return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
}
- /// isTypeSynthesizable - Return true if it's OK for the compiler to create
- /// new operations of this type. All Legal types are synthesizable except
- /// MMX vector types on X86. Non-Legal types are not synthesizable.
- bool isTypeSynthesizable(EVT VT) const {
- return isTypeLegal(VT) && Synthesizable[VT.getSimpleVT().SimpleTy];
- }
-
class ValueTypeActionImpl {
/// ValueTypeActions - For each value type, keep a LegalizeAction enum
/// that indicates how instruction selection should deal with the type.
/// addRegisterClass - Add the specified register class as an available
/// regclass for the specified value type. This indicates the selector can
/// handle values of that class natively.
- void addRegisterClass(EVT VT, TargetRegisterClass *RC,
- bool isSynthesizable = true) {
+ void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
AvailableRegClasses.push_back(std::make_pair(VT, RC));
RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
- Synthesizable[VT.getSimpleVT().SimpleTy] = isSynthesizable;
}
/// findRepresentativeClass - Return the largest legal super-reg register class
/// approximate register pressure.
uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
- /// Synthesizable indicates whether it is OK for the compiler to create new
- /// operations using this type. All Legal types are Synthesizable except
- /// MMX types on X86. Non-Legal types are not Synthesizable.
- bool Synthesizable[MVT::LAST_VALUETYPE];
-
/// TransformToType - For any value types we are promoting or expanding, this
/// contains the value type that we are changing to. For Expanded types, this
/// contains one step of the expand (e.g. i64 -> i32), even if there are
EVT WidenEltVT = WidenVT.getVectorElementType();
EVT VT = WidenVT;
unsigned NumElts = VT.getVectorNumElements();
- while (!TLI.isTypeSynthesizable(VT) && NumElts != 1) {
+ while (!TLI.isTypeLegal(VT) && NumElts != 1) {
NumElts = NumElts / 2;
VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
}
unsigned ConcatEnd = 0; // Current ConcatOps index.
int Idx = 0; // Current Idx into input vectors.
- // NumElts := greatest synthesizable vector size (at most WidenVT)
+ // NumElts := greatest legal vector size (at most WidenVT)
// while (orig. vector has unhandled elements) {
// take munches of size NumElts from the beginning and add to ConcatOps
// NumElts := next smaller supported vector size or 1
do {
NumElts = NumElts / 2;
VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
- } while (!TLI.isTypeSynthesizable(VT) && NumElts != 1);
+ } while (!TLI.isTypeLegal(VT) && NumElts != 1);
if (NumElts == 1) {
for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) {
do {
NextSize *= 2;
NextVT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NextSize);
- } while (!TLI.isTypeSynthesizable(NextVT));
+ } while (!TLI.isTypeLegal(NextVT));
if (!VT.isVector()) {
// Scalar type, create an INSERT_VECTOR_ELEMENT of type NextVT
return DAG.getNode(Opcode, dl, WidenVT, InOp);
}
- if (TLI.isTypeSynthesizable(InWidenVT)) {
+ if (TLI.isTypeLegal(InWidenVT)) {
// Because the result and the input are different vector types, widening
// the result could create a legal type but widening the input might make
// it an illegal type that might lead to repeatedly splitting the input
NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts);
}
- if (TLI.isTypeSynthesizable(NewInVT)) {
+ if (TLI.isTypeLegal(NewInVT)) {
// Because the result and the input are different vector types, widening
// the result could create a legal type but widening the input might make
// it an illegal type that might lead to repeatedly splitting the input
SatOp, CvtCode);
}
- if (TLI.isTypeSynthesizable(InWidenVT)) {
+ if (TLI.isTypeLegal(InWidenVT)) {
// Because the result and the input are different vector types, widening
// the result could create a legal type but widening the input might make
// it an illegal type that might lead to repeatedly splitting the input
if (InWidenSize % Size == 0 && !VT.isVector() && VT != MVT::x86mmx) {
unsigned NewNumElts = InWidenSize / Size;
EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts);
- if (TLI.isTypeSynthesizable(NewVT)) {
+ if (TLI.isTypeLegal(NewVT)) {
SDValue BitOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, InOp);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
DAG.getIntPtrConstant(0));
unsigned MemVTWidth = MemVT.getSizeInBits();
if (MemVT.getSizeInBits() <= WidenEltWidth)
break;
- if (TLI.isTypeSynthesizable(MemVT) && (WidenWidth % MemVTWidth) == 0 &&
+ if (TLI.isTypeLegal(MemVT) && (WidenWidth % MemVTWidth) == 0 &&
(MemVTWidth <= Width ||
(Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
RetVT = MemVT;
VT >= (unsigned)MVT::FIRST_VECTOR_VALUETYPE; --VT) {
EVT MemVT = (MVT::SimpleValueType) VT;
unsigned MemVTWidth = MemVT.getSizeInBits();
- if (TLI.isTypeSynthesizable(MemVT) && WidenEltVT == MemVT.getVectorElementType() &&
+ if (TLI.isTypeLegal(MemVT) && WidenEltVT == MemVT.getVectorElementType() &&
(WidenWidth % MemVTWidth) == 0 &&
(MemVTWidth <= Width ||
(Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {