//
// The LLVM Compiler Infrastructure
//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// This file was developed by Reid Spencer and is distributed under the
+// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
using namespace llvm;
namespace {
-/// This class provides computation of slot numbers for LLVM Assembly writing.
-/// @brief LLVM Assembly Writing Slot Computation.
-class SlotMachine {
-
-/// @name Types
-/// @{
-public:
-
- /// @brief A mapping of Values to slot numbers
- typedef std::map<const Value*, unsigned> ValueMap;
- typedef std::map<const Type*, unsigned> TypeMap;
-
- /// @brief A plane with next slot number and ValueMap
- struct ValuePlane {
- unsigned next_slot; ///< The next slot number to use
- ValueMap map; ///< The map of Value* -> unsigned
- ValuePlane() { next_slot = 0; } ///< Make sure we start at 0
- };
-
- struct TypePlane {
- unsigned next_slot;
- TypeMap map;
- TypePlane() { next_slot = 0; }
- void clear() { map.clear(); next_slot = 0; }
- };
-
- /// @brief The map of planes by Type
- typedef std::map<const Type*, ValuePlane> TypedPlanes;
-
-/// @}
-/// @name Constructors
-/// @{
-public:
- /// @brief Construct from a module
- SlotMachine(const Module *M );
-
-/// @}
-/// @name Accessors
-/// @{
-public:
- /// Return the slot number of the specified value in it's type
- /// plane. Its an error to ask for something not in the SlotMachine.
- /// Its an error to ask for a Type*
- int getSlot(const Value *V);
- int getSlot(const Type*Ty);
-
- /// Determine if a Value has a slot or not
- bool hasSlot(const Value* V);
- bool hasSlot(const Type* Ty);
-
-/// @}
-/// @name Mutators
-/// @{
-public:
- /// If you'd like to deal with a function instead of just a module, use
- /// this method to get its data into the SlotMachine.
- void incorporateFunction(const Function *F) {
- TheFunction = F;
- FunctionProcessed = false;
- }
-
- /// After calling incorporateFunction, use this method to remove the
- /// most recently incorporated function from the SlotMachine. This
- /// will reset the state of the machine back to just the module contents.
- void purgeFunction();
-
-/// @}
-/// @name Implementation Details
-/// @{
-private:
- /// Values can be crammed into here at will. If they haven't
- /// been inserted already, they get inserted, otherwise they are ignored.
- /// Either way, the slot number for the Value* is returned.
- unsigned createSlot(const Value *V);
- unsigned createSlot(const Type* Ty);
-
- /// Insert a value into the value table. Return the slot number
- /// that it now occupies. BadThings(TM) will happen if you insert a
- /// Value that's already been inserted.
- unsigned insertValue( const Value *V );
- unsigned insertValue( const Type* Ty);
-
- /// Add all of the module level global variables (and their initializers)
- /// and function declarations, but not the contents of those functions.
- void processModule();
-
- /// Add all of the functions arguments, basic blocks, and instructions
- void processFunction();
-
- SlotMachine(const SlotMachine &); // DO NOT IMPLEMENT
- void operator=(const SlotMachine &); // DO NOT IMPLEMENT
-
-/// @}
-/// @name Data
-/// @{
-public:
-
- /// @brief The module for which we are holding slot numbers
- const Module* TheModule;
-
- /// @brief The function for which we are holding slot numbers
- const Function* TheFunction;
- bool FunctionProcessed;
-
- /// @brief The TypePlanes map for the module level data
- TypedPlanes mMap;
- TypePlane mTypes;
-
- /// @brief The TypePlanes map for the function level data
- TypedPlanes fMap;
- TypePlane fTypes;
-
-/// @}
-
-};
-
typedef std::vector<const Type*> TypeList;
typedef std::map<const Type*,std::string> TypeMap;
typedef std::map<const Value*,std::string> ValueMap;
-void WriteAsOperandInternal(std::ostream &Out, const Value *V,
- bool PrintName, TypeMap &TypeTable,
- SlotMachine *Machine);
-
-void WriteAsOperandInternal(std::ostream &Out, const Type *T,
- bool PrintName, TypeMap& TypeTable,
- SlotMachine *Machine);
-
-const Module *getModuleFromVal(const Value *V) {
- if (const Argument *MA = dyn_cast<Argument>(V))
- return MA->getParent() ? MA->getParent()->getParent() : 0;
- else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
- return BB->getParent() ? BB->getParent()->getParent() : 0;
- else if (const Instruction *I = dyn_cast<Instruction>(V)) {
- const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
- return M ? M->getParent() : 0;
- } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
- return GV->getParent();
- return 0;
-}
-
-// getLLVMName - Turn the specified string into an 'LLVM name', which is either
-// prefixed with % (if the string only contains simple characters) or is
-// surrounded with ""'s (if it has special chars in it).
-std::string getLLVMName(const std::string &Name,
- bool prefixName = true) {
- assert(!Name.empty() && "Cannot get empty name!");
-
- // First character cannot start with a number...
- if (Name[0] >= '0' && Name[0] <= '9')
- return "\"" + Name + "\"";
-
- // Scan to see if we have any characters that are not on the "white list"
- for (unsigned i = 0, e = Name.size(); i != e; ++i) {
- char C = Name[i];
- assert(C != '"' && "Illegal character in LLVM value name!");
- if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
- C != '-' && C != '.' && C != '_')
- return "\"" + Name + "\"";
- }
-
- // If we get here, then the identifier is legal to use as a "VarID".
- if (prefixName)
- return "%"+Name;
- else
- return Name;
-}
-
-
-/// fillTypeNameTable - If the module has a symbol table, take all global types
-/// and stuff their names into the TypeNames map.
-///
-void fillTypeNameTable(const Module *M, TypeMap& TypeNames) {
- if (!M) return;
- const SymbolTable &ST = M->getSymbolTable();
- SymbolTable::type_const_iterator TI = ST.type_begin();
- for (; TI != ST.type_end(); ++TI ) {
- // As a heuristic, don't insert pointer to primitive types, because
- // they are used too often to have a single useful name.
- //
- const Type *Ty = cast<Type>(TI->second);
- if (!isa<PointerType>(Ty) ||
- !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
- isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
- TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first)));
- }
-}
-
-void calcTypeName(const Type *Ty,
- std::vector<const Type *> &TypeStack,
- TypeMap& TypeNames,
- std::string & Result){
- if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) {
- Result += Ty->getDescription(); // Base case
- return;
- }
-
- // Check to see if the type is named.
- TypeMap::iterator I = TypeNames.find(Ty);
- if (I != TypeNames.end()) {
- Result += I->second;
- return;
- }
-
- if (isa<OpaqueType>(Ty)) {
- Result += "opaque";
- return;
- }
-
- // Check to see if the Type is already on the stack...
- unsigned Slot = 0, CurSize = TypeStack.size();
- while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
-
- // This is another base case for the recursion. In this case, we know
- // that we have looped back to a type that we have previously visited.
- // Generate the appropriate upreference to handle this.
- if (Slot < CurSize) {
- Result += "\\" + utostr(CurSize-Slot); // Here's the upreference
- return;
- }
-
- TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
-
- switch (Ty->getTypeID()) {
- case Type::FunctionTyID: {
- const FunctionType *FTy = cast<FunctionType>(Ty);
- calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
- Result += " (";
- for (FunctionType::param_iterator I = FTy->param_begin(),
- E = FTy->param_end(); I != E; ++I) {
- if (I != FTy->param_begin())
- Result += ", ";
- calcTypeName(*I, TypeStack, TypeNames, Result);
- }
- if (FTy->isVarArg()) {
- if (FTy->getNumParams()) Result += ", ";
- Result += "...";
- }
- Result += ")";
- break;
- }
- case Type::StructTyID: {
- const StructType *STy = cast<StructType>(Ty);
- Result += "{ ";
- for (StructType::element_iterator I = STy->element_begin(),
- E = STy->element_end(); I != E; ++I) {
- if (I != STy->element_begin())
- Result += ", ";
- calcTypeName(*I, TypeStack, TypeNames, Result);
- }
- Result += " }";
- break;
- }
- case Type::PointerTyID:
- calcTypeName(cast<PointerType>(Ty)->getElementType(),
- TypeStack, TypeNames, Result);
- Result += "*";
- break;
- case Type::ArrayTyID: {
- const ArrayType *ATy = cast<ArrayType>(Ty);
- Result += "[" + utostr(ATy->getNumElements()) + " x ";
- calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
- Result += "]";
- break;
- }
- case Type::PackedTyID: {
- const PackedType *PTy = cast<PackedType>(Ty);
- Result += "<" + utostr(PTy->getNumElements()) + " x ";
- calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
- Result += ">";
- break;
- }
- case Type::OpaqueTyID:
- Result += "opaque";
- break;
- default:
- Result += "<unrecognized-type>";
- }
-
- TypeStack.pop_back(); // Remove self from stack...
- return;
-}
-
-
-/// printTypeInt - The internal guts of printing out a type that has a
-/// potentially named portion.
-///
-std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,TypeMap&TypeNames){
- // Primitive types always print out their description, regardless of whether
- // they have been named or not.
- //
- if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))
- return Out << Ty->getDescription();
-
- // Check to see if the type is named.
- TypeMap::iterator I = TypeNames.find(Ty);
- if (I != TypeNames.end()) return Out << I->second;
-
- // Otherwise we have a type that has not been named but is a derived type.
- // Carefully recurse the type hierarchy to print out any contained symbolic
- // names.
- //
- std::vector<const Type *> TypeStack;
- std::string TypeName;
- calcTypeName(Ty, TypeStack, TypeNames, TypeName);
- TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
- return (Out << TypeName);
-}
-
-
-/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
-/// type, iff there is an entry in the modules symbol table for the specified
-/// type or one of it's component types. This is slower than a simple x << Type
-///
-std::ostream &WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
- const Module *M) {
- Out << ' ';
-
- // If they want us to print out a type, attempt to make it symbolic if there
- // is a symbol table in the module...
- if (M) {
- TypeMap TypeNames;
- fillTypeNameTable(M, TypeNames);
-
- return printTypeInt(Out, Ty, TypeNames);
- } else {
- return Out << Ty->getDescription();
- }
-}
-
-// PrintEscapedString - Print each character of the specified string, escaping
-// it if it is not printable or if it is an escape char.
-void PrintEscapedString(const std::string &Str, std::ostream &Out) {
- for (unsigned i = 0, e = Str.size(); i != e; ++i) {
- unsigned char C = Str[i];
- if (isprint(C) && C != '"' && C != '\\') {
- Out << C;
- } else {
- Out << '\\'
- << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
- << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
- }
- }
-}
-
-/// @brief Internal constant writer.
-void WriteConstantInternal(std::ostream &Out, const Constant *CV,
- bool PrintName,
- TypeMap& TypeTable,
- SlotMachine *Machine) {
- const int IndentSize = 4;
- static std::string Indent = "\n";
- if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
- Out << (CB == ConstantBool::True ? "true" : "false");
- } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
- Out << CI->getValue();
- } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
- Out << CI->getValue();
- } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
- // We would like to output the FP constant value in exponential notation,
- // but we cannot do this if doing so will lose precision. Check here to
- // make sure that we only output it in exponential format if we can parse
- // the value back and get the same value.
- //
- std::string StrVal = ftostr(CFP->getValue());
-
- // Check to make sure that the stringized number is not some string like
- // "Inf" or NaN, that atof will accept, but the lexer will not. Check that
- // the string matches the "[-+]?[0-9]" regex.
- //
- if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
- ((StrVal[0] == '-' || StrVal[0] == '+') &&
- (StrVal[1] >= '0' && StrVal[1] <= '9')))
- // Reparse stringized version!
- if (atof(StrVal.c_str()) == CFP->getValue()) {
- Out << StrVal;
- return;
- }
-
- // Otherwise we could not reparse it to exactly the same value, so we must
- // output the string in hexadecimal format!
- assert(sizeof(double) == sizeof(uint64_t) &&
- "assuming that double is 64 bits!");
- Out << "0x" << utohexstr(DoubleToBits(CFP->getValue()));
-
- } else if (isa<ConstantAggregateZero>(CV)) {
- Out << "zeroinitializer";
- } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
- // As a special case, print the array as a string if it is an array of
- // ubytes or an array of sbytes with positive values.
- //
- const Type *ETy = CA->getType()->getElementType();
- if (CA->isString()) {
- Out << "c\"";
- PrintEscapedString(CA->getAsString(), Out);
- Out << "\"";
-
- } else { // Cannot output in string format...
- Out << '[';
- if (CA->getNumOperands()) {
- Out << ' ';
- printTypeInt(Out, ETy, TypeTable);
- WriteAsOperandInternal(Out, CA->getOperand(0),
- PrintName, TypeTable, Machine);
- for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
- Out << ", ";
- printTypeInt(Out, ETy, TypeTable);
- WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
- TypeTable, Machine);
- }
- }
- Out << " ]";
- }
- } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
- Out << '{';
- unsigned N = CS->getNumOperands();
- if (N) {
- if (N > 2) {
- Indent += std::string(IndentSize, ' ');
- Out << Indent;
- } else {
- Out << ' ';
- }
- printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
-
- WriteAsOperandInternal(Out, CS->getOperand(0),
- PrintName, TypeTable, Machine);
-
- for (unsigned i = 1; i < N; i++) {
- Out << ", ";
- if (N > 2) Out << Indent;
- printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
-
- WriteAsOperandInternal(Out, CS->getOperand(i),
- PrintName, TypeTable, Machine);
- }
- if (N > 2) Indent.resize(Indent.size() - IndentSize);
- }
-
- Out << " }";
- } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
- const Type *ETy = CP->getType()->getElementType();
- assert(CP->getNumOperands() > 0 &&
- "Number of operands for a PackedConst must be > 0");
- Out << '<';
- Out << ' ';
- printTypeInt(Out, ETy, TypeTable);
- WriteAsOperandInternal(Out, CP->getOperand(0),
- PrintName, TypeTable, Machine);
- for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
- Out << ", ";
- printTypeInt(Out, ETy, TypeTable);
- WriteAsOperandInternal(Out, CP->getOperand(i), PrintName,
- TypeTable, Machine);
- }
- Out << " >";
- } else if (isa<ConstantPointerNull>(CV)) {
- Out << "null";
-
- } else if (isa<UndefValue>(CV)) {
- Out << "undef";
-
- } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
- Out << CE->getOpcodeName() << " (";
-
- for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
- printTypeInt(Out, (*OI)->getType(), TypeTable);
- WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
- if (OI+1 != CE->op_end())
- Out << ", ";
- }
-
- if (CE->getOpcode() == Instruction::Cast) {
- Out << " to ";
- printTypeInt(Out, CE->getType(), TypeTable);
- }
- Out << ')';
-
- } else {
- Out << "<placeholder or erroneous Constant>";
- }
-}
-
-
-/// WriteAsOperand - Write the name of the specified value out to the specified
-/// ostream. This can be useful when you just want to print int %reg126, not
-/// the whole instruction that generated it.
-///
-void WriteAsOperandInternal(std::ostream &Out, const Value *V,
- bool PrintName, TypeMap& TypeTable,
- SlotMachine *Machine) {
- Out << ' ';
- if ((PrintName || isa<GlobalValue>(V)) && V->hasName())
- Out << getLLVMName(V->getName());
- else {
- const Constant *CV = dyn_cast<Constant>(V);
- if (CV && !isa<GlobalValue>(CV)) {
- WriteConstantInternal(Out, CV, PrintName, TypeTable, Machine);
- } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
- Out << "asm ";
- if (IA->hasSideEffects())
- Out << "sideeffect ";
- Out << '"';
- PrintEscapedString(IA->getAsmString(), Out);
- Out << "\", \"";
- PrintEscapedString(IA->getConstraintString(), Out);
- Out << '"';
- } else {
- int Slot = Machine->getSlot(V);
- if (Slot != -1)
- Out << '%' << Slot;
- else
- Out << "<badref>";
- }
- }
-}
-
-/// WriteAsOperand - Write the name of the specified value out to the specified
-/// ostream. This can be useful when you just want to print int %reg126, not
-/// the whole instruction that generated it.
-///
-std::ostream &WriteAsOperand(std::ostream &Out, const Value *V,
- bool PrintType, bool PrintName,
- const Module *Context) {
- TypeMap TypeNames;
- if (Context == 0) Context = getModuleFromVal(V);
-
- if (Context)
- fillTypeNameTable(Context, TypeNames);
-
- if (PrintType)
- printTypeInt(Out, V->getType(), TypeNames);
-
- WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
- return Out;
-}
-
-/// WriteAsOperandInternal - Write the name of the specified value out to
-/// the specified ostream. This can be useful when you just want to print
-/// int %reg126, not the whole instruction that generated it.
-///
-void WriteAsOperandInternal(std::ostream &Out, const Type *T,
- bool PrintName, TypeMap& TypeTable,
- SlotMachine *Machine) {
- Out << ' ';
- int Slot = Machine->getSlot(T);
- if (Slot != -1)
- Out << '%' << Slot;
- else
- Out << "<badref>";
-}
-
-/// WriteAsOperand - Write the name of the specified value out to the specified
-/// ostream. This can be useful when you just want to print int %reg126, not
-/// the whole instruction that generated it.
-///
-std::ostream &WriteAsOperand(std::ostream &Out, const Type *Ty,
- bool PrintType, bool PrintName,
- const Module *Context) {
- TypeMap TypeNames;
- assert(Context != 0 && "Can't write types as operand without module context");
-
- fillTypeNameTable(Context, TypeNames);
-
- // if (PrintType)
- // printTypeInt(Out, V->getType(), TypeNames);
-
- printTypeInt(Out, Ty, TypeNames);
-
- WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0);
- return Out;
-}
-
class CppWriter {
std::ostream &Out;
- SlotMachine &Machine;
const Module *TheModule;
unsigned long uniqueNum;
TypeMap TypeNames;
TypeList TypeStack;
public:
- inline CppWriter(std::ostream &o, SlotMachine &Mac, const Module *M)
- : Out(o), Machine(Mac), TheModule(M), uniqueNum(0), TypeNames(),
+ inline CppWriter(std::ostream &o, const Module *M)
+ : Out(o), TheModule(M), uniqueNum(0), TypeNames(),
ValueNames(), UnresolvedTypes(), TypeStack() { }
- inline void write(const Module *M) { printModule(M); }
- inline void write(const GlobalVariable *G) { printGlobal(G); }
- inline void write(const Function *F) { printFunction(F); }
- inline void write(const BasicBlock *BB) { printBasicBlock(BB); }
- inline void write(const Instruction *I) { printInstruction(*I); }
- inline void write(const Constant *CPV) { printConstant(CPV); }
- inline void write(const Type *Ty) { printType(Ty); }
-
- void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
-
const Module* getModule() { return TheModule; }
-private:
void printModule(const Module *M);
+
+private:
void printTypes(const Module* M);
void printConstants(const Module* M);
void printConstant(const Constant *CPV);
void printGlobal(const GlobalVariable *GV);
void printFunction(const Function *F);
- void printArgument(const Argument *FA);
- void printBasicBlock(const BasicBlock *BB);
- void printInstruction(const Instruction &I);
+ void printInstruction(const Instruction *I, const std::string& bbname);
void printSymbolTable(const SymbolTable &ST);
void printLinkageType(GlobalValue::LinkageTypes LT);
void printCallingConv(unsigned cc);
-
- // printType - Go to extreme measures to attempt to print out a short,
- // symbolic version of a type name.
- //
- std::ostream &printType(const Type *Ty) {
- return printTypeInt(Out, Ty, TypeNames);
- }
-
- // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
- // without considering any symbolic types that we may have equal to it.
- //
- std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
-
- // printInfoComment - Print a little comment after the instruction indicating
- // which slot it occupies.
- void printInfoComment(const Value &V);
-
std::string getCppName(const Type* val);
std::string getCppName(const Value* val);
inline void printCppName(const Value* val);
bool isOnStack(const Type*) const;
inline void printTypeDef(const Type* Ty);
bool printTypeDefInternal(const Type* Ty);
+ void printEscapedString(const std::string& str);
};
+// printEscapedString - Print each character of the specified string, escaping
+// it if it is not printable or if it is an escape char.
+void
+CppWriter::printEscapedString(const std::string &Str) {
+ for (unsigned i = 0, e = Str.size(); i != e; ++i) {
+ unsigned char C = Str[i];
+ if (isprint(C) && C != '"' && C != '\\') {
+ Out << C;
+ } else {
+ Out << '\\'
+ << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
+ << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
+ }
+ }
+}
+
std::string
CppWriter::getCppName(const Value* val) {
std::string name;
void
CppWriter::printCppName(const Value* val) {
- PrintEscapedString(getCppName(val),Out);
+ printEscapedString(getCppName(val));
}
void
CppWriter::printCppName(const Type* Ty)
{
- PrintEscapedString(getCppName(Ty),Out);
+ printEscapedString(getCppName(Ty));
}
// Gets the C++ name for a type. Returns true if we already saw the type,
return TypeNames[Ty] = name;
}
-/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
-/// without considering any symbolic types that we may have equal to it.
-///
-std::ostream &CppWriter::printTypeAtLeastOneLevel(const Type *Ty) {
- if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
- printType(FTy->getReturnType()) << " (";
- for (FunctionType::param_iterator I = FTy->param_begin(),
- E = FTy->param_end(); I != E; ++I) {
- if (I != FTy->param_begin())
- Out << ", ";
- printType(*I);
- }
- if (FTy->isVarArg()) {
- if (FTy->getNumParams()) Out << ", ";
- Out << "...";
- }
- Out << ')';
- } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
- Out << "{ ";
- for (StructType::element_iterator I = STy->element_begin(),
- E = STy->element_end(); I != E; ++I) {
- if (I != STy->element_begin())
- Out << ", ";
- printType(*I);
- }
- Out << " }";
- } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
- printType(PTy->getElementType()) << '*';
- } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
- Out << '[' << ATy->getNumElements() << " x ";
- printType(ATy->getElementType()) << ']';
- } else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
- Out << '<' << PTy->getNumElements() << " x ";
- printType(PTy->getElementType()) << '>';
- }
- else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
- Out << "opaque";
- } else {
- if (!Ty->isPrimitiveType())
- Out << "<unknown derived type>";
- printType(Ty);
- }
- return Out;
-}
-
-
-void CppWriter::writeOperand(const Value *Operand, bool PrintType,
- bool PrintName) {
- if (Operand != 0) {
- if (PrintType) { Out << ' '; printType(Operand->getType()); }
- WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine);
- } else {
- Out << "<null operand!>";
- }
-}
-
-
void CppWriter::printModule(const Module *M) {
Out << "\n// Module Construction\n";
Out << "Module* mod = new Module(\"";
- PrintEscapedString(M->getModuleIdentifier(),Out);
+ if (M->getModuleIdentifier() == "-")
+ printEscapedString("<stdin>");
+ else
+ printEscapedString(M->getModuleIdentifier());
Out << "\");\n";
Out << "mod->setEndianness(";
switch (M->getEndianness()) {
if (!M->getModuleInlineAsm().empty()) {
Out << "mod->setModuleInlineAsm(\"";
- PrintEscapedString(M->getModuleInlineAsm(),Out);
+ printEscapedString(M->getModuleInlineAsm());
Out << "\");\n";
}
Out << "0";
}
Out << ",\n /*Name=*/\"";
- PrintEscapedString(GV->getName(),Out);
+ printEscapedString(GV->getName());
Out << "\",\n mod);\n";
if (GV->hasSection()) {
printCppName(GV);
Out << "->setSection(\"";
- PrintEscapedString(GV->getSection(),Out);
+ printEscapedString(GV->getSection());
Out << "\");\n";
}
if (GV->getAlignment()) {
case Type::OpaqueTyID: Out << "OpaqueType"; break;
default: Out << "NoSuchDerivedType"; break;
}
- Out << ">(" << I->second << "_fwd.get());\n";
+ Out << ">(" << I->second << "_fwd.get());\n\n";
UnresolvedTypes.erase(I);
}
- Out << "\n";
}
bool
// Pop us off the type stack
TypeStack.pop_back();
+ Out << "\n";
// We weren't a recursive type
return false;
void
CppWriter::printConstants(const Module* M) {
- const SymbolTable& ST = M->getSymbolTable();
-
- // Print the constants, in type plane order.
- for (SymbolTable::plane_const_iterator PI = ST.plane_begin();
- PI != ST.plane_end(); ++PI ) {
- SymbolTable::value_const_iterator VI = ST.value_begin(PI->first);
- SymbolTable::value_const_iterator VE = ST.value_end(PI->first);
-
- for (; VI != VE; ++VI) {
- const Value* V = VI->second;
- const Constant *CPV = dyn_cast<Constant>(V) ;
- if (CPV && !isa<GlobalValue>(V)) {
- printConstant(CPV);
- }
- }
- }
-
// Add all of the global variables to the value table...
for (Module::const_global_iterator I = TheModule->global_begin(),
E = TheModule->global_end(); I != E; ++I)
if (I->hasInitializer())
printConstant(I->getInitializer());
-}
-// printSymbolTable - Run through symbol table looking for constants
-// and types. Emit their declarations.
-void CppWriter::printSymbolTable(const SymbolTable &ST) {
-
- // Print the types.
- for (SymbolTable::type_const_iterator TI = ST.type_begin();
- TI != ST.type_end(); ++TI ) {
- Out << "\t" << getLLVMName(TI->first) << " = type ";
-
- // Make sure we print out at least one level of the type structure, so
- // that we do not get %FILE = type %FILE
- //
- printTypeAtLeastOneLevel(TI->second) << "\n";
+ // Traverse the LLVM functions looking for constants
+ for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
+ FI != FE; ++FI) {
+ // Add all of the basic blocks and instructions
+ for (Function::const_iterator BB = FI->begin(),
+ E = FI->end(); BB != E; ++BB) {
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
+ ++I) {
+ for (unsigned i = 0; i < I->getNumOperands(); ++i) {
+ if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
+ printConstant(C);
+ }
+ }
+ }
+ }
}
-
}
-
-/// printConstant - Print out a constant pool entry...
-///
+// printConstant - Print out a constant pool entry...
void CppWriter::printConstant(const Constant *CV) {
+ // First, if the constant is in the constant list then we've printed it
+ // already and we shouldn't reprint it.
+ if (ValueNames.find(CV) != ValueNames.end())
+ return;
+
const int IndentSize = 2;
static std::string Indent = "\n";
std::string constName(getCppName(CV));
<< typeName << ");\n";
return;
}
+ if (isa<GlobalValue>(CV)) {
+ // Skip variables and functions, we emit them elsewhere
+ return;
+ }
if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
Out << "Constant* " << constName << " = ConstantBool::get("
<< (CB == ConstantBool::True ? "true" : "false")
"assuming that double is 64 bits!");
Out << "0x" << utohexstr(DoubleToBits(CFP->getValue())) << ");";
} else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
- if (CA->isString()) {
+ if (CA->isString() && CA->getType()->getElementType() == Type::SByteTy) {
Out << "Constant* " << constName << " = ConstantArray::get(\"";
- PrintEscapedString(CA->getAsString(),Out);
+ printEscapedString(CA->getAsString());
Out << "\");";
} else {
Out << "std::vector<Constant*> " << constName << "_elems;\n";
<< typeName << ", " << constName << "_elems);";
} else if (isa<UndefValue>(CV)) {
Out << "Constant* " << constName << " = UndefValue::get("
- << typeName << ");\n";
+ << typeName << ");";
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
- Out << CE->getOpcodeName() << " (";
-
- for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
- //printTypeInt(Out, (*OI)->getType(), TypeTable);
- //WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
- if (OI+1 != CE->op_end())
- Out << ", ";
- }
-
- if (CE->getOpcode() == Instruction::Cast) {
- Out << " to ";
- // printTypeInt(Out, CE->getType(), TypeTable);
+ if (CE->getOpcode() == Instruction::GetElementPtr) {
+ Out << "std::vector<Constant*> " << constName << "_indices;\n";
+ for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
+ Out << constName << "_indices.push_back("
+ << getCppName(CE->getOperand(i)) << ");\n";
+ }
+ Out << "Constant* " << constName << " = new GetElementPtrInst("
+ << getCppName(CE->getOperand(0)) << ", " << constName << "_indices";
+ } else if (CE->getOpcode() == Instruction::Cast) {
+ Out << "Constant* " << constName << " = ConstantExpr::getCast(";
+ Out << getCppName(CE->getOperand(0)) << ", " << getCppName(CE->getType())
+ << ");";
+ } else {
+ Out << "Constant* " << constName << " = ConstantExpr::";
+ switch (CE->getOpcode()) {
+ case Instruction::Add: Out << "getAdd"; break;
+ case Instruction::Sub: Out << "getSub"; break;
+ case Instruction::Mul: Out << "getMul"; break;
+ case Instruction::Div: Out << "getDiv"; break;
+ case Instruction::Rem: Out << "getRem"; break;
+ case Instruction::And: Out << "getAnd"; break;
+ case Instruction::Or: Out << "getOr"; break;
+ case Instruction::Xor: Out << "getXor"; break;
+ case Instruction::SetEQ: Out << "getSetEQ"; break;
+ case Instruction::SetNE: Out << "getSetNE"; break;
+ case Instruction::SetLE: Out << "getSetLE"; break;
+ case Instruction::SetGE: Out << "getSetGE"; break;
+ case Instruction::SetLT: Out << "getSetLT"; break;
+ case Instruction::SetGT: Out << "getSetGT"; break;
+ case Instruction::Shl: Out << "getShl"; break;
+ case Instruction::Shr: Out << "getShr"; break;
+ case Instruction::Select: Out << "getSelect"; break;
+ case Instruction::ExtractElement: Out << "getExtractElement"; break;
+ case Instruction::InsertElement: Out << "getInsertElement"; break;
+ case Instruction::ShuffleVector: Out << "getShuffleVector"; break;
+ default:
+ assert(!"Invalid constant expression");
+ break;
+ }
+ Out << getCppName(CE->getOperand(0));
+ for (unsigned i = 1; i < CE->getNumOperands(); ++i)
+ Out << ", " << getCppName(CE->getOperand(i));
+ Out << ");";
}
- Out << ')';
-
} else {
- Out << "<placeholder or erroneous Constant>";
+ assert(!"Bad Constant");
+ Out << "Constant* " << constName << " = 0; ";
}
Out << "\n";
}
printCppName(F);
Out << " = new Function(" << funcTypeName << ", " ;
printLinkageType(F->getLinkage());
- Out << ", \"" << F->getName() << "\", mod);\n";
+ Out << ",\n \"" << F->getName() << "\", mod);\n";
printCppName(F);
Out << "->setCallingConv(";
printCallingConv(F->getCallingConv());
Out << "->setAlignment(" << F->getAlignment() << ");\n";
}
- Machine.incorporateFunction(F);
-
if (!F->isExternal()) {
- Out << "{";
+ Out << "{\n";
+ // Create all the argument values
+ for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
+ AI != AE; ++AI) {
+ Out << " Argument* " << getCppName(AI) << " = new Argument("
+ << getCppName(AI->getType()) << ", \"";
+ printEscapedString(AI->getName());
+ Out << "\", " << getCppName(F) << ");\n";
+ }
+ // Create all the basic blocks
+ for (Function::const_iterator BI = F->begin(), BE = F->end();
+ BI != BE; ++BI) {
+ std::string bbname(getCppName(BI));
+ Out << " BasicBlock* " << bbname << " = new BasicBlock(\"";
+ if (BI->hasName())
+ printEscapedString(BI->getName());
+ Out << "\"," << getCppName(BI->getParent()) << ",0);\n";
+ }
// Output all of its basic blocks... for the function
- for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
- printBasicBlock(I);
+ for (Function::const_iterator BI = F->begin(), BE = F->end();
+ BI != BE; ++BI) {
+ // Output all of the instructions in the basic block...
+ Out << " {\n";
+ for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
+ I != E; ++I) {
+ std::string bbname(getCppName(BI));
+ printInstruction(I,bbname);
+ }
+ Out << " }\n";
+ }
Out << "}\n";
}
-
- Machine.purgeFunction();
}
-/// printArgument - This member is called for every argument that is passed into
-/// the function. Simply print it out
-///
-void CppWriter::printArgument(const Argument *Arg) {
- // Insert commas as we go... the first arg doesn't get a comma
- if (Arg != Arg->getParent()->arg_begin()) Out << ", ";
-
- // Output type...
- printType(Arg->getType());
-
- // Output name, if available...
- if (Arg->hasName())
- Out << ' ' << getLLVMName(Arg->getName());
-}
-
-/// printBasicBlock - This member is called for each basic block in a method.
-///
-void CppWriter::printBasicBlock(const BasicBlock *BB) {
- if (BB->hasName()) { // Print out the label if it exists...
- Out << "\n" << getLLVMName(BB->getName(), false) << ':';
- } else if (!BB->use_empty()) { // Don't print block # of no uses...
- Out << "\n; <label>:";
- int Slot = Machine.getSlot(BB);
- if (Slot != -1)
- Out << Slot;
- else
- Out << "<badref>";
- }
-
- if (BB->getParent() == 0)
- Out << "\t\t; Error: Block without parent!";
- else {
- if (BB != &BB->getParent()->front()) { // Not the entry block?
- // Output predecessors for the block...
- Out << "\t\t;";
- pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
-
- if (PI == PE) {
- Out << " No predecessors!";
+// printInstruction - This member is called for each Instruction in a function.
+void
+CppWriter::printInstruction(const Instruction *I, const std::string& bbname)
+{
+ std::string iName(getCppName(I));
+
+ switch (I->getOpcode()) {
+ case Instruction::Ret: {
+ const ReturnInst* ret = cast<ReturnInst>(I);
+ Out << " ReturnInst* " << iName << " = new ReturnInst(";
+ if (ret->getReturnValue())
+ Out << getCppName(ret->getReturnValue()) << ", ";
+ Out << bbname << ");";
+ break;
+ }
+ case Instruction::Br: {
+ const BranchInst* br = cast<BranchInst>(I);
+ Out << " BranchInst* " << iName << " = new BranchInst(" ;
+ if (br->getNumOperands() == 3 ) {
+ Out << getCppName(br->getOperand(0)) << ", "
+ << getCppName(br->getOperand(1)) << ", "
+ << getCppName(br->getOperand(2)) << ", ";
+
+ } else if (br->getNumOperands() == 1) {
+ Out << getCppName(br->getOperand(0)) << ", ";
+ } else {
+ assert(!"branch with 2 operands?");
+ }
+ Out << bbname << ");";
+ break;
+ }
+ case Instruction::Switch:
+ case Instruction::Invoke:
+ case Instruction::Unwind:
+ case Instruction::Unreachable:
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::Div:
+ case Instruction::Rem:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::SetEQ:
+ case Instruction::SetNE:
+ case Instruction::SetLE:
+ case Instruction::SetGE:
+ case Instruction::SetLT:
+ case Instruction::SetGT:
+ break;
+ case Instruction::Malloc: {
+ const MallocInst* mallocI = cast<MallocInst>(I);
+ Out << " MallocInst* " << iName << " = new MallocInst("
+ << getCppName(mallocI->getAllocatedType()) << ", ";
+ if (mallocI->isArrayAllocation())
+ Out << getCppName(mallocI->getArraySize()) << ", ";
+ Out << "\"";
+ printEscapedString(mallocI->getName());
+ Out << "\", " << bbname << ");";
+ if (mallocI->getAlignment())
+ Out << "\n " << iName << "->setAlignment("
+ << mallocI->getAlignment() << ");";
+ break;
+ }
+ case Instruction::Free:
+ case Instruction::Alloca: {
+ const AllocaInst* allocaI = cast<AllocaInst>(I);
+ Out << " AllocaInst* " << iName << " = new AllocaInst("
+ << getCppName(allocaI->getAllocatedType()) << ", ";
+ if (allocaI->isArrayAllocation())
+ Out << getCppName(allocaI->getArraySize()) << ", ";
+ Out << "\"";
+ printEscapedString(allocaI->getName());
+ Out << "\", " << bbname << ");";
+ if (allocaI->getAlignment())
+ Out << "\n " << iName << "->setAlignment("
+ << allocaI->getAlignment() << ");";
+ break;
+ }
+ case Instruction::Load:
+ break;
+ case Instruction::Store: {
+ const StoreInst* store = cast<StoreInst>(I);
+ Out << " StoreInst* " << iName << " = new StoreInst("
+ << getCppName(store->getOperand(0)) << ", "
+ << getCppName(store->getOperand(1)) << ", " << bbname << ");\n";
+ if (store->isVolatile())
+ Out << "iName->setVolatile(true);";
+ break;
+ }
+ case Instruction::GetElementPtr: {
+ const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
+ if (gep->getNumOperands() <= 2) {
+ Out << " GetElementPtrInst* " << iName << " = new GetElementPtrInst("
+ << getCppName(gep->getOperand(0));
+ if (gep->getNumOperands() == 2)
+ Out << ", " << getCppName(gep->getOperand(1));
+ Out << ", " << bbname;
} else {
- Out << " preds =";
- writeOperand(*PI, false, true);
- for (++PI; PI != PE; ++PI) {
- Out << ',';
- writeOperand(*PI, false, true);
+ Out << " std::vector<Value*> " << iName << "_indices;\n";
+ for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
+ Out << " " << iName << "_indices.push_back("
+ << getCppName(gep->getOperand(i)) << ");\n";
}
+ Out << " Instruction* " << iName << " = new GetElementPtrInst("
+ << getCppName(gep->getOperand(0)) << ", " << iName << "_indices";
}
+ Out << ", \"";
+ printEscapedString(gep->getName());
+ Out << "\", " << bbname << ");";
+ break;
}
+ case Instruction::PHI:
+ case Instruction::Cast:
+ case Instruction::Call:
+ case Instruction::Shl:
+ case Instruction::Shr:
+ case Instruction::Select:
+ case Instruction::UserOp1:
+ case Instruction::UserOp2:
+ case Instruction::VAArg:
+ case Instruction::ExtractElement:
+ case Instruction::InsertElement:
+ case Instruction::ShuffleVector:
+ break;
}
-
Out << "\n";
- // Output all of the instructions in the basic block...
- for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- printInstruction(*I);
-}
-
-
-/// printInfoComment - Print a little comment after the instruction indicating
-/// which slot it occupies.
-///
-void CppWriter::printInfoComment(const Value &V) {
- if (V.getType() != Type::VoidTy) {
- Out << "\t\t; <";
- printType(V.getType()) << '>';
-
- if (!V.hasName()) {
- int SlotNum = Machine.getSlot(&V);
- if (SlotNum == -1)
- Out << ":<badref>";
- else
- Out << ':' << SlotNum; // Print out the def slot taken.
- }
- Out << " [#uses=" << V.getNumUses() << ']'; // Output # uses
- }
-}
-
-/// printInstruction - This member is called for each Instruction in a function..
-///
-void CppWriter::printInstruction(const Instruction &I) {
- Out << "\t";
-
+/*
// Print out name if it exists...
if (I.hasName())
Out << getLLVMName(I.getName()) << " = ";
}
}
- printInfoComment(I);
Out << "\n";
-}
-
-
-//===----------------------------------------------------------------------===//
-// External Interface declarations
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-//===-- SlotMachine Implementation
-//===----------------------------------------------------------------------===//
-
-#if 0
-#define SC_DEBUG(X) std::cerr << X
-#else
-#define SC_DEBUG(X)
-#endif
-
-// Module level constructor. Causes the contents of the Module (sans functions)
-// to be added to the slot table.
-SlotMachine::SlotMachine(const Module *M)
- : TheModule(M) ///< Saved for lazy initialization.
- , mMap()
- , mTypes()
- , fMap()
- , fTypes()
-{
- assert(M != 0 && "Invalid Module");
- processModule();
-}
-
-// Iterate through all the global variables, functions, and global
-// variable initializers and create slots for them.
-void SlotMachine::processModule() {
- // Add all of the global variables to the value table...
- for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end();
- I != E; ++I)
- createSlot(I);
-
- // Add all the functions to the table
- for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
- FI != FE; ++FI) {
- createSlot(FI);
- // Add all the function arguments
- for(Function::const_arg_iterator AI = FI->arg_begin(),
- AE = FI->arg_end(); AI != AE; ++AI)
- createSlot(AI);
-
- // Add all of the basic blocks and instructions
- for (Function::const_iterator BB = FI->begin(),
- E = FI->end(); BB != E; ++BB) {
- createSlot(BB);
- for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
- ++I) {
- createSlot(I);
- }
- }
- }
-}
-
-// Process the arguments, basic blocks, and instructions of a function.
-void SlotMachine::processFunction() {
-
-}
-
-// Clean up after incorporating a function. This is the only way
-// to get out of the function incorporation state that affects the
-// getSlot/createSlot lock. Function incorporation state is indicated
-// by TheFunction != 0.
-void SlotMachine::purgeFunction() {
- SC_DEBUG("begin purgeFunction!\n");
- fMap.clear(); // Simply discard the function level map
- fTypes.clear();
- TheFunction = 0;
- FunctionProcessed = false;
- SC_DEBUG("end purgeFunction!\n");
-}
-
-/// Get the slot number for a value. This function will assert if you
-/// ask for a Value that hasn't previously been inserted with createSlot.
-/// Types are forbidden because Type does not inherit from Value (any more).
-int SlotMachine::getSlot(const Value *V) {
- assert( V && "Can't get slot for null Value" );
- assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
- "Can't insert a non-GlobalValue Constant into SlotMachine");
-
- // Get the type of the value
- const Type* VTy = V->getType();
-
- // Find the type plane in the module map
- TypedPlanes::const_iterator MI = mMap.find(VTy);
-
- if ( TheFunction ) {
- // Lookup the type in the function map too
- TypedPlanes::const_iterator FI = fMap.find(VTy);
- // If there is a corresponding type plane in the function map
- if ( FI != fMap.end() ) {
- // Lookup the Value in the function map
- ValueMap::const_iterator FVI = FI->second.map.find(V);
- // If the value doesn't exist in the function map
- if ( FVI == FI->second.map.end() ) {
- // Look up the value in the module map.
- if (MI == mMap.end()) return -1;
- ValueMap::const_iterator MVI = MI->second.map.find(V);
- // If we didn't find it, it wasn't inserted
- if (MVI == MI->second.map.end()) return -1;
- assert( MVI != MI->second.map.end() && "Value not found");
- // We found it only at the module level
- return MVI->second;
-
- // else the value exists in the function map
- } else {
- // Return the slot number as the module's contribution to
- // the type plane plus the index in the function's contribution
- // to the type plane.
- if (MI != mMap.end())
- return MI->second.next_slot + FVI->second;
- else
- return FVI->second;
- }
- }
- }
-
- // N.B. Can get here only if either !TheFunction or the function doesn't
- // have a corresponding type plane for the Value
-
- // Make sure the type plane exists
- if (MI == mMap.end()) return -1;
- // Lookup the value in the module's map
- ValueMap::const_iterator MVI = MI->second.map.find(V);
- // Make sure we found it.
- if (MVI == MI->second.map.end()) return -1;
- // Return it.
- return MVI->second;
-}
-
-/// Get the slot number for a type. This function will assert if you
-/// ask for a Type that hasn't previously been inserted with createSlot.
-int SlotMachine::getSlot(const Type *Ty) {
- assert( Ty && "Can't get slot for null Type" );
-
- if ( TheFunction ) {
- // Lookup the Type in the function map
- TypeMap::const_iterator FTI = fTypes.map.find(Ty);
- // If the Type doesn't exist in the function map
- if ( FTI == fTypes.map.end() ) {
- TypeMap::const_iterator MTI = mTypes.map.find(Ty);
- // If we didn't find it, it wasn't inserted
- if (MTI == mTypes.map.end())
- return -1;
- // We found it only at the module level
- return MTI->second;
-
- // else the value exists in the function map
- } else {
- // Return the slot number as the module's contribution to
- // the type plane plus the index in the function's contribution
- // to the type plane.
- return mTypes.next_slot + FTI->second;
- }
- }
-
- // N.B. Can get here only if !TheFunction
-
- // Lookup the value in the module's map
- TypeMap::const_iterator MTI = mTypes.map.find(Ty);
- // Make sure we found it.
- if (MTI == mTypes.map.end()) return -1;
- // Return it.
- return MTI->second;
-}
-
-// Create a new slot, or return the existing slot if it is already
-// inserted. Note that the logic here parallels getSlot but instead
-// of asserting when the Value* isn't found, it inserts the value.
-unsigned SlotMachine::createSlot(const Value *V) {
- assert( V && "Can't insert a null Value to SlotMachine");
- assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
- "Can't insert a non-GlobalValue Constant into SlotMachine");
-
- const Type* VTy = V->getType();
-
- // Just ignore void typed things
- if (VTy == Type::VoidTy) return 0; // FIXME: Wrong return value!
-
- // Look up the type plane for the Value's type from the module map
- TypedPlanes::const_iterator MI = mMap.find(VTy);
-
- if ( TheFunction ) {
- // Get the type plane for the Value's type from the function map
- TypedPlanes::const_iterator FI = fMap.find(VTy);
- // If there is a corresponding type plane in the function map
- if ( FI != fMap.end() ) {
- // Lookup the Value in the function map
- ValueMap::const_iterator FVI = FI->second.map.find(V);
- // If the value doesn't exist in the function map
- if ( FVI == FI->second.map.end() ) {
- // If there is no corresponding type plane in the module map
- if ( MI == mMap.end() )
- return insertValue(V);
- // Look up the value in the module map
- ValueMap::const_iterator MVI = MI->second.map.find(V);
- // If we didn't find it, it wasn't inserted
- if ( MVI == MI->second.map.end() )
- return insertValue(V);
- else
- // We found it only at the module level
- return MVI->second;
-
- // else the value exists in the function map
- } else {
- if ( MI == mMap.end() )
- return FVI->second;
- else
- // Return the slot number as the module's contribution to
- // the type plane plus the index in the function's contribution
- // to the type plane.
- return MI->second.next_slot + FVI->second;
- }
-
- // else there is not a corresponding type plane in the function map
- } else {
- // If the type plane doesn't exists at the module level
- if ( MI == mMap.end() ) {
- return insertValue(V);
- // else type plane exists at the module level, examine it
- } else {
- // Look up the value in the module's map
- ValueMap::const_iterator MVI = MI->second.map.find(V);
- // If we didn't find it there either
- if ( MVI == MI->second.map.end() )
- // Return the slot number as the module's contribution to
- // the type plane plus the index of the function map insertion.
- return MI->second.next_slot + insertValue(V);
- else
- return MVI->second;
- }
- }
- }
-
- // N.B. Can only get here if !TheFunction
-
- // If the module map's type plane is not for the Value's type
- if ( MI != mMap.end() ) {
- // Lookup the value in the module's map
- ValueMap::const_iterator MVI = MI->second.map.find(V);
- if ( MVI != MI->second.map.end() )
- return MVI->second;
- }
-
- return insertValue(V);
-}
-
-// Create a new slot, or return the existing slot if it is already
-// inserted. Note that the logic here parallels getSlot but instead
-// of asserting when the Value* isn't found, it inserts the value.
-unsigned SlotMachine::createSlot(const Type *Ty) {
- assert( Ty && "Can't insert a null Type to SlotMachine");
-
- if ( TheFunction ) {
- // Lookup the Type in the function map
- TypeMap::const_iterator FTI = fTypes.map.find(Ty);
- // If the type doesn't exist in the function map
- if ( FTI == fTypes.map.end() ) {
- // Look up the type in the module map
- TypeMap::const_iterator MTI = mTypes.map.find(Ty);
- // If we didn't find it, it wasn't inserted
- if ( MTI == mTypes.map.end() )
- return insertValue(Ty);
- else
- // We found it only at the module level
- return MTI->second;
-
- // else the value exists in the function map
- } else {
- // Return the slot number as the module's contribution to
- // the type plane plus the index in the function's contribution
- // to the type plane.
- return mTypes.next_slot + FTI->second;
- }
- }
-
- // N.B. Can only get here if !TheFunction
-
- // Lookup the type in the module's map
- TypeMap::const_iterator MTI = mTypes.map.find(Ty);
- if ( MTI != mTypes.map.end() )
- return MTI->second;
-
- return insertValue(Ty);
-}
-
-// Low level insert function. Minimal checking is done. This
-// function is just for the convenience of createSlot (above).
-unsigned SlotMachine::insertValue(const Value *V ) {
- assert(V && "Can't insert a null Value into SlotMachine!");
- assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
- "Can't insert a non-GlobalValue Constant into SlotMachine");
-
- // If this value does not contribute to a plane (is void)
- // or if the value already has a name then ignore it.
- if (V->getType() == Type::VoidTy || V->hasName() ) {
- SC_DEBUG("ignored value " << *V << "\n");
- return 0; // FIXME: Wrong return value
- }
-
- const Type *VTy = V->getType();
- unsigned DestSlot = 0;
-
- if ( TheFunction ) {
- TypedPlanes::iterator I = fMap.find( VTy );
- if ( I == fMap.end() )
- I = fMap.insert(std::make_pair(VTy,ValuePlane())).first;
- DestSlot = I->second.map[V] = I->second.next_slot++;
- } else {
- TypedPlanes::iterator I = mMap.find( VTy );
- if ( I == mMap.end() )
- I = mMap.insert(std::make_pair(VTy,ValuePlane())).first;
- DestSlot = I->second.map[V] = I->second.next_slot++;
- }
-
- SC_DEBUG(" Inserting value [" << VTy << "] = " << V << " slot=" <<
- DestSlot << " [");
- // G = Global, C = Constant, T = Type, F = Function, o = other
- SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' :
- (isa<Constant>(V) ? 'C' : 'o'))));
- SC_DEBUG("]\n");
- return DestSlot;
-}
-
-// Low level insert function. Minimal checking is done. This
-// function is just for the convenience of createSlot (above).
-unsigned SlotMachine::insertValue(const Type *Ty ) {
- assert(Ty && "Can't insert a null Type into SlotMachine!");
-
- unsigned DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
- SC_DEBUG(" Inserting type [" << DestSlot << "] = " << Ty << "\n");
- return DestSlot;
+*/
}
} // end anonymous llvm
o << "int main(int argc, char**argv) {\n";
o << " Module* Mod = makeLLVMModule();\n";
o << " verifyModule(*Mod, PrintMessageAction);\n";
+ o << " std::cerr.flush();\n";
+ o << " std::cout.flush();\n";
o << " PassManager PM;\n";
o << " PM.add(new PrintModulePass(&std::cout));\n";
o << " PM.run(*Mod);\n";
o << " return 0;\n";
o << "}\n\n";
o << "Module* makeLLVMModule() {\n";
- SlotMachine SlotTable(mod);
- CppWriter W(o, SlotTable, mod);
- W.write(mod);
+ CppWriter W(o, mod);
+ W.printModule(mod);
o << "return mod;\n";
o << "}\n";
}