Implement the convertToThreeAddress method, add support for inverting JP/JNP
authorChris Lattner <sabre@nondot.org>
Sun, 2 Jan 2005 02:37:07 +0000 (02:37 +0000)
committerChris Lattner <sabre@nondot.org>
Sun, 2 Jan 2005 02:37:07 +0000 (02:37 +0000)
branches.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@19247 91177308-0d34-0410-b5e6-96231b3b80d8

lib/Target/X86/X86InstrInfo.cpp
lib/Target/X86/X86InstrInfo.h

index 42b0ec95a87647b51320724c5f25bc8e85449d17..d588afe28af5dd445c766b3f4fd2a23e1b4815ab 100644 (file)
@@ -13,6 +13,7 @@
 
 #include "X86InstrInfo.h"
 #include "X86.h"
+#include "X86InstrBuilder.h"
 #include "llvm/CodeGen/MachineInstrBuilder.h"
 #include "X86GenInstrInfo.inc"
 using namespace llvm;
@@ -39,6 +40,83 @@ bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
   return false;
 }
 
+/// convertToThreeAddress - This method must be implemented by targets that
+/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
+/// may be able to convert a two-address instruction into a true
+/// three-address instruction on demand.  This allows the X86 target (for
+/// example) to convert ADD and SHL instructions into LEA instructions if they
+/// would require register copies due to two-addressness.
+///
+/// This method returns a null pointer if the transformation cannot be
+/// performed, otherwise it returns the new instruction.
+///
+MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr *MI) const {
+  // All instructions input are two-addr instructions.  Get the known operands.
+  unsigned Dest = MI->getOperand(0).getReg();
+  unsigned Src = MI->getOperand(1).getReg();
+
+  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
+  // we have subtarget support, enable the 16-bit LEA generation here.
+  bool DisableLEA16 = true;
+
+  switch (MI->getOpcode()) {
+  case X86::INC32r:
+    assert(MI->getNumOperands() == 2 && "Unknown inc instruction!");
+    return addRegOffset(BuildMI(X86::LEA32r, 5, Dest), Src, 1);
+  case X86::INC16r:
+    if (DisableLEA16) return 0;
+    assert(MI->getNumOperands() == 2 && "Unknown inc instruction!");
+    return addRegOffset(BuildMI(X86::LEA16r, 5, Dest), Src, 1);
+  case X86::DEC32r:
+    assert(MI->getNumOperands() == 2 && "Unknown dec instruction!");
+    return addRegOffset(BuildMI(X86::LEA32r, 5, Dest), Src, -1);
+  case X86::DEC16r:
+    if (DisableLEA16) return 0;
+    assert(MI->getNumOperands() == 2 && "Unknown dec instruction!");
+    return addRegOffset(BuildMI(X86::LEA16r, 5, Dest), Src, -1);
+  case X86::ADD32rr:
+    assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
+    return addRegReg(BuildMI(X86::LEA32r, 5, Dest), Src,
+                     MI->getOperand(2).getReg());
+  case X86::ADD16rr:
+    if (DisableLEA16) return 0;
+    assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
+    return addRegReg(BuildMI(X86::LEA16r, 5, Dest), Src,
+                     MI->getOperand(2).getReg());
+  case X86::ADD32ri:
+    assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
+    if (MI->getOperand(2).isImmediate())
+      return addRegOffset(BuildMI(X86::LEA32r, 5, Dest), Src,
+                          MI->getOperand(2).getImmedValue());
+    return 0;
+  case X86::ADD16ri:
+    if (DisableLEA16) return 0;
+    assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
+    if (MI->getOperand(2).isImmediate())
+      return addRegOffset(BuildMI(X86::LEA16r, 5, Dest), Src,
+                          MI->getOperand(2).getImmedValue());
+    break;
+
+  case X86::SHL16ri:
+    if (DisableLEA16) return 0;
+  case X86::SHL32ri:
+    assert(MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate() &&
+           "Unknown shl instruction!");
+    unsigned ShAmt = MI->getOperand(2).getImmedValue();
+    if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
+      X86AddressMode AM;
+      AM.Scale = 1 << ShAmt;
+      AM.IndexReg = Src;
+      unsigned Opc = MI->getOpcode() == X86::SHL32ri ? X86::LEA32r :X86::LEA16r;
+      return addFullAddress(BuildMI(Opc, 5, Dest), AM);
+    }
+    break;
+  }
+
+  return 0;
+}
+
+
 void X86InstrInfo::insertGoto(MachineBasicBlock& MBB,
                               MachineBasicBlock& TMBB) const {
   BuildMI(MBB, MBB.end(), X86::JMP, 1).addMBB(&TMBB);
@@ -59,6 +137,8 @@ X86InstrInfo::reverseBranchCondition(MachineBasicBlock::iterator MI) const {
   case X86::JA:  ROpcode = X86::JBE; break;
   case X86::JS:  ROpcode = X86::JNS; break;
   case X86::JNS: ROpcode = X86::JS;  break;
+  case X86::JP:  ROpcode = X86::JNP; break;
+  case X86::JNP: ROpcode = X86::JP;  break;
   case X86::JL:  ROpcode = X86::JGE; break;
   case X86::JGE: ROpcode = X86::JL;  break;
   case X86::JLE: ROpcode = X86::JG;  break;
@@ -68,3 +148,4 @@ X86InstrInfo::reverseBranchCondition(MachineBasicBlock::iterator MI) const {
   MachineBasicBlock* TMBB = MI->getOperand(0).getMachineBasicBlock();
   return BuildMI(*MBB, MBB->erase(MI), ROpcode, 1).addMBB(TMBB);
 }
+
index 72eee6bc3ee26dc7260148495bb077ba6b2ca1ca..c8f8716fcdada68ca41e4797fba91f2fa544aed6 100644 (file)
@@ -179,6 +179,18 @@ public:
                            unsigned& sourceReg,
                            unsigned& destReg) const;
 
+  /// convertToThreeAddress - This method must be implemented by targets that
+  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
+  /// may be able to convert a two-address instruction into a true
+  /// three-address instruction on demand.  This allows the X86 target (for
+  /// example) to convert ADD and SHL instructions into LEA instructions if they
+  /// would require register copies due to two-addressness.
+  ///
+  /// This method returns a null pointer if the transformation cannot be
+  /// performed, otherwise it returns the new instruction.
+  ///
+  virtual MachineInstr *convertToThreeAddress(MachineInstr *TA) const;
+
   /// Insert a goto (unconditional branch) sequence to TMBB, at the
   /// end of MBB
   virtual void insertGoto(MachineBasicBlock& MBB,