check in the BigBlock local register allocator
authorDuraid Madina <duraid@octopus.com.au>
Fri, 22 Jun 2007 08:27:12 +0000 (08:27 +0000)
committerDuraid Madina <duraid@octopus.com.au>
Fri, 22 Jun 2007 08:27:12 +0000 (08:27 +0000)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@37703 91177308-0d34-0410-b5e6-96231b3b80d8

include/llvm/CodeGen/LinkAllCodegenComponents.h
include/llvm/CodeGen/Passes.h
lib/CodeGen/RegAllocBigBlock.cpp [new file with mode: 0644]

index 5c39b505fec234ee89615c611a20d91f0603e876..15021c1eb5d63277c9d23800f7f1dc9f45cbb871 100644 (file)
@@ -30,6 +30,7 @@ namespace {
 
       (void) llvm::createSimpleRegisterAllocator();
       (void) llvm::createLocalRegisterAllocator();
+      (void) llvm::createBigBlockRegisterAllocator();
       (void) llvm::createLinearScanRegisterAllocator();
       
       (void) llvm::createBFS_DAGScheduler(NULL, NULL, NULL);
index 88d51aaefdbcf54024ab07066872acf638810448..cf08b7f2d93c0bb94127f6fab1f8de3c0ce5344a 100644 (file)
@@ -70,6 +70,15 @@ namespace llvm {
   ///
   FunctionPass *createLocalRegisterAllocator();
 
+  /// BigBlockRegisterAllocation Pass - The BigBlock register allocator
+  /// munches single basic blocks at a time, like the local register
+  /// allocator.  While the BigBlock allocator is a little slower, and uses
+  /// somewhat more memory than the local register allocator, it tends to
+  /// yield the best allocations (of any of the allocators) for blocks that
+  /// have hundreds or thousands of instructions in sequence.
+  ///
+  FunctionPass *createBigBlockRegisterAllocator();
+
   /// LinearScanRegisterAllocation Pass - This pass implements the linear scan
   /// register allocation algorithm, a global register allocator.
   ///
diff --git a/lib/CodeGen/RegAllocBigBlock.cpp b/lib/CodeGen/RegAllocBigBlock.cpp
new file mode 100644 (file)
index 0000000..c3ae773
--- /dev/null
@@ -0,0 +1,852 @@
+//===- RegAllocBigBlock.cpp - A register allocator for large basic blocks -===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This register allocator is derived from RegAllocLocal.cpp. Like it, this
+// allocator works on one basic block at a time, oblivious to others.
+// However, the algorithm used here is suited for long blocks of
+// instructions - registers are spilled by greedily choosing those holding
+// values that will not be needed for the longest amount of time. This works
+// particularly well for blocks with 10 or more times as many instructions
+// as machine registers, but can be used for general code.
+//
+//===----------------------------------------------------------------------===//
+//
+// TODO: - automagically invoke linearscan for (groups of) small BBs?
+//       - break ties when picking regs? (probably not worth it in a
+//         JIT context)
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "regalloc"
+#include "llvm/BasicBlock.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/SSARegMap.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/RegAllocRegistry.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/ADT/IndexedMap.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NumStores, "Number of stores added");
+STATISTIC(NumLoads , "Number of loads added");
+STATISTIC(NumFolded, "Number of loads/stores folded into instructions");
+
+namespace {
+  static RegisterRegAlloc
+    bigBlockRegAlloc("bigblock", "  Big-block register allocator",
+                  createBigBlockRegisterAllocator);
+
+  struct VRegKeyInfo {
+    static inline unsigned getEmptyKey() { return -1U; }
+    static inline unsigned getTombstoneKey() { return -2U; }
+    static unsigned getHashValue(const unsigned &Key) { return Key; }
+  };
+
+  class VISIBILITY_HIDDEN RABigBlock : public MachineFunctionPass {
+  public:
+    static char ID;
+    RABigBlock() : MachineFunctionPass((intptr_t)&ID) {}
+  private:
+    const TargetMachine *TM;
+    MachineFunction *MF;
+    const MRegisterInfo *RegInfo;
+    LiveVariables *LV;
+
+    // InsnTimes - maps machine instructions to their "execute times"
+    std::map<MachineInstr *, unsigned> InsnTimes;
+    
+    // VRegReadTable - maps VRegs in a BB to the set of times they are read
+    DenseMap<unsigned, SmallVector<unsigned, 2>*, VRegKeyInfo> VRegReadTable;
+
+    // StackSlotForVirtReg - Maps virtual regs to the frame index where these
+    // values are spilled.
+    std::map<unsigned, int> StackSlotForVirtReg;
+
+    // Virt2PhysRegMap - This map contains entries for each virtual register
+    // that is currently available in a physical register.
+    IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
+
+    unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
+      return Virt2PhysRegMap[VirtReg];
+    }
+
+    // PhysRegsUsed - This array is effectively a map, containing entries for
+    // each physical register that currently has a value (ie, it is in
+    // Virt2PhysRegMap).  The value mapped to is the virtual register
+    // corresponding to the physical register (the inverse of the
+    // Virt2PhysRegMap), or 0.  The value is set to 0 if this register is pinned
+    // because it is used by a future instruction, and to -2 if it is not
+    // allocatable.  If the entry for a physical register is -1, then the
+    // physical register is "not in the map".
+    //
+    std::vector<int> PhysRegsUsed;
+
+    // PhysRegsUseOrder - This contains a list of the physical registers that
+    // currently have a virtual register value in them.  This list provides an
+    // ordering of registers, imposing a reallocation order.  This list is only
+    // used if all registers are allocated and we have to spill one, in which
+    // case we spill the least recently used register.  Entries at the front of
+    // the list are the least recently used registers, entries at the back are
+    // the most recently used.
+    //
+    std::vector<unsigned> PhysRegsUseOrder;
+
+    // VirtRegModified - This bitset contains information about which virtual
+    // registers need to be spilled back to memory when their registers are
+    // scavenged.  If a virtual register has simply been rematerialized, there
+    // is no reason to spill it to memory when we need the register back.
+    //
+    std::vector<bool> VirtRegModified;
+
+    void markVirtRegModified(unsigned Reg, bool Val = true) {
+      assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
+      Reg -= MRegisterInfo::FirstVirtualRegister;
+      if (VirtRegModified.size() <= Reg) VirtRegModified.resize(Reg+1);
+      VirtRegModified[Reg] = Val;
+    }
+    
+    bool isVirtRegModified(unsigned Reg) const {
+      assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
+      assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
+             && "Illegal virtual register!");
+      return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister];
+    }
+
+    void MarkPhysRegRecentlyUsed(unsigned Reg) {
+      if (PhysRegsUseOrder.empty() ||
+          PhysRegsUseOrder.back() == Reg) return;  // Already most recently used
+
+      for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
+        if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
+          unsigned RegMatch = PhysRegsUseOrder[i-1];       // remove from middle
+          PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
+          // Add it to the end of the list
+          PhysRegsUseOrder.push_back(RegMatch);
+          if (RegMatch == Reg)
+            return;    // Found an exact match, exit early
+        }
+    }
+
+  public:
+    virtual const char *getPassName() const {
+      return "BigBlock Register Allocator";
+    }
+
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.addRequired<LiveVariables>();
+      AU.addRequiredID(PHIEliminationID);
+      AU.addRequiredID(TwoAddressInstructionPassID);
+      MachineFunctionPass::getAnalysisUsage(AU);
+    }
+
+  private:
+    /// runOnMachineFunction - Register allocate the whole function
+    bool runOnMachineFunction(MachineFunction &Fn);
+
+    /// AllocateBasicBlock - Register allocate the specified basic block.
+    void AllocateBasicBlock(MachineBasicBlock &MBB);
+
+    /// FillVRegReadTable - Fill out the table of vreg read times given a BB
+    void FillVRegReadTable(MachineBasicBlock &MBB);
+    
+    /// areRegsEqual - This method returns true if the specified registers are
+    /// related to each other.  To do this, it checks to see if they are equal
+    /// or if the first register is in the alias set of the second register.
+    ///
+    bool areRegsEqual(unsigned R1, unsigned R2) const {
+      if (R1 == R2) return true;
+      for (const unsigned *AliasSet = RegInfo->getAliasSet(R2);
+           *AliasSet; ++AliasSet) {
+        if (*AliasSet == R1) return true;
+      }
+      return false;
+    }
+
+    /// getStackSpaceFor - This returns the frame index of the specified virtual
+    /// register on the stack, allocating space if necessary.
+    int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
+
+    /// removePhysReg - This method marks the specified physical register as no
+    /// longer being in use.
+    ///
+    void removePhysReg(unsigned PhysReg);
+
+    /// spillVirtReg - This method spills the value specified by PhysReg into
+    /// the virtual register slot specified by VirtReg.  It then updates the RA
+    /// data structures to indicate the fact that PhysReg is now available.
+    ///
+    void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+                      unsigned VirtReg, unsigned PhysReg);
+
+    /// spillPhysReg - This method spills the specified physical register into
+    /// the virtual register slot associated with it.  If OnlyVirtRegs is set to
+    /// true, then the request is ignored if the physical register does not
+    /// contain a virtual register.
+    ///
+    void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
+                      unsigned PhysReg, bool OnlyVirtRegs = false);
+
+    /// assignVirtToPhysReg - This method updates local state so that we know
+    /// that PhysReg is the proper container for VirtReg now.  The physical
+    /// register must not be used for anything else when this is called.
+    ///
+    void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
+
+    /// liberatePhysReg - Make sure the specified physical register is available
+    /// for use.  If there is currently a value in it, it is either moved out of
+    /// the way or spilled to memory.
+    ///
+    void liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
+                         unsigned PhysReg);
+
+    /// isPhysRegAvailable - Return true if the specified physical register is
+    /// free and available for use.  This also includes checking to see if
+    /// aliased registers are all free...
+    ///
+    bool isPhysRegAvailable(unsigned PhysReg) const;
+
+    /// getFreeReg - Look to see if there is a free register available in the
+    /// specified register class.  If not, return 0.
+    ///
+    unsigned getFreeReg(const TargetRegisterClass *RC);
+
+    /// chooseReg - Pick a physical register to hold the specified
+    /// virtual register by choosing the one which will be read furthest
+    /// in the future.
+    ///
+    unsigned chooseReg(MachineBasicBlock &MBB, MachineInstr *MI,
+                    unsigned VirtReg);
+
+    /// reloadVirtReg - This method transforms the specified specified virtual
+    /// register use to refer to a physical register.  This method may do this
+    /// in one of several ways: if the register is available in a physical
+    /// register already, it uses that physical register.  If the value is not
+    /// in a physical register, and if there are physical registers available,
+    /// it loads it into a register.  If register pressure is high, and it is
+    /// possible, it tries to fold the load of the virtual register into the
+    /// instruction itself.  It avoids doing this if register pressure is low to
+    /// improve the chance that subsequent instructions can use the reloaded
+    /// value.  This method returns the modified instruction.
+    ///
+    MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
+                                unsigned OpNum);
+
+  };
+  char RABigBlock::ID = 0;
+}
+
+/// getStackSpaceFor - This allocates space for the specified virtual register
+/// to be held on the stack.
+int RABigBlock::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
+  // Find the location Reg would belong...
+  std::map<unsigned, int>::iterator I =StackSlotForVirtReg.lower_bound(VirtReg);
+
+  if (I != StackSlotForVirtReg.end() && I->first == VirtReg)
+    return I->second;          // Already has space allocated?
+
+  // Allocate a new stack object for this spill location...
+  int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
+                                                       RC->getAlignment());
+
+  // Assign the slot...
+  StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx));
+  return FrameIdx;
+}
+
+
+/// removePhysReg - This method marks the specified physical register as no
+/// longer being in use.
+///
+void RABigBlock::removePhysReg(unsigned PhysReg) {
+  PhysRegsUsed[PhysReg] = -1;      // PhyReg no longer used
+
+  std::vector<unsigned>::iterator It =
+    std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
+  if (It != PhysRegsUseOrder.end())
+    PhysRegsUseOrder.erase(It);
+}
+
+
+/// spillVirtReg - This method spills the value specified by PhysReg into the
+/// virtual register slot specified by VirtReg.  It then updates the RA data
+/// structures to indicate the fact that PhysReg is now available.
+///
+void RABigBlock::spillVirtReg(MachineBasicBlock &MBB,
+                           MachineBasicBlock::iterator I,
+                           unsigned VirtReg, unsigned PhysReg) {
+  assert(VirtReg && "Spilling a physical register is illegal!"
+         " Must not have appropriate kill for the register or use exists beyond"
+         " the intended one.");
+  DOUT << "  Spilling register " << RegInfo->getName(PhysReg)
+       << " containing %reg" << VirtReg;
+  if (!isVirtRegModified(VirtReg))
+    DOUT << " which has not been modified, so no store necessary!";
+
+  // Otherwise, there is a virtual register corresponding to this physical
+  // register.  We only need to spill it into its stack slot if it has been
+  // modified.
+  if (isVirtRegModified(VirtReg)) {
+    const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
+    int FrameIndex = getStackSpaceFor(VirtReg, RC);
+    DOUT << " to stack slot #" << FrameIndex;
+    RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RC);
+    ++NumStores;   // Update statistics
+  }
+
+  getVirt2PhysRegMapSlot(VirtReg) = 0;   // VirtReg no longer available
+
+  DOUT << "\n";
+  removePhysReg(PhysReg);
+}
+
+
+/// spillPhysReg - This method spills the specified physical register into the
+/// virtual register slot associated with it.  If OnlyVirtRegs is set to true,
+/// then the request is ignored if the physical register does not contain a
+/// virtual register.
+///
+void RABigBlock::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
+                           unsigned PhysReg, bool OnlyVirtRegs) {
+  if (PhysRegsUsed[PhysReg] != -1) {            // Only spill it if it's used!
+    assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
+    if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
+      spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
+  } else {
+    // If the selected register aliases any other registers, we must make
+    // sure that one of the aliases isn't alive.
+    for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
+         *AliasSet; ++AliasSet)
+      if (PhysRegsUsed[*AliasSet] != -1 &&     // Spill aliased register.
+          PhysRegsUsed[*AliasSet] != -2)       // If allocatable.
+        if (PhysRegsUsed[*AliasSet] == 0) {
+          // This must have been a dead def due to something like this:
+          // %EAX :=
+          //      := op %AL
+          // No more use of %EAX, %AH, etc.
+          // %EAX isn't dead upon definition, but %AH is. However %AH isn't
+          // an operand of definition MI so it's not marked as such.
+          DOUT << "  Register " << RegInfo->getName(*AliasSet)
+               << " [%reg" << *AliasSet
+               << "] is never used, removing it frame live list\n";
+          removePhysReg(*AliasSet);
+        } else
+          spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
+  }
+}
+
+
+/// assignVirtToPhysReg - This method updates local state so that we know
+/// that PhysReg is the proper container for VirtReg now.  The physical
+/// register must not be used for anything else when this is called.
+///
+void RABigBlock::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
+  assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
+  // Update information to note the fact that this register was just used, and
+  // it holds VirtReg.
+  PhysRegsUsed[PhysReg] = VirtReg;
+  getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
+  PhysRegsUseOrder.push_back(PhysReg);   // New use of PhysReg
+}
+
+
+/// isPhysRegAvailable - Return true if the specified physical register is free
+/// and available for use.  This also includes checking to see if aliased
+/// registers are all free...
+///
+bool RABigBlock::isPhysRegAvailable(unsigned PhysReg) const {
+  if (PhysRegsUsed[PhysReg] != -1) return false;
+
+  // If the selected register aliases any other allocated registers, it is
+  // not free!
+  for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
+       *AliasSet; ++AliasSet)
+    if (PhysRegsUsed[*AliasSet] != -1) // Aliased register in use?
+      return false;                    // Can't use this reg then.
+  return true;
+}
+
+
+//////// FIX THIS:
+/// getFreeReg - Look to see if there is a free register available in the
+/// specified register class.  If not, return 0.
+///
+unsigned RABigBlock::getFreeReg(const TargetRegisterClass *RC) {
+  // Get iterators defining the range of registers that are valid to allocate in
+  // this class, which also specifies the preferred allocation order.
+  TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
+  TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
+
+  for (; RI != RE; ++RI)
+    if (isPhysRegAvailable(*RI)) {       // Is reg unused?
+      assert(*RI != 0 && "Cannot use register!");
+      return *RI; // Found an unused register!
+    }
+  return 0;
+}
+
+
+/// liberatePhysReg - Make sure the specified physical register is available for
+/// use.  If there is currently a value in it, it is either moved out of the way
+/// or spilled to memory.
+///
+void RABigBlock::liberatePhysReg(MachineBasicBlock &MBB,
+                              MachineBasicBlock::iterator &I,
+                              unsigned PhysReg) {
+  spillPhysReg(MBB, I, PhysReg);
+}
+
+/// chooseReg - Pick a physical register to hold the specified
+/// virtual register by choosing the one whose value will be read
+/// furthest in the future.
+///
+unsigned RABigBlock::chooseReg(MachineBasicBlock &MBB, MachineInstr *I,
+                         unsigned VirtReg) {
+  const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
+  // First check to see if we have a free register of the requested type...
+  unsigned PhysReg = getFreeReg(RC);
+
+  // If we didn't find an unused register, find the one which will be
+  // read at the most distant point in time.
+  if (PhysReg == 0) {
+    unsigned delay=0, longest_delay=0;
+    SmallVector<unsigned, 2> *ReadTimes;
+
+    unsigned curTime = InsnTimes[I];
+
+    // for all physical regs in the RC,
+    for(TargetRegisterClass::iterator pReg = RC->begin(); 
+                                      pReg != RC->end();  ++pReg) {
+      // how long until they're read?
+      if(PhysRegsUsed[*pReg]>0) { // ignore non-allocatable regs
+        ReadTimes = VRegReadTable[PhysRegsUsed[*pReg]];
+       SmallVector<unsigned, 2>::iterator pt = 
+                                         std::lower_bound(ReadTimes->begin(),
+                                                          ReadTimes->end(),
+                                                          curTime);
+        delay = *pt - curTime;
+        
+        if(delay > longest_delay) {
+          longest_delay = delay;
+          PhysReg = *pReg;
+        }
+      }
+    }
+    
+    assert(PhysReg && "couldn't grab a register from the table?");
+    // TODO: assert that RC->contains(PhysReg) / handle aliased registers
+
+    // since we needed to look in the table we need to spill this register.
+    spillPhysReg(MBB, I, PhysReg);
+  }
+
+  // assign the vreg to our chosen physical register
+  assignVirtToPhysReg(VirtReg, PhysReg);
+  return PhysReg; // and return it
+}
+
+
+/// reloadVirtReg - This method transforms an instruction with a virtual
+/// register use to one that references a physical register. It does this as
+/// follows:
+///
+///   1) If the register is already in a physical register, it uses it.
+///   2) Otherwise, if there is a free physical register, it uses that.
+///   3) Otherwise, it calls chooseReg() to get the physical register
+///      holding the most distantly needed value, generating a spill in
+///      the process.
+///
+/// This method returns the modified instruction.
+MachineInstr *RABigBlock::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
+                                     unsigned OpNum) {
+  unsigned VirtReg = MI->getOperand(OpNum).getReg();
+
+  // If the virtual register is already available in a physical register,
+  // just update the instruction and return.
+  if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
+    MI->getOperand(OpNum).setReg(PR);
+    return MI;
+  }
+
+  // Otherwise, if we have free physical registers available to hold the
+  // value, use them.
+  const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
+  unsigned PhysReg = getFreeReg(RC);
+  int FrameIndex = getStackSpaceFor(VirtReg, RC);
+
+  if (PhysReg) {   // we have a free register, so use it.
+    assignVirtToPhysReg(VirtReg, PhysReg);
+  } else {  // no free registers available.
+    // try to fold the spill into the instruction
+    if(MachineInstr* FMI = RegInfo->foldMemoryOperand(MI, OpNum, FrameIndex)) {
+      ++NumFolded;
+      // Since we changed the address of MI, make sure to update live variables
+      // to know that the new instruction has the properties of the old one.
+      LV->instructionChanged(MI, FMI);
+      return MBB.insert(MBB.erase(MI), FMI);
+    }
+    
+    // determine which of the physical registers we'll kill off, since we
+    // couldn't fold.
+    PhysReg = chooseReg(MBB, MI, VirtReg);
+  }
+
+  // this virtual register is now unmodified (since we just reloaded it)
+  markVirtRegModified(VirtReg, false);
+
+  DOUT << "  Reloading %reg" << VirtReg << " into "
+       << RegInfo->getName(PhysReg) << "\n";
+
+  // Add move instruction(s)
+  RegInfo->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
+  ++NumLoads;    // Update statistics
+
+  MF->setPhysRegUsed(PhysReg);
+  MI->getOperand(OpNum).setReg(PhysReg);  // Assign the input register
+  return MI;
+}
+
+/// Fill out the vreg read timetable. Since ReadTime increases
+/// monotonically, the individual readtime sets will be sorted
+/// in ascending order.
+void RABigBlock::FillVRegReadTable(MachineBasicBlock &MBB) {
+  // loop over each instruction
+  MachineBasicBlock::iterator MII;
+  unsigned ReadTime;
+  
+  for(ReadTime=0, MII = MBB.begin(); MII != MBB.end(); ++ReadTime, ++MII) {
+    MachineInstr *MI = MII;
+    
+    InsnTimes[MI] = ReadTime;
+    
+    for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
+      MachineOperand& MO = MI->getOperand(i);
+      // look for vreg reads..
+      if (MO.isRegister() && !MO.isDef() && MO.getReg() &&
+          MRegisterInfo::isVirtualRegister(MO.getReg())) {
+        // ..and add them to the read table.
+        if(!VRegReadTable[MO.getReg()])
+          VRegReadTable[MO.getReg()] = new SmallVector<unsigned, 2>;
+          
+        VRegReadTable[MO.getReg()]->push_back(ReadTime);
+      }
+    }
+
+  }  
+
+}
+
+void RABigBlock::AllocateBasicBlock(MachineBasicBlock &MBB) {
+  // loop over each instruction
+  MachineBasicBlock::iterator MII = MBB.begin();
+  const TargetInstrInfo &TII = *TM->getInstrInfo();
+  
+  DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
+        if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName());
+
+  // If this is the first basic block in the machine function, add live-in
+  // registers as active.
+  if (&MBB == &*MF->begin()) {
+    for (MachineFunction::livein_iterator I = MF->livein_begin(),
+         E = MF->livein_end(); I != E; ++I) {
+      unsigned Reg = I->first;
+      MF->setPhysRegUsed(Reg);
+      PhysRegsUsed[Reg] = 0;            // It is free and reserved now
+      PhysRegsUseOrder.push_back(Reg);
+      for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
+           *AliasSet; ++AliasSet) {
+        if (PhysRegsUsed[*AliasSet] != -2) {
+          PhysRegsUseOrder.push_back(*AliasSet);
+          PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
+          MF->setPhysRegUsed(*AliasSet);
+        }
+      }
+    }    
+  }
+  
+  // Otherwise, sequentially allocate each instruction in the MBB.
+  while (MII != MBB.end()) {
+    MachineInstr *MI = MII++;
+    const TargetInstrDescriptor &TID = TII.get(MI->getOpcode());
+    DEBUG(DOUT << "\nStarting RegAlloc of: " << *MI;
+          DOUT << "  Regs have values: ";
+          for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i)
+            if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
+               DOUT << "[" << RegInfo->getName(i)
+                    << ",%reg" << PhysRegsUsed[i] << "] ";
+          DOUT << "\n");
+
+    // Loop over the implicit uses, making sure that they are at the head of the
+    // use order list, so they don't get reallocated.
+    if (TID.ImplicitUses) {
+      for (const unsigned *ImplicitUses = TID.ImplicitUses;
+           *ImplicitUses; ++ImplicitUses)
+        MarkPhysRegRecentlyUsed(*ImplicitUses);
+    }
+
+    SmallVector<unsigned, 8> Kills;
+    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+      MachineOperand& MO = MI->getOperand(i);
+      if (MO.isRegister() && MO.isKill())
+        Kills.push_back(MO.getReg());
+    }
+
+    // Get the used operands into registers.  This has the potential to spill
+    // incoming values if we are out of registers.  Note that we completely
+    // ignore physical register uses here.  We assume that if an explicit
+    // physical register is referenced by the instruction, that it is guaranteed
+    // to be live-in, or the input is badly hosed.
+    //
+    for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
+      MachineOperand& MO = MI->getOperand(i);
+      // here we are looking for only used operands (never def&use)
+      if (MO.isRegister() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
+          MRegisterInfo::isVirtualRegister(MO.getReg()))
+        MI = reloadVirtReg(MBB, MI, i);
+    }
+
+    // If this instruction is the last user of this register, kill the
+    // value, freeing the register being used, so it doesn't need to be
+    // spilled to memory.
+    //
+    for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
+      unsigned VirtReg = Kills[i];
+      unsigned PhysReg = VirtReg;
+      if (MRegisterInfo::isVirtualRegister(VirtReg)) {
+        // If the virtual register was never materialized into a register, it
+        // might not be in the map, but it won't hurt to zero it out anyway.
+        unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
+        PhysReg = PhysRegSlot;
+        PhysRegSlot = 0;
+      } else if (PhysRegsUsed[PhysReg] == -2) {
+        // Unallocatable register dead, ignore.
+        continue;
+      }
+
+      if (PhysReg) {
+        DOUT << "  Last use of " << RegInfo->getName(PhysReg)
+             << "[%reg" << VirtReg <<"], removing it from live set\n";
+        removePhysReg(PhysReg);
+        for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
+             *AliasSet; ++AliasSet) {
+          if (PhysRegsUsed[*AliasSet] != -2) {
+            DOUT  << "  Last use of "
+                  << RegInfo->getName(*AliasSet)
+                  << "[%reg" << VirtReg <<"], removing it from live set\n";
+            removePhysReg(*AliasSet);
+          }
+        }
+      }
+    }
+
+    // Loop over all of the operands of the instruction, spilling registers that
+    // are defined, and marking explicit destinations in the PhysRegsUsed map.
+    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+      MachineOperand& MO = MI->getOperand(i);
+      if (MO.isRegister() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
+          MRegisterInfo::isPhysicalRegister(MO.getReg())) {
+        unsigned Reg = MO.getReg();
+        if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP.
+            
+        MF->setPhysRegUsed(Reg);
+        spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
+        PhysRegsUsed[Reg] = 0;            // It is free and reserved now
+        PhysRegsUseOrder.push_back(Reg);
+        for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
+             *AliasSet; ++AliasSet) {
+          if (PhysRegsUsed[*AliasSet] != -2) {
+            PhysRegsUseOrder.push_back(*AliasSet);
+            PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
+            MF->setPhysRegUsed(*AliasSet);
+          }
+        }
+      }
+    }
+
+    // Loop over the implicit defs, spilling them as well.
+    if (TID.ImplicitDefs) {
+      for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
+           *ImplicitDefs; ++ImplicitDefs) {
+        unsigned Reg = *ImplicitDefs;
+        bool IsNonAllocatable = PhysRegsUsed[Reg] == -2;
+        if (!IsNonAllocatable) {
+          spillPhysReg(MBB, MI, Reg, true);
+          PhysRegsUseOrder.push_back(Reg);
+          PhysRegsUsed[Reg] = 0;            // It is free and reserved now
+        }
+        MF->setPhysRegUsed(Reg);
+
+        for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
+             *AliasSet; ++AliasSet) {
+          if (PhysRegsUsed[*AliasSet] != -2) {
+            if (!IsNonAllocatable) {
+              PhysRegsUseOrder.push_back(*AliasSet);
+              PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
+            }
+            MF->setPhysRegUsed(*AliasSet);
+          }
+        }
+      }
+    }
+
+    SmallVector<unsigned, 8> DeadDefs;
+    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+      MachineOperand& MO = MI->getOperand(i);
+      if (MO.isRegister() && MO.isDead())
+        DeadDefs.push_back(MO.getReg());
+    }
+
+    // Okay, we have allocated all of the source operands and spilled any values
+    // that would be destroyed by defs of this instruction.  Loop over the
+    // explicit defs and assign them to a register, spilling incoming values if
+    // we need to scavenge a register.
+    //
+    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+      MachineOperand& MO = MI->getOperand(i);
+      if (MO.isRegister() && MO.isDef() && MO.getReg() &&
+          MRegisterInfo::isVirtualRegister(MO.getReg())) {
+        unsigned DestVirtReg = MO.getReg();
+        unsigned DestPhysReg;
+
+        // If DestVirtReg already has a value, use it.
+        if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
+          DestPhysReg = chooseReg(MBB, MI, DestVirtReg);
+        MF->setPhysRegUsed(DestPhysReg);
+        markVirtRegModified(DestVirtReg);
+        MI->getOperand(i).setReg(DestPhysReg);  // Assign the output register
+      }
+    }
+
+    // If this instruction defines any registers that are immediately dead,
+    // kill them now.
+    //
+    for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
+      unsigned VirtReg = DeadDefs[i];
+      unsigned PhysReg = VirtReg;
+      if (MRegisterInfo::isVirtualRegister(VirtReg)) {
+        unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
+        PhysReg = PhysRegSlot;
+        assert(PhysReg != 0);
+        PhysRegSlot = 0;
+      } else if (PhysRegsUsed[PhysReg] == -2) {
+        // Unallocatable register dead, ignore.
+        continue;
+      }
+
+      if (PhysReg) {
+        DOUT  << "  Register " << RegInfo->getName(PhysReg)
+              << " [%reg" << VirtReg
+              << "] is never used, removing it frame live list\n";
+        removePhysReg(PhysReg);
+        for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
+             *AliasSet; ++AliasSet) {
+          if (PhysRegsUsed[*AliasSet] != -2) {
+            DOUT  << "  Register " << RegInfo->getName(*AliasSet)
+                  << " [%reg" << *AliasSet
+                  << "] is never used, removing it frame live list\n";
+            removePhysReg(*AliasSet);
+          }
+        }
+      }
+    }
+    
+    // Finally, if this is a noop copy instruction, zap it.
+    unsigned SrcReg, DstReg;
+    if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg) {
+      LV->removeVirtualRegistersKilled(MI);
+      LV->removeVirtualRegistersDead(MI);
+      MBB.erase(MI);
+    }
+  }
+
+  MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
+
+  // Spill all physical registers holding virtual registers now.
+  for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
+    if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
+      if (unsigned VirtReg = PhysRegsUsed[i])
+        spillVirtReg(MBB, MI, VirtReg, i);
+      else
+        removePhysReg(i);
+
+#if 0
+  // This checking code is very expensive.
+  bool AllOk = true;
+  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
+           e = MF->getSSARegMap()->getLastVirtReg(); i <= e; ++i)
+    if (unsigned PR = Virt2PhysRegMap[i]) {
+      cerr << "Register still mapped: " << i << " -> " << PR << "\n";
+      AllOk = false;
+    }
+  assert(AllOk && "Virtual registers still in phys regs?");
+#endif
+
+  // Clear any physical register which appear live at the end of the basic
+  // block, but which do not hold any virtual registers.  e.g., the stack
+  // pointer.
+  PhysRegsUseOrder.clear();
+}
+
+/// runOnMachineFunction - Register allocate the whole function
+///
+bool RABigBlock::runOnMachineFunction(MachineFunction &Fn) {
+  DOUT << "Machine Function " << "\n";
+  MF = &Fn;
+  TM = &Fn.getTarget();
+  RegInfo = TM->getRegisterInfo();
+  LV = &getAnalysis<LiveVariables>();
+
+  PhysRegsUsed.assign(RegInfo->getNumRegs(), -1);
+  
+  // At various places we want to efficiently check to see whether a register
+  // is allocatable.  To handle this, we mark all unallocatable registers as
+  // being pinned down, permanently.
+  {
+    BitVector Allocable = RegInfo->getAllocatableSet(Fn);
+    for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
+      if (!Allocable[i])
+        PhysRegsUsed[i] = -2;  // Mark the reg unallocable.
+  }
+
+  // initialize the virtual->physical register map to have a 'null'
+  // mapping for all virtual registers
+  Virt2PhysRegMap.grow(MF->getSSARegMap()->getLastVirtReg());
+
+  // Loop over all of the basic blocks, eliminating virtual register references
+  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
+       MBB != MBBe; ++MBB) {
+    // fill out the read timetable 
+    FillVRegReadTable(*MBB);
+    // use it to allocate the BB
+    AllocateBasicBlock(*MBB);
+    // clear it
+    VRegReadTable.clear();
+  }
+  
+  StackSlotForVirtReg.clear();
+  PhysRegsUsed.clear();
+  VirtRegModified.clear();
+  Virt2PhysRegMap.clear();
+  return true;
+}
+
+FunctionPass *llvm::createBigBlockRegisterAllocator() {
+  return new RABigBlock();
+}
+