// Code Generation Predicates
//===----------------------------------------------------------------------===//
+// Addressing
def Use32BitAddresses : Predicate<"!getSubtarget().use64BitAddresses()">;
def Use64BitAddresses : Predicate<"getSubtarget().use64BitAddresses()">;
+// Shader Model Support
+def SupportsSM13 : Predicate<"getSubtarget().supportsSM13()">;
+def DoesNotSupportSM13 : Predicate<"!getSubtarget().supportsSM13()">;
+def SupportsSM20 : Predicate<"getSubtarget().supportsSM20()">;
+def DoesNotSupportSM20 : Predicate<"!getSubtarget().supportsSM20()">;
+
+// PTX Version Support
+def SupportsPTX20 : Predicate<"getSubtarget().supportsPTX20()">;
+def DoesNotSupportPTX20 : Predicate<"!getSubtarget().supportsPTX20()">;
+def SupportsPTX21 : Predicate<"getSubtarget().supportsPTX21()">;
+def DoesNotSupportPTX21 : Predicate<"!getSubtarget().supportsPTX21()">;
+
//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff
//===----------------------------------------------------------------------===//
// Instruction Class Templates
//===----------------------------------------------------------------------===//
-// Three-operand floating-point instruction template
-multiclass FLOAT3<string opcstr, SDNode opnode> {
+//===- Floating-Point Instructions - 3 Operand Form -----------------------===//
+multiclass PTX_FLOAT_3OP<string opcstr, SDNode opnode> {
def rr32 : InstPTX<(outs RRegf32:$d),
(ins RRegf32:$a, RRegf32:$b),
!strconcat(opcstr, ".f32\t$d, $a, $b"),
[(set RRegf64:$d, (opnode RRegf64:$a, fpimm:$b))]>;
}
+//===- Floating-Point Instructions - 4 Operand Form -----------------------===//
+multiclass PTX_FLOAT_4OP<string opcstr, SDNode opnode1, SDNode opnode2> {
+ def rrr32 : InstPTX<(outs RRegf32:$d),
+ (ins RRegf32:$a, RRegf32:$b, RRegf32:$c),
+ !strconcat(opcstr, ".f32\t$d, $a, $b, $c"),
+ [(set RRegf32:$d, (opnode2 (opnode1 RRegf32:$a,
+ RRegf32:$b),
+ RRegf32:$c))]>;
+ def rri32 : InstPTX<(outs RRegf32:$d),
+ (ins RRegf32:$a, RRegf32:$b, f32imm:$c),
+ !strconcat(opcstr, ".f32\t$d, $a, $b, $c"),
+ [(set RRegf32:$d, (opnode2 (opnode1 RRegf32:$a,
+ RRegf32:$b),
+ fpimm:$c))]>;
+ def rrr64 : InstPTX<(outs RRegf64:$d),
+ (ins RRegf64:$a, RRegf64:$b, RRegf64:$c),
+ !strconcat(opcstr, ".f64\t$d, $a, $b, $c"),
+ [(set RRegf64:$d, (opnode2 (opnode1 RRegf64:$a,
+ RRegf64:$b),
+ RRegf64:$c))]>;
+ def rri64 : InstPTX<(outs RRegf64:$d),
+ (ins RRegf64:$a, RRegf64:$b, f64imm:$c),
+ !strconcat(opcstr, ".f64\t$d, $a, $b, $c"),
+ [(set RRegf64:$d, (opnode2 (opnode1 RRegf64:$a,
+ RRegf64:$b),
+ fpimm:$c))]>;
+}
+
multiclass INT3<string opcstr, SDNode opnode> {
def rr16 : InstPTX<(outs RRegu16:$d),
(ins RRegu16:$a, RRegu16:$b),
///===- Floating-Point Arithmetic Instructions ----------------------------===//
-defm FADD : FLOAT3<"add", fadd>;
-defm FSUB : FLOAT3<"sub", fsub>;
-defm FMUL : FLOAT3<"mul", fmul>;
+// Standard Binary Operations
+defm FADD : PTX_FLOAT_3OP<"add", fadd>;
+defm FSUB : PTX_FLOAT_3OP<"sub", fsub>;
+defm FMUL : PTX_FLOAT_3OP<"mul", fmul>;
+
+// TODO: Allow user selection of rounding modes for fdiv.
+// For division, we need to have f32 and f64 differently.
+// For f32, we just always use .approx since it is supported on all hardware
+// for PTX 1.4+, which is our minimum target.
+def FDIVrr32 : InstPTX<(outs RRegf32:$d),
+ (ins RRegf32:$a, RRegf32:$b),
+ "div.approx.f32\t$d, $a, $b",
+ [(set RRegf32:$d, (fdiv RRegf32:$a, RRegf32:$b))]>;
+def FDIVri32 : InstPTX<(outs RRegf32:$d),
+ (ins RRegf32:$a, f32imm:$b),
+ "div.approx.f32\t$d, $a, $b",
+ [(set RRegf32:$d, (fdiv RRegf32:$a, fpimm:$b))]>;
+
+// For f64, we must specify a rounding for sm 1.3+ but *not* for sm 1.0.
+def FDIVrr64SM13 : InstPTX<(outs RRegf64:$d),
+ (ins RRegf64:$a, RRegf64:$b),
+ "div.rn.f64\t$d, $a, $b",
+ [(set RRegf64:$d, (fdiv RRegf64:$a, RRegf64:$b))]>,
+ Requires<[SupportsSM13]>;
+def FDIVri64SM13 : InstPTX<(outs RRegf64:$d),
+ (ins RRegf64:$a, f64imm:$b),
+ "div.rn.f64\t$d, $a, $b",
+ [(set RRegf64:$d, (fdiv RRegf64:$a, fpimm:$b))]>,
+ Requires<[SupportsSM13]>;
+def FDIVrr64SM10 : InstPTX<(outs RRegf64:$d),
+ (ins RRegf64:$a, RRegf64:$b),
+ "div.f64\t$d, $a, $b",
+ [(set RRegf64:$d, (fdiv RRegf64:$a, RRegf64:$b))]>,
+ Requires<[DoesNotSupportSM13]>;
+def FDIVri64SM10 : InstPTX<(outs RRegf64:$d),
+ (ins RRegf64:$a, f64imm:$b),
+ "div.f64\t$d, $a, $b",
+ [(set RRegf64:$d, (fdiv RRegf64:$a, fpimm:$b))]>,
+ Requires<[DoesNotSupportSM13]>;
+
+
+
+// Multi-operation hybrid instructions
+
+// The selection of mad/fma is tricky. In some cases, they are the *same*
+// instruction, but in other cases we may prefer one or the other. Also,
+// different PTX versions differ on whether rounding mode flags are required.
+// In the short term, mad is supported on all PTX versions and we use a
+// default rounding mode no matter what shader model or PTX version.
+// TODO: Allow the rounding mode to be selectable through llc.
+defm FMAD : PTX_FLOAT_4OP<"mad.rn", fmul, fadd>;
+
+
///===- Integer Arithmetic Instructions -----------------------------------===//