--- /dev/null
+//===- PtrUseVisitor.h - InstVisitors over a pointers uses ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file provides a collection of visitors which walk the (instruction)
+/// uses of a pointer. These visitors all provide the same essential behavior
+/// as an InstVisitor with similar template-based flexibility and
+/// implementation strategies.
+///
+/// These can be used, for example, to quickly analyze the uses of an alloca,
+/// global variable, or function argument.
+///
+/// FIXME: Provide a variant which doesn't track offsets and is cheaper.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_PTRUSEVISITOR_H
+#define LLVM_ANALYSIS_PTRUSEVISITOR_H
+
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/DataLayout.h"
+#include "llvm/InstVisitor.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+
+namespace llvm {
+
+namespace detail {
+/// \brief Implementation of non-dependent functionality for \c PtrUseVisitor.
+///
+/// See \c PtrUseVisitor for the public interface and detailed comments about
+/// usage. This class is just a helper base class which is not templated and
+/// contains all common code to be shared between different instantiations of
+/// PtrUseVisitor.
+class PtrUseVisitorBase {
+public:
+ /// \brief This class provides information about the result of a visit.
+ ///
+ /// After walking all the users (recursively) of a pointer, the basic
+ /// infrastructure records some commonly useful information such as escape
+ /// analysis and whether the visit completed or aborted early.
+ class PtrInfo {
+ public:
+ PtrInfo() : AbortedInfo(0, false), EscapedInfo(0, false) {}
+
+ /// \brief Reset the pointer info, clearing all state.
+ void reset() {
+ AbortedInfo.setPointer(0);
+ AbortedInfo.setInt(false);
+ EscapedInfo.setPointer(0);
+ EscapedInfo.setInt(false);
+ }
+
+ /// \brief Did we abort the visit early?
+ bool isAborted() const { return AbortedInfo.getInt(); }
+
+ /// \brief Is the pointer escaped at some point?
+ bool isEscaped() const { return EscapedInfo.getInt(); }
+
+ /// \brief Get the instruction causing the visit to abort.
+ /// \returns a pointer to the instruction causing the abort if one is
+ /// available; otherwise returns null.
+ Instruction *getAbortingInst() const { return AbortedInfo.getPointer(); }
+
+ /// \brief Get the instruction causing the pointer to escape.
+ /// \returns a pointer to the instruction which escapes the pointer if one
+ /// is available; otherwise returns null.
+ Instruction *getEscapingInst() const { return EscapedInfo.getPointer(); }
+
+ /// \brief Mark the visit as aborted. Intended for use in a void return.
+ /// \param I The instruction which caused the visit to abort, if available.
+ void setAborted(Instruction *I = 0) {
+ AbortedInfo.setInt(true);
+ AbortedInfo.setPointer(I);
+ }
+
+ /// \brief Mark the pointer as escaped. Intended for use in a void return.
+ /// \param I The instruction which escapes the pointer, if available.
+ void setEscaped(Instruction *I = 0) {
+ EscapedInfo.setInt(true);
+ EscapedInfo.setPointer(I);
+ }
+
+ /// \brief Mark the pointer as escaped, and the visit as aborted. Intended
+ /// for use in a void return.
+ /// \param I The instruction which both escapes the pointer and aborts the
+ /// visit, if available.
+ void setEscapedAndAborted(Instruction *I = 0) {
+ setEscaped(I);
+ setAborted(I);
+ }
+
+ private:
+ PointerIntPair<Instruction *, 1, bool> AbortedInfo, EscapedInfo;
+ };
+
+protected:
+ const DataLayout &DL;
+
+ /// \name Visitation infrastructure
+ /// @{
+
+ /// \brief The info collected about the pointer being visited thus far.
+ PtrInfo PI;
+
+ /// \brief A struct of the data needed to visit a particular use.
+ ///
+ /// This is used to maintain a worklist fo to-visit uses. This is used to
+ /// make the visit be iterative rather than recursive.
+ struct UseToVisit {
+ typedef PointerIntPair<Use *, 1, bool> UseAndIsOffsetKnownPair;
+ UseAndIsOffsetKnownPair UseAndIsOffsetKnown;
+ APInt Offset;
+ };
+
+ /// \brief The worklist of to-visit uses.
+ SmallVector<UseToVisit, 8> Worklist;
+
+ /// \brief A set of visited uses to break cycles in unreachable code.
+ SmallPtrSet<Use *, 8> VisitedUses;
+
+ /// @}
+
+
+ /// \name Per-visit state
+ /// This state is reset for each instruction visited.
+ /// @{
+
+ /// \brief The use currently being visited.
+ Use *U;
+
+ /// \brief True if we have a known constant offset for the use currently
+ /// being visited.
+ bool IsOffsetKnown;
+
+ /// \brief The constant offset of the use if that is known.
+ APInt Offset;
+
+ /// @}
+
+
+ /// Note that the constructor is protected because this class must be a base
+ /// class, we can't create instances directly of this class.
+ PtrUseVisitorBase(const DataLayout &DL) : DL(DL) {}
+
+ /// \brief Enqueue the users of this instruction in the visit worklist.
+ ///
+ /// This will visit the users with the same offset of the current visit
+ /// (including an unknown offset if that is the current state).
+ void enqueueUsers(Instruction &I);
+
+ /// \brief Walk the operands of a GEP and adjust the offset as appropriate.
+ ///
+ /// This routine does the heavy lifting of the pointer walk by computing
+ /// offsets and looking through GEPs.
+ bool adjustOffsetForGEP(GetElementPtrInst &GEPI);
+};
+} // end namespace detail
+
+/// \brief A base class for visitors over the uses of a pointer value.
+///
+/// Once constructed, a user can call \c visit on a pointer value, and this
+/// will walk its uses and visit each instruction using an InstVisitor. It also
+/// provides visit methods which will recurse through any pointer-to-pointer
+/// transformations such as GEPs and bitcasts.
+///
+/// During the visit, the current Use* being visited is available to the
+/// subclass, as well as the current offset from the original base pointer if
+/// known.
+///
+/// The recursive visit of uses is accomplished with a worklist, so the only
+/// ordering guarantee is that an instruction is visited before any uses of it
+/// are visited. Note that this does *not* mean before any of its users are
+/// visited! This is because users can be visited multiple times due to
+/// multiple, different uses of pointers derived from the same base.
+///
+/// A particular Use will only be visited once, but a User may be visited
+/// multiple times, once per Use. This visits may notably have different
+/// offsets.
+///
+/// All visit methods on the underlying InstVisitor return a boolean. This
+/// return short-circuits the visit, stopping it immediately.
+///
+/// FIXME: Generalize this for all values rather than just instructions.
+template <typename DerivedT>
+class PtrUseVisitor : protected InstVisitor<DerivedT>,
+ public detail::PtrUseVisitorBase {
+ friend class InstVisitor<DerivedT>;
+ typedef InstVisitor<DerivedT> Base;
+
+public:
+ PtrUseVisitor(const DataLayout &DL) : PtrUseVisitorBase(DL) {}
+
+ /// \brief Recursively visit the uses of the given pointer.
+ /// \returns An info struct about the pointer. See \c PtrInfo for details.
+ PtrInfo visitPtr(Instruction &I) {
+ // This must be a pointer type. Get an integer type suitable to hold
+ // offsets on this pointer.
+ // FIXME: Support a vector of pointers.
+ assert(I.getType()->isPointerTy());
+ IntegerType *IntPtrTy = cast<IntegerType>(DL.getIntPtrType(I.getType()));
+ IsOffsetKnown = true;
+ Offset = APInt(IntPtrTy->getBitWidth(), 0);
+ PI.reset();
+
+ // Enqueue the uses of this pointer.
+ enqueueUsers(I);
+
+ // Visit all the uses off the worklist until it is empty.
+ while (!Worklist.empty()) {
+ UseToVisit ToVisit = Worklist.pop_back_val();
+ U = ToVisit.UseAndIsOffsetKnown.getPointer();
+ IsOffsetKnown = ToVisit.UseAndIsOffsetKnown.getInt();
+ if (IsOffsetKnown)
+ Offset = llvm_move(ToVisit.Offset);
+
+ Instruction *I = cast<Instruction>(U->getUser());
+ static_cast<DerivedT*>(this)->visit(I);
+ if (PI.isAborted())
+ break;
+ }
+ return PI;
+ }
+
+protected:
+ void visitStoreInst(StoreInst &SI) {
+ if (SI.getValueOperand() == U->get())
+ PI.setEscaped(&SI);
+ }
+
+ void visitBitCastInst(BitCastInst &BC) {
+ enqueueUsers(BC);
+ }
+
+ void visitPtrToIntInst(PtrToIntInst &I) {
+ PI.setEscaped(&I);
+ }
+
+ void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
+ if (GEPI.use_empty())
+ return;
+
+ // If we can't walk the GEP, clear the offset.
+ if (!adjustOffsetForGEP(GEPI)) {
+ IsOffsetKnown = false;
+ Offset = APInt();
+ }
+
+ // Enqueue the users now that the offset has been adjusted.
+ enqueueUsers(GEPI);
+ }
+
+ // No-op intrinsics which we know don't escape the pointer to to logic in
+ // some other function.
+ void visitDbgInfoIntrinsic(DbgInfoIntrinsic &I) {}
+ void visitMemIntrinsic(MemIntrinsic &I) {}
+ void visitIntrinsicInst(IntrinsicInst &II) {
+ switch (II.getIntrinsicID()) {
+ default:
+ return Base::visitIntrinsicInst(II);
+
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ return; // No-op intrinsics.
+ }
+ }
+
+ // Generically, arguments to calls and invokes escape the pointer to some
+ // other function. Mark that.
+ void visitCallSite(CallSite CS) {
+ PI.setEscaped(CS.getInstruction());
+ Base::visitCallSite(CS);
+ }
+};
+
+}
+
+#endif
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/PtrUseVisitor.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Constants.h"
#include "llvm/DIBuilder.h"
};
}
-template <typename DerivedT, typename RetT>
-class AllocaPartitioning::BuilderBase
- : public InstVisitor<DerivedT, RetT> {
-public:
- BuilderBase(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
- : TD(TD),
- AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
- P(P) {
- enqueueUsers(AI, 0);
- }
-
-protected:
- const DataLayout &TD;
- const uint64_t AllocSize;
- AllocaPartitioning &P;
-
- SmallPtrSet<Use *, 8> VisitedUses;
-
- struct OffsetUse {
- Use *U;
- int64_t Offset;
- };
- SmallVector<OffsetUse, 8> Queue;
-
- // The active offset and use while visiting.
- Use *U;
- int64_t Offset;
-
- void enqueueUsers(Instruction &I, int64_t UserOffset) {
- for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
- UI != UE; ++UI) {
- if (VisitedUses.insert(&UI.getUse())) {
- OffsetUse OU = { &UI.getUse(), UserOffset };
- Queue.push_back(OU);
- }
- }
+static Value *foldSelectInst(SelectInst &SI) {
+ // If the condition being selected on is a constant or the same value is
+ // being selected between, fold the select. Yes this does (rarely) happen
+ // early on.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
+ return SI.getOperand(1+CI->isZero());
+ if (SI.getOperand(1) == SI.getOperand(2)) {
+ return SI.getOperand(1);
}
-
- bool computeConstantGEPOffset(GetElementPtrInst &GEPI, int64_t &GEPOffset) {
- GEPOffset = Offset;
- for (gep_type_iterator GTI = gep_type_begin(GEPI), GTE = gep_type_end(GEPI);
- GTI != GTE; ++GTI) {
- ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
- if (!OpC)
- return false;
- if (OpC->isZero())
- continue;
-
- // Handle a struct index, which adds its field offset to the pointer.
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- unsigned ElementIdx = OpC->getZExtValue();
- const StructLayout *SL = TD.getStructLayout(STy);
- uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
- // Check that we can continue to model this GEP in a signed 64-bit offset.
- if (ElementOffset > INT64_MAX ||
- (GEPOffset >= 0 &&
- ((uint64_t)GEPOffset + ElementOffset) > INT64_MAX)) {
- DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
- << "what can be represented in an int64_t!\n"
- << " alloca: " << P.AI << "\n");
- return false;
- }
- if (GEPOffset < 0)
- GEPOffset = ElementOffset + (uint64_t)-GEPOffset;
- else
- GEPOffset += ElementOffset;
- continue;
- }
-
- APInt Index = OpC->getValue().sextOrTrunc(TD.getPointerSizeInBits());
- Index *= APInt(Index.getBitWidth(),
- TD.getTypeAllocSize(GTI.getIndexedType()));
- Index += APInt(Index.getBitWidth(), (uint64_t)GEPOffset,
- /*isSigned*/true);
- // Check if the result can be stored in our int64_t offset.
- if (!Index.isSignedIntN(sizeof(GEPOffset) * 8)) {
- DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
- << "what can be represented in an int64_t!\n"
- << " alloca: " << P.AI << "\n");
- return false;
- }
-
- GEPOffset = Index.getSExtValue();
- }
- return true;
- }
-
- Value *foldSelectInst(SelectInst &SI) {
- // If the condition being selected on is a constant or the same value is
- // being selected between, fold the select. Yes this does (rarely) happen
- // early on.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
- return SI.getOperand(1+CI->isZero());
- if (SI.getOperand(1) == SI.getOperand(2)) {
- assert(*U == SI.getOperand(1));
- return SI.getOperand(1);
- }
- return 0;
- }
-};
+ return 0;
+}
/// \brief Builder for the alloca partitioning.
///
/// of an alloca and splitting the partitions for each load and store at each
/// offset.
class AllocaPartitioning::PartitionBuilder
- : public BuilderBase<PartitionBuilder, bool> {
- friend class InstVisitor<PartitionBuilder, bool>;
+ : public PtrUseVisitor<PartitionBuilder> {
+ friend class PtrUseVisitor<PartitionBuilder>;
+ friend class InstVisitor<PartitionBuilder>;
+ typedef PtrUseVisitor<PartitionBuilder> Base;
+
+ const uint64_t AllocSize;
+ AllocaPartitioning &P;
SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
public:
- PartitionBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
- : BuilderBase<PartitionBuilder, bool>(TD, AI, P) {}
-
- /// \brief Run the builder over the allocation.
- bool operator()() {
- while (!Queue.empty()) {
- U = Queue.back().U;
- Offset = Queue.back().Offset;
- Queue.pop_back();
- if (!visit(cast<Instruction>(U->getUser())))
- return false;
- }
- return true;
- }
+ PartitionBuilder(const DataLayout &DL, AllocaInst &AI, AllocaPartitioning &P)
+ : PtrUseVisitor<PartitionBuilder>(DL),
+ AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())),
+ P(P) {}
private:
- bool markAsEscaping(Instruction &I) {
- P.PointerEscapingInstr = &I;
- return false;
- }
-
- void insertUse(Instruction &I, int64_t Offset, uint64_t Size,
+ void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
bool IsSplittable = false) {
// Completely skip uses which have a zero size or start either before or
// past the end of the allocation.
- if (Size == 0 || Offset < 0 || (uint64_t)Offset >= AllocSize) {
+ if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) {
DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
<< " which has zero size or starts outside of the "
<< AllocSize << " byte alloca:\n"
return;
}
- uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
+ uint64_t BeginOffset = Offset.getZExtValue();
+ uint64_t EndOffset = BeginOffset + Size;
// Clamp the end offset to the end of the allocation. Note that this is
// formulated to handle even the case where "BeginOffset + Size" overflows.
P.Partitions.push_back(New);
}
- bool handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset,
+ void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
bool IsVolatile) {
- uint64_t Size = TD.getTypeStoreSize(Ty);
+ uint64_t Size = DL.getTypeStoreSize(Ty);
// If this memory access can be shown to *statically* extend outside the
// bounds of of the allocation, it's behavior is undefined, so simply
// risk of overflow.
// FIXME: We should instead consider the pointer to have escaped if this
// function is being instrumented for addressing bugs or race conditions.
- if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
- Size > (AllocSize - (uint64_t)Offset)) {
+ if (Offset.isNegative() || Size > AllocSize ||
+ Offset.ugt(AllocSize - Size)) {
DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte "
<< (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset
<< " which extends past the end of the " << AllocSize
<< " byte alloca:\n"
<< " alloca: " << P.AI << "\n"
<< " use: " << I << "\n");
- return true;
+ return;
}
// We allow splitting of loads and stores where the type is an integer type
IsSplittable = !IsVolatile && ITy->getBitWidth() == AllocSize*8;
insertUse(I, Offset, Size, IsSplittable);
- return true;
- }
-
- bool visitBitCastInst(BitCastInst &BC) {
- enqueueUsers(BC, Offset);
- return true;
}
- bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
- int64_t GEPOffset;
- if (!computeConstantGEPOffset(GEPI, GEPOffset))
- return markAsEscaping(GEPI);
-
- enqueueUsers(GEPI, GEPOffset);
- return true;
- }
-
- bool visitLoadInst(LoadInst &LI) {
+ void visitLoadInst(LoadInst &LI) {
assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
"All simple FCA loads should have been pre-split");
+
+ if (!IsOffsetKnown)
+ return PI.setAborted(&LI);
+
return handleLoadOrStore(LI.getType(), LI, Offset, LI.isVolatile());
}
- bool visitStoreInst(StoreInst &SI) {
+ void visitStoreInst(StoreInst &SI) {
Value *ValOp = SI.getValueOperand();
if (ValOp == *U)
- return markAsEscaping(SI);
+ return PI.setEscapedAndAborted(&SI);
+ if (!IsOffsetKnown)
+ return PI.setAborted(&SI);
assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
"All simple FCA stores should have been pre-split");
- return handleLoadOrStore(ValOp->getType(), SI, Offset, SI.isVolatile());
+ handleLoadOrStore(ValOp->getType(), SI, Offset, SI.isVolatile());
}
- bool visitMemSetInst(MemSetInst &II) {
+ void visitMemSetInst(MemSetInst &II) {
assert(II.getRawDest() == *U && "Pointer use is not the destination?");
ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
- uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
- insertUse(II, Offset, Size, Length);
- return true;
+ if ((Length && Length->getValue() == 0) ||
+ (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
+ // Zero-length mem transfer intrinsics can be ignored entirely.
+ return;
+
+ if (!IsOffsetKnown)
+ return PI.setAborted(&II);
+
+ insertUse(II, Offset,
+ Length ? Length->getLimitedValue()
+ : AllocSize - Offset.getLimitedValue(),
+ (bool)Length);
}
- bool visitMemTransferInst(MemTransferInst &II) {
+ void visitMemTransferInst(MemTransferInst &II) {
ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
- uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
- if (!Size)
+ if ((Length && Length->getValue() == 0) ||
+ (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
// Zero-length mem transfer intrinsics can be ignored entirely.
- return true;
+ return;
+
+ if (!IsOffsetKnown)
+ return PI.setAborted(&II);
+
+ uint64_t RawOffset = Offset.getLimitedValue();
+ uint64_t Size = Length ? Length->getLimitedValue()
+ : AllocSize - RawOffset;
MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
Offsets.IsSplittable = Length;
if (*U == II.getRawDest()) {
- Offsets.DestBegin = Offset;
- Offsets.DestEnd = Offset + Size;
+ Offsets.DestBegin = RawOffset;
+ Offsets.DestEnd = RawOffset + Size;
}
if (*U == II.getRawSource()) {
- Offsets.SourceBegin = Offset;
- Offsets.SourceEnd = Offset + Size;
+ Offsets.SourceBegin = RawOffset;
+ Offsets.SourceEnd = RawOffset + Size;
}
// If we have set up end offsets for both the source and the destination,
// In that case, we can completely elide the transfer.
if (!II.isVolatile() && Offsets.SourceBegin == Offsets.DestBegin) {
P.Partitions[PrevIdx].kill();
- return true;
+ return;
}
// Otherwise we have an offset transfer within the same alloca. We can't
// For non-volatile transfers this is a no-op.
if (!II.isVolatile())
- return true;
+ return;
// Otherwise just suppress splitting.
Offsets.IsSplittable = false;
"Already have intrinsic in map but haven't seen both ends");
(void)Inserted;
}
-
- return true;
}
// Disable SRoA for any intrinsics except for lifetime invariants.
// FIXME: What about debug instrinsics? This matches old behavior, but
// doesn't make sense.
- bool visitIntrinsicInst(IntrinsicInst &II) {
+ void visitIntrinsicInst(IntrinsicInst &II) {
+ if (!IsOffsetKnown)
+ return PI.setAborted(&II);
+
if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
II.getIntrinsicID() == Intrinsic::lifetime_end) {
ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
- uint64_t Size = std::min(AllocSize - Offset, Length->getLimitedValue());
+ uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
+ Length->getLimitedValue());
insertUse(II, Offset, Size, true);
- return true;
+ return;
}
- return markAsEscaping(II);
+ Base::visitIntrinsicInst(II);
}
Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
llvm::tie(UsedI, I) = Uses.pop_back_val();
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- Size = std::max(Size, TD.getTypeStoreSize(LI->getType()));
+ Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
continue;
}
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
Value *Op = SI->getOperand(0);
if (Op == UsedI)
return SI;
- Size = std::max(Size, TD.getTypeStoreSize(Op->getType()));
+ Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
continue;
}
return 0;
}
- bool visitPHINode(PHINode &PN) {
+ void visitPHINode(PHINode &PN) {
+ if (PN.use_empty())
+ return;
+ if (!IsOffsetKnown)
+ return PI.setAborted(&PN);
+
// See if we already have computed info on this node.
std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
if (PHIInfo.first) {
PHIInfo.second = true;
insertUse(PN, Offset, PHIInfo.first);
- return true;
+ return;
}
// Check for an unsafe use of the PHI node.
- if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
- return markAsEscaping(*EscapingI);
+ if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
+ return PI.setAborted(UnsafeI);
insertUse(PN, Offset, PHIInfo.first);
- return true;
}
- bool visitSelectInst(SelectInst &SI) {
+ void visitSelectInst(SelectInst &SI) {
+ if (SI.use_empty())
+ return;
if (Value *Result = foldSelectInst(SI)) {
if (Result == *U)
// If the result of the constant fold will be the pointer, recurse
// through the select as if we had RAUW'ed it.
- enqueueUsers(SI, Offset);
+ enqueueUsers(SI);
- return true;
+ return;
}
+ if (!IsOffsetKnown)
+ return PI.setAborted(&SI);
// See if we already have computed info on this node.
std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
if (SelectInfo.first) {
SelectInfo.second = true;
insertUse(SI, Offset, SelectInfo.first);
- return true;
+ return;
}
// Check for an unsafe use of the PHI node.
- if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
- return markAsEscaping(*EscapingI);
+ if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
+ return PI.setAborted(UnsafeI);
insertUse(SI, Offset, SelectInfo.first);
- return true;
}
/// \brief Disable SROA entirely if there are unhandled users of the alloca.
- bool visitInstruction(Instruction &I) { return markAsEscaping(I); }
+ void visitInstruction(Instruction &I) {
+ PI.setAborted(&I);
+ }
};
-
/// \brief Use adder for the alloca partitioning.
///
/// This class adds the uses of an alloca to all of the partitions which they
/// partition space is pre-sorted, and do a logarithmic search for the
/// partition needed, making the total visit a classical ((N + M) * log(N))
/// complexity operation.
-class AllocaPartitioning::UseBuilder : public BuilderBase<UseBuilder> {
+class AllocaPartitioning::UseBuilder : public PtrUseVisitor<UseBuilder> {
+ friend class PtrUseVisitor<UseBuilder>;
friend class InstVisitor<UseBuilder>;
+ typedef PtrUseVisitor<UseBuilder> Base;
+
+ const uint64_t AllocSize;
+ AllocaPartitioning &P;
/// \brief Set to de-duplicate dead instructions found in the use walk.
SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
public:
UseBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
- : BuilderBase<UseBuilder>(TD, AI, P) {}
-
- /// \brief Run the builder over the allocation.
- void operator()() {
- while (!Queue.empty()) {
- U = Queue.back().U;
- Offset = Queue.back().Offset;
- Queue.pop_back();
- this->visit(cast<Instruction>(U->getUser()));
- }
- }
+ : PtrUseVisitor<UseBuilder>(TD),
+ AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
+ P(P) {}
private:
void markAsDead(Instruction &I) {
P.DeadUsers.push_back(&I);
}
- void insertUse(Instruction &User, int64_t Offset, uint64_t Size) {
+ void insertUse(Instruction &User, const APInt &Offset, uint64_t Size) {
// If the use has a zero size or extends outside of the allocation, record
// it as a dead use for elimination later.
- if (Size == 0 || Offset < 0 || (uint64_t)Offset >= AllocSize)
+ if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize))
return markAsDead(User);
- uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
+ uint64_t BeginOffset = Offset.getZExtValue();
+ uint64_t EndOffset = BeginOffset + Size;
// Clamp the end offset to the end of the allocation. Note that this is
// formulated to handle even the case where "BeginOffset + Size" overflows.
}
}
- void handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
- uint64_t Size = TD.getTypeStoreSize(Ty);
+ void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset) {
+ uint64_t Size = DL.getTypeStoreSize(Ty);
// If this memory access can be shown to *statically* extend outside the
// bounds of of the allocation, it's behavior is undefined, so simply
// ignore it. Note that this is more strict than the generic clamping
// behavior of insertUse.
- if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
- Size > (AllocSize - (uint64_t)Offset))
+ if (Offset.isNegative() || Size > AllocSize ||
+ Offset.ugt(AllocSize - Size))
return markAsDead(I);
insertUse(I, Offset, Size);
if (BC.use_empty())
return markAsDead(BC);
- enqueueUsers(BC, Offset);
+ return Base::visitBitCastInst(BC);
}
void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
if (GEPI.use_empty())
return markAsDead(GEPI);
- int64_t GEPOffset;
- if (!computeConstantGEPOffset(GEPI, GEPOffset))
- llvm_unreachable("Unable to compute constant offset for use");
-
- enqueueUsers(GEPI, GEPOffset);
+ return Base::visitGetElementPtrInst(GEPI);
}
void visitLoadInst(LoadInst &LI) {
+ assert(IsOffsetKnown);
handleLoadOrStore(LI.getType(), LI, Offset);
}
void visitStoreInst(StoreInst &SI) {
+ assert(IsOffsetKnown);
handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset);
}
void visitMemSetInst(MemSetInst &II) {
ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
- uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
- insertUse(II, Offset, Size);
+ if ((Length && Length->getValue() == 0) ||
+ (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
+ return markAsDead(II);
+
+ assert(IsOffsetKnown);
+ insertUse(II, Offset, Length ? Length->getLimitedValue()
+ : AllocSize - Offset.getLimitedValue());
}
void visitMemTransferInst(MemTransferInst &II) {
ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
- uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
- if (!Size)
+ if ((Length && Length->getValue() == 0) ||
+ (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
return markAsDead(II);
+ assert(IsOffsetKnown);
+ uint64_t Size = Length ? Length->getLimitedValue()
+ : AllocSize - Offset.getLimitedValue();
+
MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
if (!II.isVolatile() && Offsets.DestEnd && Offsets.SourceEnd &&
Offsets.DestBegin == Offsets.SourceBegin)
}
void visitIntrinsicInst(IntrinsicInst &II) {
+ assert(IsOffsetKnown);
assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
II.getIntrinsicID() == Intrinsic::lifetime_end);
ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
- insertUse(II, Offset,
- std::min(AllocSize - Offset, Length->getLimitedValue()));
+ insertUse(II, Offset, std::min(Length->getLimitedValue(),
+ AllocSize - Offset.getLimitedValue()));
}
- void insertPHIOrSelect(Instruction &User, uint64_t Offset) {
+ void insertPHIOrSelect(Instruction &User, const APInt &Offset) {
uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
// For PHI and select operands outside the alloca, we can't nuke the entire
// phi or select -- the other side might still be relevant, so we special
// case them here and use a separate structure to track the operands
// themselves which should be replaced with undef.
- if (Offset >= AllocSize) {
+ if ((Offset.isNegative() && Offset.uge(Size)) ||
+ (!Offset.isNegative() && Offset.uge(AllocSize))) {
P.DeadOperands.push_back(U);
return;
}
insertUse(User, Offset, Size);
}
+
void visitPHINode(PHINode &PN) {
if (PN.use_empty())
return markAsDead(PN);
+ assert(IsOffsetKnown);
insertPHIOrSelect(PN, Offset);
}
+
void visitSelectInst(SelectInst &SI) {
if (SI.use_empty())
return markAsDead(SI);
if (Result == *U)
// If the result of the constant fold will be the pointer, recurse
// through the select as if we had RAUW'ed it.
- enqueueUsers(SI, Offset);
+ enqueueUsers(SI);
else
// Otherwise the operand to the select is dead, and we can replace it
// with undef.
return;
}
+ assert(IsOffsetKnown);
insertPHIOrSelect(SI, Offset);
}
#endif
PointerEscapingInstr(0) {
PartitionBuilder PB(TD, AI, *this);
- if (!PB())
+ PartitionBuilder::PtrInfo PtrI = PB.visitPtr(AI);
+ if (PtrI.isEscaped() || PtrI.isAborted()) {
+ // FIXME: We should sink the escape vs. abort info into the caller nicely,
+ // possibly by just storing the PtrInfo in the AllocaPartitioning.
+ PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
+ : PtrI.getAbortingInst();
+ assert(PointerEscapingInstr && "Did not track a bad instruction");
return;
+ }
// Sort the uses. This arranges for the offsets to be in ascending order,
// and the sizes to be in descending order.
// re-walking the recursive users of the alloca.
Uses.resize(Partitions.size());
UseBuilder UB(TD, AI, *this);
- UB();
+ PtrI = UB.visitPtr(AI);
+ assert(!PtrI.isEscaped() && "Previously analyzed pointer now escapes!");
+ assert(!PtrI.isAborted() && "Early aborted the visit of the pointer.");
}
Type *AllocaPartitioning::getCommonType(iterator I) const {