. - FoundRC = RC; - FoundVT = ThisVT; - break; - } - } - return FoundRC; -} - - -namespace llvm { -/// AsmOperandInfo - This contains information for each constraint that we are -/// lowering. -class VISIBILITY_HIDDEN SDISelAsmOperandInfo : - public TargetLowering::AsmOperandInfo { -public: - /// CallOperand - If this is the result output operand or a clobber - /// this is null, otherwise it is the incoming operand to the CallInst. - /// This gets modified as the asm is processed. - SDValue CallOperand; - - /// AssignedRegs - If this is a register or register class operand, this - /// contains the set of register corresponding to the operand. - RegsForValue AssignedRegs; - - explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) - : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { - } - - /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers - /// busy in OutputRegs/InputRegs. - void MarkAllocatedRegs(bool isOutReg, bool isInReg, - std::set &OutputRegs, - std::set &InputRegs, - const TargetRegisterInfo &TRI) const { - if (isOutReg) { - for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) - MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); - } - if (isInReg) { - for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) - MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); - } - } - - /// getCallOperandValEVT - Return the EVT of the Value* that this operand - /// corresponds to. If there is no Value* for this operand, it returns - /// MVT::Other. - EVT getCallOperandValEVT(LLVMContext &Context, - const TargetLowering &TLI, - const TargetData *TD) const { - if (CallOperandVal == 0) return MVT::Other; - - if (isa(CallOperandVal)) - return TLI.getPointerTy(); - - const llvm::Type *OpTy = CallOperandVal->getType(); - - // If this is an indirect operand, the operand is a pointer to the - // accessed type. - if (isIndirect) - OpTy = cast(OpTy)->getElementType(); - - // If OpTy is not a single value, it may be a struct/union that we - // can tile with integers. - if (!OpTy->isSingleValueType() && OpTy->isSized()) { - unsigned BitSize = TD->getTypeSizeInBits(OpTy); - switch (BitSize) { - default: break; - case 1: - case 8: - case 16: - case 32: - case 64: - case 128: - OpTy = IntegerType::get(Context, BitSize); - break; - } - } - - return TLI.getValueType(OpTy, true); - } - -private: - /// MarkRegAndAliases - Mark the specified register and all aliases in the - /// specified set. - static void MarkRegAndAliases(unsigned Reg, std::set &Regs, - const TargetRegisterInfo &TRI) { - assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); - Regs.insert(Reg); - if (const unsigned *Aliases = TRI.getAliasSet(Reg)) - for (; *Aliases; ++Aliases) - Regs.insert(*Aliases); - } -}; -} // end llvm namespace. - - -/// GetRegistersForValue - Assign registers (virtual or physical) for the -/// specified operand. We prefer to assign virtual registers, to allow the -/// register allocator handle the assignment process. However, if the asm uses -/// features that we can't model on machineinstrs, we have SDISel do the -/// allocation. This produces generally horrible, but correct, code. -/// -/// OpInfo describes the operand. -/// Input and OutputRegs are the set of already allocated physical registers. -/// -void SelectionDAGLowering:: -GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, - std::set &OutputRegs, - std::set &InputRegs) { - LLVMContext &Context = FuncInfo.Fn->getContext(); - - // Compute whether this value requires an input register, an output register, - // or both. - bool isOutReg = false; - bool isInReg = false; - switch (OpInfo.Type) { - case InlineAsm::isOutput: - isOutReg = true; - - // If there is an input constraint that matches this, we need to reserve - // the input register so no other inputs allocate to it. - isInReg = OpInfo.hasMatchingInput(); - break; - case InlineAsm::isInput: - isInReg = true; - isOutReg = false; - break; - case InlineAsm::isClobber: - isOutReg = true; - isInReg = true; - break; - } - - - MachineFunction &MF = DAG.getMachineFunction(); - SmallVector Regs; - - // If this is a constraint for a single physreg, or a constraint for a - // register class, find it. - std::pair PhysReg = - TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, - OpInfo.ConstraintVT); - - unsigned NumRegs = 1; - if (OpInfo.ConstraintVT != MVT::Other) { - // If this is a FP input in an integer register (or visa versa) insert a bit - // cast of the input value. More generally, handle any case where the input - // value disagrees with the register class we plan to stick this in. - if (OpInfo.Type == InlineAsm::isInput && - PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { - // Try to convert to the first EVT that the reg class contains. If the - // types are identical size, use a bitcast to convert (e.g. two differing - // vector types). - EVT RegVT = *PhysReg.second->vt_begin(); - if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { - OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), - RegVT, OpInfo.CallOperand); - OpInfo.ConstraintVT = RegVT; - } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { - // If the input is a FP value and we want it in FP registers, do a - // bitcast to the corresponding integer type. This turns an f64 value - // into i64, which can be passed with two i32 values on a 32-bit - // machine. - RegVT = EVT::getIntegerVT(Context, - OpInfo.ConstraintVT.getSizeInBits()); - OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), - RegVT, OpInfo.CallOperand); - OpInfo.ConstraintVT = RegVT; - } - } - - NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); - } - - EVT RegVT; - EVT ValueVT = OpInfo.ConstraintVT; - - // If this is a constraint for a specific physical register, like {r17}, - // assign it now. - if (unsigned AssignedReg = PhysReg.first) { - const TargetRegisterClass *RC = PhysReg.second; - if (OpInfo.ConstraintVT == MVT::Other) - ValueVT = *RC->vt_begin(); - - // Get the actual register value type. This is important, because the user - // may have asked for (e.g.) the AX register in i32 type. We need to - // remember that AX is actually i16 to get the right extension. - RegVT = *RC->vt_begin(); - - // This is a explicit reference to a physical register. - Regs.push_back(AssignedReg); - - // If this is an expanded reference, add the rest of the regs to Regs. - if (NumRegs != 1) { - TargetRegisterClass::iterator I = RC->begin(); - for (; *I != AssignedReg; ++I) - assert(I != RC->end() && "Didn't find reg!"); - - // Already added the first reg. - --NumRegs; ++I; - for (; NumRegs; --NumRegs, ++I) { - assert(I != RC->end() && "Ran out of registers to allocate!"); - Regs.push_back(*I); - } - } - OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); - const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); - OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); - return; - } - - // Otherwise, if this was a reference to an LLVM register class, create vregs - // for this reference. - if (const TargetRegisterClass *RC = PhysReg.second) { - RegVT = *RC->vt_begin(); - if (OpInfo.ConstraintVT == MVT::Other) - ValueVT = RegVT; - - // Create the appropriate number of virtual registers. - MachineRegisterInfo &RegInfo = MF.getRegInfo(); - for (; NumRegs; --NumRegs) - Regs.push_back(RegInfo.createVirtualRegister(RC)); - - OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); - return; - } - - // This is a reference to a register class that doesn't directly correspond - // to an LLVM register class. Allocate NumRegs consecutive, available, - // registers from the class. - std::vector RegClassRegs - = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, - OpInfo.ConstraintVT); - - const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); - unsigned NumAllocated = 0; - for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { - unsigned Reg = RegClassRegs[i]; - // See if this register is available. - if ((isOutReg && OutputRegs.count(Reg)) || // Already used. - (isInReg && InputRegs.count(Reg))) { // Already used. - // Make sure we find consecutive registers. - NumAllocated = 0; - continue; - } - - // Check to see if this register is allocatable (i.e. don't give out the - // stack pointer). - const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); - if (!RC) { // Couldn't allocate this register. - // Reset NumAllocated to make sure we return consecutive registers. - NumAllocated = 0; - continue; - } - - // Okay, this register is good, we can use it. - ++NumAllocated; - - // If we allocated enough consecutive registers, succeed. - if (NumAllocated == NumRegs) { - unsigned RegStart = (i-NumAllocated)+1; - unsigned RegEnd = i+1; - // Mark all of the allocated registers used. - for (unsigned i = RegStart; i != RegEnd; ++i) - Regs.push_back(RegClassRegs[i]); - - OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), - OpInfo.ConstraintVT); - OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); - return; - } - } - - // Otherwise, we couldn't allocate enough registers for this. -} - -/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being -/// processed uses a memory 'm' constraint. -static bool -hasInlineAsmMemConstraint(std::vector &CInfos, - const TargetLowering &TLI) { - for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { - InlineAsm::ConstraintInfo &CI = CInfos[i]; - for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { - TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); - if (CType == TargetLowering::C_Memory) - return true; - } - - // Indirect operand accesses access memory. - if (CI.isIndirect) - return true; - } - - return false; -} - -/// visitInlineAsm - Handle a call to an InlineAsm object. -/// -void SelectionDAGLowering::visitInlineAsm(CallSite CS) { - InlineAsm *IA = cast(CS.getCalledValue()); - - /// ConstraintOperands - Information about all of the constraints. - std::vector ConstraintOperands; - - std::set OutputRegs, InputRegs; - - // Do a prepass over the constraints, canonicalizing them, and building up the - // ConstraintOperands list. - std::vector - ConstraintInfos = IA->ParseConstraints(); - - bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); - - SDValue Chain, Flag; - - // We won't need to flush pending loads if this asm doesn't touch - // memory and is nonvolatile. - if (hasMemory || IA->hasSideEffects()) - Chain = getRoot(); - else - Chain = DAG.getRoot(); - - unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. - unsigned ResNo = 0; // ResNo - The result number of the next output. - for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { - ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); - SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); - - EVT OpVT = MVT::Other; - - // Compute the value type for each operand. - switch (OpInfo.Type) { - case InlineAsm::isOutput: - // Indirect outputs just consume an argument. - if (OpInfo.isIndirect) { - OpInfo.CallOperandVal = CS.getArgument(ArgNo++); - break; - } - - // The return value of the call is this value. As such, there is no - // corresponding argument. - assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && - "Bad inline asm!"); - if (const StructType *STy = dyn_cast(CS.getType())) { - OpVT = TLI.getValueType(STy->getElementType(ResNo)); - } else { - assert(ResNo == 0 && "Asm only has one result!"); - OpVT = TLI.getValueType(CS.getType()); - } - ++ResNo; - break; - case InlineAsm::isInput: - OpInfo.CallOperandVal = CS.getArgument(ArgNo++); - break; - case InlineAsm::isClobber: - // Nothing to do. - break; - } - - // If this is an input or an indirect output, process the call argument. - // BasicBlocks are labels, currently appearing only in asm's. - if (OpInfo.CallOperandVal) { - // Strip bitcasts, if any. This mostly comes up for functions. - OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); - - if (BasicBlock *BB = dyn_cast(OpInfo.CallOperandVal)) { - OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); - } else { - OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); - } - - OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); - } - - OpInfo.ConstraintVT = OpVT; - } - - // Second pass over the constraints: compute which constraint option to use - // and assign registers to constraints that want a specific physreg. - for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { - SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; - - // If this is an output operand with a matching input operand, look up the - // matching input. If their types mismatch, e.g. one is an integer, the - // other is floating point, or their sizes are different, flag it as an - // error. - if (OpInfo.hasMatchingInput()) { - SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; - if (OpInfo.ConstraintVT != Input.ConstraintVT) { - if ((OpInfo.ConstraintVT.isInteger() != - Input.ConstraintVT.isInteger()) || - (OpInfo.ConstraintVT.getSizeInBits() != - Input.ConstraintVT.getSizeInBits())) { - llvm_report_error("Unsupported asm: input constraint" - " with a matching output constraint of incompatible" - " type!"); - } - Input.ConstraintVT = OpInfo.ConstraintVT; - } - } - - // Compute the constraint code and ConstraintType to use. - TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG); - - // If this is a memory input, and if the operand is not indirect, do what we - // need to to provide an address for the memory input. - if (OpInfo.ConstraintType == TargetLowering::C_Memory && - !OpInfo.isIndirect) { - assert(OpInfo.Type == InlineAsm::isInput && - "Can only indirectify direct input operands!"); - - // Memory operands really want the address of the value. If we don't have - // an indirect input, put it in the constpool if we can, otherwise spill - // it to a stack slot. - - // If the operand is a float, integer, or vector constant, spill to a - // constant pool entry to get its address. - Value *OpVal = OpInfo.CallOperandVal; - if (isa(OpVal) || isa(OpVal) || - isa(OpVal)) { - OpInfo.CallOperand = DAG.getConstantPool(cast(OpVal), - TLI.getPointerTy()); - } else { - // Otherwise, create a stack slot and emit a store to it before the - // asm. - const Type *Ty = OpVal->getType(); - uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); - unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); - MachineFunction &MF = DAG.getMachineFunction(); - int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); - SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); - Chain = DAG.getStore(Chain, getCurDebugLoc(), - OpInfo.CallOperand, StackSlot, NULL, 0); - OpInfo.CallOperand = StackSlot; - } - - // There is no longer a Value* corresponding to this operand. - OpInfo.CallOperandVal = 0; - // It is now an indirect operand. - OpInfo.isIndirect = true; - } - - // If this constraint is for a specific register, allocate it before - // anything else. - if (OpInfo.ConstraintType == TargetLowering::C_Register) - GetRegistersForValue(OpInfo, OutputRegs, InputRegs); - } - ConstraintInfos.clear(); - - - // Second pass - Loop over all of the operands, assigning virtual or physregs - // to register class operands. - for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { - SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; - - // C_Register operands have already been allocated, Other/Memory don't need - // to be. - if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) - GetRegistersForValue(OpInfo, OutputRegs, InputRegs); - } - - // AsmNodeOperands - The operands for the ISD::INLINEASM node. - std::vector AsmNodeOperands; - AsmNodeOperands.push_back(SDValue()); // reserve space for input chain - AsmNodeOperands.push_back( - DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other)); - - - // Loop over all of the inputs, copying the operand values into the - // appropriate registers and processing the output regs. - RegsForValue RetValRegs; - - // IndirectStoresToEmit - The set of stores to emit after the inline asm node. - std::vector > IndirectStoresToEmit; - - for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { - SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; - - switch (OpInfo.Type) { - case InlineAsm::isOutput: { - if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && - OpInfo.ConstraintType != TargetLowering::C_Register) { - // Memory output, or 'other' output (e.g. 'X' constraint). - assert(OpInfo.isIndirect && "Memory output must be indirect operand"); - - // Add information to the INLINEASM node to know about this output. - unsigned ResOpType = 4/*MEM*/ | (1<<3); - AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, - TLI.getPointerTy())); - AsmNodeOperands.push_back(OpInfo.CallOperand); - break; - } - - // Otherwise, this is a register or register class output. - - // Copy the output from the appropriate register. Find a register that - // we can use. - if (OpInfo.AssignedRegs.Regs.empty()) { - llvm_report_error("Couldn't allocate output reg for" - " constraint '" + OpInfo.ConstraintCode + "'!"); - } - - // If this is an indirect operand, store through the pointer after the - // asm. - if (OpInfo.isIndirect) { - IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, - OpInfo.CallOperandVal)); - } else { - // This is the result value of the call. - assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && - "Bad inline asm!"); - // Concatenate this output onto the outputs list. - RetValRegs.append(OpInfo.AssignedRegs); - } - - // Add information to the INLINEASM node to know that this register is - // set. - OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? - 6 /* EARLYCLOBBER REGDEF */ : - 2 /* REGDEF */ , - false, - 0, - DAG, AsmNodeOperands); - break; - } - case InlineAsm::isInput: { - SDValue InOperandVal = OpInfo.CallOperand; - - if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? - // If this is required to match an output register we have already set, - // just use its register. - unsigned OperandNo = OpInfo.getMatchedOperand(); - - // Scan until we find the definition we already emitted of this operand. - // When we find it, create a RegsForValue operand. - unsigned CurOp = 2; // The first operand. - for (; OperandNo; --OperandNo) { - // Advance to the next operand. - unsigned OpFlag = - cast(AsmNodeOperands[CurOp])->getZExtValue(); - assert(((OpFlag & 7) == 2 /*REGDEF*/ || - (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ || - (OpFlag & 7) == 4 /*MEM*/) && - "Skipped past definitions?"); - CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; - } - - unsigned OpFlag = - cast(AsmNodeOperands[CurOp])->getZExtValue(); - if ((OpFlag & 7) == 2 /*REGDEF*/ - || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) { - // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. - if (OpInfo.isIndirect) { - llvm_report_error("Don't know how to handle tied indirect " - "register inputs yet!"); - } - RegsForValue MatchedRegs; - MatchedRegs.TLI = &TLI; - MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); - EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); - MatchedRegs.RegVTs.push_back(RegVT); - MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); - for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); - i != e; ++i) - MatchedRegs.Regs. - push_back(RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); - - // Use the produced MatchedRegs object to - MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), - Chain, &Flag); - MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, - true, OpInfo.getMatchedOperand(), - DAG, AsmNodeOperands); - break; - } else { - assert(((OpFlag & 7) == 4) && "Unknown matching constraint!"); - assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 && - "Unexpected number of operands"); - // Add information to the INLINEASM node to know about this input. - // See InlineAsm.h isUseOperandTiedToDef. - OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16); - AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, - TLI.getPointerTy())); - AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); - break; - } - } - - if (OpInfo.ConstraintType == TargetLowering::C_Other) { - assert(!OpInfo.isIndirect && - "Don't know how to handle indirect other inputs yet!"); - - std::vector Ops; - TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], - hasMemory, Ops, DAG); - if (Ops.empty()) { - llvm_report_error("Invalid operand for inline asm" - " constraint '" + OpInfo.ConstraintCode + "'!"); - } - - // Add information to the INLINEASM node to know about this input. - unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3); - AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, - TLI.getPointerTy())); - AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); - break; - } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) { - assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); - assert(InOperandVal.getValueType() == TLI.getPointerTy() && - "Memory operands expect pointer values"); - - // Add information to the INLINEASM node to know about this input. - unsigned ResOpType = 4/*MEM*/ | (1<<3); - AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, - TLI.getPointerTy())); - AsmNodeOperands.push_back(InOperandVal); - break; - } - - assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || - OpInfo.ConstraintType == TargetLowering::C_Register) && - "Unknown constraint type!"); - assert(!OpInfo.isIndirect && - "Don't know how to handle indirect register inputs yet!"); - - // Copy the input into the appropriate registers. - if (OpInfo.AssignedRegs.Regs.empty()) { - llvm_report_error("Couldn't allocate input reg for" - " constraint '"+ OpInfo.ConstraintCode +"'!"); - } - - OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), - Chain, &Flag); - - OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0, - DAG, AsmNodeOperands); - break; - } - case InlineAsm::isClobber: { - // Add the clobbered value to the operand list, so that the register - // allocator is aware that the physreg got clobbered. - if (!OpInfo.AssignedRegs.Regs.empty()) - OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */, - false, 0, DAG,AsmNodeOperands); - break; - } - } - } - - // Finish up input operands. - AsmNodeOperands[0] = Chain; - if (Flag.getNode()) AsmNodeOperands.push_back(Flag); - - Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), - DAG.getVTList(MVT::Other, MVT::Flag), - &AsmNodeOperands[0], AsmNodeOperands.size()); - Flag = Chain.getValue(1); - - // If this asm returns a register value, copy the result from that register - // and set it as the value of the call. - if (!RetValRegs.Regs.empty()) { - SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(), - Chain, &Flag); - - // FIXME: Why don't we do this for inline asms with MRVs? - if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { - EVT ResultType = TLI.getValueType(CS.getType()); - - // If any of the results of the inline asm is a vector, it may have the - // wrong width/num elts. This can happen for register classes that can - // contain multiple different value types. The preg or vreg allocated may - // not have the same VT as was expected. Convert it to the right type - // with bit_convert. - if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { - Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), - ResultType, Val); - - } else if (ResultType != Val.getValueType() && - ResultType.isInteger() && Val.getValueType().isInteger()) { - // If a result value was tied to an input value, the computed result may - // have a wider width than the expected result. Extract the relevant - // portion. - Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); - } - - assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); - } - - setValue(CS.getInstruction(), Val); - // Don't need to use this as a chain in this case. - if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) - return; - } - - std::vector > StoresToEmit; - - // Process indirect outputs, first output all of the flagged copies out of - // physregs. - for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { - RegsForValue &OutRegs = IndirectStoresToEmit[i].first; - Value *Ptr = IndirectStoresToEmit[i].second; - SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(), - Chain, &Flag); - StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); - - } - - // Emit the non-flagged stores from the physregs. - SmallVector OutChains; - for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) - OutChains.push_back(DAG.getStore(Chain, getCurDebugLoc(), - StoresToEmit[i].first, - getValue(StoresToEmit[i].second), - StoresToEmit[i].second, 0)); - if (!OutChains.empty()) - Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, - &OutChains[0], OutChains.size()); - DAG.setRoot(Chain); -} - -void SelectionDAGLowering::visitVAStart(CallInst &I) { - DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), - MVT::Other, getRoot(), - getValue(I.getOperand(1)), - DAG.getSrcValue(I.getOperand(1)))); -} - -void SelectionDAGLowering::visitVAArg(VAArgInst &I) { - SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), - getRoot(), getValue(I.getOperand(0)), - DAG.getSrcValue(I.getOperand(0))); - setValue(&I, V); - DAG.setRoot(V.getValue(1)); -} - -void SelectionDAGLowering::visitVAEnd(CallInst &I) { - DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), - MVT::Other, getRoot(), - getValue(I.getOperand(1)), - DAG.getSrcValue(I.getOperand(1)))); -} - -void SelectionDAGLowering::visitVACopy(CallInst &I) { - DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), - MVT::Other, getRoot(), - getValue(I.getOperand(1)), - getValue(I.getOperand(2)), - DAG.getSrcValue(I.getOperand(1)), - DAG.getSrcValue(I.getOperand(2)))); -} - -/// TargetLowering::LowerCallTo - This is the default LowerCallTo -/// implementation, which just calls LowerCall. -/// FIXME: When all targets are -/// migrated to using LowerCall, this hook should be integrated into SDISel. -std::pair -TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, - bool RetSExt, bool RetZExt, bool isVarArg, - bool isInreg, unsigned NumFixedArgs, - CallingConv::ID CallConv, bool isTailCall, - bool isReturnValueUsed, - SDValue Callee, - ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) { - - assert((!isTailCall || PerformTailCallOpt) && - "isTailCall set when tail-call optimizations are disabled!"); - - // Handle all of the outgoing arguments. - SmallVector Outs; - for (unsigned i = 0, e = Args.size(); i != e; ++i) { - SmallVector ValueVTs; - ComputeValueVTs(*this, Args[i].Ty, ValueVTs); - for (unsigned Value = 0, NumValues = ValueVTs.size(); - Value != NumValues; ++Value) { - EVT VT = ValueVTs[Value]; - const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); - SDValue Op = SDValue(Args[i].Node.getNode(), - Args[i].Node.getResNo() + Value); - ISD::ArgFlagsTy Flags; - unsigned OriginalAlignment = - getTargetData()->getABITypeAlignment(ArgTy); - - if (Args[i].isZExt) - Flags.setZExt(); - if (Args[i].isSExt) - Flags.setSExt(); - if (Args[i].isInReg) - Flags.setInReg(); - if (Args[i].isSRet) - Flags.setSRet(); - if (Args[i].isByVal) { - Flags.setByVal(); - const PointerType *Ty = cast(Args[i].Ty); - const Type *ElementTy = Ty->getElementType(); - unsigned FrameAlign = getByValTypeAlignment(ElementTy); - unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); - // For ByVal, alignment should come from FE. BE will guess if this - // info is not there but there are cases it cannot get right. - if (Args[i].Alignment) - FrameAlign = Args[i].Alignment; - Flags.setByValAlign(FrameAlign); - Flags.setByValSize(FrameSize); - } - if (Args[i].isNest) - Flags.setNest(); - Flags.setOrigAlign(OriginalAlignment); - - EVT PartVT = getRegisterType(RetTy->getContext(), VT); - unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); - SmallVector Parts(NumParts); - ISD::NodeType ExtendKind = ISD::ANY_EXTEND; - - if (Args[i].isSExt) - ExtendKind = ISD::SIGN_EXTEND; - else if (Args[i].isZExt) - ExtendKind = ISD::ZERO_EXTEND; - - getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, PartVT, ExtendKind); - - for (unsigned j = 0; j != NumParts; ++j) { - // if it isn't first piece, alignment must be 1 - ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs); - if (NumParts > 1 && j == 0) - MyFlags.Flags.setSplit(); - else if (j != 0) - MyFlags.Flags.setOrigAlign(1); - - Outs.push_back(MyFlags); - } - } - } - - // Handle the incoming return values from the call. - SmallVector Ins; - SmallVector RetTys; - ComputeValueVTs(*this, RetTy, RetTys); - for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { - EVT VT = RetTys[I]; - EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); - unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); - for (unsigned i = 0; i != NumRegs; ++i) { - ISD::InputArg MyFlags; - MyFlags.VT = RegisterVT; - MyFlags.Used = isReturnValueUsed; - if (RetSExt) - MyFlags.Flags.setSExt(); - if (RetZExt) - MyFlags.Flags.setZExt(); - if (isInreg) - MyFlags.Flags.setInReg(); - Ins.push_back(MyFlags); - } - } - - // Check if target-dependent constraints permit a tail call here. - // Target-independent constraints should be checked by the caller. - if (isTailCall && - !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG)) - isTailCall = false; - - SmallVector InVals; - Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, - Outs, Ins, dl, DAG, InVals); - - // Verify that the target's LowerCall behaved as expected. - assert(Chain.getNode() && Chain.getValueType() == MVT::Other && - "LowerCall didn't return a valid chain!"); - assert((!isTailCall || InVals.empty()) && - "LowerCall emitted a return value for a tail call!"); - assert((isTailCall || InVals.size() == Ins.size()) && - "LowerCall didn't emit the correct number of values!"); - DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { - assert(InVals[i].getNode() && - "LowerCall emitted a null value!"); - assert(Ins[i].VT == InVals[i].getValueType() && - "LowerCall emitted a value with the wrong type!"); - }); - - // For a tail call, the return value is merely live-out and there aren't - // any nodes in the DAG representing it. Return a special value to - // indicate that a tail call has been emitted and no more Instructions - // should be processed in the current block. - if (isTailCall) { - DAG.setRoot(Chain); - return std::make_pair(SDValue(), SDValue()); - } - - // Collect the legal value parts into potentially illegal values - // that correspond to the original function's return values. - ISD::NodeType AssertOp = ISD::DELETED_NODE; - if (RetSExt) - AssertOp = ISD::AssertSext; - else if (RetZExt) - AssertOp = ISD::AssertZext; - SmallVector ReturnValues; - unsigned CurReg = 0; - for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { - EVT VT = RetTys[I]; - EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); - unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); - - SDValue ReturnValue = - getCopyFromParts(DAG, dl, &InVals[CurReg], NumRegs, RegisterVT, VT, - AssertOp); - ReturnValues.push_back(ReturnValue); - CurReg += NumRegs; - } - - // For a function returning void, there is no return value. We can't create - // such a node, so we just return a null return value in that case. In - // that case, nothing will actualy look at the value. - if (ReturnValues.empty()) - return std::make_pair(SDValue(), Chain); - - SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, - DAG.getVTList(&RetTys[0], RetTys.size()), - &ReturnValues[0], ReturnValues.size()); - - return std::make_pair(Res, Chain); -} - -void TargetLowering::LowerOperationWrapper(SDNode *N, - SmallVectorImpl &Results, - SelectionDAG &DAG) { - SDValue Res = LowerOperation(SDValue(N, 0), DAG); - if (Res.getNode()) - Results.push_back(Res); -} - -SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { - llvm_unreachable("LowerOperation not implemented for this target!"); - return SDValue(); -} - - -void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) { - SDValue Op = getValue(V); - assert((Op.getOpcode() != ISD::CopyFromReg || - cast(Op.getOperand(1))->getReg() != Reg) && - "Copy from a reg to the same reg!"); - assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); - - RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); - SDValue Chain = DAG.getEntryNode(); - RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); - PendingExports.push_back(Chain); -} - -#include "llvm/CodeGen/SelectionDAGISel.h" - -void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) { - // If this is the entry block, emit arguments. - Function &F = *LLVMBB->getParent(); - SelectionDAG &DAG = SDL->DAG; - SDValue OldRoot = DAG.getRoot(); - DebugLoc dl = SDL->getCurDebugLoc(); - const TargetData *TD = TLI.getTargetData(); - SmallVector Ins; - - // Check whether the function can return without sret-demotion. - SmallVector OutVTs; - SmallVector OutsFlags; - getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), - OutVTs, OutsFlags, TLI); - FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); - - FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(), - OutVTs, OutsFlags, DAG); - if (!FLI.CanLowerReturn) { - // Put in an sret pointer parameter before all the other parameters. - SmallVector ValueVTs; - ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); - - // NOTE: Assuming that a pointer will never break down to more than one VT - // or one register. - ISD::ArgFlagsTy Flags; - Flags.setSRet(); - EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]); - ISD::InputArg RetArg(Flags, RegisterVT, true); - Ins.push_back(RetArg); - } - - // Set up the incoming argument description vector. - unsigned Idx = 1; - for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); - I != E; ++I, ++Idx) { - SmallVector ValueVTs; - ComputeValueVTs(TLI, I->getType(), ValueVTs); - bool isArgValueUsed = !I->use_empty(); - for (unsigned Value = 0, NumValues = ValueVTs.size(); - Value != NumValues; ++Value) { - EVT VT = ValueVTs[Value]; - const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); - ISD::ArgFlagsTy Flags; - unsigned OriginalAlignment = - TD->getABITypeAlignment(ArgTy); - - if (F.paramHasAttr(Idx, Attribute::ZExt)) - Flags.setZExt(); - if (F.paramHasAttr(Idx, Attribute::SExt)) - Flags.setSExt(); - if (F.paramHasAttr(Idx, Attribute::InReg)) - Flags.setInReg(); - if (F.paramHasAttr(Idx, Attribute::StructRet)) - Flags.setSRet(); - if (F.paramHasAttr(Idx, Attribute::ByVal)) { - Flags.setByVal(); - const PointerType *Ty = cast(I->getType()); - const Type *ElementTy = Ty->getElementType(); - unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); - unsigned FrameSize = TD->getTypeAllocSize(ElementTy); - // For ByVal, alignment should be passed from FE. BE will guess if - // this info is not there but there are cases it cannot get right. - if (F.getParamAlignment(Idx)) - FrameAlign = F.getParamAlignment(Idx); - Flags.setByValAlign(FrameAlign); - Flags.setByValSize(FrameSize); - } - if (F.paramHasAttr(Idx, Attribute::Nest)) - Flags.setNest(); - Flags.setOrigAlign(OriginalAlignment); - - EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); - unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); - for (unsigned i = 0; i != NumRegs; ++i) { - ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); - if (NumRegs > 1 && i == 0) - MyFlags.Flags.setSplit(); - // if it isn't first piece, alignment must be 1 - else if (i > 0) - MyFlags.Flags.setOrigAlign(1); - Ins.push_back(MyFlags); - } - } - } - - // Call the target to set up the argument values. - SmallVector InVals; - SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), - F.isVarArg(), Ins, - dl, DAG, InVals); - - // Verify that the target's LowerFormalArguments behaved as expected. - assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && - "LowerFormalArguments didn't return a valid chain!"); - assert(InVals.size() == Ins.size() && - "LowerFormalArguments didn't emit the correct number of values!"); - DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { - assert(InVals[i].getNode() && - "LowerFormalArguments emitted a null value!"); - assert(Ins[i].VT == InVals[i].getValueType() && - "LowerFormalArguments emitted a value with the wrong type!"); - }); - - // Update the DAG with the new chain value resulting from argument lowering. - DAG.setRoot(NewRoot); - - // Set up the argument values. - unsigned i = 0; - Idx = 1; - if (!FLI.CanLowerReturn) { - // Create a virtual register for the sret pointer, and put in a copy - // from the sret argument into it. - SmallVector ValueVTs; - ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); - EVT VT = ValueVTs[0]; - EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); - ISD::NodeType AssertOp = ISD::DELETED_NODE; - SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, - VT, AssertOp); - - MachineFunction& MF = SDL->DAG.getMachineFunction(); - MachineRegisterInfo& RegInfo = MF.getRegInfo(); - unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); - FLI.DemoteRegister = SRetReg; - NewRoot = SDL->DAG.getCopyToReg(NewRoot, SDL->getCurDebugLoc(), SRetReg, ArgValue); - DAG.setRoot(NewRoot); - - // i indexes lowered arguments. Bump it past the hidden sret argument. - // Idx indexes LLVM arguments. Don't touch it. - ++i; - } - for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; - ++I, ++Idx) { - SmallVector ArgValues; - SmallVector ValueVTs; - ComputeValueVTs(TLI, I->getType(), ValueVTs); - unsigned NumValues = ValueVTs.size(); - for (unsigned Value = 0; Value != NumValues; ++Value) { - EVT VT = ValueVTs[Value]; - EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); - unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); - - if (!I->use_empty()) { - ISD::NodeType AssertOp = ISD::DELETED_NODE; - if (F.paramHasAttr(Idx, Attribute::SExt)) - AssertOp = ISD::AssertSext; - else if (F.paramHasAttr(Idx, Attribute::ZExt)) - AssertOp = ISD::AssertZext; - - ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, - PartVT, VT, AssertOp)); - } - i += NumParts; - } - if (!I->use_empty()) { - SDL->setValue(I, DAG.getMergeValues(&ArgValues[0], NumValues, - SDL->getCurDebugLoc())); - // If this argument is live outside of the entry block, insert a copy from - // whereever we got it to the vreg that other BB's will reference it as. - SDL->CopyToExportRegsIfNeeded(I); - } - } - assert(i == InVals.size() && "Argument register count mismatch!"); - - // Finally, if the target has anything special to do, allow it to do so. - // FIXME: this should insert code into the DAG! - EmitFunctionEntryCode(F, SDL->DAG.getMachineFunction()); -} - -/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to -/// ensure constants are generated when needed. Remember the virtual registers -/// that need to be added to the Machine PHI nodes as input. We cannot just -/// directly add them, because expansion might result in multiple MBB's for one -/// BB. As such, the start of the BB might correspond to a different MBB than -/// the end. -/// -void -SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) { - TerminatorInst *TI = LLVMBB->getTerminator(); - - SmallPtrSet SuccsHandled; - - // Check successor nodes' PHI nodes that expect a constant to be available - // from this block. - for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { - BasicBlock *SuccBB = TI->getSuccessor(succ); - if (!isa(SuccBB->begin())) continue; - MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; - - // If this terminator has multiple identical successors (common for - // switches), only handle each succ once. - if (!SuccsHandled.insert(SuccMBB)) continue; - - MachineBasicBlock::iterator MBBI = SuccMBB->begin(); - PHINode *PN; - - // At this point we know that there is a 1-1 correspondence between LLVM PHI - // nodes and Machine PHI nodes, but the incoming operands have not been - // emitted yet. - for (BasicBlock::iterator I = SuccBB->begin(); - (PN = dyn_cast(I)); ++I) { - // Ignore dead phi's. - if (PN->use_empty()) continue; - - unsigned Reg; - Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); - - if (Constant *C = dyn_cast(PHIOp)) { - unsigned &RegOut = SDL->ConstantsOut[C]; - if (RegOut == 0) { - RegOut = FuncInfo->CreateRegForValue(C); - SDL->CopyValueToVirtualRegister(C, RegOut); - } - Reg = RegOut; - } else { - Reg = FuncInfo->ValueMap[PHIOp]; - if (Reg == 0) { - assert(isa(PHIOp) && - FuncInfo->StaticAllocaMap.count(cast(PHIOp)) && - "Didn't codegen value into a register!??"); - Reg = FuncInfo->CreateRegForValue(PHIOp); - SDL->CopyValueToVirtualRegister(PHIOp, Reg); - } - } - - // Remember that this register needs to added to the machine PHI node as - // the input for this MBB. - SmallVector ValueVTs; - ComputeValueVTs(TLI, PN->getType(), ValueVTs); - for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { - EVT VT = ValueVTs[vti]; - unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT); - for (unsigned i = 0, e = NumRegisters; i != e; ++i) - SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); - Reg += NumRegisters; - } - } - } - SDL->ConstantsOut.clear(); -} - -/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only -/// supports legal types, and it emits MachineInstrs directly instead of -/// creating SelectionDAG nodes. -/// -bool -SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB, - FastISel *F) { - TerminatorInst *TI = LLVMBB->getTerminator(); - - SmallPtrSet SuccsHandled; - unsigned OrigNumPHINodesToUpdate = SDL->PHINodesToUpdate.size(); - - // Check successor nodes' PHI nodes that expect a constant to be available - // from this block. - for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { - BasicBlock *SuccBB = TI->getSuccessor(succ); - if (!isa(SuccBB->begin())) continue; - MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; - - // If this terminator has multiple identical successors (common for - // switches), only handle each succ once. - if (!SuccsHandled.insert(SuccMBB)) continue; - - MachineBasicBlock::iterator MBBI = SuccMBB->begin(); - PHINode *PN; - - // At this point we know that there is a 1-1 correspondence between LLVM PHI - // nodes and Machine PHI nodes, but the incoming operands have not been - // emitted yet. - for (BasicBlock::iterator I = SuccBB->begin(); - (PN = dyn_cast(I)); ++I) { - // Ignore dead phi's. - if (PN->use_empty()) continue; - - // Only handle legal types. Two interesting things to note here. First, - // by bailing out early, we may leave behind some dead instructions, - // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its - // own moves. Second, this check is necessary becuase FastISel doesn't - // use CreateRegForValue to create registers, so it always creates - // exactly one register for each non-void instruction. - EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); - if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { - // Promote MVT::i1. - if (VT == MVT::i1) - VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT); - else { - SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); - return false; - } - } - - Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); - - unsigned Reg = F->getRegForValue(PHIOp); - if (Reg == 0) { - SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); - return false; - } - SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); - } - } - - return true; -} diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h b/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h deleted file mode 100644 index edf890c9d9f..00000000000 --- a/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h +++ /dev/null @@ -1,487 +0,0 @@ -//===-- SelectionDAGBuild.h - Selection-DAG building ----------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This implements routines for translating from LLVM IR into SelectionDAG IR. -// -//===----------------------------------------------------------------------===// - -#ifndef SELECTIONDAGBUILD_H -#define SELECTIONDAGBUILD_H - -#include "llvm/Constants.h" -#include "llvm/CodeGen/SelectionDAG.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/DenseMap.h" -#ifndef NDEBUG -#include "llvm/ADT/SmallSet.h" -#endif -#include "llvm/CodeGen/SelectionDAGNodes.h" -#include "llvm/CodeGen/ValueTypes.h" -#include "llvm/Support/CallSite.h" -#include "llvm/Support/ErrorHandling.h" -#include -#include - -namespace llvm { - -class AliasAnalysis; -class AllocaInst; -class BasicBlock; -class BitCastInst; -class BranchInst; -class CallInst; -class ExtractElementInst; -class ExtractValueInst; -class FCmpInst; -class FPExtInst; -class FPToSIInst; -class FPToUIInst; -class FPTruncInst; -class Function; -class FunctionLoweringInfo; -class GetElementPtrInst; -class GCFunctionInfo; -class ICmpInst; -class IntToPtrInst; -class IndirectBrInst; -class InvokeInst; -class InsertElementInst; -class InsertValueInst; -class Instruction; -class LoadInst; -class MachineBasicBlock; -class MachineFunction; -class MachineInstr; -class MachineRegisterInfo; -class PHINode; -class PtrToIntInst; -class ReturnInst; -class SDISelAsmOperandInfo; -class SExtInst; -class SelectInst; -class ShuffleVectorInst; -class SIToFPInst; -class StoreInst; -class SwitchInst; -class TargetData; -class TargetLowering; -class TruncInst; -class UIToFPInst; -class UnreachableInst; -class UnwindInst; -class VAArgInst; -class ZExtInst; - -//===----------------------------------------------------------------------===// -/// SelectionDAGLowering - This is the common target-independent lowering -/// implementation that is parameterized by a TargetLowering object. -/// Also, targets can overload any lowering method. -/// -class SelectionDAGLowering { - MachineBasicBlock *CurMBB; - - /// CurDebugLoc - current file + line number. Changes as we build the DAG. - DebugLoc CurDebugLoc; - - DenseMap NodeMap; - - /// PendingLoads - Loads are not emitted to the program immediately. We bunch - /// them up and then emit token factor nodes when possible. This allows us to - /// get simple disambiguation between loads without worrying about alias - /// analysis. - SmallVector PendingLoads; - - /// PendingExports - CopyToReg nodes that copy values to virtual registers - /// for export to other blocks need to be emitted before any terminator - /// instruction, but they have no other ordering requirements. We bunch them - /// up and the emit a single tokenfactor for them just before terminator - /// instructions. - SmallVector PendingExports; - - /// Case - A struct to record the Value for a switch case, and the - /// case's target basic block. - struct Case { - Constant* Low; - Constant* High; - MachineBasicBlock* BB; - - Case() : Low(0), High(0), BB(0) { } - Case(Constant* low, Constant* high, MachineBasicBlock* bb) : - Low(low), High(high), BB(bb) { } - APInt size() const { - const APInt &rHigh = cast(High)->getValue(); - const APInt &rLow = cast(Low)->getValue(); - return (rHigh - rLow + 1ULL); - } - }; - - struct CaseBits { - uint64_t Mask; - MachineBasicBlock* BB; - unsigned Bits; - - CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits): - Mask(mask), BB(bb), Bits(bits) { } - }; - - typedef std::vector CaseVector; - typedef std::vector CaseBitsVector; - typedef CaseVector::iterator CaseItr; - typedef std::pair CaseRange; - - /// CaseRec - A struct with ctor used in lowering switches to a binary tree - /// of conditional branches. - struct CaseRec { - CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) : - CaseBB(bb), LT(lt), GE(ge), Range(r) {} - - /// CaseBB - The MBB in which to emit the compare and branch - MachineBasicBlock *CaseBB; - /// LT, GE - If nonzero, we know the current case value must be less-than or - /// greater-than-or-equal-to these Constants. - Constant *LT; - Constant *GE; - /// Range - A pair of iterators representing the range of case values to be - /// processed at this point in the binary search tree. - CaseRange Range; - }; - - typedef std::vector CaseRecVector; - - /// The comparison function for sorting the switch case values in the vector. - /// WARNING: Case ranges should be disjoint! - struct CaseCmp { - bool operator () (const Case& C1, const Case& C2) { - assert(isa(C1.Low) && isa(C2.High)); - const ConstantInt* CI1 = cast(C1.Low); - const ConstantInt* CI2 = cast(C2.High); - return CI1->getValue().slt(CI2->getValue()); - } - }; - - struct CaseBitsCmp { - bool operator () (const CaseBits& C1, const CaseBits& C2) { - return C1.Bits > C2.Bits; - } - }; - - size_t Clusterify(CaseVector& Cases, const SwitchInst &SI); - - /// CaseBlock - This structure is used to communicate between SDLowering and - /// SDISel for the code generation of additional basic blocks needed by multi- - /// case switch statements. - struct CaseBlock { - CaseBlock(ISD::CondCode cc, Value *cmplhs, Value *cmprhs, Value *cmpmiddle, - MachineBasicBlock *truebb, MachineBasicBlock *falsebb, - MachineBasicBlock *me) - : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs), - TrueBB(truebb), FalseBB(falsebb), ThisBB(me) {} - // CC - the condition code to use for the case block's setcc node - ISD::CondCode CC; - // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit. - // Emit by default LHS op RHS. MHS is used for range comparisons: - // If MHS is not null: (LHS <= MHS) and (MHS <= RHS). - Value *CmpLHS, *CmpMHS, *CmpRHS; - // TrueBB/FalseBB - the block to branch to if the setcc is true/false. - MachineBasicBlock *TrueBB, *FalseBB; - // ThisBB - the block into which to emit the code for the setcc and branches - MachineBasicBlock *ThisBB; - }; - struct JumpTable { - JumpTable(unsigned R, unsigned J, MachineBasicBlock *M, - MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {} - - /// Reg - the virtual register containing the index of the jump table entry - //. to jump to. - unsigned Reg; - /// JTI - the JumpTableIndex for this jump table in the function. - unsigned JTI; - /// MBB - the MBB into which to emit the code for the indirect jump. - MachineBasicBlock *MBB; - /// Default - the MBB of the default bb, which is a successor of the range - /// check MBB. This is when updating PHI nodes in successors. - MachineBasicBlock *Default; - }; - struct JumpTableHeader { - JumpTableHeader(APInt F, APInt L, Value* SV, MachineBasicBlock* H, - bool E = false): - First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {} - APInt First; - APInt Last; - Value *SValue; - MachineBasicBlock *HeaderBB; - bool Emitted; - }; - typedef std::pair JumpTableBlock; - - struct BitTestCase { - BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr): - Mask(M), ThisBB(T), TargetBB(Tr) { } - uint64_t Mask; - MachineBasicBlock* ThisBB; - MachineBasicBlock* TargetBB; - }; - - typedef SmallVector BitTestInfo; - - struct BitTestBlock { - BitTestBlock(APInt F, APInt R, Value* SV, - unsigned Rg, bool E, - MachineBasicBlock* P, MachineBasicBlock* D, - const BitTestInfo& C): - First(F), Range(R), SValue(SV), Reg(Rg), Emitted(E), - Parent(P), Default(D), Cases(C) { } - APInt First; - APInt Range; - Value *SValue; - unsigned Reg; - bool Emitted; - MachineBasicBlock *Parent; - MachineBasicBlock *Default; - BitTestInfo Cases; - }; - -public: - // TLI - This is information that describes the available target features we - // need for lowering. This indicates when operations are unavailable, - // implemented with a libcall, etc. - TargetLowering &TLI; - SelectionDAG &DAG; - const TargetData *TD; - AliasAnalysis *AA; - - /// SwitchCases - Vector of CaseBlock structures used to communicate - /// SwitchInst code generation information. - std::vector SwitchCases; - /// JTCases - Vector of JumpTable structures used to communicate - /// SwitchInst code generation information. - std::vector JTCases; - /// BitTestCases - Vector of BitTestBlock structures used to communicate - /// SwitchInst code generation information. - std::vector BitTestCases; - - /// PHINodesToUpdate - A list of phi instructions whose operand list will - /// be updated after processing the current basic block. - std::vector > PHINodesToUpdate; - - /// EdgeMapping - If an edge from CurMBB to any MBB is changed (e.g. due to - /// scheduler custom lowering), track the change here. - DenseMap EdgeMapping; - - // Emit PHI-node-operand constants only once even if used by multiple - // PHI nodes. - DenseMap ConstantsOut; - - /// FuncInfo - Information about the function as a whole. - /// - FunctionLoweringInfo &FuncInfo; - - /// OptLevel - What optimization level we're generating code for. - /// - CodeGenOpt::Level OptLevel; - - /// GFI - Garbage collection metadata for the function. - GCFunctionInfo *GFI; - - /// HasTailCall - This is set to true if a call in the current - /// block has been translated as a tail call. In this case, - /// no subsequent DAG nodes should be created. - /// - bool HasTailCall; - - LLVMContext *Context; - - SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli, - FunctionLoweringInfo &funcinfo, - CodeGenOpt::Level ol) - : CurDebugLoc(DebugLoc::getUnknownLoc()), - TLI(tli), DAG(dag), FuncInfo(funcinfo), OptLevel(ol), - HasTailCall(false), - Context(dag.getContext()) { - } - - void init(GCFunctionInfo *gfi, AliasAnalysis &aa); - - /// clear - Clear out the curret SelectionDAG and the associated - /// state and prepare this SelectionDAGLowering object to be used - /// for a new block. This doesn't clear out information about - /// additional blocks that are needed to complete switch lowering - /// or PHI node updating; that information is cleared out as it is - /// consumed. - void clear(); - - /// getRoot - Return the current virtual root of the Selection DAG, - /// flushing any PendingLoad items. This must be done before emitting - /// a store or any other node that may need to be ordered after any - /// prior load instructions. - /// - SDValue getRoot(); - - /// getControlRoot - Similar to getRoot, but instead of flushing all the - /// PendingLoad items, flush all the PendingExports items. It is necessary - /// to do this before emitting a terminator instruction. - /// - SDValue getControlRoot(); - - DebugLoc getCurDebugLoc() const { return CurDebugLoc; } - void setCurDebugLoc(DebugLoc dl) { CurDebugLoc = dl; } - - void CopyValueToVirtualRegister(Value *V, unsigned Reg); - - void visit(Instruction &I); - - void visit(unsigned Opcode, User &I); - - void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; } - - SDValue getValue(const Value *V); - - void setValue(const Value *V, SDValue NewN) { - SDValue &N = NodeMap[V]; - assert(N.getNode() == 0 && "Already set a value for this node!"); - N = NewN; - } - - void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, - std::set &OutputRegs, - std::set &InputRegs); - - void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB, - MachineBasicBlock *FBB, MachineBasicBlock *CurBB, - unsigned Opc); - void EmitBranchForMergedCondition(Value *Cond, MachineBasicBlock *TBB, - MachineBasicBlock *FBB, - MachineBasicBlock *CurBB); - bool ShouldEmitAsBranches(const std::vector &Cases); - bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB); - void CopyToExportRegsIfNeeded(Value *V); - void ExportFromCurrentBlock(Value *V); - void LowerCallTo(CallSite CS, SDValue Callee, bool IsTailCall, - MachineBasicBlock *LandingPad = NULL); - -private: - // Terminator instructions. - void visitRet(ReturnInst &I); - void visitBr(BranchInst &I); - void visitSwitch(SwitchInst &I); - void visitIndirectBr(IndirectBrInst &I); - void visitUnreachable(UnreachableInst &I) { /* noop */ } - - // Helpers for visitSwitch - bool handleSmallSwitchRange(CaseRec& CR, - CaseRecVector& WorkList, - Value* SV, - MachineBasicBlock* Default); - bool handleJTSwitchCase(CaseRec& CR, - CaseRecVector& WorkList, - Value* SV, - MachineBasicBlock* Default); - bool handleBTSplitSwitchCase(CaseRec& CR, - CaseRecVector& WorkList, - Value* SV, - MachineBasicBlock* Default); - bool handleBitTestsSwitchCase(CaseRec& CR, - CaseRecVector& WorkList, - Value* SV, - MachineBasicBlock* Default); -public: - void visitSwitchCase(CaseBlock &CB); - void visitBitTestHeader(BitTestBlock &B); - void visitBitTestCase(MachineBasicBlock* NextMBB, - unsigned Reg, - BitTestCase &B); - void visitJumpTable(JumpTable &JT); - void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH); - -private: - // These all get lowered before this pass. - void visitInvoke(InvokeInst &I); - void visitUnwind(UnwindInst &I); - - void visitBinary(User &I, unsigned OpCode); - void visitShift(User &I, unsigned Opcode); - void visitAdd(User &I) { visitBinary(I, ISD::ADD); } - void visitFAdd(User &I) { visitBinary(I, ISD::FADD); } - void visitSub(User &I) { visitBinary(I, ISD::SUB); } - void visitFSub(User &I); - void visitMul(User &I) { visitBinary(I, ISD::MUL); } - void visitFMul(User &I) { visitBinary(I, ISD::FMUL); } - void visitURem(User &I) { visitBinary(I, ISD::UREM); } - void visitSRem(User &I) { visitBinary(I, ISD::SREM); } - void visitFRem(User &I) { visitBinary(I, ISD::FREM); } - void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); } - void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); } - void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); } - void visitAnd (User &I) { visitBinary(I, ISD::AND); } - void visitOr (User &I) { visitBinary(I, ISD::OR); } - void visitXor (User &I) { visitBinary(I, ISD::XOR); } - void visitShl (User &I) { visitShift(I, ISD::SHL); } - void visitLShr(User &I) { visitShift(I, ISD::SRL); } - void visitAShr(User &I) { visitShift(I, ISD::SRA); } - void visitICmp(User &I); - void visitFCmp(User &I); - // Visit the conversion instructions - void visitTrunc(User &I); - void visitZExt(User &I); - void visitSExt(User &I); - void visitFPTrunc(User &I); - void visitFPExt(User &I); - void visitFPToUI(User &I); - void visitFPToSI(User &I); - void visitUIToFP(User &I); - void visitSIToFP(User &I); - void visitPtrToInt(User &I); - void visitIntToPtr(User &I); - void visitBitCast(User &I); - - void visitExtractElement(User &I); - void visitInsertElement(User &I); - void visitShuffleVector(User &I); - - void visitExtractValue(ExtractValueInst &I); - void visitInsertValue(InsertValueInst &I); - - void visitGetElementPtr(User &I); - void visitSelect(User &I); - - void visitAlloca(AllocaInst &I); - void visitLoad(LoadInst &I); - void visitStore(StoreInst &I); - void visitPHI(PHINode &I) { } // PHI nodes are handled specially. - void visitCall(CallInst &I); - void visitInlineAsm(CallSite CS); - const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic); - void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic); - - void visitPow(CallInst &I); - void visitExp2(CallInst &I); - void visitExp(CallInst &I); - void visitLog(CallInst &I); - void visitLog2(CallInst &I); - void visitLog10(CallInst &I); - - void visitVAStart(CallInst &I); - void visitVAArg(VAArgInst &I); - void visitVAEnd(CallInst &I); - void visitVACopy(CallInst &I); - - void visitUserOp1(Instruction &I) { - llvm_unreachable("UserOp1 should not exist at instruction selection time!"); - } - void visitUserOp2(Instruction &I) { - llvm_unreachable("UserOp2 should not exist at instruction selection time!"); - } - - const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op); - const char *implVisitAluOverflow(CallInst &I, ISD::NodeType Op); -}; - -} // end namespace llvm - -#endif diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp new file mode 100644 index 00000000000..57d89036a80 --- /dev/null +++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp @@ -0,0 +1,5821 @@ +//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements routines for translating from LLVM IR into SelectionDAG IR. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "isel" +#include "SelectionDAGBuilder.h" +#include "FunctionLoweringInfo.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Constants.h" +#include "llvm/CallingConv.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +#include "llvm/InlineAsm.h" +#include "llvm/Instructions.h" +#include "llvm/Intrinsics.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/LLVMContext.h" +#include "llvm/Module.h" +#include "llvm/CodeGen/FastISel.h" +#include "llvm/CodeGen/GCStrategy.h" +#include "llvm/CodeGen/GCMetadata.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/DwarfWriter.h" +#include "llvm/Analysis/DebugInfo.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetFrameInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetIntrinsicInfo.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include +using namespace llvm; + +/// LimitFloatPrecision - Generate low-precision inline sequences for +/// some float libcalls (6, 8 or 12 bits). +static unsigned LimitFloatPrecision; + +static cl::opt +LimitFPPrecision("limit-float-precision", + cl::desc("Generate low-precision inline sequences " + "for some float libcalls"), + cl::location(LimitFloatPrecision), + cl::init(0)); + +namespace { + /// RegsForValue - This struct represents the registers (physical or virtual) + /// that a particular set of values is assigned, and the type information about + /// the value. The most common situation is to represent one value at a time, + /// but struct or array values are handled element-wise as multiple values. + /// The splitting of aggregates is performed recursively, so that we never + /// have aggregate-typed registers. The values at this point do not necessarily + /// have legal types, so each value may require one or more registers of some + /// legal type. + /// + struct RegsForValue { + /// TLI - The TargetLowering object. + /// + const TargetLowering *TLI; + + /// ValueVTs - The value types of the values, which may not be legal, and + /// may need be promoted or synthesized from one or more registers. + /// + SmallVector ValueVTs; + + /// RegVTs - The value types of the registers. This is the same size as + /// ValueVTs and it records, for each value, what the type of the assigned + /// register or registers are. (Individual values are never synthesized + /// from more than one type of register.) + /// + /// With virtual registers, the contents of RegVTs is redundant with TLI's + /// getRegisterType member function, however when with physical registers + /// it is necessary to have a separate record of the types. + /// + SmallVector RegVTs; + + /// Regs - This list holds the registers assigned to the values. + /// Each legal or promoted value requires one register, and each + /// expanded value requires multiple registers. + /// + SmallVector Regs; + + RegsForValue() : TLI(0) {} + + RegsForValue(const TargetLowering &tli, + const SmallVector ®s, + EVT regvt, EVT valuevt) + : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} + RegsForValue(const TargetLowering &tli, + const SmallVector ®s, + const SmallVector ®vts, + const SmallVector &valuevts) + : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} + RegsForValue(LLVMContext &Context, const TargetLowering &tli, + unsigned Reg, const Type *Ty) : TLI(&tli) { + ComputeValueVTs(tli, Ty, ValueVTs); + + for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { + EVT ValueVT = ValueVTs[Value]; + unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT); + EVT RegisterVT = TLI->getRegisterType(Context, ValueVT); + for (unsigned i = 0; i != NumRegs; ++i) + Regs.push_back(Reg + i); + RegVTs.push_back(RegisterVT); + Reg += NumRegs; + } + } + + /// append - Add the specified values to this one. + void append(const RegsForValue &RHS) { + TLI = RHS.TLI; + ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); + RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); + Regs.append(RHS.Regs.begin(), RHS.Regs.end()); + } + + + /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from + /// this value and returns the result as a ValueVTs value. This uses + /// Chain/Flag as the input and updates them for the output Chain/Flag. + /// If the Flag pointer is NULL, no flag is used. + SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, + SDValue &Chain, SDValue *Flag) const; + + /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the + /// specified value into the registers specified by this object. This uses + /// Chain/Flag as the input and updates them for the output Chain/Flag. + /// If the Flag pointer is NULL, no flag is used. + void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, + SDValue &Chain, SDValue *Flag) const; + + /// AddInlineAsmOperands - Add this value to the specified inlineasm node + /// operand list. This adds the code marker, matching input operand index + /// (if applicable), and includes the number of values added into it. + void AddInlineAsmOperands(unsigned Code, + bool HasMatching, unsigned MatchingIdx, + SelectionDAG &DAG, std::vector &Ops) const; + }; +} + +/// getCopyFromParts - Create a value that contains the specified legal parts +/// combined into the value they represent. If the parts combine to a type +/// larger then ValueVT then AssertOp can be used to specify whether the extra +/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT +/// (ISD::AssertSext). +static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, + const SDValue *Parts, + unsigned NumParts, EVT PartVT, EVT ValueVT, + ISD::NodeType AssertOp = ISD::DELETED_NODE) { + assert(NumParts > 0 && "No parts to assemble!"); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue Val = Parts[0]; + + if (NumParts > 1) { + // Assemble the value from multiple parts. + if (!ValueVT.isVector() && ValueVT.isInteger()) { + unsigned PartBits = PartVT.getSizeInBits(); + unsigned ValueBits = ValueVT.getSizeInBits(); + + // Assemble the power of 2 part. + unsigned RoundParts = NumParts & (NumParts - 1) ? + 1 << Log2_32(NumParts) : NumParts; + unsigned RoundBits = PartBits * RoundParts; + EVT RoundVT = RoundBits == ValueBits ? + ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); + SDValue Lo, Hi; + + EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); + + if (RoundParts > 2) { + Lo = getCopyFromParts(DAG, dl, Parts, RoundParts/2, PartVT, HalfVT); + Hi = getCopyFromParts(DAG, dl, Parts+RoundParts/2, RoundParts/2, + PartVT, HalfVT); + } else { + Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]); + Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]); + } + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi); + + if (RoundParts < NumParts) { + // Assemble the trailing non-power-of-2 part. + unsigned OddParts = NumParts - RoundParts; + EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); + Hi = getCopyFromParts(DAG, dl, + Parts+RoundParts, OddParts, PartVT, OddVT); + + // Combine the round and odd parts. + Lo = Val; + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); + Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi); + Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi, + DAG.getConstant(Lo.getValueType().getSizeInBits(), + TLI.getPointerTy())); + Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo); + Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi); + } + } else if (ValueVT.isVector()) { + // Handle a multi-element vector. + EVT IntermediateVT, RegisterVT; + unsigned NumIntermediates; + unsigned NumRegs = + TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, + NumIntermediates, RegisterVT); + assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); + NumParts = NumRegs; // Silence a compiler warning. + assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); + assert(RegisterVT == Parts[0].getValueType() && + "Part type doesn't match part!"); + + // Assemble the parts into intermediate operands. + SmallVector Ops(NumIntermediates); + if (NumIntermediates == NumParts) { + // If the register was not expanded, truncate or copy the value, + // as appropriate. + for (unsigned i = 0; i != NumParts; ++i) + Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1, + PartVT, IntermediateVT); + } else if (NumParts > 0) { + // If the intermediate type was expanded, build the intermediate operands + // from the parts. + assert(NumParts % NumIntermediates == 0 && + "Must expand into a divisible number of parts!"); + unsigned Factor = NumParts / NumIntermediates; + for (unsigned i = 0; i != NumIntermediates; ++i) + Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor, + PartVT, IntermediateVT); + } + + // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate + // operands. + Val = DAG.getNode(IntermediateVT.isVector() ? + ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl, + ValueVT, &Ops[0], NumIntermediates); + } else if (PartVT.isFloatingPoint()) { + // FP split into multiple FP parts (for ppcf128) + assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && + "Unexpected split"); + SDValue Lo, Hi; + Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]); + Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]); + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi); + } else { + // FP split into integer parts (soft fp) + assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && + !PartVT.isVector() && "Unexpected split"); + EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); + Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT); + } + } + + // There is now one part, held in Val. Correct it to match ValueVT. + PartVT = Val.getValueType(); + + if (PartVT == ValueVT) + return Val; + + if (PartVT.isVector()) { + assert(ValueVT.isVector() && "Unknown vector conversion!"); + return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); + } + + if (ValueVT.isVector()) { + assert(ValueVT.getVectorElementType() == PartVT && + ValueVT.getVectorNumElements() == 1 && + "Only trivial scalar-to-vector conversions should get here!"); + return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val); + } + + if (PartVT.isInteger() && + ValueVT.isInteger()) { + if (ValueVT.bitsLT(PartVT)) { + // For a truncate, see if we have any information to + // indicate whether the truncated bits will always be + // zero or sign-extension. + if (AssertOp != ISD::DELETED_NODE) + Val = DAG.getNode(AssertOp, dl, PartVT, Val, + DAG.getValueType(ValueVT)); + return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); + } else { + return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val); + } + } + + if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { + if (ValueVT.bitsLT(Val.getValueType())) + // FP_ROUND's are always exact here. + return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val, + DAG.getIntPtrConstant(1)); + return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val); + } + + if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) + return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); + + llvm_unreachable("Unknown mismatch!"); + return SDValue(); +} + +/// getCopyToParts - Create a series of nodes that contain the specified value +/// split into legal parts. If the parts contain more bits than Val, then, for +/// integers, ExtendKind can be used to specify how to generate the extra bits. +static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val, + SDValue *Parts, unsigned NumParts, EVT PartVT, + ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + EVT PtrVT = TLI.getPointerTy(); + EVT ValueVT = Val.getValueType(); + unsigned PartBits = PartVT.getSizeInBits(); + unsigned OrigNumParts = NumParts; + assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); + + if (!NumParts) + return; + + if (!ValueVT.isVector()) { + if (PartVT == ValueVT) { + assert(NumParts == 1 && "No-op copy with multiple parts!"); + Parts[0] = Val; + return; + } + + if (NumParts * PartBits > ValueVT.getSizeInBits()) { + // If the parts cover more bits than the value has, promote the value. + if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { + assert(NumParts == 1 && "Do not know what to promote to!"); + Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val); + } else if (PartVT.isInteger() && ValueVT.isInteger()) { + ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); + Val = DAG.getNode(ExtendKind, dl, ValueVT, Val); + } else { + llvm_unreachable("Unknown mismatch!"); + } + } else if (PartBits == ValueVT.getSizeInBits()) { + // Different types of the same size. + assert(NumParts == 1 && PartVT != ValueVT); + Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); + } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { + // If the parts cover less bits than value has, truncate the value. + if (PartVT.isInteger() && ValueVT.isInteger()) { + ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); + Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); + } else { + llvm_unreachable("Unknown mismatch!"); + } + } + + // The value may have changed - recompute ValueVT. + ValueVT = Val.getValueType(); + assert(NumParts * PartBits == ValueVT.getSizeInBits() && + "Failed to tile the value with PartVT!"); + + if (NumParts == 1) { + assert(PartVT == ValueVT && "Type conversion failed!"); + Parts[0] = Val; + return; + } + + // Expand the value into multiple parts. + if (NumParts & (NumParts - 1)) { + // The number of parts is not a power of 2. Split off and copy the tail. + assert(PartVT.isInteger() && ValueVT.isInteger() && + "Do not know what to expand to!"); + unsigned RoundParts = 1 << Log2_32(NumParts); + unsigned RoundBits = RoundParts * PartBits; + unsigned OddParts = NumParts - RoundParts; + SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val, + DAG.getConstant(RoundBits, + TLI.getPointerTy())); + getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, OddParts, PartVT); + if (TLI.isBigEndian()) + // The odd parts were reversed by getCopyToParts - unreverse them. + std::reverse(Parts + RoundParts, Parts + NumParts); + NumParts = RoundParts; + ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); + Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); + } + + // The number of parts is a power of 2. Repeatedly bisect the value using + // EXTRACT_ELEMENT. + Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl, + EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()), + Val); + for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { + for (unsigned i = 0; i < NumParts; i += StepSize) { + unsigned ThisBits = StepSize * PartBits / 2; + EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); + SDValue &Part0 = Parts[i]; + SDValue &Part1 = Parts[i+StepSize/2]; + + Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, + ThisVT, Part0, + DAG.getConstant(1, PtrVT)); + Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, + ThisVT, Part0, + DAG.getConstant(0, PtrVT)); + + if (ThisBits == PartBits && ThisVT != PartVT) { + Part0 = DAG.getNode(ISD::BIT_CONVERT, dl, + PartVT, Part0); + Part1 = DAG.getNode(ISD::BIT_CONVERT, dl, + PartVT, Part1); + } + } + } + + if (TLI.isBigEndian()) + std::reverse(Parts, Parts + OrigNumParts); + + return; + } + + // Vector ValueVT. + if (NumParts == 1) { + if (PartVT != ValueVT) { + if (PartVT.isVector()) { + Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); + } else { + assert(ValueVT.getVectorElementType() == PartVT && + ValueVT.getVectorNumElements() == 1 && + "Only trivial vector-to-scalar conversions should get here!"); + Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, + PartVT, Val, + DAG.getConstant(0, PtrVT)); + } + } + + Parts[0] = Val; + return; + } + + // Handle a multi-element vector. + EVT IntermediateVT, RegisterVT; + unsigned NumIntermediates; + unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, + IntermediateVT, NumIntermediates, RegisterVT); + unsigned NumElements = ValueVT.getVectorNumElements(); + + assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); + NumParts = NumRegs; // Silence a compiler warning. + assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); + + // Split the vector into intermediate operands. + SmallVector Ops(NumIntermediates); + for (unsigned i = 0; i != NumIntermediates; ++i) + if (IntermediateVT.isVector()) + Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, + IntermediateVT, Val, + DAG.getConstant(i * (NumElements / NumIntermediates), + PtrVT)); + else + Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, + IntermediateVT, Val, + DAG.getConstant(i, PtrVT)); + + // Split the intermediate operands into legal parts. + if (NumParts == NumIntermediates) { + // If the register was not expanded, promote or copy the value, + // as appropriate. + for (unsigned i = 0; i != NumParts; ++i) + getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT); + } else if (NumParts > 0) { + // If the intermediate type was expanded, split each the value into + // legal parts. + assert(NumParts % NumIntermediates == 0 && + "Must expand into a divisible number of parts!"); + unsigned Factor = NumParts / NumIntermediates; + for (unsigned i = 0; i != NumIntermediates; ++i) + getCopyToParts(DAG, dl, Ops[i], &Parts[i * Factor], Factor, PartVT); + } +} + + +void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { + AA = &aa; + GFI = gfi; + TD = DAG.getTarget().getTargetData(); +} + +/// clear - Clear out the curret SelectionDAG and the associated +/// state and prepare this SelectionDAGBuilder object to be used +/// for a new block. This doesn't clear out information about +/// additional blocks that are needed to complete switch lowering +/// or PHI node updating; that information is cleared out as it is +/// consumed. +void SelectionDAGBuilder::clear() { + NodeMap.clear(); + PendingLoads.clear(); + PendingExports.clear(); + EdgeMapping.clear(); + DAG.clear(); + CurDebugLoc = DebugLoc::getUnknownLoc(); + HasTailCall = false; +} + +/// getRoot - Return the current virtual root of the Selection DAG, +/// flushing any PendingLoad items. This must be done before emitting +/// a store or any other node that may need to be ordered after any +/// prior load instructions. +/// +SDValue SelectionDAGBuilder::getRoot() { + if (PendingLoads.empty()) + return DAG.getRoot(); + + if (PendingLoads.size() == 1) { + SDValue Root = PendingLoads[0]; + DAG.setRoot(Root); + PendingLoads.clear(); + return Root; + } + + // Otherwise, we have to make a token factor node. + SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, + &PendingLoads[0], PendingLoads.size()); + PendingLoads.clear(); + DAG.setRoot(Root); + return Root; +} + +/// getControlRoot - Similar to getRoot, but instead of flushing all the +/// PendingLoad items, flush all the PendingExports items. It is necessary +/// to do this before emitting a terminator instruction. +/// +SDValue SelectionDAGBuilder::getControlRoot() { + SDValue Root = DAG.getRoot(); + + if (PendingExports.empty()) + return Root; + + // Turn all of the CopyToReg chains into one factored node. + if (Root.getOpcode() != ISD::EntryToken) { + unsigned i = 0, e = PendingExports.size(); + for (; i != e; ++i) { + assert(PendingExports[i].getNode()->getNumOperands() > 1); + if (PendingExports[i].getNode()->getOperand(0) == Root) + break; // Don't add the root if we already indirectly depend on it. + } + + if (i == e) + PendingExports.push_back(Root); + } + + Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, + &PendingExports[0], + PendingExports.size()); + PendingExports.clear(); + DAG.setRoot(Root); + return Root; +} + +void SelectionDAGBuilder::visit(Instruction &I) { + visit(I.getOpcode(), I); +} + +void SelectionDAGBuilder::visit(unsigned Opcode, User &I) { + // Note: this doesn't use InstVisitor, because it has to work with + // ConstantExpr's in addition to instructions. + switch (Opcode) { + default: llvm_unreachable("Unknown instruction type encountered!"); + // Build the switch statement using the Instruction.def file. +#define HANDLE_INST(NUM, OPCODE, CLASS) \ + case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); +#include "llvm/Instruction.def" + } +} + +SDValue SelectionDAGBuilder::getValue(const Value *V) { + SDValue &N = NodeMap[V]; + if (N.getNode()) return N; + + if (Constant *C = const_cast(dyn_cast(V))) { + EVT VT = TLI.getValueType(V->getType(), true); + + if (ConstantInt *CI = dyn_cast(C)) + return N = DAG.getConstant(*CI, VT); + + if (GlobalValue *GV = dyn_cast(C)) + return N = DAG.getGlobalAddress(GV, VT); + + if (isa(C)) + return N = DAG.getConstant(0, TLI.getPointerTy()); + + if (ConstantFP *CFP = dyn_cast(C)) + return N = DAG.getConstantFP(*CFP, VT); + + if (isa(C) && !V->getType()->isAggregateType()) + return N = DAG.getUNDEF(VT); + + if (ConstantExpr *CE = dyn_cast(C)) { + visit(CE->getOpcode(), *CE); + SDValue N1 = NodeMap[V]; + assert(N1.getNode() && "visit didn't populate the ValueMap!"); + return N1; + } + + if (isa(C) || isa(C)) { + SmallVector Constants; + for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); + OI != OE; ++OI) { + SDNode *Val = getValue(*OI).getNode(); + // If the operand is an empty aggregate, there are no values. + if (!Val) continue; + // Add each leaf value from the operand to the Constants list + // to form a flattened list of all the values. + for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) + Constants.push_back(SDValue(Val, i)); + } + return DAG.getMergeValues(&Constants[0], Constants.size(), + getCurDebugLoc()); + } + + if (isa(C->getType()) || isa(C->getType())) { + assert((isa(C) || isa(C)) && + "Unknown struct or array constant!"); + + SmallVector ValueVTs; + ComputeValueVTs(TLI, C->getType(), ValueVTs); + unsigned NumElts = ValueVTs.size(); + if (NumElts == 0) + return SDValue(); // empty struct + SmallVector Constants(NumElts); + for (unsigned i = 0; i != NumElts; ++i) { + EVT EltVT = ValueVTs[i]; + if (isa(C)) + Constants[i] = DAG.getUNDEF(EltVT); + else if (EltVT.isFloatingPoint()) + Constants[i] = DAG.getConstantFP(0, EltVT); + else + Constants[i] = DAG.getConstant(0, EltVT); + } + return DAG.getMergeValues(&Constants[0], NumElts, getCurDebugLoc()); + } + + if (BlockAddress *BA = dyn_cast(C)) + return DAG.getBlockAddress(BA, VT); + + const VectorType *VecTy = cast(V->getType()); + unsigned NumElements = VecTy->getNumElements(); + + // Now that we know the number and type of the elements, get that number of + // elements into the Ops array based on what kind of constant it is. + SmallVector Ops; + if (ConstantVector *CP = dyn_cast(C)) { + for (unsigned i = 0; i != NumElements; ++i) + Ops.push_back(getValue(CP->getOperand(i))); + } else { + assert(isa(C) && "Unknown vector constant!"); + EVT EltVT = TLI.getValueType(VecTy->getElementType()); + + SDValue Op; + if (EltVT.isFloatingPoint()) + Op = DAG.getConstantFP(0, EltVT); + else + Op = DAG.getConstant(0, EltVT); + Ops.assign(NumElements, Op); + } + + // Create a BUILD_VECTOR node. + return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), + VT, &Ops[0], Ops.size()); + } + + // If this is a static alloca, generate it as the frameindex instead of + // computation. + if (const AllocaInst *AI = dyn_cast(V)) { + DenseMap::iterator SI = + FuncInfo.StaticAllocaMap.find(AI); + if (SI != FuncInfo.StaticAllocaMap.end()) + return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); + } + + unsigned InReg = FuncInfo.ValueMap[V]; + assert(InReg && "Value not in map!"); + + RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); + SDValue Chain = DAG.getEntryNode(); + return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL); +} + +/// Get the EVTs and ArgFlags collections that represent the return type +/// of the given function. This does not require a DAG or a return value, and +/// is suitable for use before any DAGs for the function are constructed. +static void getReturnInfo(const Type* ReturnType, + Attributes attr, SmallVectorImpl &OutVTs, + SmallVectorImpl &OutFlags, + TargetLowering &TLI, + SmallVectorImpl *Offsets = 0) { + SmallVector ValueVTs; + ComputeValueVTs(TLI, ReturnType, ValueVTs, Offsets); + unsigned NumValues = ValueVTs.size(); + if ( NumValues == 0 ) return; + + for (unsigned j = 0, f = NumValues; j != f; ++j) { + EVT VT = ValueVTs[j]; + ISD::NodeType ExtendKind = ISD::ANY_EXTEND; + + if (attr & Attribute::SExt) + ExtendKind = ISD::SIGN_EXTEND; + else if (attr & Attribute::ZExt) + ExtendKind = ISD::ZERO_EXTEND; + + // FIXME: C calling convention requires the return type to be promoted to + // at least 32-bit. But this is not necessary for non-C calling + // conventions. The frontend should mark functions whose return values + // require promoting with signext or zeroext attributes. + if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { + EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); + if (VT.bitsLT(MinVT)) + VT = MinVT; + } + + unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); + EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); + // 'inreg' on function refers to return value + ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); + if (attr & Attribute::InReg) + Flags.setInReg(); + + // Propagate extension type if any + if (attr & Attribute::SExt) + Flags.setSExt(); + else if (attr & Attribute::ZExt) + Flags.setZExt(); + + for (unsigned i = 0; i < NumParts; ++i) { + OutVTs.push_back(PartVT); + OutFlags.push_back(Flags); + } + } +} + +void SelectionDAGBuilder::visitRet(ReturnInst &I) { + SDValue Chain = getControlRoot(); + SmallVector Outs; + FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); + + if (!FLI.CanLowerReturn) { + unsigned DemoteReg = FLI.DemoteRegister; + const Function *F = I.getParent()->getParent(); + + // Emit a store of the return value through the virtual register. + // Leave Outs empty so that LowerReturn won't try to load return + // registers the usual way. + SmallVector PtrValueVTs; + ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), + PtrValueVTs); + + SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); + SDValue RetOp = getValue(I.getOperand(0)); + + SmallVector ValueVTs; + SmallVector Offsets; + ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); + unsigned NumValues = ValueVTs.size(); + + SmallVector Chains(NumValues); + EVT PtrVT = PtrValueVTs[0]; + for (unsigned i = 0; i != NumValues; ++i) + Chains[i] = DAG.getStore(Chain, getCurDebugLoc(), + SDValue(RetOp.getNode(), RetOp.getResNo() + i), + DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr, + DAG.getConstant(Offsets[i], PtrVT)), + NULL, Offsets[i], false, 0); + Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), + MVT::Other, &Chains[0], NumValues); + } + else { + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { + SmallVector ValueVTs; + ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs); + unsigned NumValues = ValueVTs.size(); + if (NumValues == 0) continue; + + SDValue RetOp = getValue(I.getOperand(i)); + for (unsigned j = 0, f = NumValues; j != f; ++j) { + EVT VT = ValueVTs[j]; + + ISD::NodeType ExtendKind = ISD::ANY_EXTEND; + + const Function *F = I.getParent()->getParent(); + if (F->paramHasAttr(0, Attribute::SExt)) + ExtendKind = ISD::SIGN_EXTEND; + else if (F->paramHasAttr(0, Attribute::ZExt)) + ExtendKind = ISD::ZERO_EXTEND; + + // FIXME: C calling convention requires the return type to be promoted to + // at least 32-bit. But this is not necessary for non-C calling + // conventions. The frontend should mark functions whose return values + // require promoting with signext or zeroext attributes. + if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { + EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); + if (VT.bitsLT(MinVT)) + VT = MinVT; + } + + unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); + EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); + SmallVector Parts(NumParts); + getCopyToParts(DAG, getCurDebugLoc(), + SDValue(RetOp.getNode(), RetOp.getResNo() + j), + &Parts[0], NumParts, PartVT, ExtendKind); + + // 'inreg' on function refers to return value + ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); + if (F->paramHasAttr(0, Attribute::InReg)) + Flags.setInReg(); + + // Propagate extension type if any + if (F->paramHasAttr(0, Attribute::SExt)) + Flags.setSExt(); + else if (F->paramHasAttr(0, Attribute::ZExt)) + Flags.setZExt(); + + for (unsigned i = 0; i < NumParts; ++i) + Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true)); + } + } + } + + bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); + CallingConv::ID CallConv = + DAG.getMachineFunction().getFunction()->getCallingConv(); + Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, + Outs, getCurDebugLoc(), DAG); + + // Verify that the target's LowerReturn behaved as expected. + assert(Chain.getNode() && Chain.getValueType() == MVT::Other && + "LowerReturn didn't return a valid chain!"); + + // Update the DAG with the new chain value resulting from return lowering. + DAG.setRoot(Chain); +} + +/// CopyToExportRegsIfNeeded - If the given value has virtual registers +/// created for it, emit nodes to copy the value into the virtual +/// registers. +void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) { + if (!V->use_empty()) { + DenseMap::iterator VMI = FuncInfo.ValueMap.find(V); + if (VMI != FuncInfo.ValueMap.end()) + CopyValueToVirtualRegister(V, VMI->second); + } +} + +/// ExportFromCurrentBlock - If this condition isn't known to be exported from +/// the current basic block, add it to ValueMap now so that we'll get a +/// CopyTo/FromReg. +void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) { + // No need to export constants. + if (!isa(V) && !isa(V)) return; + + // Already exported? + if (FuncInfo.isExportedInst(V)) return; + + unsigned Reg = FuncInfo.InitializeRegForValue(V); + CopyValueToVirtualRegister(V, Reg); +} + +bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V, + const BasicBlock *FromBB) { + // The operands of the setcc have to be in this block. We don't know + // how to export them from some other block. + if (Instruction *VI = dyn_cast(V)) { + // Can export from current BB. + if (VI->getParent() == FromBB) + return true; + + // Is already exported, noop. + return FuncInfo.isExportedInst(V); + } + + // If this is an argument, we can export it if the BB is the entry block or + // if it is already exported. + if (isa(V)) { + if (FromBB == &FromBB->getParent()->getEntryBlock()) + return true; + + // Otherwise, can only export this if it is already exported. + return FuncInfo.isExportedInst(V); + } + + // Otherwise, constants can always be exported. + return true; +} + +static bool InBlock(const Value *V, const BasicBlock *BB) { + if (const Instruction *I = dyn_cast(V)) + return I->getParent() == BB; + return true; +} + +/// getFCmpCondCode - Return the ISD condition code corresponding to +/// the given LLVM IR floating-point condition code. This includes +/// consideration of global floating-point math flags. +/// +static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) { + ISD::CondCode FPC, FOC; + switch (Pred) { + case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; + case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; + case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; + case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; + case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; + case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; + case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; + case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; + case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; + case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; + case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; + case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; + case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; + case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; + case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; + case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; + default: + llvm_unreachable("Invalid FCmp predicate opcode!"); + FOC = FPC = ISD::SETFALSE; + break; + } + if (FiniteOnlyFPMath()) + return FOC; + else + return FPC; +} + +/// getICmpCondCode - Return the ISD condition code corresponding to +/// the given LLVM IR integer condition code. +/// +static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) { + switch (Pred) { + case ICmpInst::ICMP_EQ: return ISD::SETEQ; + case ICmpInst::ICMP_NE: return ISD::SETNE; + case ICmpInst::ICMP_SLE: return ISD::SETLE; + case ICmpInst::ICMP_ULE: return ISD::SETULE; + case ICmpInst::ICMP_SGE: return ISD::SETGE; + case ICmpInst::ICMP_UGE: return ISD::SETUGE; + case ICmpInst::ICMP_SLT: return ISD::SETLT; + case ICmpInst::ICMP_ULT: return ISD::SETULT; + case ICmpInst::ICMP_SGT: return ISD::SETGT; + case ICmpInst::ICMP_UGT: return ISD::SETUGT; + default: + llvm_unreachable("Invalid ICmp predicate opcode!"); + return ISD::SETNE; + } +} + +/// EmitBranchForMergedCondition - Helper method for FindMergedConditions. +/// This function emits a branch and is used at the leaves of an OR or an +/// AND operator tree. +/// +void +SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond, + MachineBasicBlock *TBB, + MachineBasicBlock *FBB, + MachineBasicBlock *CurBB) { + const BasicBlock *BB = CurBB->getBasicBlock(); + + // If the leaf of the tree is a comparison, merge the condition into + // the caseblock. + if (CmpInst *BOp = dyn_cast(Cond)) { + // The operands of the cmp have to be in this block. We don't know + // how to export them from some other block. If this is the first block + // of the sequence, no exporting is needed. + if (CurBB == CurMBB || + (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && + isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { + ISD::CondCode Condition; + if (ICmpInst *IC = dyn_cast(Cond)) { + Condition = getICmpCondCode(IC->getPredicate()); + } else if (FCmpInst *FC = dyn_cast(Cond)) { + Condition = getFCmpCondCode(FC->getPredicate()); + } else { + Condition = ISD::SETEQ; // silence warning. + llvm_unreachable("Unknown compare instruction"); + } + + CaseBlock CB(Condition, BOp->getOperand(0), + BOp->getOperand(1), NULL, TBB, FBB, CurBB); + SwitchCases.push_back(CB); + return; + } + } + + // Create a CaseBlock record representing this branch. + CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), + NULL, TBB, FBB, CurBB); + SwitchCases.push_back(CB); +} + +/// FindMergedConditions - If Cond is an expression like +void SelectionDAGBuilder::FindMergedConditions(Value *Cond, + MachineBasicBlock *TBB, + MachineBasicBlock *FBB, + MachineBasicBlock *CurBB, + unsigned Opc) { + // If this node is not part of the or/and tree, emit it as a branch. + Instruction *BOp = dyn_cast(Cond); + if (!BOp || !(isa(BOp) || isa(BOp)) || + (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || + BOp->getParent() != CurBB->getBasicBlock() || + !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || + !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { + EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB); + return; + } + + // Create TmpBB after CurBB. + MachineFunction::iterator BBI = CurBB; + MachineFunction &MF = DAG.getMachineFunction(); + MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); + CurBB->getParent()->insert(++BBI, TmpBB); + + if (Opc == Instruction::Or) { + // Codegen X | Y as: + // jmp_if_X TBB + // jmp TmpBB + // TmpBB: + // jmp_if_Y TBB + // jmp FBB + // + + // Emit the LHS condition. + FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); + + // Emit the RHS condition into TmpBB. + FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); + } else { + assert(Opc == Instruction::And && "Unknown merge op!"); + // Codegen X & Y as: + // jmp_if_X TmpBB + // jmp FBB + // TmpBB: + // jmp_if_Y TBB + // jmp FBB + // + // This requires creation of TmpBB after CurBB. + + // Emit the LHS condition. + FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); + + // Emit the RHS condition into TmpBB. + FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); + } +} + +/// If the set of cases should be emitted as a series of branches, return true. +/// If we should emit this as a bunch of and/or'd together conditions, return +/// false. +bool +SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector &Cases){ + if (Cases.size() != 2) return true; + + // If this is two comparisons of the same values or'd or and'd together, they + // will get folded into a single comparison, so don't emit two blocks. + if ((Cases[0].CmpLHS == Cases[1].CmpLHS && + Cases[0].CmpRHS == Cases[1].CmpRHS) || + (Cases[0].CmpRHS == Cases[1].CmpLHS && + Cases[0].CmpLHS == Cases[1].CmpRHS)) { + return false; + } + + return true; +} + +void SelectionDAGBuilder::visitBr(BranchInst &I) { + // Update machine-CFG edges. + MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; + + // Figure out which block is immediately after the current one. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CurMBB; + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + if (I.isUnconditional()) { + // Update machine-CFG edges. + CurMBB->addSuccessor(Succ0MBB); + + // If this is not a fall-through branch, emit the branch. + if (Succ0MBB != NextBlock) + DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), + MVT::Other, getControlRoot(), + DAG.getBasicBlock(Succ0MBB))); + return; + } + + // If this condition is one of the special cases we handle, do special stuff + // now. + Value *CondVal = I.getCondition(); + MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; + + // If this is a series of conditions that are or'd or and'd together, emit + // this as a sequence of branches instead of setcc's with and/or operations. + // For example, instead of something like: + // cmp A, B + // C = seteq + // cmp D, E + // F = setle + // or C, F + // jnz foo + // Emit: + // cmp A, B + // je foo + // cmp D, E + // jle foo + // + if (BinaryOperator *BOp = dyn_cast(CondVal)) { + if (BOp->hasOneUse() && + (BOp->getOpcode() == Instruction::And || + BOp->getOpcode() == Instruction::Or)) { + FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); + // If the compares in later blocks need to use values not currently + // exported from this block, export them now. This block should always + // be the first entry. + assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); + + // Allow some cases to be rejected. + if (ShouldEmitAsBranches(SwitchCases)) { + for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { + ExportFromCurrentBlock(SwitchCases[i].CmpLHS); + ExportFromCurrentBlock(SwitchCases[i].CmpRHS); + } + + // Emit the branch for this block. + visitSwitchCase(SwitchCases[0]); + SwitchCases.erase(SwitchCases.begin()); + return; + } + + // Okay, we decided not to do this, remove any inserted MBB's and clear + // SwitchCases. + for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) + FuncInfo.MF->erase(SwitchCases[i].ThisBB); + + SwitchCases.clear(); + } + } + + // Create a CaseBlock record representing this branch. + CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), + NULL, Succ0MBB, Succ1MBB, CurMBB); + // Use visitSwitchCase to actually insert the fast branch sequence for this + // cond branch. + visitSwitchCase(CB); +} + +/// visitSwitchCase - Emits the necessary code to represent a single node in +/// the binary search tree resulting from lowering a switch instruction. +void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) { + SDValue Cond; + SDValue CondLHS = getValue(CB.CmpLHS); + DebugLoc dl = getCurDebugLoc(); + + // Build the setcc now. + if (CB.CmpMHS == NULL) { + // Fold "(X == true)" to X and "(X == false)" to !X to + // handle common cases produced by branch lowering. + if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && + CB.CC == ISD::SETEQ) + Cond = CondLHS; + else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && + CB.CC == ISD::SETEQ) { + SDValue True = DAG.getConstant(1, CondLHS.getValueType()); + Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); + } else + Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); + } else { + assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); + + const APInt& Low = cast(CB.CmpLHS)->getValue(); + const APInt& High = cast(CB.CmpRHS)->getValue(); + + SDValue CmpOp = getValue(CB.CmpMHS); + EVT VT = CmpOp.getValueType(); + + if (cast(CB.CmpLHS)->isMinValue(true)) { + Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), + ISD::SETLE); + } else { + SDValue SUB = DAG.getNode(ISD::SUB, dl, + VT, CmpOp, DAG.getConstant(Low, VT)); + Cond = DAG.getSetCC(dl, MVT::i1, SUB, + DAG.getConstant(High-Low, VT), ISD::SETULE); + } + } + + // Update successor info + CurMBB->addSuccessor(CB.TrueBB); + CurMBB->addSuccessor(CB.FalseBB); + + // Set NextBlock to be the MBB immediately after the current one, if any. + // This is used to avoid emitting unnecessary branches to the next block. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CurMBB; + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + // If the lhs block is the next block, invert the condition so that we can + // fall through to the lhs instead of the rhs block. + if (CB.TrueBB == NextBlock) { + std::swap(CB.TrueBB, CB.FalseBB); + SDValue True = DAG.getConstant(1, Cond.getValueType()); + Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); + } + SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, + MVT::Other, getControlRoot(), Cond, + DAG.getBasicBlock(CB.TrueBB)); + + // If the branch was constant folded, fix up the CFG. + if (BrCond.getOpcode() == ISD::BR) { + CurMBB->removeSuccessor(CB.FalseBB); + DAG.setRoot(BrCond); + } else { + // Otherwise, go ahead and insert the false branch. + if (BrCond == getControlRoot()) + CurMBB->removeSuccessor(CB.TrueBB); + + if (CB.FalseBB == NextBlock) + DAG.setRoot(BrCond); + else + DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, + DAG.getBasicBlock(CB.FalseBB))); + } +} + +/// visitJumpTable - Emit JumpTable node in the current MBB +void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { + // Emit the code for the jump table + assert(JT.Reg != -1U && "Should lower JT Header first!"); + EVT PTy = TLI.getPointerTy(); + SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), + JT.Reg, PTy); + SDValue Table = DAG.getJumpTable(JT.JTI, PTy); + DAG.setRoot(DAG.getNode(ISD::BR_JT, getCurDebugLoc(), + MVT::Other, Index.getValue(1), + Table, Index)); +} + +/// visitJumpTableHeader - This function emits necessary code to produce index +/// in the JumpTable from switch case. +void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, + JumpTableHeader &JTH) { + // Subtract the lowest switch case value from the value being switched on and + // conditional branch to default mbb if the result is greater than the + // difference between smallest and largest cases. + SDValue SwitchOp = getValue(JTH.SValue); + EVT VT = SwitchOp.getValueType(); + SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, + DAG.getConstant(JTH.First, VT)); + + // The SDNode we just created, which holds the value being switched on minus + // the the smallest case value, needs to be copied to a virtual register so it + // can be used as an index into the jump table in a subsequent basic block. + // This value may be smaller or larger than the target's pointer type, and + // therefore require extension or truncating. + SwitchOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy()); + + unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); + SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), + JumpTableReg, SwitchOp); + JT.Reg = JumpTableReg; + + // Emit the range check for the jump table, and branch to the default block + // for the switch statement if the value being switched on exceeds the largest + // case in the switch. + SDValue CMP = DAG.getSetCC(getCurDebugLoc(), + TLI.getSetCCResultType(SUB.getValueType()), SUB, + DAG.getConstant(JTH.Last-JTH.First,VT), + ISD::SETUGT); + + // Set NextBlock to be the MBB immediately after the current one, if any. + // This is used to avoid emitting unnecessary branches to the next block. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CurMBB; + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), + MVT::Other, CopyTo, CMP, + DAG.getBasicBlock(JT.Default)); + + if (JT.MBB == NextBlock) + DAG.setRoot(BrCond); + else + DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, + DAG.getBasicBlock(JT.MBB))); +} + +/// visitBitTestHeader - This function emits necessary code to produce value +/// suitable for "bit tests" +void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) { + // Subtract the minimum value + SDValue SwitchOp = getValue(B.SValue); + EVT VT = SwitchOp.getValueType(); + SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, + DAG.getConstant(B.First, VT)); + + // Check range + SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), + TLI.getSetCCResultType(SUB.getValueType()), + SUB, DAG.getConstant(B.Range, VT), + ISD::SETUGT); + + SDValue ShiftOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy()); + + B.Reg = FuncInfo.MakeReg(TLI.getPointerTy()); + SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), + B.Reg, ShiftOp); + + // Set NextBlock to be the MBB immediately after the current one, if any. + // This is used to avoid emitting unnecessary branches to the next block. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CurMBB; + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + MachineBasicBlock* MBB = B.Cases[0].ThisBB; + + CurMBB->addSuccessor(B.Default); + CurMBB->addSuccessor(MBB); + + SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), + MVT::Other, CopyTo, RangeCmp, + DAG.getBasicBlock(B.Default)); + + if (MBB == NextBlock) + DAG.setRoot(BrRange); + else + DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, + DAG.getBasicBlock(MBB))); +} + +/// visitBitTestCase - this function produces one "bit test" +void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, + unsigned Reg, + BitTestCase &B) { + // Make desired shift + SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, + TLI.getPointerTy()); + SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), + TLI.getPointerTy(), + DAG.getConstant(1, TLI.getPointerTy()), + ShiftOp); + + // Emit bit tests and jumps + SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), + TLI.getPointerTy(), SwitchVal, + DAG.getConstant(B.Mask, TLI.getPointerTy())); + SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(), + TLI.getSetCCResultType(AndOp.getValueType()), + AndOp, DAG.getConstant(0, TLI.getPointerTy()), + ISD::SETNE); + + CurMBB->addSuccessor(B.TargetBB); + CurMBB->addSuccessor(NextMBB); + + SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), + MVT::Other, getControlRoot(), + AndCmp, DAG.getBasicBlock(B.TargetBB)); + + // Set NextBlock to be the MBB immediately after the current one, if any. + // This is used to avoid emitting unnecessary branches to the next block. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CurMBB; + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + if (NextMBB == NextBlock) + DAG.setRoot(BrAnd); + else + DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, + DAG.getBasicBlock(NextMBB))); +} + +void SelectionDAGBuilder::visitInvoke(InvokeInst &I) { + // Retrieve successors. + MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; + MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; + + const Value *Callee(I.getCalledValue()); + if (isa(Callee)) + visitInlineAsm(&I); + else + LowerCallTo(&I, getValue(Callee), false, LandingPad); + + // If the value of the invoke is used outside of its defining block, make it + // available as a virtual register. + CopyToExportRegsIfNeeded(&I); + + // Update successor info + CurMBB->addSuccessor(Return); + CurMBB->addSuccessor(LandingPad); + + // Drop into normal successor. + DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), + MVT::Other, getControlRoot(), + DAG.getBasicBlock(Return))); +} + +void SelectionDAGBuilder::visitUnwind(UnwindInst &I) { +} + +/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for +/// small case ranges). +bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, + CaseRecVector& WorkList, + Value* SV, + MachineBasicBlock* Default) { + Case& BackCase = *(CR.Range.second-1); + + // Size is the number of Cases represented by this range. + size_t Size = CR.Range.second - CR.Range.first; + if (Size > 3) + return false; + + // Get the MachineFunction which holds the current MBB. This is used when + // inserting any additional MBBs necessary to represent the switch. + MachineFunction *CurMF = FuncInfo.MF; + + // Figure out which block is immediately after the current one. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CR.CaseBB; + + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + // TODO: If any two of the cases has the same destination, and if one value + // is the same as the other, but has one bit unset that the other has set, + // use bit manipulation to do two compares at once. For example: + // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" + + // Rearrange the case blocks so that the last one falls through if possible. + if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { + // The last case block won't fall through into 'NextBlock' if we emit the + // branches in this order. See if rearranging a case value would help. + for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { + if (I->BB == NextBlock) { + std::swap(*I, BackCase); + break; + } + } + } + + // Create a CaseBlock record representing a conditional branch to + // the Case's target mbb if the value being switched on SV is equal + // to C. + MachineBasicBlock *CurBlock = CR.CaseBB; + for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { + MachineBasicBlock *FallThrough; + if (I != E-1) { + FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); + CurMF->insert(BBI, FallThrough); + + // Put SV in a virtual register to make it available from the new blocks. + ExportFromCurrentBlock(SV); + } else { + // If the last case doesn't match, go to the default block. + FallThrough = Default; + } + + Value *RHS, *LHS, *MHS; + ISD::CondCode CC; + if (I->High == I->Low) { + // This is just small small case range :) containing exactly 1 case + CC = ISD::SETEQ; + LHS = SV; RHS = I->High; MHS = NULL; + } else { + CC = ISD::SETLE; + LHS = I->Low; MHS = SV; RHS = I->High; + } + CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); + + // If emitting the first comparison, just call visitSwitchCase to emit the + // code into the current block. Otherwise, push the CaseBlock onto the + // vector to be later processed by SDISel, and insert the node's MBB + // before the next MBB. + if (CurBlock == CurMBB) + visitSwitchCase(CB); + else + SwitchCases.push_back(CB); + + CurBlock = FallThrough; + } + + return true; +} + +static inline bool areJTsAllowed(const TargetLowering &TLI) { + return !DisableJumpTables && + (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || + TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); +} + +static APInt ComputeRange(const APInt &First, const APInt &Last) { + APInt LastExt(Last), FirstExt(First); + uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; + LastExt.sext(BitWidth); FirstExt.sext(BitWidth); + return (LastExt - FirstExt + 1ULL); +} + +/// handleJTSwitchCase - Emit jumptable for current switch case range +bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, + CaseRecVector& WorkList, + Value* SV, + MachineBasicBlock* Default) { + Case& FrontCase = *CR.Range.first; + Case& BackCase = *(CR.Range.second-1); + + const APInt &First = cast(FrontCase.Low)->getValue(); + const APInt &Last = cast(BackCase.High)->getValue(); + + APInt TSize(First.getBitWidth(), 0); + for (CaseItr I = CR.Range.first, E = CR.Range.second; + I!=E; ++I) + TSize += I->size(); + + if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4))) + return false; + + APInt Range = ComputeRange(First, Last); + double Density = TSize.roundToDouble() / Range.roundToDouble(); + if (Density < 0.4) + return false; + + DEBUG(errs() << "Lowering jump table\n" + << "First entry: " << First << ". Last entry: " << Last << '\n' + << "Range: " << Range + << "Size: " << TSize << ". Density: " << Density << "\n\n"); + + // Get the MachineFunction which holds the current MBB. This is used when + // inserting any additional MBBs necessary to represent the switch. + MachineFunction *CurMF = FuncInfo.MF; + + // Figure out which block is immediately after the current one. + MachineFunction::iterator BBI = CR.CaseBB; + ++BBI; + + const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); + + // Create a new basic block to hold the code for loading the address + // of the jump table, and jumping to it. Update successor information; + // we will either branch to the default case for the switch, or the jump + // table. + MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); + CurMF->insert(BBI, JumpTableBB); + CR.CaseBB->addSuccessor(Default); + CR.CaseBB->addSuccessor(JumpTableBB); + + // Build a vector of destination BBs, corresponding to each target + // of the jump table. If the value of the jump table slot corresponds to + // a case statement, push the case's BB onto the vector, otherwise, push + // the default BB. + std::vector DestBBs; + APInt TEI = First; + for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { + const APInt& Low = cast(I->Low)->getValue(); + const APInt& High = cast(I->High)->getValue(); + + if (Low.sle(TEI) && TEI.sle(High)) { + DestBBs.push_back(I->BB); + if (TEI==High) + ++I; + } else { + DestBBs.push_back(Default); + } + } + + // Update successor info. Add one edge to each unique successor. + BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); + for (std::vector::iterator I = DestBBs.begin(), + E = DestBBs.end(); I != E; ++I) { + if (!SuccsHandled[(*I)->getNumber()]) { + SuccsHandled[(*I)->getNumber()] = true; + JumpTableBB->addSuccessor(*I); + } + } + + // Create a jump table index for this jump table, or return an existing + // one. + unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs); + + // Set the jump table information so that we can codegen it as a second + // MachineBasicBlock + JumpTable JT(-1U, JTI, JumpTableBB, Default); + JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB)); + if (CR.CaseBB == CurMBB) + visitJumpTableHeader(JT, JTH); + + JTCases.push_back(JumpTableBlock(JTH, JT)); + + return true; +} + +/// handleBTSplitSwitchCase - emit comparison and split binary search tree into +/// 2 subtrees. +bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, + CaseRecVector& WorkList, + Value* SV, + MachineBasicBlock* Default) { + // Get the MachineFunction which holds the current MBB. This is used when + // inserting any additional MBBs necessary to represent the switch. + MachineFunction *CurMF = FuncInfo.MF; + + // Figure out which block is immediately after the current one. + MachineFunction::iterator BBI = CR.CaseBB; + ++BBI; + + Case& FrontCase = *CR.Range.first; + Case& BackCase = *(CR.Range.second-1); + const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); + + // Size is the number of Cases represented by this range. + unsigned Size = CR.Range.second - CR.Range.first; + + const APInt &First = cast(FrontCase.Low)->getValue(); + const APInt &Last = cast(BackCase.High)->getValue(); + double FMetric = 0; + CaseItr Pivot = CR.Range.first + Size/2; + + // Select optimal pivot, maximizing sum density of LHS and RHS. This will + // (heuristically) allow us to emit JumpTable's later. + APInt TSize(First.getBitWidth(), 0); + for (CaseItr I = CR.Range.first, E = CR.Range.second; + I!=E; ++I) + TSize += I->size(); + + APInt LSize = FrontCase.size(); + APInt RSize = TSize-LSize; + DEBUG(errs() << "Selecting best pivot: \n" + << "First: " << First << ", Last: " << Last <<'\n' + << "LSize: " << LSize << ", RSize: " << RSize << '\n'); + for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; + J!=E; ++I, ++J) { + const APInt &LEnd = cast(I->High)->getValue(); + const APInt &RBegin = cast(J->Low)->getValue(); + APInt Range = ComputeRange(LEnd, RBegin); + assert((Range - 2ULL).isNonNegative() && + "Invalid case distance"); + double LDensity = (double)LSize.roundToDouble() / + (LEnd - First + 1ULL).roundToDouble(); + double RDensity = (double)RSize.roundToDouble() / + (Last - RBegin + 1ULL).roundToDouble(); + double Metric = Range.logBase2()*(LDensity+RDensity); + // Should always split in some non-trivial place + DEBUG(errs() <<"=>Step\n" + << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' + << "LDensity: " << LDensity + << ", RDensity: " << RDensity << '\n' + << "Metric: " << Metric << '\n'); + if (FMetric < Metric) { + Pivot = J; + FMetric = Metric; + DEBUG(errs() << "Current metric set to: " << FMetric << '\n'); + } + + LSize += J->size(); + RSize -= J->size(); + } + if (areJTsAllowed(TLI)) { + // If our case is dense we *really* should handle it earlier! + assert((FMetric > 0) && "Should handle dense range earlier!"); + } else { + Pivot = CR.Range.first + Size/2; + } + + CaseRange LHSR(CR.Range.first, Pivot); + CaseRange RHSR(Pivot, CR.Range.second); + Constant *C = Pivot->Low; + MachineBasicBlock *FalseBB = 0, *TrueBB = 0; + + // We know that we branch to the LHS if the Value being switched on is + // less than the Pivot value, C. We use this to optimize our binary + // tree a bit, by recognizing that if SV is greater than or equal to the + // LHS's Case Value, and that Case Value is exactly one less than the + // Pivot's Value, then we can branch directly to the LHS's Target, + // rather than creating a leaf node for it. + if ((LHSR.second - LHSR.first) == 1 && + LHSR.first->High == CR.GE && + cast(C)->getValue() == + (cast(CR.GE)->getValue() + 1LL)) { + TrueBB = LHSR.first->BB; + } else { + TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); + CurMF->insert(BBI, TrueBB); + WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); + + // Put SV in a virtual register to make it available from the new blocks. + ExportFromCurrentBlock(SV); + } + + // Similar to the optimization above, if the Value being switched on is + // known to be less than the Constant CR.LT, and the current Case Value + // is CR.LT - 1, then we can branch directly to the target block for + // the current Case Value, rather than emitting a RHS leaf node for it. + if ((RHSR.second - RHSR.first) == 1 && CR.LT && + cast(RHSR.first->Low)->getValue() == + (cast(CR.LT)->getValue() - 1LL)) { + FalseBB = RHSR.first->BB; + } else { + FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); + CurMF->insert(BBI, FalseBB); + WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); + + // Put SV in a virtual register to make it available from the new blocks. + ExportFromCurrentBlock(SV); + } + + // Create a CaseBlock record representing a conditional branch to + // the LHS node if the value being switched on SV is less than C. + // Otherwise, branch to LHS. + CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); + + if (CR.CaseBB == CurMBB) + visitSwitchCase(CB); + else + SwitchCases.push_back(CB); + + return true; +} + +/// handleBitTestsSwitchCase - if current case range has few destination and +/// range span less, than machine word bitwidth, encode case range into series +/// of masks and emit bit tests with these masks. +bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, + CaseRecVector& WorkList, + Value* SV, + MachineBasicBlock* Default){ + EVT PTy = TLI.getPointerTy(); + unsigned IntPtrBits = PTy.getSizeInBits(); + + Case& FrontCase = *CR.Range.first; + Case& BackCase = *(CR.Range.second-1); + + // Get the MachineFunction which holds the current MBB. This is used when + // inserting any additional MBBs necessary to represent the switch. + MachineFunction *CurMF = FuncInfo.MF; + + // If target does not have legal shift left, do not emit bit tests at all. + if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) + return false; + + size_t numCmps = 0; + for (CaseItr I = CR.Range.first, E = CR.Range.second; + I!=E; ++I) { + // Single case counts one, case range - two. + numCmps += (I->Low == I->High ? 1 : 2); + } + + // Count unique destinations + SmallSet Dests; + for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { + Dests.insert(I->BB); + if (Dests.size() > 3) + // Don't bother the code below, if there are too much unique destinations + return false; + } + DEBUG(errs() << "Total number of unique destinations: " << Dests.size() << '\n' + << "Total number of comparisons: " << numCmps << '\n'); + + // Compute span of values. + const APInt& minValue = cast(FrontCase.Low)->getValue(); + const APInt& maxValue = cast(BackCase.High)->getValue(); + APInt cmpRange = maxValue - minValue; + + DEBUG(errs() << "Compare range: " << cmpRange << '\n' + << "Low bound: " << minValue << '\n' + << "High bound: " << maxValue << '\n'); + + if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) || + (!(Dests.size() == 1 && numCmps >= 3) && + !(Dests.size() == 2 && numCmps >= 5) && + !(Dests.size() >= 3 && numCmps >= 6))) + return false; + + DEBUG(errs() << "Emitting bit tests\n"); + APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); + + // Optimize the case where all the case values fit in a + // word without having to subtract minValue. In this case, + // we can optimize away the subtraction. + if (minValue.isNonNegative() && + maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) { + cmpRange = maxValue; + } else { + lowBound = minValue; + } + + CaseBitsVector CasesBits; + unsigned i, count = 0; + + for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { + MachineBasicBlock* Dest = I->BB; + for (i = 0; i < count; ++i) + if (Dest == CasesBits[i].BB) + break; + + if (i == count) { + assert((count < 3) && "Too much destinations to test!"); + CasesBits.push_back(CaseBits(0, Dest, 0)); + count++; + } + + const APInt& lowValue = cast(I->Low)->getValue(); + const APInt& highValue = cast(I->High)->getValue(); + + uint64_t lo = (lowValue - lowBound).getZExtValue(); + uint64_t hi = (highValue - lowBound).getZExtValue(); + + for (uint64_t j = lo; j <= hi; j++) { + CasesBits[i].Mask |= 1ULL << j; + CasesBits[i].Bits++; + } + + } + std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); + + BitTestInfo BTC; + + // Figure out which block is immediately after the current one. + MachineFunction::iterator BBI = CR.CaseBB; + ++BBI; + + const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); + + DEBUG(errs() << "Cases:\n"); + for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { + DEBUG(errs() << "Mask: " << CasesBits[i].Mask + << ", Bits: " << CasesBits[i].Bits + << ", BB: " << CasesBits[i].BB << '\n'); + + MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); + CurMF->insert(BBI, CaseBB); + BTC.push_back(BitTestCase(CasesBits[i].Mask, + CaseBB, + CasesBits[i].BB)); + + // Put SV in a virtual register to make it available from the new blocks. + ExportFromCurrentBlock(SV); + } + + BitTestBlock BTB(lowBound, cmpRange, SV, + -1U, (CR.CaseBB == CurMBB), + CR.CaseBB, Default, BTC); + + if (CR.CaseBB == CurMBB) + visitBitTestHeader(BTB); + + BitTestCases.push_back(BTB); + + return true; +} + + +/// Clusterify - Transform simple list of Cases into list of CaseRange's +size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, + const SwitchInst& SI) { + size_t numCmps = 0; + + // Start with "simple" cases + for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { + MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; + Cases.push_back(Case(SI.getSuccessorValue(i), + SI.getSuccessorValue(i), + SMBB)); + } + std::sort(Cases.begin(), Cases.end(), CaseCmp()); + + // Merge case into clusters + if (Cases.size() >= 2) + // Must recompute end() each iteration because it may be + // invalidated by erase if we hold on to it + for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { + const APInt& nextValue = cast(J->Low)->getValue(); + const APInt& currentValue = cast(I->High)->getValue(); + MachineBasicBlock* nextBB = J->BB; + MachineBasicBlock* currentBB = I->BB; + + // If the two neighboring cases go to the same destination, merge them + // into a single case. + if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { + I->High = J->High; + J = Cases.erase(J); + } else { + I = J++; + } + } + + for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { + if (I->Low != I->High) + // A range counts double, since it requires two compares. + ++numCmps; + } + + return numCmps; +} + +void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) { + // Figure out which block is immediately after the current one. + MachineBasicBlock *NextBlock = 0; + + MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; + + // If there is only the default destination, branch to it if it is not the + // next basic block. Otherwise, just fall through. + if (SI.getNumOperands() == 2) { + // Update machine-CFG edges. + + // If this is not a fall-through branch, emit the branch. + CurMBB->addSuccessor(Default); + if (Default != NextBlock) + DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), + MVT::Other, getControlRoot(), + DAG.getBasicBlock(Default))); + return; + } + + // If there are any non-default case statements, create a vector of Cases + // representing each one, and sort the vector so that we can efficiently + // create a binary search tree from them. + CaseVector Cases; + size_t numCmps = Clusterify(Cases, SI); + DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size() + << ". Total compares: " << numCmps << '\n'); + numCmps = 0; + + // Get the Value to be switched on and default basic blocks, which will be + // inserted into CaseBlock records, representing basic blocks in the binary + // search tree. + Value *SV = SI.getOperand(0); + + // Push the initial CaseRec onto the worklist + CaseRecVector WorkList; + WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); + + while (!WorkList.empty()) { + // Grab a record representing a case range to process off the worklist + CaseRec CR = WorkList.back(); + WorkList.pop_back(); + + if (handleBitTestsSwitchCase(CR, WorkList, SV, Default)) + continue; + + // If the range has few cases (two or less) emit a series of specific + // tests. + if (handleSmallSwitchRange(CR, WorkList, SV, Default)) + continue; + + // If the switch has more than 5 blocks, and at least 40% dense, and the + // target supports indirect branches, then emit a jump table rather than + // lowering the switch to a binary tree of conditional branches. + if (handleJTSwitchCase(CR, WorkList, SV, Default)) + continue; + + // Emit binary tree. We need to pick a pivot, and push left and right ranges + // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. + handleBTSplitSwitchCase(CR, WorkList, SV, Default); + } +} + +void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) { + // Update machine-CFG edges. + for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) + CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]); + + DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), + MVT::Other, getControlRoot(), + getValue(I.getAddress()))); +} + + +void SelectionDAGBuilder::visitFSub(User &I) { + // -0.0 - X --> fneg + const Type *Ty = I.getType(); + if (isa(Ty)) { + if (ConstantVector *CV = dyn_cast(I.getOperand(0))) { + const VectorType *DestTy = cast(I.getType()); + const Type *ElTy = DestTy->getElementType(); + unsigned VL = DestTy->getNumElements(); + std::vector NZ(VL, ConstantFP::getNegativeZero(ElTy)); + Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); + if (CV == CNZ) { + SDValue Op2 = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), + Op2.getValueType(), Op2)); + return; + } + } + } + if (ConstantFP *CFP = dyn_cast(I.getOperand(0))) + if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { + SDValue Op2 = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), + Op2.getValueType(), Op2)); + return; + } + + visitBinary(I, ISD::FSUB); +} + +void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) { + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + + setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), + Op1.getValueType(), Op1, Op2)); +} + +void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) { + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + if (!isa(I.getType()) && + Op2.getValueType() != TLI.getShiftAmountTy()) { + // If the operand is smaller than the shift count type, promote it. + EVT PTy = TLI.getPointerTy(); + EVT STy = TLI.getShiftAmountTy(); + if (STy.bitsGT(Op2.getValueType())) + Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), + TLI.getShiftAmountTy(), Op2); + // If the operand is larger than the shift count type but the shift + // count type has enough bits to represent any shift value, truncate + // it now. This is a common case and it exposes the truncate to + // optimization early. + else if (STy.getSizeInBits() >= + Log2_32_Ceil(Op2.getValueType().getSizeInBits())) + Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), + TLI.getShiftAmountTy(), Op2); + // Otherwise we'll need to temporarily settle for some other + // convenient type; type legalization will make adjustments as + // needed. + else if (PTy.bitsLT(Op2.getValueType())) + Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), + TLI.getPointerTy(), Op2); + else if (PTy.bitsGT(Op2.getValueType())) + Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), + TLI.getPointerTy(), Op2); + } + + setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), + Op1.getValueType(), Op1, Op2)); +} + +void SelectionDAGBuilder::visitICmp(User &I) { + ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; + if (ICmpInst *IC = dyn_cast(&I)) + predicate = IC->getPredicate(); + else if (ConstantExpr *IC = dyn_cast(&I)) + predicate = ICmpInst::Predicate(IC->getPredicate()); + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + ISD::CondCode Opcode = getICmpCondCode(predicate); + + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); +} + +void SelectionDAGBuilder::visitFCmp(User &I) { + FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; + if (FCmpInst *FC = dyn_cast(&I)) + predicate = FC->getPredicate(); + else if (ConstantExpr *FC = dyn_cast(&I)) + predicate = FCmpInst::Predicate(FC->getPredicate()); + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + ISD::CondCode Condition = getFCmpCondCode(predicate); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); +} + +void SelectionDAGBuilder::visitSelect(User &I) { + SmallVector ValueVTs; + ComputeValueVTs(TLI, I.getType(), ValueVTs); + unsigned NumValues = ValueVTs.size(); + if (NumValues != 0) { + SmallVector Values(NumValues); + SDValue Cond = getValue(I.getOperand(0)); + SDValue TrueVal = getValue(I.getOperand(1)); + SDValue FalseVal = getValue(I.getOperand(2)); + + for (unsigned i = 0; i != NumValues; ++i) + Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), + TrueVal.getValueType(), Cond, + SDValue(TrueVal.getNode(), TrueVal.getResNo() + i), + SDValue(FalseVal.getNode(), FalseVal.getResNo() + i)); + + setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), + DAG.getVTList(&ValueVTs[0], NumValues), + &Values[0], NumValues)); + } +} + + +void SelectionDAGBuilder::visitTrunc(User &I) { + // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitZExt(User &I) { + // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). + // ZExt also can't be a cast to bool for same reason. So, nothing much to do + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitSExt(User &I) { + // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). + // SExt also can't be a cast to bool for same reason. So, nothing much to do + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitFPTrunc(User &I) { + // FPTrunc is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), + DestVT, N, DAG.getIntPtrConstant(0))); +} + +void SelectionDAGBuilder::visitFPExt(User &I){ + // FPTrunc is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitFPToUI(User &I) { + // FPToUI is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitFPToSI(User &I) { + // FPToSI is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitUIToFP(User &I) { + // UIToFP is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitSIToFP(User &I){ + // SIToFP is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitPtrToInt(User &I) { + // What to do depends on the size of the integer and the size of the pointer. + // We can either truncate, zero extend, or no-op, accordingly. + SDValue N = getValue(I.getOperand(0)); + EVT SrcVT = N.getValueType(); + EVT DestVT = TLI.getValueType(I.getType()); + SDValue Result = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT); + setValue(&I, Result); +} + +void SelectionDAGBuilder::visitIntToPtr(User &I) { + // What to do depends on the size of the integer and the size of the pointer. + // We can either truncate, zero extend, or no-op, accordingly. + SDValue N = getValue(I.getOperand(0)); + EVT SrcVT = N.getValueType(); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); +} + +void SelectionDAGBuilder::visitBitCast(User &I) { + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + + // BitCast assures us that source and destination are the same size so this + // is either a BIT_CONVERT or a no-op. + if (DestVT != N.getValueType()) + setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), + DestVT, N)); // convert types + else + setValue(&I, N); // noop cast. +} + +void SelectionDAGBuilder::visitInsertElement(User &I) { + SDValue InVec = getValue(I.getOperand(0)); + SDValue InVal = getValue(I.getOperand(1)); + SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), + TLI.getPointerTy(), + getValue(I.getOperand(2))); + + setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), + TLI.getValueType(I.getType()), + InVec, InVal, InIdx)); +} + +void SelectionDAGBuilder::visitExtractElement(User &I) { + SDValue InVec = getValue(I.getOperand(0)); + SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), + TLI.getPointerTy(), + getValue(I.getOperand(1))); + setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), + TLI.getValueType(I.getType()), InVec, InIdx)); +} + + +// Utility for visitShuffleVector - Returns true if the mask is mask starting +// from SIndx and increasing to the element length (undefs are allowed). +static bool SequentialMask(SmallVectorImpl &Mask, unsigned SIndx) { + unsigned MaskNumElts = Mask.size(); + for (unsigned i = 0; i != MaskNumElts; ++i) + if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) + return false; + return true; +} + +void SelectionDAGBuilder::visitShuffleVector(User &I) { + SmallVector Mask; + SDValue Src1 = getValue(I.getOperand(0)); + SDValue Src2 = getValue(I.getOperand(1)); + + // Convert the ConstantVector mask operand into an array of ints, with -1 + // representing undef values. + SmallVector MaskElts; + cast(I.getOperand(2))->getVectorElements(*DAG.getContext(), + MaskElts); + unsigned MaskNumElts = MaskElts.size(); + for (unsigned i = 0; i != MaskNumElts; ++i) { + if (isa(MaskElts[i])) + Mask.push_back(-1); + else + Mask.push_back(cast(MaskElts[i])->getSExtValue()); + } + + EVT VT = TLI.getValueType(I.getType()); + EVT SrcVT = Src1.getValueType(); + unsigned SrcNumElts = SrcVT.getVectorNumElements(); + + if (SrcNumElts == MaskNumElts) { + setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, + &Mask[0])); + return; + } + + // Normalize the shuffle vector since mask and vector length don't match. + if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { + // Mask is longer than the source vectors and is a multiple of the source + // vectors. We can use concatenate vector to make the mask and vectors + // lengths match. + if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { + // The shuffle is concatenating two vectors together. + setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), + VT, Src1, Src2)); + return; + } + + // Pad both vectors with undefs to make them the same length as the mask. + unsigned NumConcat = MaskNumElts / SrcNumElts; + bool Src1U = Src1.getOpcode() == ISD::UNDEF; + bool Src2U = Src2.getOpcode() == ISD::UNDEF; + SDValue UndefVal = DAG.getUNDEF(SrcVT); + + SmallVector MOps1(NumConcat, UndefVal); + SmallVector MOps2(NumConcat, UndefVal); + MOps1[0] = Src1; + MOps2[0] = Src2; + + Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, + getCurDebugLoc(), VT, + &MOps1[0], NumConcat); + Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, + getCurDebugLoc(), VT, + &MOps2[0], NumConcat); + + // Readjust mask for new input vector length. + SmallVector MappedOps; + for (unsigned i = 0; i != MaskNumElts; ++i) { + int Idx = Mask[i]; + if (Idx < (int)SrcNumElts) + MappedOps.push_back(Idx); + else + MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); + } + setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, + &MappedOps[0])); + return; + } + + if (SrcNumElts > MaskNumElts) { + // Analyze the access pattern of the vector to see if we can extract + // two subvectors and do the shuffle. The analysis is done by calculating + // the range of elements the mask access on both vectors. + int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; + int MaxRange[2] = {-1, -1}; + + for (unsigned i = 0; i != MaskNumElts; ++i) { + int Idx = Mask[i]; + int Input = 0; + if (Idx < 0) + continue; + + if (Idx >= (int)SrcNumElts) { + Input = 1; + Idx -= SrcNumElts; + } + if (Idx > MaxRange[Input]) + MaxRange[Input] = Idx; + if (Idx < MinRange[Input]) + MinRange[Input] = Idx; + } + + // Check if the access is smaller than the vector size and can we find + // a reasonable extract index. + int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not Extract. + int StartIdx[2]; // StartIdx to extract from + for (int Input=0; Input < 2; ++Input) { + if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { + RangeUse[Input] = 0; // Unused + StartIdx[Input] = 0; + } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { + // Fits within range but we should see if we can find a good + // start index that is a multiple of the mask length. + if (MaxRange[Input] < (int)MaskNumElts) { + RangeUse[Input] = 1; // Extract from beginning of the vector + StartIdx[Input] = 0; + } else { + StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; + if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && + StartIdx[Input] + MaskNumElts < SrcNumElts) + RangeUse[Input] = 1; // Extract from a multiple of the mask length. + } + } + } + + if (RangeUse[0] == 0 && RangeUse[1] == 0) { + setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. + return; + } + else if (RangeUse[0] < 2 && RangeUse[1] < 2) { + // Extract appropriate subvector and generate a vector shuffle + for (int Input=0; Input < 2; ++Input) { + SDValue& Src = Input == 0 ? Src1 : Src2; + if (RangeUse[Input] == 0) { + Src = DAG.getUNDEF(VT); + } else { + Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, + Src, DAG.getIntPtrConstant(StartIdx[Input])); + } + } + // Calculate new mask. + SmallVector MappedOps; + for (unsigned i = 0; i != MaskNumElts; ++i) { + int Idx = Mask[i]; + if (Idx < 0) + MappedOps.push_back(Idx); + else if (Idx < (int)SrcNumElts) + MappedOps.push_back(Idx - StartIdx[0]); + else + MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); + } + setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, + &MappedOps[0])); + return; + } + } + + // We can't use either concat vectors or extract subvectors so fall back to + // replacing the shuffle with extract and build vector. + // to insert and build vector. + EVT EltVT = VT.getVectorElementType(); + EVT PtrVT = TLI.getPointerTy(); + SmallVector Ops; + for (unsigned i = 0; i != MaskNumElts; ++i) { + if (Mask[i] < 0) { + Ops.push_back(DAG.getUNDEF(EltVT)); + } else { + int Idx = Mask[i]; + if (Idx < (int)SrcNumElts) + Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), + EltVT, Src1, DAG.getConstant(Idx, PtrVT))); + else + Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), + EltVT, Src2, + DAG.getConstant(Idx - SrcNumElts, PtrVT))); + } + } + setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), + VT, &Ops[0], Ops.size())); +} + +void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) { + const Value *Op0 = I.getOperand(0); + const Value *Op1 = I.getOperand(1); + const Type *AggTy = I.getType(); + const Type *ValTy = Op1->getType(); + bool IntoUndef = isa(Op0); + bool FromUndef = isa(Op1); + + unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, + I.idx_begin(), I.idx_end()); + + SmallVector AggValueVTs; + ComputeValueVTs(TLI, AggTy, AggValueVTs); + SmallVector ValValueVTs; + ComputeValueVTs(TLI, ValTy, ValValueVTs); + + unsigned NumAggValues = AggValueVTs.size(); + unsigned NumValValues = ValValueVTs.size(); + SmallVector Values(NumAggValues); + + SDValue Agg = getValue(Op0); + SDValue Val = getValue(Op1); + unsigned i = 0; + // Copy the beginning value(s) from the original aggregate. + for (; i != LinearIndex; ++i) + Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : + SDValue(Agg.getNode(), Agg.getResNo() + i); + // Copy values from the inserted value(s). + for (; i != LinearIndex + NumValValues; ++i) + Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : + SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); + // Copy remaining value(s) from the original aggregate. + for (; i != NumAggValues; ++i) + Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : + SDValue(Agg.getNode(), Agg.getResNo() + i); + + setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), + DAG.getVTList(&AggValueVTs[0], NumAggValues), + &Values[0], NumAggValues)); +} + +void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) { + const Value *Op0 = I.getOperand(0); + const Type *AggTy = Op0->getType(); + const Type *ValTy = I.getType(); + bool OutOfUndef = isa(Op0); + + unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, + I.idx_begin(), I.idx_end()); + + SmallVector ValValueVTs; + ComputeValueVTs(TLI, ValTy, ValValueVTs); + + unsigned NumValValues = ValValueVTs.size(); + SmallVector Values(NumValValues); + + SDValue Agg = getValue(Op0); + // Copy out the selected value(s). + for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) + Values[i - LinearIndex] = + OutOfUndef ? + DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : + SDValue(Agg.getNode(), Agg.getResNo() + i); + + setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), + DAG.getVTList(&ValValueVTs[0], NumValValues), + &Values[0], NumValValues)); +} + + +void SelectionDAGBuilder::visitGetElementPtr(User &I) { + SDValue N = getValue(I.getOperand(0)); + const Type *Ty = I.getOperand(0)->getType(); + + for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); + OI != E; ++OI) { + Value *Idx = *OI; + if (const StructType *StTy = dyn_cast(Ty)) { + unsigned Field = cast(Idx)->getZExtValue(); + if (Field) { + // N = N + Offset + uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); + N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, + DAG.getIntPtrConstant(Offset)); + } + Ty = StTy->getElementType(Field); + } else { + Ty = cast(Ty)->getElementType(); + + // If this is a constant subscript, handle it quickly. + if (ConstantInt *CI = dyn_cast(Idx)) { + if (CI->getZExtValue() == 0) continue; + uint64_t Offs = + TD->getTypeAllocSize(Ty)*cast(CI)->getSExtValue(); + SDValue OffsVal; + EVT PTy = TLI.getPointerTy(); + unsigned PtrBits = PTy.getSizeInBits(); + if (PtrBits < 64) { + OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), + TLI.getPointerTy(), + DAG.getConstant(Offs, MVT::i64)); + } else + OffsVal = DAG.getIntPtrConstant(Offs); + N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, + OffsVal); + continue; + } + + // N = N + Idx * ElementSize; + APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), + TD->getTypeAllocSize(Ty)); + SDValue IdxN = getValue(Idx); + + // If the index is smaller or larger than intptr_t, truncate or extend + // it. + IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); + + // If this is a multiply by a power of two, turn it into a shl + // immediately. This is a very common case. + if (ElementSize != 1) { + if (ElementSize.isPowerOf2()) { + unsigned Amt = ElementSize.logBase2(); + IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), + N.getValueType(), IdxN, + DAG.getConstant(Amt, TLI.getPointerTy())); + } else { + SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); + IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), + N.getValueType(), IdxN, Scale); + } + } + + N = DAG.getNode(ISD::ADD, getCurDebugLoc(), + N.getValueType(), N, IdxN); + } + } + setValue(&I, N); +} + +void SelectionDAGBuilder::visitAlloca(AllocaInst &I) { + // If this is a fixed sized alloca in the entry block of the function, + // allocate it statically on the stack. + if (FuncInfo.StaticAllocaMap.count(&I)) + return; // getValue will auto-populate this. + + const Type *Ty = I.getAllocatedType(); + uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); + unsigned Align = + std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), + I.getAlignment()); + + SDValue AllocSize = getValue(I.getArraySize()); + + AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(), + AllocSize, + DAG.getConstant(TySize, AllocSize.getValueType())); + + + + EVT IntPtr = TLI.getPointerTy(); + AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); + + // Handle alignment. If the requested alignment is less than or equal to + // the stack alignment, ignore it. If the size is greater than or equal to + // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. + unsigned StackAlign = + TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); + if (Align <= StackAlign) + Align = 0; + + // Round the size of the allocation up to the stack alignment size + // by add SA-1 to the size. + AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), + AllocSize.getValueType(), AllocSize, + DAG.getIntPtrConstant(StackAlign-1)); + // Mask out the low bits for alignment purposes. + AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), + AllocSize.getValueType(), AllocSize, + DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); + + SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; + SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); + SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), + VTs, Ops, 3); + setValue(&I, DSA); + DAG.setRoot(DSA.getValue(1)); + + // Inform the Frame Information that we have just allocated a variable-sized + // object. + FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(); +} + +void SelectionDAGBuilder::visitLoad(LoadInst &I) { + const Value *SV = I.getOperand(0); + SDValue Ptr = getValue(SV); + + const Type *Ty = I.getType(); + bool isVolatile = I.isVolatile(); + unsigned Alignment = I.getAlignment(); + + SmallVector ValueVTs; + SmallVector Offsets; + ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); + unsigned NumValues = ValueVTs.size(); + if (NumValues == 0) + return; + + SDValue Root; + bool ConstantMemory = false; + if (I.isVolatile()) + // Serialize volatile loads with other side effects. + Root = getRoot(); + else if (AA->pointsToConstantMemory(SV)) { + // Do not serialize (non-volatile) loads of constant memory with anything. + Root = DAG.getEntryNode(); + ConstantMemory = true; + } else { + // Do not serialize non-volatile loads against each other. + Root = DAG.getRoot(); + } + + SmallVector Values(NumValues); + SmallVector Chains(NumValues); + EVT PtrVT = Ptr.getValueType(); + for (unsigned i = 0; i != NumValues; ++i) { + SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, + DAG.getNode(ISD::ADD, getCurDebugLoc(), + PtrVT, Ptr, + DAG.getConstant(Offsets[i], PtrVT)), + SV, Offsets[i], isVolatile, Alignment); + Values[i] = L; + Chains[i] = L.getValue(1); + } + + if (!ConstantMemory) { + SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), + MVT::Other, + &Chains[0], NumValues); + if (isVolatile) + DAG.setRoot(Chain); + else + PendingLoads.push_back(Chain); + } + + setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), + DAG.getVTList(&ValueVTs[0], NumValues), + &Values[0], NumValues)); +} + + +void SelectionDAGBuilder::visitStore(StoreInst &I) { + Value *SrcV = I.getOperand(0); + Value *PtrV = I.getOperand(1); + + SmallVector ValueVTs; + SmallVector Offsets; + ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); + unsigned NumValues = ValueVTs.size(); + if (NumValues == 0) + return; + + // Get the lowered operands. Note that we do this after + // checking if NumResults is zero, because with zero results + // the operands won't have values in the map. + SDValue Src = getValue(SrcV); + SDValue Ptr = getValue(PtrV); + + SDValue Root = getRoot(); + SmallVector Chains(NumValues); + EVT PtrVT = Ptr.getValueType(); + bool isVolatile = I.isVolatile(); + unsigned Alignment = I.getAlignment(); + for (unsigned i = 0; i != NumValues; ++i) + Chains[i] = DAG.getStore(Root, getCurDebugLoc(), + SDValue(Src.getNode(), Src.getResNo() + i), + DAG.getNode(ISD::ADD, getCurDebugLoc(), + PtrVT, Ptr, + DAG.getConstant(Offsets[i], PtrVT)), + PtrV, Offsets[i], isVolatile, Alignment); + + DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), + MVT::Other, &Chains[0], NumValues)); +} + +/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC +/// node. +void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I, + unsigned Intrinsic) { + bool HasChain = !I.doesNotAccessMemory(); + bool OnlyLoad = HasChain && I.onlyReadsMemory(); + + // Build the operand list. + SmallVector Ops; + if (HasChain) { // If this intrinsic has side-effects, chainify it. + if (OnlyLoad) { + // We don't need to serialize loads against other loads. + Ops.push_back(DAG.getRoot()); + } else { + Ops.push_back(getRoot()); + } + } + + // Info is set by getTgtMemInstrinsic + TargetLowering::IntrinsicInfo Info; + bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); + + // Add the intrinsic ID as an integer operand if it's not a target intrinsic. + if (!IsTgtIntrinsic) + Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); + + // Add all operands of the call to the operand list. + for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { + SDValue Op = getValue(I.getOperand(i)); + assert(TLI.isTypeLegal(Op.getValueType()) && + "Intrinsic uses a non-legal type?"); + Ops.push_back(Op); + } + + SmallVector ValueVTs; + ComputeValueVTs(TLI, I.getType(), ValueVTs); +#ifndef NDEBUG + for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { + assert(TLI.isTypeLegal(ValueVTs[Val]) && + "Intrinsic uses a non-legal type?"); + } +#endif // NDEBUG + if (HasChain) + ValueVTs.push_back(MVT::Other); + + SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); + + // Create the node. + SDValue Result; + if (IsTgtIntrinsic) { + // This is target intrinsic that touches memory + Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), + VTs, &Ops[0], Ops.size(), + Info.memVT, Info.ptrVal, Info.offset, + Info.align, Info.vol, + Info.readMem, Info.writeMem); + } + else if (!HasChain) + Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), + VTs, &Ops[0], Ops.size()); + else if (I.getType() != Type::getVoidTy(*DAG.getContext())) + Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), + VTs, &Ops[0], Ops.size()); + else + Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), + VTs, &Ops[0], Ops.size()); + + if (HasChain) { + SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); + if (OnlyLoad) + PendingLoads.push_back(Chain); + else + DAG.setRoot(Chain); + } + if (I.getType() != Type::getVoidTy(*DAG.getContext())) { + if (const VectorType *PTy = dyn_cast(I.getType())) { + EVT VT = TLI.getValueType(PTy); + Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); + } + setValue(&I, Result); + } +} + +/// GetSignificand - Get the significand and build it into a floating-point +/// number with exponent of 1: +/// +/// Op = (Op & 0x007fffff) | 0x3f800000; +/// +/// where Op is the hexidecimal representation of floating point value. +static SDValue +GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { + SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, + DAG.getConstant(0x007fffff, MVT::i32)); + SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, + DAG.getConstant(0x3f800000, MVT::i32)); + return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); +} + +/// GetExponent - Get the exponent: +/// +/// (float)(int)(((Op & 0x7f800000) >> 23) - 127); +/// +/// where Op is the hexidecimal representation of floating point value. +static SDValue +GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, + DebugLoc dl) { + SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, + DAG.getConstant(0x7f800000, MVT::i32)); + SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, + DAG.getConstant(23, TLI.getPointerTy())); + SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, + DAG.getConstant(127, MVT::i32)); + return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); +} + +/// getF32Constant - Get 32-bit floating point constant. +static SDValue +getF32Constant(SelectionDAG &DAG, unsigned Flt) { + return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); +} + +/// Inlined utility function to implement binary input atomic intrinsics for +/// visitIntrinsicCall: I is a call instruction +/// Op is the associated NodeType for I +const char * +SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) { + SDValue Root = getRoot(); + SDValue L = + DAG.getAtomic(Op, getCurDebugLoc(), + getValue(I.getOperand(2)).getValueType().getSimpleVT(), + Root, + getValue(I.getOperand(1)), + getValue(I.getOperand(2)), + I.getOperand(1)); + setValue(&I, L); + DAG.setRoot(L.getValue(1)); + return 0; +} + +// implVisitAluOverflow - Lower arithmetic overflow instrinsics. +const char * +SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) { + SDValue Op1 = getValue(I.getOperand(1)); + SDValue Op2 = getValue(I.getOperand(2)); + + SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); + SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2); + + setValue(&I, Result); + return 0; +} + +/// visitExp - Lower an exp intrinsic. Handles the special sequences for +/// limited-precision mode. +void +SelectionDAGBuilder::visitExp(CallInst &I) { + SDValue result; + DebugLoc dl = getCurDebugLoc(); + + if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + SDValue Op = getValue(I.getOperand(1)); + + // Put the exponent in the right bit position for later addition to the + // final result: + // + // #define LOG2OFe 1.4426950f + // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, + getF32Constant(DAG, 0x3fb8aa3b)); + SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); + + // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; + SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); + SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); + + // IntegerPartOfX <<= 23; + IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, + DAG.getConstant(23, TLI.getPointerTy())); + + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // TwoToFractionalPartOfX = + // 0.997535578f + + // (0.735607626f + 0.252464424f * x) * x; + // + // error 0.0144103317, which is 6 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3e814304)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f3c50c8)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f7f5e7e)); + SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); + + // Add the exponent into the result in integer domain. + SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, + TwoToFracPartOfX, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); + } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // TwoToFractionalPartOfX = + // 0.999892986f + + // (0.696457318f + + // (0.224338339f + 0.792043434e-1f * x) * x) * x; + // + // 0.000107046256 error, which is 13 to 14 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3da235e3)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3e65b8f3)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f324b07)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3f7ff8fd)); + SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); + + // Add the exponent into the result in integer domain. + SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, + TwoToFracPartOfX, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); + } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // TwoToFractionalPartOfX = + // 0.999999982f + + // (0.693148872f + + // (0.240227044f + + // (0.554906021e-1f + + // (0.961591928e-2f + + // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; + // + // error 2.47208000*10^(-7), which is better than 18 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3924b03e)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3ab24b87)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3c1d8c17)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3d634a1d)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, + getF32Constant(DAG, 0x3e75fe14)); + SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); + SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, + getF32Constant(DAG, 0x3f317234)); + SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); + SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, + getF32Constant(DAG, 0x3f800000)); + SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, + MVT::i32, t13); + + // Add the exponent into the result in integer domain. + SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, + TwoToFracPartOfX, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); + } + } else { + // No special expansion. + result = DAG.getNode(ISD::FEXP, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1))); + } + + setValue(&I, result); +} + +/// visitLog - Lower a log intrinsic. Handles the special sequences for +/// limited-precision mode. +void +SelectionDAGBuilder::visitLog(CallInst &I) { + SDValue result; + DebugLoc dl = getCurDebugLoc(); + + if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + SDValue Op = getValue(I.getOperand(1)); + SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); + + // Scale the exponent by log(2) [0.69314718f]. + SDValue Exp = GetExponent(DAG, Op1, TLI, dl); + SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, + getF32Constant(DAG, 0x3f317218)); + + // Get the significand and build it into a floating-point number with + // exponent of 1. + SDValue X = GetSignificand(DAG, Op1, dl); + + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // LogofMantissa = + // -1.1609546f + + // (1.4034025f - 0.23903021f * x) * x; + // + // error 0.0034276066, which is better than 8 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbe74c456)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3fb3a2b1)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f949a29)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, LogOfMantissa); + } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // LogOfMantissa = + // -1.7417939f + + // (2.8212026f + + // (-1.4699568f + + // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; + // + // error 0.000061011436, which is 14 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbd67b6d6)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3ee4f4b8)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3fbc278b)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x40348e95)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3fdef31a)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, LogOfMantissa); + } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // LogOfMantissa = + // -2.1072184f + + // (4.2372794f + + // (-3.7029485f + + // (2.2781945f + + // (-0.87823314f + + // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; + // + // error 0.0000023660568, which is better than 18 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbc91e5ac)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3e4350aa)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f60d3e3)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x4011cdf0)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, + getF32Constant(DAG, 0x406cfd1c)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, + getF32Constant(DAG, 0x408797cb)); + SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); + SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, + getF32Constant(DAG, 0x4006dcab)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, LogOfMantissa); + } + } else { + // No special expansion. + result = DAG.getNode(ISD::FLOG, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1))); + } + + setValue(&I, result); +} + +/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for +/// limited-precision mode. +void +SelectionDAGBuilder::visitLog2(CallInst &I) { + SDValue result; + DebugLoc dl = getCurDebugLoc(); + + if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + SDValue Op = getValue(I.getOperand(1)); + SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); + + // Get the exponent. + SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); + + // Get the significand and build it into a floating-point number with + // exponent of 1. + SDValue X = GetSignificand(DAG, Op1, dl); + + // Different possible minimax approximations of significand in + // floating-point for various degrees of accuracy over [1,2]. + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; + // + // error 0.0049451742, which is more than 7 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbeb08fe0)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x40019463)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3fd6633d)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, Log2ofMantissa); + } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // Log2ofMantissa = + // -2.51285454f + + // (4.07009056f + + // (-2.12067489f + + // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; + // + // error 0.0000876136000, which is better than 13 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbda7262e)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3f25280b)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x4007b923)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x40823e2f)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, + getF32Constant(DAG, 0x4020d29c)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, Log2ofMantissa); + } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // Log2ofMantissa = + // -3.0400495f + + // (6.1129976f + + // (-5.3420409f + + // (3.2865683f + + // (-1.2669343f + + // (0.27515199f - + // 0.25691327e-1f * x) * x) * x) * x) * x) * x; + // + // error 0.0000018516, which is better than 18 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbcd2769e)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3e8ce0b9)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3fa22ae7)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x40525723)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, + getF32Constant(DAG, 0x40aaf200)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, + getF32Constant(DAG, 0x40c39dad)); + SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); + SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, + getF32Constant(DAG, 0x4042902c)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, Log2ofMantissa); + } + } else { + // No special expansion. + result = DAG.getNode(ISD::FLOG2, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1))); + } + + setValue(&I, result); +} + +/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for +/// limited-precision mode. +void +SelectionDAGBuilder::visitLog10(CallInst &I) { + SDValue result; + DebugLoc dl = getCurDebugLoc(); + + if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + SDValue Op = getValue(I.getOperand(1)); + SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); + + // Scale the exponent by log10(2) [0.30102999f]. + SDValue Exp = GetExponent(DAG, Op1, TLI, dl); + SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, + getF32Constant(DAG, 0x3e9a209a)); + + // Get the significand and build it into a floating-point number with + // exponent of 1. + SDValue X = GetSignificand(DAG, Op1, dl); + + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // Log10ofMantissa = + // -0.50419619f + + // (0.60948995f - 0.10380950f * x) * x; + // + // error 0.0014886165, which is 6 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbdd49a13)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3f1c0789)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f011300)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, Log10ofMantissa); + } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // Log10ofMantissa = + // -0.64831180f + + // (0.91751397f + + // (-0.31664806f + 0.47637168e-1f * x) * x) * x; + // + // error 0.00019228036, which is better than 12 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3d431f31)); + SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3ea21fb2)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f6ae232)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f25f7c3)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, Log10ofMantissa); + } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // Log10ofMantissa = + // -0.84299375f + + // (1.5327582f + + // (-1.0688956f + + // (0.49102474f + + // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; + // + // error 0.0000037995730, which is better than 18 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3c5d51ce)); + SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3e00685a)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3efb6798)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f88d192)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3fc4316c)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, + getF32Constant(DAG, 0x3f57ce70)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, Log10ofMantissa); + } + } else { + // No special expansion. + result = DAG.getNode(ISD::FLOG10, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1))); + } + + setValue(&I, result); +} + +/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for +/// limited-precision mode. +void +SelectionDAGBuilder::visitExp2(CallInst &I) { + SDValue result; + DebugLoc dl = getCurDebugLoc(); + + if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + SDValue Op = getValue(I.getOperand(1)); + + SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); + + // FractionalPartOfX = x - (float)IntegerPartOfX; + SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); + SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); + + // IntegerPartOfX <<= 23; + IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, + DAG.getConstant(23, TLI.getPointerTy())); + + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // TwoToFractionalPartOfX = + // 0.997535578f + + // (0.735607626f + 0.252464424f * x) * x; + // + // error 0.0144103317, which is 6 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3e814304)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f3c50c8)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f7f5e7e)); + SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); + SDValue TwoToFractionalPartOfX = + DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, + MVT::f32, TwoToFractionalPartOfX); + } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // TwoToFractionalPartOfX = + // 0.999892986f + + // (0.696457318f + + // (0.224338339f + 0.792043434e-1f * x) * x) * x; + // + // error 0.000107046256, which is 13 to 14 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3da235e3)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3e65b8f3)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f324b07)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3f7ff8fd)); + SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); + SDValue TwoToFractionalPartOfX = + DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, + MVT::f32, TwoToFractionalPartOfX); + } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // TwoToFractionalPartOfX = + // 0.999999982f + + // (0.693148872f + + // (0.240227044f + + // (0.554906021e-1f + + // (0.961591928e-2f + + // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; + // error 2.47208000*10^(-7), which is better than 18 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3924b03e)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3ab24b87)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3c1d8c17)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3d634a1d)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, + getF32Constant(DAG, 0x3e75fe14)); + SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); + SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, + getF32Constant(DAG, 0x3f317234)); + SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); + SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, + getF32Constant(DAG, 0x3f800000)); + SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); + SDValue TwoToFractionalPartOfX = + DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, + MVT::f32, TwoToFractionalPartOfX); + } + } else { + // No special expansion. + result = DAG.getNode(ISD::FEXP2, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1))); + } + + setValue(&I, result); +} + +/// visitPow - Lower a pow intrinsic. Handles the special sequences for +/// limited-precision mode with x == 10.0f. +void +SelectionDAGBuilder::visitPow(CallInst &I) { + SDValue result; + Value *Val = I.getOperand(1); + DebugLoc dl = getCurDebugLoc(); + bool IsExp10 = false; + + if (getValue(Val).getValueType() == MVT::f32 && + getValue(I.getOperand(2)).getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + if (Constant *C = const_cast(dyn_cast(Val))) { + if (ConstantFP *CFP = dyn_cast(C)) { + APFloat Ten(10.0f); + IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); + } + } + } + + if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + SDValue Op = getValue(I.getOperand(2)); + + // Put the exponent in the right bit position for later addition to the + // final result: + // + // #define LOG2OF10 3.3219281f + // IntegerPartOfX = (int32_t)(x * LOG2OF10); + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, + getF32Constant(DAG, 0x40549a78)); + SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); + + // FractionalPartOfX = x - (float)IntegerPartOfX; + SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); + SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); + + // IntegerPartOfX <<= 23; + IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, + DAG.getConstant(23, TLI.getPointerTy())); + + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // twoToFractionalPartOfX = + // 0.997535578f + + // (0.735607626f + 0.252464424f * x) * x; + // + // error 0.0144103317, which is 6 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3e814304)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f3c50c8)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f7f5e7e)); + SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); + SDValue TwoToFractionalPartOfX = + DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, + MVT::f32, TwoToFractionalPartOfX); + } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // TwoToFractionalPartOfX = + // 0.999892986f + + // (0.696457318f + + // (0.224338339f + 0.792043434e-1f * x) * x) * x; + // + // error 0.000107046256, which is 13 to 14 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3da235e3)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3e65b8f3)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f324b07)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3f7ff8fd)); + SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); + SDValue TwoToFractionalPartOfX = + DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, + MVT::f32, TwoToFractionalPartOfX); + } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // TwoToFractionalPartOfX = + // 0.999999982f + + // (0.693148872f + + // (0.240227044f + + // (0.554906021e-1f + + // (0.961591928e-2f + + // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; + // error 2.47208000*10^(-7), which is better than 18 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3924b03e)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3ab24b87)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3c1d8c17)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3d634a1d)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, + getF32Constant(DAG, 0x3e75fe14)); + SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); + SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, + getF32Constant(DAG, 0x3f317234)); + SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); + SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, + getF32Constant(DAG, 0x3f800000)); + SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); + SDValue TwoToFractionalPartOfX = + DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, + MVT::f32, TwoToFractionalPartOfX); + } + } else { + // No special expansion. + result = DAG.getNode(ISD::FPOW, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)), + getValue(I.getOperand(2))); + } + + setValue(&I, result); +} + +/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If +/// we want to emit this as a call to a named external function, return the name +/// otherwise lower it and return null. +const char * +SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { + DebugLoc dl = getCurDebugLoc(); + switch (Intrinsic) { + default: + // By default, turn this into a target intrinsic node. + visitTargetIntrinsic(I, Intrinsic); + return 0; + case Intrinsic::vastart: visitVAStart(I); return 0; + case Intrinsic::vaend: visitVAEnd(I); return 0; + case Intrinsic::vacopy: visitVACopy(I); return 0; + case Intrinsic::returnaddress: + setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::frameaddress: + setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::setjmp: + return "_setjmp"+!TLI.usesUnderscoreSetJmp(); + break; + case Intrinsic::longjmp: + return "_longjmp"+!TLI.usesUnderscoreLongJmp(); + break; + case Intrinsic::memcpy: { + SDValue Op1 = getValue(I.getOperand(1)); + SDValue Op2 = getValue(I.getOperand(2)); + SDValue Op3 = getValue(I.getOperand(3)); + unsigned Align = cast(I.getOperand(4))->getZExtValue(); + DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, + I.getOperand(1), 0, I.getOperand(2), 0)); + return 0; + } + case Intrinsic::memset: { + SDValue Op1 = getValue(I.getOperand(1)); + SDValue Op2 = getValue(I.getOperand(2)); + SDValue Op3 = getValue(I.getOperand(3)); + unsigned Align = cast(I.getOperand(4))->getZExtValue(); + DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, + I.getOperand(1), 0)); + return 0; + } + case Intrinsic::memmove: { + SDValue Op1 = getValue(I.getOperand(1)); + SDValue Op2 = getValue(I.getOperand(2)); + SDValue Op3 = getValue(I.getOperand(3)); + unsigned Align = cast(I.getOperand(4))->getZExtValue(); + + // If the source and destination are known to not be aliases, we can + // lower memmove as memcpy. + uint64_t Size = -1ULL; + if (ConstantSDNode *C = dyn_cast(Op3)) + Size = C->getZExtValue(); + if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == + AliasAnalysis::NoAlias) { + DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, + I.getOperand(1), 0, I.getOperand(2), 0)); + return 0; + } + + DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, + I.getOperand(1), 0, I.getOperand(2), 0)); + return 0; + } + case Intrinsic::dbg_stoppoint: + case Intrinsic::dbg_region_start: + case Intrinsic::dbg_region_end: + case Intrinsic::dbg_func_start: + // FIXME - Remove this instructions once the dust settles. + return 0; + case Intrinsic::dbg_declare: { + if (OptLevel != CodeGenOpt::None) + // FIXME: Variable debug info is not supported here. + return 0; + DwarfWriter *DW = DAG.getDwarfWriter(); + if (!DW) + return 0; + DbgDeclareInst &DI = cast(I); + if (!isValidDebugInfoIntrinsic(DI, CodeGenOpt::None)) + return 0; + + MDNode *Variable = DI.getVariable(); + Value *Address = DI.getAddress(); + if (BitCastInst *BCI = dyn_cast(Address)) + Address = BCI->getOperand(0); + AllocaInst *AI = dyn_cast(Address); + // Don't handle byval struct arguments or VLAs, for example. + if (!AI) + return 0; + DenseMap::iterator SI = + FuncInfo.StaticAllocaMap.find(AI); + if (SI == FuncInfo.StaticAllocaMap.end()) + return 0; // VLAs. + int FI = SI->second; + + MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); + if (MMI) { + MetadataContext &TheMetadata = + DI.getParent()->getContext().getMetadata(); + unsigned MDDbgKind = TheMetadata.getMDKind("dbg"); + MDNode *Dbg = TheMetadata.getMD(MDDbgKind, &DI); + MMI->setVariableDbgInfo(Variable, FI, Dbg); + } + return 0; + } + case Intrinsic::eh_exception: { + // Insert the EXCEPTIONADDR instruction. + assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!"); + SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); + SDValue Ops[1]; + Ops[0] = DAG.getRoot(); + SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); + setValue(&I, Op); + DAG.setRoot(Op.getValue(1)); + return 0; + } + + case Intrinsic::eh_selector: { + MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); + + if (CurMBB->isLandingPad()) + AddCatchInfo(I, MMI, CurMBB); + else { +#ifndef NDEBUG + FuncInfo.CatchInfoLost.insert(&I); +#endif + // FIXME: Mark exception selector register as live in. Hack for PR1508. + unsigned Reg = TLI.getExceptionSelectorRegister(); + if (Reg) CurMBB->addLiveIn(Reg); + } + + // Insert the EHSELECTION instruction. + SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); + SDValue Ops[2]; + Ops[0] = getValue(I.getOperand(1)); + Ops[1] = getRoot(); + SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); + + DAG.setRoot(Op.getValue(1)); + + setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); + return 0; + } + + case Intrinsic::eh_typeid_for: { + MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); + + if (MMI) { + // Find the type id for the given typeinfo. + GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); + + unsigned TypeID = MMI->getTypeIDFor(GV); + setValue(&I, DAG.getConstant(TypeID, MVT::i32)); + } else { + // Return something different to eh_selector. + setValue(&I, DAG.getConstant(1, MVT::i32)); + } + + return 0; + } + + case Intrinsic::eh_return_i32: + case Intrinsic::eh_return_i64: + if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { + MMI->setCallsEHReturn(true); + DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, + MVT::Other, + getControlRoot(), + getValue(I.getOperand(1)), + getValue(I.getOperand(2)))); + } else { + setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); + } + + return 0; + case Intrinsic::eh_unwind_init: + if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { + MMI->setCallsUnwindInit(true); + } + + return 0; + + case Intrinsic::eh_dwarf_cfa: { + EVT VT = getValue(I.getOperand(1)).getValueType(); + SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl, + TLI.getPointerTy()); + + SDValue Offset = DAG.getNode(ISD::ADD, dl, + TLI.getPointerTy(), + DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, + TLI.getPointerTy()), + CfaArg); + setValue(&I, DAG.getNode(ISD::ADD, dl, + TLI.getPointerTy(), + DAG.getNode(ISD::FRAMEADDR, dl, + TLI.getPointerTy(), + DAG.getConstant(0, + TLI.getPointerTy())), + Offset)); + return 0; + } + case Intrinsic::convertff: + case Intrinsic::convertfsi: + case Intrinsic::convertfui: + case Intrinsic::convertsif: + case Intrinsic::convertuif: + case Intrinsic::convertss: + case Intrinsic::convertsu: + case Intrinsic::convertus: + case Intrinsic::convertuu: { + ISD::CvtCode Code = ISD::CVT_INVALID; + switch (Intrinsic) { + case Intrinsic::convertff: Code = ISD::CVT_FF; break; + case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; + case Intrinsic::convertfui: Code = ISD::CVT_FU; break; + case Intrinsic::convertsif: Code = ISD::CVT_SF; break; + case Intrinsic::convertuif: Code = ISD::CVT_UF; break; + case Intrinsic::convertss: Code = ISD::CVT_SS; break; + case Intrinsic::convertsu: Code = ISD::CVT_SU; break; + case Intrinsic::convertus: Code = ISD::CVT_US; break; + case Intrinsic::convertuu: Code = ISD::CVT_UU; break; + } + EVT DestVT = TLI.getValueType(I.getType()); + Value* Op1 = I.getOperand(1); + setValue(&I, DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), + DAG.getValueType(DestVT), + DAG.getValueType(getValue(Op1).getValueType()), + getValue(I.getOperand(2)), + getValue(I.getOperand(3)), + Code)); + return 0; + } + + case Intrinsic::sqrt: + setValue(&I, DAG.getNode(ISD::FSQRT, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::powi: + setValue(&I, DAG.getNode(ISD::FPOWI, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)), + getValue(I.getOperand(2)))); + return 0; + case Intrinsic::sin: + setValue(&I, DAG.getNode(ISD::FSIN, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::cos: + setValue(&I, DAG.getNode(ISD::FCOS, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::log: + visitLog(I); + return 0; + case Intrinsic::log2: + visitLog2(I); + return 0; + case Intrinsic::log10: + visitLog10(I); + return 0; + case Intrinsic::exp: + visitExp(I); + return 0; + case Intrinsic::exp2: + visitExp2(I); + return 0; + case Intrinsic::pow: + visitPow(I); + return 0; + case Intrinsic::pcmarker: { + SDValue Tmp = getValue(I.getOperand(1)); + DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); + return 0; + } + case Intrinsic::readcyclecounter: { + SDValue Op = getRoot(); + SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER, dl, + DAG.getVTList(MVT::i64, MVT::Other), + &Op, 1); + setValue(&I, Tmp); + DAG.setRoot(Tmp.getValue(1)); + return 0; + } + case Intrinsic::bswap: + setValue(&I, DAG.getNode(ISD::BSWAP, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::cttz: { + SDValue Arg = getValue(I.getOperand(1)); + EVT Ty = Arg.getValueType(); + SDValue result = DAG.getNode(ISD::CTTZ, dl, Ty, Arg); + setValue(&I, result); + return 0; + } + case Intrinsic::ctlz: { + SDValue Arg = getValue(I.getOperand(1)); + EVT Ty = Arg.getValueType(); + SDValue result = DAG.getNode(ISD::CTLZ, dl, Ty, Arg); + setValue(&I, result); + return 0; + } + case Intrinsic::ctpop: { + SDValue Arg = getValue(I.getOperand(1)); + EVT Ty = Arg.getValueType(); + SDValue result = DAG.getNode(ISD::CTPOP, dl, Ty, Arg); + setValue(&I, result); + return 0; + } + case Intrinsic::stacksave: { + SDValue Op = getRoot(); + SDValue Tmp = DAG.getNode(ISD::STACKSAVE, dl, + DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); + setValue(&I, Tmp); + DAG.setRoot(Tmp.getValue(1)); + return 0; + } + case Intrinsic::stackrestore: { + SDValue Tmp = getValue(I.getOperand(1)); + DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Tmp)); + return 0; + } + case Intrinsic::stackprotector: { + // Emit code into the DAG to store the stack guard onto the stack. + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + EVT PtrTy = TLI.getPointerTy(); + + SDValue Src = getValue(I.getOperand(1)); // The guard's value. + AllocaInst *Slot = cast(I.getOperand(2)); + + int FI = FuncInfo.StaticAllocaMap[Slot]; + MFI->setStackProtectorIndex(FI); + + SDValue FIN = DAG.getFrameIndex(FI, PtrTy); + + // Store the stack protector onto the stack. + SDValue Result = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, + PseudoSourceValue::getFixedStack(FI), + 0, true); + setValue(&I, Result); + DAG.setRoot(Result); + return 0; + } + case Intrinsic::objectsize: { + // If we don't know by now, we're never going to know. + ConstantInt *CI = dyn_cast(I.getOperand(2)); + + assert(CI && "Non-constant type in __builtin_object_size?"); + + SDValue Arg = getValue(I.getOperand(0)); + EVT Ty = Arg.getValueType(); + + if (CI->getZExtValue() < 2) + setValue(&I, DAG.getConstant(-1ULL, Ty)); + else + setValue(&I, DAG.getConstant(0, Ty)); + return 0; + } + case Intrinsic::var_annotation: + // Discard annotate attributes + return 0; + + case Intrinsic::init_trampoline: { + const Function *F = cast(I.getOperand(2)->stripPointerCasts()); + + SDValue Ops[6]; + Ops[0] = getRoot(); + Ops[1] = getValue(I.getOperand(1)); + Ops[2] = getValue(I.getOperand(2)); + Ops[3] = getValue(I.getOperand(3)); + Ops[4] = DAG.getSrcValue(I.getOperand(1)); + Ops[5] = DAG.getSrcValue(F); + + SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE, dl, + DAG.getVTList(TLI.getPointerTy(), MVT::Other), + Ops, 6); + + setValue(&I, Tmp); + DAG.setRoot(Tmp.getValue(1)); + return 0; + } + + case Intrinsic::gcroot: + if (GFI) { + Value *Alloca = I.getOperand(1); + Constant *TypeMap = cast(I.getOperand(2)); + + FrameIndexSDNode *FI = cast(getValue(Alloca).getNode()); + GFI->addStackRoot(FI->getIndex(), TypeMap); + } + return 0; + + case Intrinsic::gcread: + case Intrinsic::gcwrite: + llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); + return 0; + + case Intrinsic::flt_rounds: { + setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); + return 0; + } + + case Intrinsic::trap: { + DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); + return 0; + } + + case Intrinsic::uadd_with_overflow: + return implVisitAluOverflow(I, ISD::UADDO); + case Intrinsic::sadd_with_overflow: + return implVisitAluOverflow(I, ISD::SADDO); + case Intrinsic::usub_with_overflow: + return implVisitAluOverflow(I, ISD::USUBO); + case Intrinsic::ssub_with_overflow: + return implVisitAluOverflow(I, ISD::SSUBO); + case Intrinsic::umul_with_overflow: + return implVisitAluOverflow(I, ISD::UMULO); + case Intrinsic::smul_with_overflow: + return implVisitAluOverflow(I, ISD::SMULO); + + case Intrinsic::prefetch: { + SDValue Ops[4]; + Ops[0] = getRoot(); + Ops[1] = getValue(I.getOperand(1)); + Ops[2] = getValue(I.getOperand(2)); + Ops[3] = getValue(I.getOperand(3)); + DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); + return 0; + } + + case Intrinsic::memory_barrier: { + SDValue Ops[6]; + Ops[0] = getRoot(); + for (int x = 1; x < 6; ++x) + Ops[x] = getValue(I.getOperand(x)); + + DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); + return 0; + } + case Intrinsic::atomic_cmp_swap: { + SDValue Root = getRoot(); + SDValue L = + DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), + getValue(I.getOperand(2)).getValueType().getSimpleVT(), + Root, + getValue(I.getOperand(1)), + getValue(I.getOperand(2)), + getValue(I.getOperand(3)), + I.getOperand(1)); + setValue(&I, L); + DAG.setRoot(L.getValue(1)); + return 0; + } + case Intrinsic::atomic_load_add: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); + case Intrinsic::atomic_load_sub: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); + case Intrinsic::atomic_load_or: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); + case Intrinsic::atomic_load_xor: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); + case Intrinsic::atomic_load_and: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); + case Intrinsic::atomic_load_nand: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); + case Intrinsic::atomic_load_max: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); + case Intrinsic::atomic_load_min: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); + case Intrinsic::atomic_load_umin: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); + case Intrinsic::atomic_load_umax: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); + case Intrinsic::atomic_swap: + return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); + + case Intrinsic::invariant_start: + case Intrinsic::lifetime_start: + // Discard region information. + setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); + return 0; + case Intrinsic::invariant_end: + case Intrinsic::lifetime_end: + // Discard region information. + return 0; + } +} + +/// Test if the given instruction is in a position to be optimized +/// with a tail-call. This roughly means that it's in a block with +/// a return and there's nothing that needs to be scheduled +/// between it and the return. +/// +/// This function only tests target-independent requirements. +/// For target-dependent requirements, a target should override +/// TargetLowering::IsEligibleForTailCallOptimization. +/// +static bool +isInTailCallPosition(const Instruction *I, Attributes CalleeRetAttr, + const TargetLowering &TLI) { + const BasicBlock *ExitBB = I->getParent(); + const TerminatorInst *Term = ExitBB->getTerminator(); + const ReturnInst *Ret = dyn_cast(Term); + const Function *F = ExitBB->getParent(); + + // The block must end in a return statement or an unreachable. + if (!Ret && !isa(Term)) return false; + + // If I will have a chain, make sure no other instruction that will have a + // chain interposes between I and the return. + if (I->mayHaveSideEffects() || I->mayReadFromMemory() || + !I->isSafeToSpeculativelyExecute()) + for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; + --BBI) { + if (&*BBI == I) + break; + if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || + !BBI->isSafeToSpeculativelyExecute()) + return false; + } + + // If the block ends with a void return or unreachable, it doesn't matter + // what the call's return type is. + if (!Ret || Ret->getNumOperands() == 0) return true; + + // If the return value is undef, it doesn't matter what the call's + // return type is. + if (isa(Ret->getOperand(0))) return true; + + // Conservatively require the attributes of the call to match those of + // the return. Ignore noalias because it doesn't affect the call sequence. + unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); + if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) + return false; + + // Otherwise, make sure the unmodified return value of I is the return value. + for (const Instruction *U = dyn_cast(Ret->getOperand(0)); ; + U = dyn_cast(U->getOperand(0))) { + if (!U) + return false; + if (!U->hasOneUse()) + return false; + if (U == I) + break; + // Check for a truly no-op truncate. + if (isa(U) && + TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) + continue; + // Check for a truly no-op bitcast. + if (isa(U) && + (U->getOperand(0)->getType() == U->getType() || + (isa(U->getOperand(0)->getType()) && + isa(U->getType())))) + continue; + // Otherwise it's not a true no-op. + return false; + } + + return true; +} + +void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee, + bool isTailCall, + MachineBasicBlock *LandingPad) { + const PointerType *PT = cast(CS.getCalledValue()->getType()); + const FunctionType *FTy = cast(PT->getElementType()); + const Type *RetTy = FTy->getReturnType(); + MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); + unsigned BeginLabel = 0, EndLabel = 0; + + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + Args.reserve(CS.arg_size()); + + // Check whether the function can return without sret-demotion. + SmallVector OutVTs; + SmallVector OutsFlags; + SmallVector Offsets; + getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), + OutVTs, OutsFlags, TLI, &Offsets); + + + bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), + FTy->isVarArg(), OutVTs, OutsFlags, DAG); + + SDValue DemoteStackSlot; + + if (!CanLowerReturn) { + uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( + FTy->getReturnType()); + unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( + FTy->getReturnType()); + MachineFunction &MF = DAG.getMachineFunction(); + int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); + const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); + + DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); + Entry.Node = DemoteStackSlot; + Entry.Ty = StackSlotPtrType; + Entry.isSExt = false; + Entry.isZExt = false; + Entry.isInReg = false; + Entry.isSRet = true; + Entry.isNest = false; + Entry.isByVal = false; + Entry.Alignment = Align; + Args.push_back(Entry); + RetTy = Type::getVoidTy(FTy->getContext()); + } + + for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); + i != e; ++i) { + SDValue ArgNode = getValue(*i); + Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); + + unsigned attrInd = i - CS.arg_begin() + 1; + Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); + Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); + Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); + Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); + Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); + Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); + Entry.Alignment = CS.getParamAlignment(attrInd); + Args.push_back(Entry); + } + + if (LandingPad && MMI) { + // Insert a label before the invoke call to mark the try range. This can be + // used to detect deletion of the invoke via the MachineModuleInfo. + BeginLabel = MMI->NextLabelID(); + + // Both PendingLoads and PendingExports must be flushed here; + // this call might not return. + (void)getRoot(); + DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), + getControlRoot(), BeginLabel)); + } + + // Check if target-independent constraints permit a tail call here. + // Target-dependent constraints are checked within TLI.LowerCallTo. + if (isTailCall && + !isInTailCallPosition(CS.getInstruction(), + CS.getAttributes().getRetAttributes(), + TLI)) + isTailCall = false; + + std::pair Result = + TLI.LowerCallTo(getRoot(), RetTy, + CS.paramHasAttr(0, Attribute::SExt), + CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), + CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), + CS.getCallingConv(), + isTailCall, + !CS.getInstruction()->use_empty(), + Callee, Args, DAG, getCurDebugLoc()); + assert((isTailCall || Result.second.getNode()) && + "Non-null chain expected with non-tail call!"); + assert((Result.second.getNode() || !Result.first.getNode()) && + "Null value expected with tail call!"); + if (Result.first.getNode()) + setValue(CS.getInstruction(), Result.first); + else if (!CanLowerReturn && Result.second.getNode()) { + // The instruction result is the result of loading from the + // hidden sret parameter. + SmallVector PVTs; + const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); + + ComputeValueVTs(TLI, PtrRetTy, PVTs); + assert(PVTs.size() == 1 && "Pointers should fit in one register"); + EVT PtrVT = PVTs[0]; + unsigned NumValues = OutVTs.size(); + SmallVector Values(NumValues); + SmallVector Chains(NumValues); + + for (unsigned i = 0; i < NumValues; ++i) { + SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second, + DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, DemoteStackSlot, + DAG.getConstant(Offsets[i], PtrVT)), + NULL, Offsets[i], false, 1); + Values[i] = L; + Chains[i] = L.getValue(1); + } + SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), + MVT::Other, &Chains[0], NumValues); + PendingLoads.push_back(Chain); + + setValue(CS.getInstruction(), DAG.getNode(ISD::MERGE_VALUES, + getCurDebugLoc(), DAG.getVTList(&OutVTs[0], NumValues), + &Values[0], NumValues)); + } + // As a special case, a null chain means that a tail call has + // been emitted and the DAG root is already updated. + if (Result.second.getNode()) + DAG.setRoot(Result.second); + else + HasTailCall = true; + + if (LandingPad && MMI) { + // Insert a label at the end of the invoke call to mark the try range. This + // can be used to detect deletion of the invoke via the MachineModuleInfo. + EndLabel = MMI->NextLabelID(); + DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), + getRoot(), EndLabel)); + + // Inform MachineModuleInfo of range. + MMI->addInvoke(LandingPad, BeginLabel, EndLabel); + } +} + + +void SelectionDAGBuilder::visitCall(CallInst &I) { + const char *RenameFn = 0; + if (Function *F = I.getCalledFunction()) { + if (F->isDeclaration()) { + const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo(); + if (II) { + if (unsigned IID = II->getIntrinsicID(F)) { + RenameFn = visitIntrinsicCall(I, IID); + if (!RenameFn) + return; + } + } + if (unsigned IID = F->getIntrinsicID()) { + RenameFn = visitIntrinsicCall(I, IID); + if (!RenameFn) + return; + } + } + + // Check for well-known libc/libm calls. If the function is internal, it + // can't be a library call. + if (!F->hasLocalLinkage() && F->hasName()) { + StringRef Name = F->getName(); + if (Name == "copysign" || Name == "copysignf") { + if (I.getNumOperands() == 3 && // Basic sanity checks. + I.getOperand(1)->getType()->isFloatingPoint() && + I.getType() == I.getOperand(1)->getType() && + I.getType() == I.getOperand(2)->getType()) { + SDValue LHS = getValue(I.getOperand(1)); + SDValue RHS = getValue(I.getOperand(2)); + setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), + LHS.getValueType(), LHS, RHS)); + return; + } + } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { + if (I.getNumOperands() == 2 && // Basic sanity checks. + I.getOperand(1)->getType()->isFloatingPoint() && + I.getType() == I.getOperand(1)->getType()) { + SDValue Tmp = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), + Tmp.getValueType(), Tmp)); + return; + } + } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { + if (I.getNumOperands() == 2 && // Basic sanity checks. + I.getOperand(1)->getType()->isFloatingPoint() && + I.getType() == I.getOperand(1)->getType() && + I.onlyReadsMemory()) { + SDValue Tmp = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), + Tmp.getValueType(), Tmp)); + return; + } + } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { + if (I.getNumOperands() == 2 && // Basic sanity checks. + I.getOperand(1)->getType()->isFloatingPoint() && + I.getType() == I.getOperand(1)->getType() && + I.onlyReadsMemory()) { + SDValue Tmp = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), + Tmp.getValueType(), Tmp)); + return; + } + } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { + if (I.getNumOperands() == 2 && // Basic sanity checks. + I.getOperand(1)->getType()->isFloatingPoint() && + I.getType() == I.getOperand(1)->getType() && + I.onlyReadsMemory()) { + SDValue Tmp = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), + Tmp.getValueType(), Tmp)); + return; + } + } + } + } else if (isa(I.getOperand(0))) { + visitInlineAsm(&I); + return; + } + + SDValue Callee; + if (!RenameFn) + Callee = getValue(I.getOperand(0)); + else + Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); + + // Check if we can potentially perform a tail call. More detailed + // checking is be done within LowerCallTo, after more information + // about the call is known. + bool isTailCall = PerformTailCallOpt && I.isTailCall(); + + LowerCallTo(&I, Callee, isTailCall); +} + + +/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from +/// this value and returns the result as a ValueVT value. This uses +/// Chain/Flag as the input and updates them for the output Chain/Flag. +/// If the Flag pointer is NULL, no flag is used. +SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, + SDValue &Chain, + SDValue *Flag) const { + // Assemble the legal parts into the final values. + SmallVector Values(ValueVTs.size()); + SmallVector Parts; + for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { + // Copy the legal parts from the registers. + EVT ValueVT = ValueVTs[Value]; + unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT); + EVT RegisterVT = RegVTs[Value]; + + Parts.resize(NumRegs); + for (unsigned i = 0; i != NumRegs; ++i) { + SDValue P; + if (Flag == 0) + P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); + else { + P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); + *Flag = P.getValue(2); + } + Chain = P.getValue(1); + + // If the source register was virtual and if we know something about it, + // add an assert node. + if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && + RegisterVT.isInteger() && !RegisterVT.isVector()) { + unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; + FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); + if (FLI.LiveOutRegInfo.size() > SlotNo) { + FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; + + unsigned RegSize = RegisterVT.getSizeInBits(); + unsigned NumSignBits = LOI.NumSignBits; + unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); + + // FIXME: We capture more information than the dag can represent. For + // now, just use the tightest assertzext/assertsext possible. + bool isSExt = true; + EVT FromVT(MVT::Other); + if (NumSignBits == RegSize) + isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 + else if (NumZeroBits >= RegSize-1) + isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 + else if (NumSignBits > RegSize-8) + isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 + else if (NumZeroBits >= RegSize-8) + isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 + else if (NumSignBits > RegSize-16) + isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 + else if (NumZeroBits >= RegSize-16) + isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 + else if (NumSignBits > RegSize-32) + isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 + else if (NumZeroBits >= RegSize-32) + isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 + + if (FromVT != MVT::Other) { + P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, + RegisterVT, P, DAG.getValueType(FromVT)); + + } + } + } + + Parts[i] = P; + } + + Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), + NumRegs, RegisterVT, ValueVT); + Part += NumRegs; + Parts.clear(); + } + + return DAG.getNode(ISD::MERGE_VALUES, dl, + DAG.getVTList(&ValueVTs[0], ValueVTs.size()), + &Values[0], ValueVTs.size()); +} + +/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the +/// specified value into the registers specified by this object. This uses +/// Chain/Flag as the input and updates them for the output Chain/Flag. +/// If the Flag pointer is NULL, no flag is used. +void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, + SDValue &Chain, SDValue *Flag) const { + // Get the list of the values's legal parts. + unsigned NumRegs = Regs.size(); + SmallVector Parts(NumRegs); + for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { + EVT ValueVT = ValueVTs[Value]; + unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT); + EVT RegisterVT = RegVTs[Value]; + + getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), + &Parts[Part], NumParts, RegisterVT); + Part += NumParts; + } + + // Copy the parts into the registers. + SmallVector Chains(NumRegs); + for (unsigned i = 0; i != NumRegs; ++i) { + SDValue Part; + if (Flag == 0) + Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); + else { + Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); + *Flag = Part.getValue(1); + } + Chains[i] = Part.getValue(0); + } + + if (NumRegs == 1 || Flag) + // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is + // flagged to it. That is the CopyToReg nodes and the user are considered + // a single scheduling unit. If we create a TokenFactor and return it as + // chain, then the TokenFactor is both a predecessor (operand) of the + // user as well as a successor (the TF operands are flagged to the user). + // c1, f1 = CopyToReg + // c2, f2 = CopyToReg + // c3 = TokenFactor c1, c2 + // ... + // = op c3, ..., f2 + Chain = Chains[NumRegs-1]; + else + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); +} + +/// AddInlineAsmOperands - Add this value to the specified inlineasm node +/// operand list. This adds the code marker and includes the number of +/// values added into it. +void RegsForValue::AddInlineAsmOperands(unsigned Code, + bool HasMatching,unsigned MatchingIdx, + SelectionDAG &DAG, + std::vector &Ops) const { + EVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy(); + assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!"); + unsigned Flag = Code | (Regs.size() << 3); + if (HasMatching) + Flag |= 0x80000000 | (MatchingIdx << 16); + Ops.push_back(DAG.getTargetConstant(Flag, IntPtrTy)); + for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { + unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]); + EVT RegisterVT = RegVTs[Value]; + for (unsigned i = 0; i != NumRegs; ++i) { + assert(Reg < Regs.size() && "Mismatch in # registers expected"); + Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); + } + } +} + +/// isAllocatableRegister - If the specified register is safe to allocate, +/// i.e. it isn't a stack pointer or some other special register, return the +/// register class for the register. Otherwise, return null. +static const TargetRegisterClass * +isAllocatableRegister(unsigned Reg, MachineFunction &MF, + const TargetLowering &TLI, + const TargetRegisterInfo *TRI) { + EVT FoundVT = MVT::Other; + const TargetRegisterClass *FoundRC = 0; + for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), + E = TRI->regclass_end(); RCI != E; ++RCI) { + EVT ThisVT = MVT::Other; + + const TargetRegisterClass *RC = *RCI; + // If none of the the value types for this register class are valid, we + // can't use it. For example, 64-bit reg classes on 32-bit targets. + for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); + I != E; ++I) { + if (TLI.isTypeLegal(*I)) { + // If we have already found this register in a different register class, + // choose the one with the largest VT specified. For example, on + // PowerPC, we favor f64 register classes over f32. + if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { + ThisVT = *I; + break; + } + } + } + + if (ThisVT == MVT::Other) continue; + + // NOTE: This isn't ideal. In particular, this might allocate the + // frame pointer in functions that need it (due to them not being taken + // out of allocation, because a variable sized allocation hasn't been seen + // yet). This is a slight code pessimization, but should still work. + for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), + E = RC->allocation_order_end(MF); I != E; ++I) + if (*I == Reg) { + // We found a matching register class. Keep looking at others in case + // we find one with larger registers that this physreg is also in. + FoundRC = RC; + FoundVT = ThisVT; + break; + } + } + return FoundRC; +} + + +namespace llvm { +/// AsmOperandInfo - This contains information for each constraint that we are +/// lowering. +class VISIBILITY_HIDDEN SDISelAsmOperandInfo : + public TargetLowering::AsmOperandInfo { +public: + /// CallOperand - If this is the result output operand or a clobber + /// this is null, otherwise it is the incoming operand to the CallInst. + /// This gets modified as the asm is processed. + SDValue CallOperand; + + /// AssignedRegs - If this is a register or register class operand, this + /// contains the set of register corresponding to the operand. + RegsForValue AssignedRegs; + + explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) + : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { + } + + /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers + /// busy in OutputRegs/InputRegs. + void MarkAllocatedRegs(bool isOutReg, bool isInReg, + std::set &OutputRegs, + std::set &InputRegs, + const TargetRegisterInfo &TRI) const { + if (isOutReg) { + for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) + MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); + } + if (isInReg) { + for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) + MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); + } + } + + /// getCallOperandValEVT - Return the EVT of the Value* that this operand + /// corresponds to. If there is no Value* for this operand, it returns + /// MVT::Other. + EVT getCallOperandValEVT(LLVMContext &Context, + const TargetLowering &TLI, + const TargetData *TD) const { + if (CallOperandVal == 0) return MVT::Other; + + if (isa(CallOperandVal)) + return TLI.getPointerTy(); + + const llvm::Type *OpTy = CallOperandVal->getType(); + + // If this is an indirect operand, the operand is a pointer to the + // accessed type. + if (isIndirect) + OpTy = cast(OpTy)->getElementType(); + + // If OpTy is not a single value, it may be a struct/union that we + // can tile with integers. + if (!OpTy->isSingleValueType() && OpTy->isSized()) { + unsigned BitSize = TD->getTypeSizeInBits(OpTy); + switch (BitSize) { + default: break; + case 1: + case 8: + case 16: + case 32: + case 64: + case 128: + OpTy = IntegerType::get(Context, BitSize); + break; + } + } + + return TLI.getValueType(OpTy, true); + } + +private: + /// MarkRegAndAliases - Mark the specified register and all aliases in the + /// specified set. + static void MarkRegAndAliases(unsigned Reg, std::set &Regs, + const TargetRegisterInfo &TRI) { + assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); + Regs.insert(Reg); + if (const unsigned *Aliases = TRI.getAliasSet(Reg)) + for (; *Aliases; ++Aliases) + Regs.insert(*Aliases); + } +}; +} // end llvm namespace. + + +/// GetRegistersForValue - Assign registers (virtual or physical) for the +/// specified operand. We prefer to assign virtual registers, to allow the +/// register allocator handle the assignment process. However, if the asm uses +/// features that we can't model on machineinstrs, we have SDISel do the +/// allocation. This produces generally horrible, but correct, code. +/// +/// OpInfo describes the operand. +/// Input and OutputRegs are the set of already allocated physical registers. +/// +void SelectionDAGBuilder:: +GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, + std::set &OutputRegs, + std::set &InputRegs) { + LLVMContext &Context = FuncInfo.Fn->getContext(); + + // Compute whether this value requires an input register, an output register, + // or both. + bool isOutReg = false; + bool isInReg = false; + switch (OpInfo.Type) { + case InlineAsm::isOutput: + isOutReg = true; + + // If there is an input constraint that matches this, we need to reserve + // the input register so no other inputs allocate to it. + isInReg = OpInfo.hasMatchingInput(); + break; + case InlineAsm::isInput: + isInReg = true; + isOutReg = false; + break; + case InlineAsm::isClobber: + isOutReg = true; + isInReg = true; + break; + } + + + MachineFunction &MF = DAG.getMachineFunction(); + SmallVector Regs; + + // If this is a constraint for a single physreg, or a constraint for a + // register class, find it. + std::pair PhysReg = + TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, + OpInfo.ConstraintVT); + + unsigned NumRegs = 1; + if (OpInfo.ConstraintVT != MVT::Other) { + // If this is a FP input in an integer register (or visa versa) insert a bit + // cast of the input value. More generally, handle any case where the input + // value disagrees with the register class we plan to stick this in. + if (OpInfo.Type == InlineAsm::isInput && + PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { + // Try to convert to the first EVT that the reg class contains. If the + // types are identical size, use a bitcast to convert (e.g. two differing + // vector types). + EVT RegVT = *PhysReg.second->vt_begin(); + if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { + OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), + RegVT, OpInfo.CallOperand); + OpInfo.ConstraintVT = RegVT; + } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { + // If the input is a FP value and we want it in FP registers, do a + // bitcast to the corresponding integer type. This turns an f64 value + // into i64, which can be passed with two i32 values on a 32-bit + // machine. + RegVT = EVT::getIntegerVT(Context, + OpInfo.ConstraintVT.getSizeInBits()); + OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), + RegVT, OpInfo.CallOperand); + OpInfo.ConstraintVT = RegVT; + } + } + + NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); + } + + EVT RegVT; + EVT ValueVT = OpInfo.ConstraintVT; + + // If this is a constraint for a specific physical register, like {r17}, + // assign it now. + if (unsigned AssignedReg = PhysReg.first) { + const TargetRegisterClass *RC = PhysReg.second; + if (OpInfo.ConstraintVT == MVT::Other) + ValueVT = *RC->vt_begin(); + + // Get the actual register value type. This is important, because the user + // may have asked for (e.g.) the AX register in i32 type. We need to + // remember that AX is actually i16 to get the right extension. + RegVT = *RC->vt_begin(); + + // This is a explicit reference to a physical register. + Regs.push_back(AssignedReg); + + // If this is an expanded reference, add the rest of the regs to Regs. + if (NumRegs != 1) { + TargetRegisterClass::iterator I = RC->begin(); + for (; *I != AssignedReg; ++I) + assert(I != RC->end() && "Didn't find reg!"); + + // Already added the first reg. + --NumRegs; ++I; + for (; NumRegs; --NumRegs, ++I) { + assert(I != RC->end() && "Ran out of registers to allocate!"); + Regs.push_back(*I); + } + } + OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); + const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); + OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); + return; + } + + // Otherwise, if this was a reference to an LLVM register class, create vregs + // for this reference. + if (const TargetRegisterClass *RC = PhysReg.second) { + RegVT = *RC->vt_begin(); + if (OpInfo.ConstraintVT == MVT::Other) + ValueVT = RegVT; + + // Create the appropriate number of virtual registers. + MachineRegisterInfo &RegInfo = MF.getRegInfo(); + for (; NumRegs; --NumRegs) + Regs.push_back(RegInfo.createVirtualRegister(RC)); + + OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); + return; + } + + // This is a reference to a register class that doesn't directly correspond + // to an LLVM register class. Allocate NumRegs consecutive, available, + // registers from the class. + std::vector RegClassRegs + = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, + OpInfo.ConstraintVT); + + const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); + unsigned NumAllocated = 0; + for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { + unsigned Reg = RegClassRegs[i]; + // See if this register is available. + if ((isOutReg && OutputRegs.count(Reg)) || // Already used. + (isInReg && InputRegs.count(Reg))) { // Already used. + // Make sure we find consecutive registers. + NumAllocated = 0; + continue; + } + + // Check to see if this register is allocatable (i.e. don't give out the + // stack pointer). + const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); + if (!RC) { // Couldn't allocate this register. + // Reset NumAllocated to make sure we return consecutive registers. + NumAllocated = 0; + continue; + } + + // Okay, this register is good, we can use it. + ++NumAllocated; + + // If we allocated enough consecutive registers, succeed. + if (NumAllocated == NumRegs) { + unsigned RegStart = (i-NumAllocated)+1; + unsigned RegEnd = i+1; + // Mark all of the allocated registers used. + for (unsigned i = RegStart; i != RegEnd; ++i) + Regs.push_back(RegClassRegs[i]); + + OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), + OpInfo.ConstraintVT); + OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); + return; + } + } + + // Otherwise, we couldn't allocate enough registers for this. +} + +/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being +/// processed uses a memory 'm' constraint. +static bool +hasInlineAsmMemConstraint(std::vector &CInfos, + const TargetLowering &TLI) { + for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { + InlineAsm::ConstraintInfo &CI = CInfos[i]; + for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { + TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); + if (CType == TargetLowering::C_Memory) + return true; + } + + // Indirect operand accesses access memory. + if (CI.isIndirect) + return true; + } + + return false; +} + +/// visitInlineAsm - Handle a call to an InlineAsm object. +/// +void SelectionDAGBuilder::visitInlineAsm(CallSite CS) { + InlineAsm *IA = cast(CS.getCalledValue()); + + /// ConstraintOperands - Information about all of the constraints. + std::vector ConstraintOperands; + + std::set OutputRegs, InputRegs; + + // Do a prepass over the constraints, canonicalizing them, and building up the + // ConstraintOperands list. + std::vector + ConstraintInfos = IA->ParseConstraints(); + + bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); + + SDValue Chain, Flag; + + // We won't need to flush pending loads if this asm doesn't touch + // memory and is nonvolatile. + if (hasMemory || IA->hasSideEffects()) + Chain = getRoot(); + else + Chain = DAG.getRoot(); + + unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. + unsigned ResNo = 0; // ResNo - The result number of the next output. + for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { + ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); + SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); + + EVT OpVT = MVT::Other; + + // Compute the value type for each operand. + switch (OpInfo.Type) { + case InlineAsm::isOutput: + // Indirect outputs just consume an argument. + if (OpInfo.isIndirect) { + OpInfo.CallOperandVal = CS.getArgument(ArgNo++); + break; + } + + // The return value of the call is this value. As such, there is no + // corresponding argument. + assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && + "Bad inline asm!"); + if (const StructType *STy = dyn_cast(CS.getType())) { + OpVT = TLI.getValueType(STy->getElementType(ResNo)); + } else { + assert(ResNo == 0 && "Asm only has one result!"); + OpVT = TLI.getValueType(CS.getType()); + } + ++ResNo; + break; + case InlineAsm::isInput: + OpInfo.CallOperandVal = CS.getArgument(ArgNo++); + break; + case InlineAsm::isClobber: + // Nothing to do. + break; + } + + // If this is an input or an indirect output, process the call argument. + // BasicBlocks are labels, currently appearing only in asm's. + if (OpInfo.CallOperandVal) { + // Strip bitcasts, if any. This mostly comes up for functions. + OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); + + if (BasicBlock *BB = dyn_cast(OpInfo.CallOperandVal)) { + OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); + } else { + OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); + } + + OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); + } + + OpInfo.ConstraintVT = OpVT; + } + + // Second pass over the constraints: compute which constraint option to use + // and assign registers to constraints that want a specific physreg. + for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { + SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; + + // If this is an output operand with a matching input operand, look up the + // matching input. If their types mismatch, e.g. one is an integer, the + // other is floating point, or their sizes are different, flag it as an + // error. + if (OpInfo.hasMatchingInput()) { + SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; + if (OpInfo.ConstraintVT != Input.ConstraintVT) { + if ((OpInfo.ConstraintVT.isInteger() != + Input.ConstraintVT.isInteger()) || + (OpInfo.ConstraintVT.getSizeInBits() != + Input.ConstraintVT.getSizeInBits())) { + llvm_report_error("Unsupported asm: input constraint" + " with a matching output constraint of incompatible" + " type!"); + } + Input.ConstraintVT = OpInfo.ConstraintVT; + } + } + + // Compute the constraint code and ConstraintType to use. + TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG); + + // If this is a memory input, and if the operand is not indirect, do what we + // need to to provide an address for the memory input. + if (OpInfo.ConstraintType == TargetLowering::C_Memory && + !OpInfo.isIndirect) { + assert(OpInfo.Type == InlineAsm::isInput && + "Can only indirectify direct input operands!"); + + // Memory operands really want the address of the value. If we don't have + // an indirect input, put it in the constpool if we can, otherwise spill + // it to a stack slot. + + // If the operand is a float, integer, or vector constant, spill to a + // constant pool entry to get its address. + Value *OpVal = OpInfo.CallOperandVal; + if (isa(OpVal) || isa(OpVal) || + isa(OpVal)) { + OpInfo.CallOperand = DAG.getConstantPool(cast(OpVal), + TLI.getPointerTy()); + } else { + // Otherwise, create a stack slot and emit a store to it before the + // asm. + const Type *Ty = OpVal->getType(); + uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); + unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); + MachineFunction &MF = DAG.getMachineFunction(); + int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); + SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); + Chain = DAG.getStore(Chain, getCurDebugLoc(), + OpInfo.CallOperand, StackSlot, NULL, 0); + OpInfo.CallOperand = StackSlot; + } + + // There is no longer a Value* corresponding to this operand. + OpInfo.CallOperandVal = 0; + // It is now an indirect operand. + OpInfo.isIndirect = true; + } + + // If this constraint is for a specific register, allocate it before + // anything else. + if (OpInfo.ConstraintType == TargetLowering::C_Register) + GetRegistersForValue(OpInfo, OutputRegs, InputRegs); + } + ConstraintInfos.clear(); + + + // Second pass - Loop over all of the operands, assigning virtual or physregs + // to register class operands. + for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { + SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; + + // C_Register operands have already been allocated, Other/Memory don't need + // to be. + if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) + GetRegistersForValue(OpInfo, OutputRegs, InputRegs); + } + + // AsmNodeOperands - The operands for the ISD::INLINEASM node. + std::vector AsmNodeOperands; + AsmNodeOperands.push_back(SDValue()); // reserve space for input chain + AsmNodeOperands.push_back( + DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other)); + + + // Loop over all of the inputs, copying the operand values into the + // appropriate registers and processing the output regs. + RegsForValue RetValRegs; + + // IndirectStoresToEmit - The set of stores to emit after the inline asm node. + std::vector > IndirectStoresToEmit; + + for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { + SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; + + switch (OpInfo.Type) { + case InlineAsm::isOutput: { + if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && + OpInfo.ConstraintType != TargetLowering::C_Register) { + // Memory output, or 'other' output (e.g. 'X' constraint). + assert(OpInfo.isIndirect && "Memory output must be indirect operand"); + + // Add information to the INLINEASM node to know about this output. + unsigned ResOpType = 4/*MEM*/ | (1<<3); + AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, + TLI.getPointerTy())); + AsmNodeOperands.push_back(OpInfo.CallOperand); + break; + } + + // Otherwise, this is a register or register class output. + + // Copy the output from the appropriate register. Find a register that + // we can use. + if (OpInfo.AssignedRegs.Regs.empty()) { + llvm_report_error("Couldn't allocate output reg for" + " constraint '" + OpInfo.ConstraintCode + "'!"); + } + + // If this is an indirect operand, store through the pointer after the + // asm. + if (OpInfo.isIndirect) { + IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, + OpInfo.CallOperandVal)); + } else { + // This is the result value of the call. + assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && + "Bad inline asm!"); + // Concatenate this output onto the outputs list. + RetValRegs.append(OpInfo.AssignedRegs); + } + + // Add information to the INLINEASM node to know that this register is + // set. + OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? + 6 /* EARLYCLOBBER REGDEF */ : + 2 /* REGDEF */ , + false, + 0, + DAG, AsmNodeOperands); + break; + } + case InlineAsm::isInput: { + SDValue InOperandVal = OpInfo.CallOperand; + + if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? + // If this is required to match an output register we have already set, + // just use its register. + unsigned OperandNo = OpInfo.getMatchedOperand(); + + // Scan until we find the definition we already emitted of this operand. + // When we find it, create a RegsForValue operand. + unsigned CurOp = 2; // The first operand. + for (; OperandNo; --OperandNo) { + // Advance to the next operand. + unsigned OpFlag = + cast(AsmNodeOperands[CurOp])->getZExtValue(); + assert(((OpFlag & 7) == 2 /*REGDEF*/ || + (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ || + (OpFlag & 7) == 4 /*MEM*/) && + "Skipped past definitions?"); + CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; + } + + unsigned OpFlag = + cast(AsmNodeOperands[CurOp])->getZExtValue(); + if ((OpFlag & 7) == 2 /*REGDEF*/ + || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) { + // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. + if (OpInfo.isIndirect) { + llvm_report_error("Don't know how to handle tied indirect " + "register inputs yet!"); + } + RegsForValue MatchedRegs; + MatchedRegs.TLI = &TLI; + MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); + EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); + MatchedRegs.RegVTs.push_back(RegVT); + MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); + for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); + i != e; ++i) + MatchedRegs.Regs. + push_back(RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); + + // Use the produced MatchedRegs object to + MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), + Chain, &Flag); + MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, + true, OpInfo.getMatchedOperand(), + DAG, AsmNodeOperands); + break; + } else { + assert(((OpFlag & 7) == 4) && "Unknown matching constraint!"); + assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 && + "Unexpected number of operands"); + // Add information to the INLINEASM node to know about this input. + // See InlineAsm.h isUseOperandTiedToDef. + OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16); + AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, + TLI.getPointerTy())); + AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); + break; + } + } + + if (OpInfo.ConstraintType == TargetLowering::C_Other) { + assert(!OpInfo.isIndirect && + "Don't know how to handle indirect other inputs yet!"); + + std::vector Ops; + TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], + hasMemory, Ops, DAG); + if (Ops.empty()) { + llvm_report_error("Invalid operand for inline asm" + " constraint '" + OpInfo.ConstraintCode + "'!"); + } + + // Add information to the INLINEASM node to know about this input. + unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3); + AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, + TLI.getPointerTy())); + AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); + break; + } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) { + assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); + assert(InOperandVal.getValueType() == TLI.getPointerTy() && + "Memory operands expect pointer values"); + + // Add information to the INLINEASM node to know about this input. + unsigned ResOpType = 4/*MEM*/ | (1<<3); + AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, + TLI.getPointerTy())); + AsmNodeOperands.push_back(InOperandVal); + break; + } + + assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || + OpInfo.ConstraintType == TargetLowering::C_Register) && + "Unknown constraint type!"); + assert(!OpInfo.isIndirect && + "Don't know how to handle indirect register inputs yet!"); + + // Copy the input into the appropriate registers. + if (OpInfo.AssignedRegs.Regs.empty()) { + llvm_report_error("Couldn't allocate input reg for" + " constraint '"+ OpInfo.ConstraintCode +"'!"); + } + + OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), + Chain, &Flag); + + OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0, + DAG, AsmNodeOperands); + break; + } + case InlineAsm::isClobber: { + // Add the clobbered value to the operand list, so that the register + // allocator is aware that the physreg got clobbered. + if (!OpInfo.AssignedRegs.Regs.empty()) + OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */, + false, 0, DAG,AsmNodeOperands); + break; + } + } + } + + // Finish up input operands. + AsmNodeOperands[0] = Chain; + if (Flag.getNode()) AsmNodeOperands.push_back(Flag); + + Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), + DAG.getVTList(MVT::Other, MVT::Flag), + &AsmNodeOperands[0], AsmNodeOperands.size()); + Flag = Chain.getValue(1); + + // If this asm returns a register value, copy the result from that register + // and set it as the value of the call. + if (!RetValRegs.Regs.empty()) { + SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(), + Chain, &Flag); + + // FIXME: Why don't we do this for inline asms with MRVs? + if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { + EVT ResultType = TLI.getValueType(CS.getType()); + + // If any of the results of the inline asm is a vector, it may have the + // wrong width/num elts. This can happen for register classes that can + // contain multiple different value types. The preg or vreg allocated may + // not have the same VT as was expected. Convert it to the right type + // with bit_convert. + if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { + Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), + ResultType, Val); + + } else if (ResultType != Val.getValueType() && + ResultType.isInteger() && Val.getValueType().isInteger()) { + // If a result value was tied to an input value, the computed result may + // have a wider width than the expected result. Extract the relevant + // portion. + Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); + } + + assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); + } + + setValue(CS.getInstruction(), Val); + // Don't need to use this as a chain in this case. + if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) + return; + } + + std::vector > StoresToEmit; + + // Process indirect outputs, first output all of the flagged copies out of + // physregs. + for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { + RegsForValue &OutRegs = IndirectStoresToEmit[i].first; + Value *Ptr = IndirectStoresToEmit[i].second; + SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(), + Chain, &Flag); + StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); + + } + + // Emit the non-flagged stores from the physregs. + SmallVector OutChains; + for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) + OutChains.push_back(DAG.getStore(Chain, getCurDebugLoc(), + StoresToEmit[i].first, + getValue(StoresToEmit[i].second), + StoresToEmit[i].second, 0)); + if (!OutChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, + &OutChains[0], OutChains.size()); + DAG.setRoot(Chain); +} + +void SelectionDAGBuilder::visitVAStart(CallInst &I) { + DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), + MVT::Other, getRoot(), + getValue(I.getOperand(1)), + DAG.getSrcValue(I.getOperand(1)))); +} + +void SelectionDAGBuilder::visitVAArg(VAArgInst &I) { + SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), + getRoot(), getValue(I.getOperand(0)), + DAG.getSrcValue(I.getOperand(0))); + setValue(&I, V); + DAG.setRoot(V.getValue(1)); +} + +void SelectionDAGBuilder::visitVAEnd(CallInst &I) { + DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), + MVT::Other, getRoot(), + getValue(I.getOperand(1)), + DAG.getSrcValue(I.getOperand(1)))); +} + +void SelectionDAGBuilder::visitVACopy(CallInst &I) { + DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), + MVT::Other, getRoot(), + getValue(I.getOperand(1)), + getValue(I.getOperand(2)), + DAG.getSrcValue(I.getOperand(1)), + DAG.getSrcValue(I.getOperand(2)))); +} + +/// TargetLowering::LowerCallTo - This is the default LowerCallTo +/// implementation, which just calls LowerCall. +/// FIXME: When all targets are +/// migrated to using LowerCall, this hook should be integrated into SDISel. +std::pair +TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, + bool RetSExt, bool RetZExt, bool isVarArg, + bool isInreg, unsigned NumFixedArgs, + CallingConv::ID CallConv, bool isTailCall, + bool isReturnValueUsed, + SDValue Callee, + ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) { + + assert((!isTailCall || PerformTailCallOpt) && + "isTailCall set when tail-call optimizations are disabled!"); + + // Handle all of the outgoing arguments. + SmallVector Outs; + for (unsigned i = 0, e = Args.size(); i != e; ++i) { + SmallVector ValueVTs; + ComputeValueVTs(*this, Args[i].Ty, ValueVTs); + for (unsigned Value = 0, NumValues = ValueVTs.size(); + Value != NumValues; ++Value) { + EVT VT = ValueVTs[Value]; + const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); + SDValue Op = SDValue(Args[i].Node.getNode(), + Args[i].Node.getResNo() + Value); + ISD::ArgFlagsTy Flags; + unsigned OriginalAlignment = + getTargetData()->getABITypeAlignment(ArgTy); + + if (Args[i].isZExt) + Flags.setZExt(); + if (Args[i].isSExt) + Flags.setSExt(); + if (Args[i].isInReg) + Flags.setInReg(); + if (Args[i].isSRet) + Flags.setSRet(); + if (Args[i].isByVal) { + Flags.setByVal(); + const PointerType *Ty = cast(Args[i].Ty); + const Type *ElementTy = Ty->getElementType(); + unsigned FrameAlign = getByValTypeAlignment(ElementTy); + unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); + // For ByVal, alignment should come from FE. BE will guess if this + // info is not there but there are cases it cannot get right. + if (Args[i].Alignment) + FrameAlign = Args[i].Alignment; + Flags.setByValAlign(FrameAlign); + Flags.setByValSize(FrameSize); + } + if (Args[i].isNest) + Flags.setNest(); + Flags.setOrigAlign(OriginalAlignment); + + EVT PartVT = getRegisterType(RetTy->getContext(), VT); + unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); + SmallVector Parts(NumParts); + ISD::NodeType ExtendKind = ISD::ANY_EXTEND; + + if (Args[i].isSExt) + ExtendKind = ISD::SIGN_EXTEND; + else if (Args[i].isZExt) + ExtendKind = ISD::ZERO_EXTEND; + + getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, PartVT, ExtendKind); + + for (unsigned j = 0; j != NumParts; ++j) { + // if it isn't first piece, alignment must be 1 + ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs); + if (NumParts > 1 && j == 0) + MyFlags.Flags.setSplit(); + else if (j != 0) + MyFlags.Flags.setOrigAlign(1); + + Outs.push_back(MyFlags); + } + } + } + + // Handle the incoming return values from the call. + SmallVector Ins; + SmallVector RetTys; + ComputeValueVTs(*this, RetTy, RetTys); + for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { + EVT VT = RetTys[I]; + EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); + unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); + for (unsigned i = 0; i != NumRegs; ++i) { + ISD::InputArg MyFlags; + MyFlags.VT = RegisterVT; + MyFlags.Used = isReturnValueUsed; + if (RetSExt) + MyFlags.Flags.setSExt(); + if (RetZExt) + MyFlags.Flags.setZExt(); + if (isInreg) + MyFlags.Flags.setInReg(); + Ins.push_back(MyFlags); + } + } + + // Check if target-dependent constraints permit a tail call here. + // Target-independent constraints should be checked by the caller. + if (isTailCall && + !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG)) + isTailCall = false; + + SmallVector InVals; + Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, + Outs, Ins, dl, DAG, InVals); + + // Verify that the target's LowerCall behaved as expected. + assert(Chain.getNode() && Chain.getValueType() == MVT::Other && + "LowerCall didn't return a valid chain!"); + assert((!isTailCall || InVals.empty()) && + "LowerCall emitted a return value for a tail call!"); + assert((isTailCall || InVals.size() == Ins.size()) && + "LowerCall didn't emit the correct number of values!"); + DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { + assert(InVals[i].getNode() && + "LowerCall emitted a null value!"); + assert(Ins[i].VT == InVals[i].getValueType() && + "LowerCall emitted a value with the wrong type!"); + }); + + // For a tail call, the return value is merely live-out and there aren't + // any nodes in the DAG representing it. Return a special value to + // indicate that a tail call has been emitted and no more Instructions + // should be processed in the current block. + if (isTailCall) { + DAG.setRoot(Chain); + return std::make_pair(SDValue(), SDValue()); + } + + // Collect the legal value parts into potentially illegal values + // that correspond to the original function's return values. + ISD::NodeType AssertOp = ISD::DELETED_NODE; + if (RetSExt) + AssertOp = ISD::AssertSext; + else if (RetZExt) + AssertOp = ISD::AssertZext; + SmallVector ReturnValues; + unsigned CurReg = 0; + for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { + EVT VT = RetTys[I]; + EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); + unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); + + SDValue ReturnValue = + getCopyFromParts(DAG, dl, &InVals[CurReg], NumRegs, RegisterVT, VT, + AssertOp); + ReturnValues.push_back(ReturnValue); + CurReg += NumRegs; + } + + // For a function returning void, there is no return value. We can't create + // such a node, so we just return a null return value in that case. In + // that case, nothing will actualy look at the value. + if (ReturnValues.empty()) + return std::make_pair(SDValue(), Chain); + + SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, + DAG.getVTList(&RetTys[0], RetTys.size()), + &ReturnValues[0], ReturnValues.size()); + + return std::make_pair(Res, Chain); +} + +void TargetLowering::LowerOperationWrapper(SDNode *N, + SmallVectorImpl &Results, + SelectionDAG &DAG) { + SDValue Res = LowerOperation(SDValue(N, 0), DAG); + if (Res.getNode()) + Results.push_back(Res); +} + +SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { + llvm_unreachable("LowerOperation not implemented for this target!"); + return SDValue(); +} + + +void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) { + SDValue Op = getValue(V); + assert((Op.getOpcode() != ISD::CopyFromReg || + cast(Op.getOperand(1))->getReg() != Reg) && + "Copy from a reg to the same reg!"); + assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); + + RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); + SDValue Chain = DAG.getEntryNode(); + RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); + PendingExports.push_back(Chain); +} + +#include "llvm/CodeGen/SelectionDAGISel.h" + +void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) { + // If this is the entry block, emit arguments. + Function &F = *LLVMBB->getParent(); + SelectionDAG &DAG = SDB->DAG; + SDValue OldRoot = DAG.getRoot(); + DebugLoc dl = SDB->getCurDebugLoc(); + const TargetData *TD = TLI.getTargetData(); + SmallVector Ins; + + // Check whether the function can return without sret-demotion. + SmallVector OutVTs; + SmallVector OutsFlags; + getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), + OutVTs, OutsFlags, TLI); + FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); + + FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(), + OutVTs, OutsFlags, DAG); + if (!FLI.CanLowerReturn) { + // Put in an sret pointer parameter before all the other parameters. + SmallVector ValueVTs; + ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); + + // NOTE: Assuming that a pointer will never break down to more than one VT + // or one register. + ISD::ArgFlagsTy Flags; + Flags.setSRet(); + EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]); + ISD::InputArg RetArg(Flags, RegisterVT, true); + Ins.push_back(RetArg); + } + + // Set up the incoming argument description vector. + unsigned Idx = 1; + for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); + I != E; ++I, ++Idx) { + SmallVector ValueVTs; + ComputeValueVTs(TLI, I->getType(), ValueVTs); + bool isArgValueUsed = !I->use_empty(); + for (unsigned Value = 0, NumValues = ValueVTs.size(); + Value != NumValues; ++Value) { + EVT VT = ValueVTs[Value]; + const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); + ISD::ArgFlagsTy Flags; + unsigned OriginalAlignment = + TD->getABITypeAlignment(ArgTy); + + if (F.paramHasAttr(Idx, Attribute::ZExt)) + Flags.setZExt(); + if (F.paramHasAttr(Idx, Attribute::SExt)) + Flags.setSExt(); + if (F.paramHasAttr(Idx, Attribute::InReg)) + Flags.setInReg(); + if (F.paramHasAttr(Idx, Attribute::StructRet)) + Flags.setSRet(); + if (F.paramHasAttr(Idx, Attribute::ByVal)) { + Flags.setByVal(); + const PointerType *Ty = cast(I->getType()); + const Type *ElementTy = Ty->getElementType(); + unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); + unsigned FrameSize = TD->getTypeAllocSize(ElementTy); + // For ByVal, alignment should be passed from FE. BE will guess if + // this info is not there but there are cases it cannot get right. + if (F.getParamAlignment(Idx)) + FrameAlign = F.getParamAlignment(Idx); + Flags.setByValAlign(FrameAlign); + Flags.setByValSize(FrameSize); + } + if (F.paramHasAttr(Idx, Attribute::Nest)) + Flags.setNest(); + Flags.setOrigAlign(OriginalAlignment); + + EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); + unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); + for (unsigned i = 0; i != NumRegs; ++i) { + ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); + if (NumRegs > 1 && i == 0) + MyFlags.Flags.setSplit(); + // if it isn't first piece, alignment must be 1 + else if (i > 0) + MyFlags.Flags.setOrigAlign(1); + Ins.push_back(MyFlags); + } + } + } + + // Call the target to set up the argument values. + SmallVector InVals; + SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), + F.isVarArg(), Ins, + dl, DAG, InVals); + + // Verify that the target's LowerFormalArguments behaved as expected. + assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && + "LowerFormalArguments didn't return a valid chain!"); + assert(InVals.size() == Ins.size() && + "LowerFormalArguments didn't emit the correct number of values!"); + DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { + assert(InVals[i].getNode() && + "LowerFormalArguments emitted a null value!"); + assert(Ins[i].VT == InVals[i].getValueType() && + "LowerFormalArguments emitted a value with the wrong type!"); + }); + + // Update the DAG with the new chain value resulting from argument lowering. + DAG.setRoot(NewRoot); + + // Set up the argument values. + unsigned i = 0; + Idx = 1; + if (!FLI.CanLowerReturn) { + // Create a virtual register for the sret pointer, and put in a copy + // from the sret argument into it. + SmallVector ValueVTs; + ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); + EVT VT = ValueVTs[0]; + EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); + ISD::NodeType AssertOp = ISD::DELETED_NODE; + SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, + VT, AssertOp); + + MachineFunction& MF = SDB->DAG.getMachineFunction(); + MachineRegisterInfo& RegInfo = MF.getRegInfo(); + unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); + FLI.DemoteRegister = SRetReg; + NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), SRetReg, ArgValue); + DAG.setRoot(NewRoot); + + // i indexes lowered arguments. Bump it past the hidden sret argument. + // Idx indexes LLVM arguments. Don't touch it. + ++i; + } + for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; + ++I, ++Idx) { + SmallVector ArgValues; + SmallVector ValueVTs; + ComputeValueVTs(TLI, I->getType(), ValueVTs); + unsigned NumValues = ValueVTs.size(); + for (unsigned Value = 0; Value != NumValues; ++Value) { + EVT VT = ValueVTs[Value]; + EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); + unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); + + if (!I->use_empty()) { + ISD::NodeType AssertOp = ISD::DELETED_NODE; + if (F.paramHasAttr(Idx, Attribute::SExt)) + AssertOp = ISD::AssertSext; + else if (F.paramHasAttr(Idx, Attribute::ZExt)) + AssertOp = ISD::AssertZext; + + ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, + PartVT, VT, AssertOp)); + } + i += NumParts; + } + if (!I->use_empty()) { + SDB->setValue(I, DAG.getMergeValues(&ArgValues[0], NumValues, + SDB->getCurDebugLoc())); + // If this argument is live outside of the entry block, insert a copy from + // whereever we got it to the vreg that other BB's will reference it as. + SDB->CopyToExportRegsIfNeeded(I); + } + } + assert(i == InVals.size() && "Argument register count mismatch!"); + + // Finally, if the target has anything special to do, allow it to do so. + // FIXME: this should insert code into the DAG! + EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction()); +} + +/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to +/// ensure constants are generated when needed. Remember the virtual registers +/// that need to be added to the Machine PHI nodes as input. We cannot just +/// directly add them, because expansion might result in multiple MBB's for one +/// BB. As such, the start of the BB might correspond to a different MBB than +/// the end. +/// +void +SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) { + TerminatorInst *TI = LLVMBB->getTerminator(); + + SmallPtrSet SuccsHandled; + + // Check successor nodes' PHI nodes that expect a constant to be available + // from this block. + for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { + BasicBlock *SuccBB = TI->getSuccessor(succ); + if (!isa(SuccBB->begin())) continue; + MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; + + // If this terminator has multiple identical successors (common for + // switches), only handle each succ once. + if (!SuccsHandled.insert(SuccMBB)) continue; + + MachineBasicBlock::iterator MBBI = SuccMBB->begin(); + PHINode *PN; + + // At this point we know that there is a 1-1 correspondence between LLVM PHI + // nodes and Machine PHI nodes, but the incoming operands have not been + // emitted yet. + for (BasicBlock::iterator I = SuccBB->begin(); + (PN = dyn_cast(I)); ++I) { + // Ignore dead phi's. + if (PN->use_empty()) continue; + + unsigned Reg; + Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); + + if (Constant *C = dyn_cast(PHIOp)) { + unsigned &RegOut = SDB->ConstantsOut[C]; + if (RegOut == 0) { + RegOut = FuncInfo->CreateRegForValue(C); + SDB->CopyValueToVirtualRegister(C, RegOut); + } + Reg = RegOut; + } else { + Reg = FuncInfo->ValueMap[PHIOp]; + if (Reg == 0) { + assert(isa(PHIOp) && + FuncInfo->StaticAllocaMap.count(cast(PHIOp)) && + "Didn't codegen value into a register!??"); + Reg = FuncInfo->CreateRegForValue(PHIOp); + SDB->CopyValueToVirtualRegister(PHIOp, Reg); + } + } + + // Remember that this register needs to added to the machine PHI node as + // the input for this MBB. + SmallVector ValueVTs; + ComputeValueVTs(TLI, PN->getType(), ValueVTs); + for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { + EVT VT = ValueVTs[vti]; + unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT); + for (unsigned i = 0, e = NumRegisters; i != e; ++i) + SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); + Reg += NumRegisters; + } + } + } + SDB->ConstantsOut.clear(); +} + +/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only +/// supports legal types, and it emits MachineInstrs directly instead of +/// creating SelectionDAG nodes. +/// +bool +SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB, + FastISel *F) { + TerminatorInst *TI = LLVMBB->getTerminator(); + + SmallPtrSet SuccsHandled; + unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size(); + + // Check successor nodes' PHI nodes that expect a constant to be available + // from this block. + for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { + BasicBlock *SuccBB = TI->getSuccessor(succ); + if (!isa(SuccBB->begin())) continue; + MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; + + // If this terminator has multiple identical successors (common for + // switches), only handle each succ once. + if (!SuccsHandled.insert(SuccMBB)) continue; + + MachineBasicBlock::iterator MBBI = SuccMBB->begin(); + PHINode *PN; + + // At this point we know that there is a 1-1 correspondence between LLVM PHI + // nodes and Machine PHI nodes, but the incoming operands have not been + // emitted yet. + for (BasicBlock::iterator I = SuccBB->begin(); + (PN = dyn_cast(I)); ++I) { + // Ignore dead phi's. + if (PN->use_empty()) continue; + + // Only handle legal types. Two interesting things to note here. First, + // by bailing out early, we may leave behind some dead instructions, + // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its + // own moves. Second, this check is necessary becuase FastISel doesn't + // use CreateRegForValue to create registers, so it always creates + // exactly one register for each non-void instruction. + EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); + if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { + // Promote MVT::i1. + if (VT == MVT::i1) + VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT); + else { + SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); + return false; + } + } + + Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); + + unsigned Reg = F->getRegForValue(PHIOp); + if (Reg == 0) { + SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); + return false; + } + SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); + } + } + + return true; +} diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h new file mode 100644 index 00000000000..244f9b5019e --- /dev/null +++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h @@ -0,0 +1,487 @@ +//===-- SelectionDAGBuilder.h - Selection-DAG building --------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements routines for translating from LLVM IR into SelectionDAG IR. +// +//===----------------------------------------------------------------------===// + +#ifndef SELECTIONDAGBUILDER_H +#define SELECTIONDAGBUILDER_H + +#include "llvm/Constants.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/DenseMap.h" +#ifndef NDEBUG +#include "llvm/ADT/SmallSet.h" +#endif +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/ErrorHandling.h" +#include +#include + +namespace llvm { + +class AliasAnalysis; +class AllocaInst; +class BasicBlock; +class BitCastInst; +class BranchInst; +class CallInst; +class ExtractElementInst; +class ExtractValueInst; +class FCmpInst; +class FPExtInst; +class FPToSIInst; +class FPToUIInst; +class FPTruncInst; +class Function; +class FunctionLoweringInfo; +class GetElementPtrInst; +class GCFunctionInfo; +class ICmpInst; +class IntToPtrInst; +class IndirectBrInst; +class InvokeInst; +class InsertElementInst; +class InsertValueInst; +class Instruction; +class LoadInst; +class MachineBasicBlock; +class MachineFunction; +class MachineInstr; +class MachineRegisterInfo; +class PHINode; +class PtrToIntInst; +class ReturnInst; +class SDISelAsmOperandInfo; +class SExtInst; +class SelectInst; +class ShuffleVectorInst; +class SIToFPInst; +class StoreInst; +class SwitchInst; +class TargetData; +class TargetLowering; +class TruncInst; +class UIToFPInst; +class UnreachableInst; +class UnwindInst; +class VAArgInst; +class ZExtInst; + +//===----------------------------------------------------------------------===// +/// SelectionDAGBuilder - This is the common target-independent lowering +/// implementation that is parameterized by a TargetLowering object. +/// Also, targets can overload any lowering method. +/// +class SelectionDAGBuilder { + MachineBasicBlock *CurMBB; + + /// CurDebugLoc - current file + line number. Changes as we build the DAG. + DebugLoc CurDebugLoc; + + DenseMap NodeMap; + + /// PendingLoads - Loads are not emitted to the program immediately. We bunch + /// them up and then emit token factor nodes when possible. This allows us to + /// get simple disambiguation between loads without worrying about alias + /// analysis. + SmallVector PendingLoads; + + /// PendingExports - CopyToReg nodes that copy values to virtual registers + /// for export to other blocks need to be emitted before any terminator + /// instruction, but they have no other ordering requirements. We bunch them + /// up and the emit a single tokenfactor for them just before terminator + /// instructions. + SmallVector PendingExports; + + /// Case - A struct to record the Value for a switch case, and the + /// case's target basic block. + struct Case { + Constant* Low; + Constant* High; + MachineBasicBlock* BB; + + Case() : Low(0), High(0), BB(0) { } + Case(Constant* low, Constant* high, MachineBasicBlock* bb) : + Low(low), High(high), BB(bb) { } + APInt size() const { + const APInt &rHigh = cast(High)->getValue(); + const APInt &rLow = cast(Low)->getValue(); + return (rHigh - rLow + 1ULL); + } + }; + + struct CaseBits { + uint64_t Mask; + MachineBasicBlock* BB; + unsigned Bits; + + CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits): + Mask(mask), BB(bb), Bits(bits) { } + }; + + typedef std::vector CaseVector; + typedef std::vector CaseBitsVector; + typedef CaseVector::iterator CaseItr; + typedef std::pair CaseRange; + + /// CaseRec - A struct with ctor used in lowering switches to a binary tree + /// of conditional branches. + struct CaseRec { + CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) : + CaseBB(bb), LT(lt), GE(ge), Range(r) {} + + /// CaseBB - The MBB in which to emit the compare and branch + MachineBasicBlock *CaseBB; + /// LT, GE - If nonzero, we know the current case value must be less-than or + /// greater-than-or-equal-to these Constants. + Constant *LT; + Constant *GE; + /// Range - A pair of iterators representing the range of case values to be + /// processed at this point in the binary search tree. + CaseRange Range; + }; + + typedef std::vector CaseRecVector; + + /// The comparison function for sorting the switch case values in the vector. + /// WARNING: Case ranges should be disjoint! + struct CaseCmp { + bool operator () (const Case& C1, const Case& C2) { + assert(isa(C1.Low) && isa(C2.High)); + const ConstantInt* CI1 = cast(C1.Low); + const ConstantInt* CI2 = cast(C2.High); + return CI1->getValue().slt(CI2->getValue()); + } + }; + + struct CaseBitsCmp { + bool operator () (const CaseBits& C1, const CaseBits& C2) { + return C1.Bits > C2.Bits; + } + }; + + size_t Clusterify(CaseVector& Cases, const SwitchInst &SI); + + /// CaseBlock - This structure is used to communicate between + /// SelectionDAGBuilder and SDISel for the code generation of additional basic + /// blocks needed by multi-case switch statements. + struct CaseBlock { + CaseBlock(ISD::CondCode cc, Value *cmplhs, Value *cmprhs, Value *cmpmiddle, + MachineBasicBlock *truebb, MachineBasicBlock *falsebb, + MachineBasicBlock *me) + : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs), + TrueBB(truebb), FalseBB(falsebb), ThisBB(me) {} + // CC - the condition code to use for the case block's setcc node + ISD::CondCode CC; + // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit. + // Emit by default LHS op RHS. MHS is used for range comparisons: + // If MHS is not null: (LHS <= MHS) and (MHS <= RHS). + Value *CmpLHS, *CmpMHS, *CmpRHS; + // TrueBB/FalseBB - the block to branch to if the setcc is true/false. + MachineBasicBlock *TrueBB, *FalseBB; + // ThisBB - the block into which to emit the code for the setcc and branches + MachineBasicBlock *ThisBB; + }; + struct JumpTable { + JumpTable(unsigned R, unsigned J, MachineBasicBlock *M, + MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {} + + /// Reg - the virtual register containing the index of the jump table entry + //. to jump to. + unsigned Reg; + /// JTI - the JumpTableIndex for this jump table in the function. + unsigned JTI; + /// MBB - the MBB into which to emit the code for the indirect jump. + MachineBasicBlock *MBB; + /// Default - the MBB of the default bb, which is a successor of the range + /// check MBB. This is when updating PHI nodes in successors. + MachineBasicBlock *Default; + }; + struct JumpTableHeader { + JumpTableHeader(APInt F, APInt L, Value* SV, MachineBasicBlock* H, + bool E = false): + First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {} + APInt First; + APInt Last; + Value *SValue; + MachineBasicBlock *HeaderBB; + bool Emitted; + }; + typedef std::pair JumpTableBlock; + + struct BitTestCase { + BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr): + Mask(M), ThisBB(T), TargetBB(Tr) { } + uint64_t Mask; + MachineBasicBlock* ThisBB; + MachineBasicBlock* TargetBB; + }; + + typedef SmallVector BitTestInfo; + + struct BitTestBlock { + BitTestBlock(APInt F, APInt R, Value* SV, + unsigned Rg, bool E, + MachineBasicBlock* P, MachineBasicBlock* D, + const BitTestInfo& C): + First(F), Range(R), SValue(SV), Reg(Rg), Emitted(E), + Parent(P), Default(D), Cases(C) { } + APInt First; + APInt Range; + Value *SValue; + unsigned Reg; + bool Emitted; + MachineBasicBlock *Parent; + MachineBasicBlock *Default; + BitTestInfo Cases; + }; + +public: + // TLI - This is information that describes the available target features we + // need for lowering. This indicates when operations are unavailable, + // implemented with a libcall, etc. + TargetLowering &TLI; + SelectionDAG &DAG; + const TargetData *TD; + AliasAnalysis *AA; + + /// SwitchCases - Vector of CaseBlock structures used to communicate + /// SwitchInst code generation information. + std::vector SwitchCases; + /// JTCases - Vector of JumpTable structures used to communicate + /// SwitchInst code generation information. + std::vector JTCases; + /// BitTestCases - Vector of BitTestBlock structures used to communicate + /// SwitchInst code generation information. + std::vector BitTestCases; + + /// PHINodesToUpdate - A list of phi instructions whose operand list will + /// be updated after processing the current basic block. + std::vector > PHINodesToUpdate; + + /// EdgeMapping - If an edge from CurMBB to any MBB is changed (e.g. due to + /// scheduler custom lowering), track the change here. + DenseMap EdgeMapping; + + // Emit PHI-node-operand constants only once even if used by multiple + // PHI nodes. + DenseMap ConstantsOut; + + /// FuncInfo - Information about the function as a whole. + /// + FunctionLoweringInfo &FuncInfo; + + /// OptLevel - What optimization level we're generating code for. + /// + CodeGenOpt::Level OptLevel; + + /// GFI - Garbage collection metadata for the function. + GCFunctionInfo *GFI; + + /// HasTailCall - This is set to true if a call in the current + /// block has been translated as a tail call. In this case, + /// no subsequent DAG nodes should be created. + /// + bool HasTailCall; + + LLVMContext *Context; + + SelectionDAGBuilder(SelectionDAG &dag, TargetLowering &tli, + FunctionLoweringInfo &funcinfo, + CodeGenOpt::Level ol) + : CurDebugLoc(DebugLoc::getUnknownLoc()), + TLI(tli), DAG(dag), FuncInfo(funcinfo), OptLevel(ol), + HasTailCall(false), + Context(dag.getContext()) { + } + + void init(GCFunctionInfo *gfi, AliasAnalysis &aa); + + /// clear - Clear out the curret SelectionDAG and the associated + /// state and prepare this SelectionDAGBuilder object to be used + /// for a new block. This doesn't clear out information about + /// additional blocks that are needed to complete switch lowering + /// or PHI node updating; that information is cleared out as it is + /// consumed. + void clear(); + + /// getRoot - Return the current virtual root of the Selection DAG, + /// flushing any PendingLoad items. This must be done before emitting + /// a store or any other node that may need to be ordered after any + /// prior load instructions. + /// + SDValue getRoot(); + + /// getControlRoot - Similar to getRoot, but instead of flushing all the + /// PendingLoad items, flush all the PendingExports items. It is necessary + /// to do this before emitting a terminator instruction. + /// + SDValue getControlRoot(); + + DebugLoc getCurDebugLoc() const { return CurDebugLoc; } + void setCurDebugLoc(DebugLoc dl) { CurDebugLoc = dl; } + + void CopyValueToVirtualRegister(Value *V, unsigned Reg); + + void visit(Instruction &I); + + void visit(unsigned Opcode, User &I); + + void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; } + + SDValue getValue(const Value *V); + + void setValue(const Value *V, SDValue NewN) { + SDValue &N = NodeMap[V]; + assert(N.getNode() == 0 && "Already set a value for this node!"); + N = NewN; + } + + void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, + std::set &OutputRegs, + std::set &InputRegs); + + void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB, + MachineBasicBlock *FBB, MachineBasicBlock *CurBB, + unsigned Opc); + void EmitBranchForMergedCondition(Value *Cond, MachineBasicBlock *TBB, + MachineBasicBlock *FBB, + MachineBasicBlock *CurBB); + bool ShouldEmitAsBranches(const std::vector &Cases); + bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB); + void CopyToExportRegsIfNeeded(Value *V); + void ExportFromCurrentBlock(Value *V); + void LowerCallTo(CallSite CS, SDValue Callee, bool IsTailCall, + MachineBasicBlock *LandingPad = NULL); + +private: + // Terminator instructions. + void visitRet(ReturnInst &I); + void visitBr(BranchInst &I); + void visitSwitch(SwitchInst &I); + void visitIndirectBr(IndirectBrInst &I); + void visitUnreachable(UnreachableInst &I) { /* noop */ } + + // Helpers for visitSwitch + bool handleSmallSwitchRange(CaseRec& CR, + CaseRecVector& WorkList, + Value* SV, + MachineBasicBlock* Default); + bool handleJTSwitchCase(CaseRec& CR, + CaseRecVector& WorkList, + Value* SV, + MachineBasicBlock* Default); + bool handleBTSplitSwitchCase(CaseRec& CR, + CaseRecVector& WorkList, + Value* SV, + MachineBasicBlock* Default); + bool handleBitTestsSwitchCase(CaseRec& CR, + CaseRecVector& WorkList, + Value* SV, + MachineBasicBlock* Default); +public: + void visitSwitchCase(CaseBlock &CB); + void visitBitTestHeader(BitTestBlock &B); + void visitBitTestCase(MachineBasicBlock* NextMBB, + unsigned Reg, + BitTestCase &B); + void visitJumpTable(JumpTable &JT); + void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH); + +private: + // These all get lowered before this pass. + void visitInvoke(InvokeInst &I); + void visitUnwind(UnwindInst &I); + + void visitBinary(User &I, unsigned OpCode); + void visitShift(User &I, unsigned Opcode); + void visitAdd(User &I) { visitBinary(I, ISD::ADD); } + void visitFAdd(User &I) { visitBinary(I, ISD::FADD); } + void visitSub(User &I) { visitBinary(I, ISD::SUB); } + void visitFSub(User &I); + void visitMul(User &I) { visitBinary(I, ISD::MUL); } + void visitFMul(User &I) { visitBinary(I, ISD::FMUL); } + void visitURem(User &I) { visitBinary(I, ISD::UREM); } + void visitSRem(User &I) { visitBinary(I, ISD::SREM); } + void visitFRem(User &I) { visitBinary(I, ISD::FREM); } + void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); } + void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); } + void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); } + void visitAnd (User &I) { visitBinary(I, ISD::AND); } + void visitOr (User &I) { visitBinary(I, ISD::OR); } + void visitXor (User &I) { visitBinary(I, ISD::XOR); } + void visitShl (User &I) { visitShift(I, ISD::SHL); } + void visitLShr(User &I) { visitShift(I, ISD::SRL); } + void visitAShr(User &I) { visitShift(I, ISD::SRA); } + void visitICmp(User &I); + void visitFCmp(User &I); + // Visit the conversion instructions + void visitTrunc(User &I); + void visitZExt(User &I); + void visitSExt(User &I); + void visitFPTrunc(User &I); + void visitFPExt(User &I); + void visitFPToUI(User &I); + void visitFPToSI(User &I); + void visitUIToFP(User &I); + void visitSIToFP(User &I); + void visitPtrToInt(User &I); + void visitIntToPtr(User &I); + void visitBitCast(User &I); + + void visitExtractElement(User &I); + void visitInsertElement(User &I); + void visitShuffleVector(User &I); + + void visitExtractValue(ExtractValueInst &I); + void visitInsertValue(InsertValueInst &I); + + void visitGetElementPtr(User &I); + void visitSelect(User &I); + + void visitAlloca(AllocaInst &I); + void visitLoad(LoadInst &I); + void visitStore(StoreInst &I); + void visitPHI(PHINode &I) { } // PHI nodes are handled specially. + void visitCall(CallInst &I); + void visitInlineAsm(CallSite CS); + const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic); + void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic); + + void visitPow(CallInst &I); + void visitExp2(CallInst &I); + void visitExp(CallInst &I); + void visitLog(CallInst &I); + void visitLog2(CallInst &I); + void visitLog10(CallInst &I); + + void visitVAStart(CallInst &I); + void visitVAArg(VAArgInst &I); + void visitVAEnd(CallInst &I); + void visitVACopy(CallInst &I); + + void visitUserOp1(Instruction &I) { + llvm_unreachable("UserOp1 should not exist at instruction selection time!"); + } + void visitUserOp2(Instruction &I) { + llvm_unreachable("UserOp2 should not exist at instruction selection time!"); + } + + const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op); + const char *implVisitAluOverflow(CallInst &I, ISD::NodeType Op); +}; + +} // end namespace llvm + +#endif diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp index 70bbb112c44..b9aac3fee95 100644 --- a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp +++ b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp @@ -13,7 +13,7 @@ #define DEBUG_TYPE "isel" #include "ScheduleDAGSDNodes.h" -#include "SelectionDAGBuild.h" +#include "SelectionDAGBuilder.h" #include "FunctionLoweringInfo.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Analysis/AliasAnalysis.h" @@ -280,14 +280,14 @@ SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) : MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()), FuncInfo(new FunctionLoweringInfo(TLI)), CurDAG(new SelectionDAG(TLI, *FuncInfo)), - SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo, OL)), + SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)), GFI(), OptLevel(OL), DAGSize(0) {} SelectionDAGISel::~SelectionDAGISel() { - delete SDL; + delete SDB; delete CurDAG; delete FuncInfo; } @@ -333,7 +333,7 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { DwarfWriter *DW = getAnalysisIfAvailable(); CurDAG->init(*MF, MMI, DW); FuncInfo->set(Fn, *MF, EnableFastISel); - SDL->init(GFI, *AA); + SDB->init(GFI, *AA); for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) if (InvokeInst *Invoke = dyn_cast(I->getTerminator())) @@ -379,13 +379,13 @@ void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, BasicBlock::iterator Begin, BasicBlock::iterator End, bool &HadTailCall) { - SDL->setCurrentBasicBlock(BB); + SDB->setCurrentBasicBlock(BB); MetadataContext &TheMetadata = LLVMBB->getParent()->getContext().getMetadata(); unsigned MDDbgKind = TheMetadata.getMDKind("dbg"); // Lower all of the non-terminator instructions. If a call is emitted // as a tail call, cease emitting nodes for this block. - for (BasicBlock::iterator I = Begin; I != End && !SDL->HasTailCall; ++I) { + for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { if (MDDbgKind) { // Update DebugLoc if debug information is attached with this // instruction. @@ -393,38 +393,38 @@ void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, if (MDNode *Dbg = TheMetadata.getMD(MDDbgKind, I)) { DILocation DILoc(Dbg); DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo()); - SDL->setCurDebugLoc(Loc); + SDB->setCurDebugLoc(Loc); if (MF->getDefaultDebugLoc().isUnknown()) MF->setDefaultDebugLoc(Loc); } } if (!isa(I)) - SDL->visit(*I); + SDB->visit(*I); } - if (!SDL->HasTailCall) { + if (!SDB->HasTailCall) { // Ensure that all instructions which are used outside of their defining // blocks are available as virtual registers. Invoke is handled elsewhere. for (BasicBlock::iterator I = Begin; I != End; ++I) if (!isa(I) && !isa(I)) - SDL->CopyToExportRegsIfNeeded(I); + SDB->CopyToExportRegsIfNeeded(I); // Handle PHI nodes in successor blocks. if (End == LLVMBB->end()) { HandlePHINodesInSuccessorBlocks(LLVMBB); // Lower the terminator after the copies are emitted. - SDL->visit(*LLVMBB->getTerminator()); + SDB->visit(*LLVMBB->getTerminator()); } } // Make sure the root of the DAG is up-to-date. - CurDAG->setRoot(SDL->getControlRoot()); + CurDAG->setRoot(SDB->getControlRoot()); // Final step, emit the lowered DAG as machine code. CodeGenAndEmitDAG(); - HadTailCall = SDL->HasTailCall; - SDL->clear(); + HadTailCall = SDB->HasTailCall; + SDB->clear(); } void SelectionDAGISel::ComputeLiveOutVRegInfo() { @@ -632,9 +632,9 @@ void SelectionDAGISel::CodeGenAndEmitDAG() { // inserted into. if (TimePassesIsEnabled) { NamedRegionTimer T("Instruction Creation", GroupName); - BB = Scheduler->EmitSchedule(&SDL->EdgeMapping); + BB = Scheduler->EmitSchedule(&SDB->EdgeMapping); } else { - BB = Scheduler->EmitSchedule(&SDL->EdgeMapping); + BB = Scheduler->EmitSchedule(&SDB->EdgeMapping); } // Free the scheduler state. @@ -704,7 +704,7 @@ void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, unsigned LabelID = MMI->addLandingPad(BB); const TargetInstrDesc &II = TII.get(TargetInstrInfo::EH_LABEL); - BuildMI(BB, SDL->getCurDebugLoc(), II).addImm(LabelID); + BuildMI(BB, SDB->getCurDebugLoc(), II).addImm(LabelID); // Mark exception register as live in. unsigned Reg = TLI.getExceptionAddressRegister(); @@ -744,9 +744,9 @@ void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, // Emit code for any incoming arguments. This must happen before // beginning FastISel on the entry block. if (LLVMBB == &Fn.getEntryBlock()) { - CurDAG->setRoot(SDL->getControlRoot()); + CurDAG->setRoot(SDB->getControlRoot()); CodeGenAndEmitDAG(); - SDL->clear(); + SDB->clear(); } FastIS->startNewBlock(BB); // Do FastISel on as many instructions as possible. @@ -799,7 +799,7 @@ void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, R = FuncInfo->CreateRegForValue(BI); } - SDL->setCurDebugLoc(FastIS->getCurDebugLoc()); + SDB->setCurDebugLoc(FastIS->getCurDebugLoc()); bool HadTailCall = false; SelectBasicBlock(LLVMBB, BI, next(BI), HadTailCall); @@ -838,7 +838,7 @@ void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, if (BI != End) { // If FastISel is run and it has known DebugLoc then use it. if (FastIS && !FastIS->getCurDebugLoc().isUnknown()) - SDL->setCurDebugLoc(FastIS->getCurDebugLoc()); + SDB->setCurDebugLoc(FastIS->getCurDebugLoc()); bool HadTailCall; SelectBasicBlock(LLVMBB, BI, End, HadTailCall); } @@ -856,150 +856,150 @@ SelectionDAGISel::FinishBasicBlock() { DEBUG(BB->dump()); DEBUG(errs() << "Total amount of phi nodes to update: " - << SDL->PHINodesToUpdate.size() << "\n"); - DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) + << SDB->PHINodesToUpdate.size() << "\n"); + DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) errs() << "Node " << i << " : (" - << SDL->PHINodesToUpdate[i].first - << ", " << SDL->PHINodesToUpdate[i].second << ")\n"); + << SDB->PHINodesToUpdate[i].first + << ", " << SDB->PHINodesToUpdate[i].second << ")\n"); // Next, now that we know what the last MBB the LLVM BB expanded is, update // PHI nodes in successors. - if (SDL->SwitchCases.empty() && - SDL->JTCases.empty() && - SDL->BitTestCases.empty()) { - for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) { - MachineInstr *PHI = SDL->PHINodesToUpdate[i].first; + if (SDB->SwitchCases.empty() && + SDB->JTCases.empty() && + SDB->BitTestCases.empty()) { + for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) { + MachineInstr *PHI = SDB->PHINodesToUpdate[i].first; assert(PHI->getOpcode() == TargetInstrInfo::PHI && "This is not a machine PHI node that we are updating!"); - PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second, + PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second, false)); PHI->addOperand(MachineOperand::CreateMBB(BB)); } - SDL->PHINodesToUpdate.clear(); + SDB->PHINodesToUpdate.clear(); return; } - for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) { + for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) { // Lower header first, if it wasn't already lowered - if (!SDL->BitTestCases[i].Emitted) { + if (!SDB->BitTestCases[i].Emitted) { // Set the current basic block to the mbb we wish to insert the code into - BB = SDL->BitTestCases[i].Parent; - SDL->setCurrentBasicBlock(BB); + BB = SDB->BitTestCases[i].Parent; + SDB->setCurrentBasicBlock(BB); // Emit the code - SDL->visitBitTestHeader(SDL->BitTestCases[i]); - CurDAG->setRoot(SDL->getRoot()); + SDB->visitBitTestHeader(SDB->BitTestCases[i]); + CurDAG->setRoot(SDB->getRoot()); CodeGenAndEmitDAG(); - SDL->clear(); + SDB->clear(); } - for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) { + for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) { // Set the current basic block to the mbb we wish to insert the code into - BB = SDL->BitTestCases[i].Cases[j].ThisBB; - SDL->setCurrentBasicBlock(BB); + BB = SDB->BitTestCases[i].Cases[j].ThisBB; + SDB->setCurrentBasicBlock(BB); // Emit the code if (j+1 != ej) - SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB, - SDL->BitTestCases[i].Reg, - SDL->BitTestCases[i].Cases[j]); + SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB, + SDB->BitTestCases[i].Reg, + SDB->BitTestCases[i].Cases[j]); else - SDL->visitBitTestCase(SDL->BitTestCases[i].Default, - SDL->BitTestCases[i].Reg, - SDL->BitTestCases[i].Cases[j]); + SDB->visitBitTestCase(SDB->BitTestCases[i].Default, + SDB->BitTestCases[i].Reg, + SDB->BitTestCases[i].Cases[j]); - CurDAG->setRoot(SDL->getRoot()); + CurDAG->setRoot(SDB->getRoot()); CodeGenAndEmitDAG(); - SDL->clear(); + SDB->clear(); } // Update PHI Nodes - for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) { - MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first; + for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) { + MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first; MachineBasicBlock *PHIBB = PHI->getParent(); assert(PHI->getOpcode() == TargetInstrInfo::PHI && "This is not a machine PHI node that we are updating!"); // This is "default" BB. We have two jumps to it. From "header" BB and // from last "case" BB. - if (PHIBB == SDL->BitTestCases[i].Default) { - PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second, + if (PHIBB == SDB->BitTestCases[i].Default) { + PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false)); - PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent)); - PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second, + PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent)); + PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false)); - PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases. + PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases. back().ThisBB)); } // One of "cases" BB. - for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); + for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) { - MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB; + MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB; if (cBB->succ_end() != std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) { - PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second, + PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false)); PHI->addOperand(MachineOperand::CreateMBB(cBB)); } } } } - SDL->BitTestCases.clear(); + SDB->BitTestCases.clear(); // If the JumpTable record is filled in, then we need to emit a jump table. // Updating the PHI nodes is tricky in this case, since we need to determine // whether the PHI is a successor of the range check MBB or the jump table MBB - for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) { + for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { // Lower header first, if it wasn't already lowered - if (!SDL->JTCases[i].first.Emitted) { + if (!SDB->JTCases[i].first.Emitted) { // Set the current basic block to the mbb we wish to insert the code into - BB = SDL->JTCases[i].first.HeaderBB; - SDL->setCurrentBasicBlock(BB); + BB = SDB->JTCases[i].first.HeaderBB; + SDB->setCurrentBasicBlock(BB); // Emit the code - SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first); - CurDAG->setRoot(SDL->getRoot()); + SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first); + CurDAG->setRoot(SDB->getRoot()); CodeGenAndEmitDAG(); - SDL->clear(); + SDB->clear(); } // Set the current basic block to the mbb we wish to insert the code into - BB = SDL->JTCases[i].second.MBB; - SDL->setCurrentBasicBlock(BB); + BB = SDB->JTCases[i].second.MBB; + SDB->setCurrentBasicBlock(BB); // Emit the code - SDL->visitJumpTable(SDL->JTCases[i].second); - CurDAG->setRoot(SDL->getRoot()); + SDB->visitJumpTable(SDB->JTCases[i].second); + CurDAG->setRoot(SDB->getRoot()); CodeGenAndEmitDAG(); - SDL->clear(); + SDB->clear(); // Update PHI Nodes - for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) { - MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first; + for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) { + MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first; MachineBasicBlock *PHIBB = PHI->getParent(); assert(PHI->getOpcode() == TargetInstrInfo::PHI && "This is not a machine PHI node that we are updating!"); // "default" BB. We can go there only from header BB. - if (PHIBB == SDL->JTCases[i].second.Default) { + if (PHIBB == SDB->JTCases[i].second.Default) { PHI->addOperand - (MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second, false)); + (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false)); PHI->addOperand - (MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB)); + (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB)); } // JT BB. Just iterate over successors here if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) { PHI->addOperand - (MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second, false)); + (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false)); PHI->addOperand(MachineOperand::CreateMBB(BB)); } } } - SDL->JTCases.clear(); + SDB->JTCases.clear(); // If the switch block involved a branch to one of the actual successors, we // need to update PHI nodes in that block. - for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) { - MachineInstr *PHI = SDL->PHINodesToUpdate[i].first; + for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) { + MachineInstr *PHI = SDB->PHINodesToUpdate[i].first; assert(PHI->getOpcode() == TargetInstrInfo::PHI && "This is not a machine PHI node that we are updating!"); if (BB->isSuccessor(PHI->getParent())) { - PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second, + PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second, false)); PHI->addOperand(MachineOperand::CreateMBB(BB)); } @@ -1007,36 +1007,36 @@ SelectionDAGISel::FinishBasicBlock() { // If we generated any switch lowering information, build and codegen any // additional DAGs necessary. - for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) { + for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { // Set the current basic block to the mbb we wish to insert the code into - MachineBasicBlock *ThisBB = BB = SDL->SwitchCases[i].ThisBB; - SDL->setCurrentBasicBlock(BB); + MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB; + SDB->setCurrentBasicBlock(BB); // Emit the code - SDL->visitSwitchCase(SDL->SwitchCases[i]); - CurDAG->setRoot(SDL->getRoot()); + SDB->visitSwitchCase(SDB->SwitchCases[i]); + CurDAG->setRoot(SDB->getRoot()); CodeGenAndEmitDAG(); // Handle any PHI nodes in successors of this chunk, as if we were coming // from the original BB before switch expansion. Note that PHI nodes can // occur multiple times in PHINodesToUpdate. We have to be very careful to // handle them the right number of times. - while ((BB = SDL->SwitchCases[i].TrueBB)) { // Handle LHS and RHS. + while ((BB = SDB->SwitchCases[i].TrueBB)) { // Handle LHS and RHS. // If new BB's are created during scheduling, the edges may have been // updated. That is, the edge from ThisBB to BB may have been split and // BB's predecessor is now another block. DenseMap::iterator EI = - SDL->EdgeMapping.find(BB); - if (EI != SDL->EdgeMapping.end()) + SDB->EdgeMapping.find(BB); + if (EI != SDB->EdgeMapping.end()) ThisBB = EI->second; for (MachineBasicBlock::iterator Phi = BB->begin(); Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){ // This value for this PHI node is recorded in PHINodesToUpdate, get it. for (unsigned pn = 0; ; ++pn) { - assert(pn != SDL->PHINodesToUpdate.size() && + assert(pn != SDB->PHINodesToUpdate.size() && "Didn't find PHI entry!"); - if (SDL->PHINodesToUpdate[pn].first == Phi) { - Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn]. + if (SDB->PHINodesToUpdate[pn].first == Phi) { + Phi->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pn]. second, false)); Phi->addOperand(MachineOperand::CreateMBB(ThisBB)); break; @@ -1045,19 +1045,19 @@ SelectionDAGISel::FinishBasicBlock() { } // Don't process RHS if same block as LHS. - if (BB == SDL->SwitchCases[i].FalseBB) - SDL->SwitchCases[i].FalseBB = 0; + if (BB == SDB->SwitchCases[i].FalseBB) + SDB->SwitchCases[i].FalseBB = 0; // If we haven't handled the RHS, do so now. Otherwise, we're done. - SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB; - SDL->SwitchCases[i].FalseBB = 0; + SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB; + SDB->SwitchCases[i].FalseBB = 0; } - assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0); - SDL->clear(); + assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0); + SDB->clear(); } - SDL->SwitchCases.clear(); + SDB->SwitchCases.clear(); - SDL->PHINodesToUpdate.clear(); + SDB->PHINodesToUpdate.clear(); }