.addReg(vreg).addRegDef(vreg);
}
+static inline MachineInstr*
+CreateIntNegInstruction(const TargetMachine& target, Value* vreg, Value *destreg) {
+ return BuildMI(V9::SUBr, 3).addMReg(target.getRegInfo()->getZeroRegNum())
+ .addReg(vreg).addRegDef(destreg);
+}
+
/// CreateShiftInstructions - Create instruction sequence for any shift
/// operation. SLL or SLLX on an operand smaller than the integer reg. size
/// (64bits) requires a second instruction for explicit sign-extension. Note
needNeg = true;
C = -C;
}
+ TmpInstruction *tmpNeg = 0;
if (C == 0 || C == 1) {
cost = target.getInstrInfo()->minLatency(V9::ADDr);
M = BuildMI(V9::ADDr,3).addReg(lval).addMReg(Zero).addRegDef(destVal);
mvec.push_back(M);
} else if (isPowerOf2(C, pow)) {
+ if(!needNeg) {
unsigned opSize = target.getTargetData().getTypeSize(resultType);
MachineOpCode opCode = (opSize <= 32)? V9::SLLr5 : V9::SLLXr6;
CreateShiftInstructions(target, F, opCode, lval, NULL, pow,
destVal, mvec, mcfi);
+ }
+ else {
+ //Create tmp instruction to hold intermeidate value, since we need
+ //to negate the result
+ tmpNeg = new TmpInstruction(mcfi, lval);
+ unsigned opSize = target.getTargetData().getTypeSize(resultType);
+ MachineOpCode opCode = (opSize <= 32)? V9::SLLr5 : V9::SLLXr6;
+ CreateShiftInstructions(target, F, opCode, lval, NULL, pow,
+ tmpNeg, mvec, mcfi);
+ }
+
}
if (mvec.size() > 0 && needNeg) {
+ MachineInstr* M = 0;
+ if(tmpNeg)
// insert <reg = SUB 0, reg> after the instr to flip the sign
- MachineInstr* M = CreateIntNegInstruction(target, destVal);
+ M = CreateIntNegInstruction(target, tmpNeg, destVal);
+ else
+ M = CreateIntNegInstruction(target, destVal);
mvec.push_back(M);
}
}