From: Andrea Di Biagio Date: Tue, 2 Sep 2014 16:44:56 +0000 (+0000) Subject: [APFloat] Fixed a bug in method 'fusedMultiplyAdd'. X-Git-Url: http://plrg.eecs.uci.edu/git/?a=commitdiff_plain;h=0b6ee9fd1cec71d4870fa165530f14f7efca1bec;p=oota-llvm.git [APFloat] Fixed a bug in method 'fusedMultiplyAdd'. When folding a fused multiply-add builtin call, make sure that we propagate the correct result in the case where the addend is zero, and the two other operands are finite non-zero. Example: define double @test() { %1 = call double @llvm.fma.f64(double 7.0, double 8.0, double 0.0) ret double %1 } Before this patch, the instruction simplifier wrongly folded the builtin call in function @test to constant 'double 7.0'. With this patch, method 'fusedMultiplyAdd' correctly evaluates the multiply and propagates the expected result (i.e. 56.0). Added test fold-builtin-fma.ll with the reproducible from PR20832 plus extra test cases to verify the behavior of method 'fusedMultiplyAdd' in the presence of NaN/Inf operands. This fixes PR20832. Differential Revision: http://reviews.llvm.org/D5152 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216913 91177308-0d34-0410-b5e6-96231b3b80d8 --- diff --git a/lib/Support/APFloat.cpp b/lib/Support/APFloat.cpp index 7989e30afae..ab641fdbe79 100644 --- a/lib/Support/APFloat.cpp +++ b/lib/Support/APFloat.cpp @@ -1801,7 +1801,7 @@ APFloat::fusedMultiplyAdd(const APFloat &multiplicand, extended-precision calculation. */ if (isFiniteNonZero() && multiplicand.isFiniteNonZero() && - addend.isFiniteNonZero()) { + addend.isFinite()) { lostFraction lost_fraction; lost_fraction = multiplySignificand(multiplicand, &addend); diff --git a/test/Transforms/InstSimplify/fold-builtin-fma.ll b/test/Transforms/InstSimplify/fold-builtin-fma.ll new file mode 100644 index 00000000000..6331b8c2dd4 --- /dev/null +++ b/test/Transforms/InstSimplify/fold-builtin-fma.ll @@ -0,0 +1,119 @@ +; RUN: opt -instsimplify -S < %s | FileCheck %s + +; Fixes PR20832 +; Make sure that we correctly fold a fused multiply-add where operands +; are all finite constants and addend is zero. + +declare double @llvm.fma.f64(double, double, double) + + +define double @PR20832() { + %1 = call double @llvm.fma.f64(double 7.0, double 8.0, double 0.0) + ret double %1 +} +; CHECK-LABEL: @PR20832( +; CHECK: ret double 5.600000e+01 + +; Test builtin fma with all finite non-zero constants. +define double @test_all_finite() { + %1 = call double @llvm.fma.f64(double 7.0, double 8.0, double 5.0) + ret double %1 +} +; CHECK-LABEL: @test_all_finite( +; CHECK: ret double 6.100000e+01 + +; Test builtin fma with a +/-NaN addend. +define double @test_NaN_addend() { + %1 = call double @llvm.fma.f64(double 7.0, double 8.0, double 0x7FF8000000000000) + ret double %1 +} +; CHECK-LABEL: @test_NaN_addend( +; CHECK: ret double 0x7FF8000000000000 + +define double @test_NaN_addend_2() { + %1 = call double @llvm.fma.f64(double 7.0, double 8.0, double 0xFFF8000000000000) + ret double %1 +} +; CHECK-LABEL: @test_NaN_addend_2( +; CHECK: ret double 0xFFF8000000000000 + +; Test builtin fma with a +/-Inf addend. +define double @test_Inf_addend() { + %1 = call double @llvm.fma.f64(double 7.0, double 8.0, double 0x7FF0000000000000) + ret double %1 +} +; CHECK-LABEL: @test_Inf_addend( +; CHECK: ret double 0x7FF0000000000000 + +define double @test_Inf_addend_2() { + %1 = call double @llvm.fma.f64(double 7.0, double 8.0, double 0xFFF0000000000000) + ret double %1 +} +; CHECK-LABEL: @test_Inf_addend_2( +; CHECK: ret double 0xFFF0000000000000 + +; Test builtin fma with one of the operands to the multiply being +/-NaN. +define double @test_NaN_1() { + %1 = call double @llvm.fma.f64(double 0x7FF8000000000000, double 8.0, double 0.0) + ret double %1 +} +; CHECK-LABEL: @test_NaN_1( +; CHECK: ret double 0x7FF8000000000000 + + +define double @test_NaN_2() { + %1 = call double @llvm.fma.f64(double 7.0, double 0x7FF8000000000000, double 0.0) + ret double %1 +} +; CHECK-LABEL: @test_NaN_2( +; CHECK: ret double 0x7FF8000000000000 + + +define double @test_NaN_3() { + %1 = call double @llvm.fma.f64(double 0xFFF8000000000000, double 8.0, double 0.0) + ret double %1 +} +; CHECK-LABEL: @test_NaN_3( +; CHECK: ret double 0x7FF8000000000000 + + +define double @test_NaN_4() { + %1 = call double @llvm.fma.f64(double 7.0, double 0xFFF8000000000000, double 0.0) + ret double %1 +} +; CHECK-LABEL: @test_NaN_4( +; CHECK: ret double 0x7FF8000000000000 + + +; Test builtin fma with one of the operands to the multiply being +/-Inf. +define double @test_Inf_1() { + %1 = call double @llvm.fma.f64(double 0x7FF0000000000000, double 8.0, double 0.0) + ret double %1 +} +; CHECK-LABEL: @test_Inf_1( +; CHECK: ret double 0x7FF0000000000000 + + +define double @test_Inf_2() { + %1 = call double @llvm.fma.f64(double 7.0, double 0x7FF0000000000000, double 0.0) + ret double %1 +} +; CHECK-LABEL: @test_Inf_2( +; CHECK: ret double 0x7FF0000000000000 + + +define double @test_Inf_3() { + %1 = call double @llvm.fma.f64(double 0xFFF0000000000000, double 8.0, double 0.0) + ret double %1 +} +; CHECK-LABEL: @test_Inf_3( +; CHECK: ret double 0xFFF0000000000000 + + +define double @test_Inf_4() { + %1 = call double @llvm.fma.f64(double 7.0, double 0xFFF0000000000000, double 0.0) + ret double %1 +} +; CHECK-LABEL: @test_Inf_4( +; CHECK: ret double 0xFFF0000000000000 +