#include "llvm/GlobalVariable.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
//PM.add(new SparcV9CodeEmitter(MCE));
//MachineCodeEmitter *M = MachineCodeEmitter::createDebugMachineCodeEmitter();
MachineCodeEmitter *M = MachineCodeEmitter::createFilePrinterEmitter(MCE);
- PM.add(new SparcV9CodeEmitter(this, *M));
+ PM.add(new SparcV9CodeEmitter(*this, *M));
PM.add(createMachineCodeDestructionPass()); // Free stuff no longer needed
return false;
}
namespace {
class JITResolver {
+ SparcV9CodeEmitter &SparcV9;
MachineCodeEmitter &MCE;
// LazyCodeGenMap - Keep track of call sites for functions that are to be
// lazily resolved.
- std::map<unsigned, Function*> LazyCodeGenMap;
+ std::map<uint64_t, Function*> LazyCodeGenMap;
// LazyResolverMap - Keep track of the lazy resolver created for a
// particular function so that we can reuse them if necessary.
- std::map<Function*, unsigned> LazyResolverMap;
+ std::map<Function*, uint64_t> LazyResolverMap;
public:
- JITResolver(MachineCodeEmitter &mce) : MCE(mce) {}
- unsigned getLazyResolver(Function *F);
- unsigned addFunctionReference(unsigned Address, Function *F);
-
+ JITResolver(SparcV9CodeEmitter &V9,
+ MachineCodeEmitter &mce) : SparcV9(V9), MCE(mce) {}
+ uint64_t getLazyResolver(Function *F);
+ uint64_t addFunctionReference(uint64_t Address, Function *F);
+
+ // Utility functions for accessing data from static callback
+ uint64_t getCurrentPCValue() {
+ return MCE.getCurrentPCValue();
+ }
+ unsigned getBinaryCodeForInstr(MachineInstr &MI) {
+ return SparcV9.getBinaryCodeForInstr(MI);
+ }
+
private:
- unsigned emitStubForFunction(Function *F);
+ uint64_t emitStubForFunction(Function *F);
static void CompilationCallback();
- unsigned resolveFunctionReference(unsigned RetAddr);
+ uint64_t resolveFunctionReference(uint64_t RetAddr);
};
JITResolver *TheJITResolver;
/// address. Instead, we emit a call to the CompilationCallback method, and
/// keep track of where we are.
///
-unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) {
+uint64_t JITResolver::addFunctionReference(uint64_t Address, Function *F) {
LazyCodeGenMap[Address] = F;
return (intptr_t)&JITResolver::CompilationCallback;
}
-unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) {
- std::map<unsigned, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
+uint64_t JITResolver::resolveFunctionReference(uint64_t RetAddr) {
+ std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
assert(I != LazyCodeGenMap.end() && "Not in map!");
Function *F = I->second;
LazyCodeGenMap.erase(I);
return MCE.forceCompilationOf(F);
}
-unsigned JITResolver::getLazyResolver(Function *F) {
- std::map<Function*, unsigned>::iterator I = LazyResolverMap.lower_bound(F);
+uint64_t JITResolver::getLazyResolver(Function *F) {
+ std::map<Function*, uint64_t>::iterator I = LazyResolverMap.lower_bound(F);
if (I != LazyResolverMap.end() && I->first == F) return I->second;
//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n";
- unsigned Stub = emitStubForFunction(F);
+ uint64_t Stub = emitStubForFunction(F);
LazyResolverMap.insert(I, std::make_pair(F, Stub));
return Stub;
}
uint64_t *StackPtr = (uint64_t*)__builtin_frame_address(0);
uint64_t RetAddr = (uint64_t)(intptr_t)__builtin_return_address(0);
-#if 0
std::cerr << "In callback! Addr=0x" << std::hex << RetAddr
- << " SP=0x" << (unsigned)StackPtr << std::dec
- << ": Resolving call to function: "
- << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n";
-#endif
-
- std::cerr << "Sparc's JIT Resolver not implemented!\n";
- abort();
+ << " SP=0x" << (uint64_t)(intptr_t)StackPtr << std::dec << "\n";
-#if 0
- unsigned NewVal = TheJITResolver->resolveFunctionReference((void*)RetAddr);
+ int64_t NewVal = (int64_t)TheJITResolver->resolveFunctionReference(RetAddr);
// Rewrite the call target... so that we don't fault every time we execute
// the call.
- *(unsigned*)RetAddr = NewVal;
+ int64_t RealCallTarget = (int64_t)
+ ((NewVal - TheJITResolver->getCurrentPCValue()) >> 4);
+ MachineInstr *MI = BuildMI(V9::CALL, 1);
+ MI->addSignExtImmOperand(RealCallTarget);
+ // FIXME: this could be in the wrong byte order!!
+ *((unsigned*)(intptr_t)RetAddr) = TheJITResolver->getBinaryCodeForInstr(*MI);
+ delete MI;
// Change the return address to reexecute the call instruction...
StackPtr[1] -= 4;
-#endif
}
/// emitStubForFunction - This method is used by the JIT when it needs to emit
/// function compiler, which will eventually get fixed to call the function
/// directly.
///
-unsigned JITResolver::emitStubForFunction(Function *F) {
+uint64_t JITResolver::emitStubForFunction(Function *F) {
#if 0
MCE.startFunctionStub(*F, 6);
MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination...
- unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F);
+ uint64_t Address = addFunctionReference(MCE.getCurrentPCValue(), F);
MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub!
return (intptr_t)MCE.finishFunctionStub(*F);
#endif
- std::cerr << "Sparc's JITResolver::emitStubForFunction() not implemented!\n";
- abort();
+ MCE.startFunctionStub(*F, 6);
+
+ int64_t CurrPC = MCE.getCurrentPCValue();
+ int64_t Addr = (int64_t)addFunctionReference(CurrPC, F);
+ int64_t CallTarget = (Addr-CurrPC) >> 2;
+ MachineInstr *Call = BuildMI(V9::CALL, 1);
+ Call->addSignExtImmOperand(CallTarget);
+ SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Call));
+ delete Call;
+
+ MachineInstr *Nop = BuildMI(V9::NOP, 0);
+ SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Nop));
+ delete Nop;
+
+ SparcV9.emitWord(0xDEADBEEF); // marker so that we know it's really a stub
+ return (intptr_t)MCE.finishFunctionStub(*F);
+}
+
+
+SparcV9CodeEmitter::SparcV9CodeEmitter(TargetMachine &tm,
+ MachineCodeEmitter &M): TM(tm), MCE(M)
+{
+ TheJITResolver = new JITResolver(*this, M);
}
+SparcV9CodeEmitter::~SparcV9CodeEmitter() {
+ delete TheJITResolver;
+}
-void SparcV9CodeEmitter::emitConstant(unsigned Val, unsigned Size) {
+void SparcV9CodeEmitter::emitWord(unsigned Val) {
// Output the constant in big endian byte order...
unsigned byteVal;
- for (int i = Size-1; i >= 0; --i) {
+ for (int i = 3; i >= 0; --i) {
byteVal = Val >> 8*i;
- MCE->emitByte(byteVal & 255);
+ MCE.emitByte(byteVal & 255);
}
}
std::cerr << "ERROR: virtual register found in machine code.\n";
abort();
} else if (MO.isPCRelativeDisp()) {
+ std::cerr << "PCRelativeDisp: ";
Value *V = MO.getVRegValue();
if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
std::cerr << "Saving reference to BB (VReg)\n";
- unsigned* CurrPC = (unsigned*)(intptr_t)MCE->getCurrentPCValue();
+ unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
- } else if (Constant *C = dyn_cast<Constant>(V)) {
- if (ConstantMap.find(C) != ConstantMap.end())
- rv = (int64_t)(intptr_t)ConstantMap[C] - MCE->getCurrentPCValue();
- else {
+ } else if (const Constant *C = dyn_cast<Constant>(V)) {
+ if (ConstantMap.find(C) != ConstantMap.end()) {
+ rv = (int64_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]);
+ std::cerr << "const: 0x" << std::hex << rv
+ << "\n" << std::dec;
+ } else {
std::cerr << "ERROR: constant not in map:" << MO << "\n";
abort();
}
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ // same as MO.isGlobalAddress()
+ std::cerr << "GlobalValue: ";
+ // external function calls, etc.?
+ if (Function *F = dyn_cast<Function>(GV)) {
+ std::cerr << "Function: ";
+ if (F->isExternal()) {
+ // Sparc backend broken: this MO should be `ExternalSymbol'
+ rv = (int64_t)MCE.getGlobalValueAddress(F->getName());
+ } else {
+ rv = (int64_t)MCE.getGlobalValueAddress(F);
+ }
+ if (rv == 0) {
+ std::cerr << "not yet generated\n";
+ // Function has not yet been code generated!
+ TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), F);
+ // Delayed resolution...
+ rv = TheJITResolver->getLazyResolver(F);
+ } else {
+ std::cerr << "already generated: 0x" << std::hex << rv << "\n"
+ << std::dec;
+ }
+ } else {
+ std::cerr << "not a function: " << *GV << "\n";
+ abort();
+ }
+ // The real target of the call is Addr = PC + (rv * 4)
+ // So undo that: give the instruction (Addr - PC) / 4
+ if (MI.getOpcode() == V9::CALL) {
+ int64_t CurrPC = MCE.getCurrentPCValue();
+ std::cerr << "rv addr: 0x" << std::hex << rv << "\n";
+ std::cerr << "curr PC: 0x" << CurrPC << "\n";
+ rv = (rv - CurrPC) >> 2;
+ if (rv >= (1<<29) || rv <= -(1<<29)) {
+ std::cerr << "addr out of bounds for the 30-bit call: " << rv << "\n";
+ abort();
+ }
+ std::cerr << "returning addr: 0x" << rv << "\n" << std::dec;
+ }
} else {
std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n";
abort();
// in the real fashion -- it skips those that it chooses not to allocate,
// i.e. those that are the SP, etc.
unsigned fakeReg = MO.getReg(), realReg, regClass, regType;
- regType = TM->getRegInfo().getRegType(fakeReg);
+ regType = TM.getRegInfo().getRegType(fakeReg);
// At least map fakeReg into its class
- fakeReg = TM->getRegInfo().getClassRegNum(fakeReg, regClass);
+ fakeReg = TM.getRegInfo().getClassRegNum(fakeReg, regClass);
// Find the real register number for use in an instruction
realReg = getRealRegNum(fakeReg, regClass);
std::cerr << "Reg[" << std::dec << fakeReg << "] = " << realReg << "\n";
rv = realReg;
} else if (MO.isImmediate()) {
rv = MO.getImmedValue();
+ std::cerr << "immed: " << rv << "\n";
} else if (MO.isGlobalAddress()) {
+ std::cerr << "GlobalAddress: not PC-relative\n";
rv = (int64_t)
(intptr_t)getGlobalAddress(cast<GlobalValue>(MO.getVRegValue()),
MI, MO.isPCRelative());
// It should really hit this case, but Sparc backend uses VRegs instead
std::cerr << "Saving reference to MBB\n";
BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock();
- unsigned* CurrPC = (unsigned*)(intptr_t)MCE->getCurrentPCValue();
+ unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
} else if (MO.isExternalSymbol()) {
// Sparc backend doesn't generate this (yet...)
return (Val & 1);
}
-void* SparcV9CodeEmitter::convertAddress(intptr_t Addr, bool isPCRelative) {
- if (isPCRelative) {
- return (void*)(Addr - (intptr_t)MCE->getCurrentPCValue());
- } else {
- return (void*)Addr;
- }
-}
-
-
-
bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) {
+ MCE.startFunction(MF);
std::cerr << "Starting function " << MF.getFunction()->getName()
<< ", address: " << "0x" << std::hex
- << (long)MCE->getCurrentPCValue() << "\n";
-
- MCE->startFunction(MF);
-
- // FIXME: the Sparc backend does not use the ConstantPool!!
- //MCE->emitConstantPool(MF.getConstantPool());
+ << (long)MCE.getCurrentPCValue() << "\n";
- // Instead, the Sparc backend has its own constant pool implementation:
+ // The Sparc backend does not use MachineConstantPool;
+ // instead, it has its own constant pool implementation.
+ // We create a new MachineConstantPool here to be compatible with the emitter.
+ MachineConstantPool MCP;
const hash_set<const Constant*> &pool = MF.getInfo()->getConstantPoolValues();
for (hash_set<const Constant*>::const_iterator I = pool.begin(),
E = pool.end(); I != E; ++I)
{
- const Constant *C = *I;
- // For now we just allocate some memory on the heap, this can be
- // dramatically improved.
- const Type *Ty = ((Value*)C)->getType();
- void *Addr = malloc(TM->getTargetData().getTypeSize(Ty));
- //FIXME
- //TheVM.InitializeMemory(C, Addr);
- std::cerr << "Adding ConstantMap[" << C << "]=" << std::dec << Addr << "\n";
- ConstantMap[C] = Addr;
+ Constant *C = (Constant*)*I;
+ unsigned idx = MCP.getConstantPoolIndex(C);
+ std::cerr << "Mapping constant 0x" << (intptr_t)C << " to " << idx << "\n";
+ ConstantMap[C] = idx;
}
+ MCE.emitConstantPool(&MCP);
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
emitBasicBlock(*I);
- MCE->finishFunction(MF);
+ MCE.finishFunction(MF);
std::cerr << "Finishing function " << MF.getFunction()->getName() << "\n";
ConstantMap.clear();
void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
currBB = MBB.getBasicBlock();
- BBLocations[currBB] = MCE->getCurrentPCValue();
+ BBLocations[currBB] = MCE.getCurrentPCValue();
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
- emitInstruction(**I);
-}
-
-void SparcV9CodeEmitter::emitInstruction(MachineInstr &MI) {
- emitConstant(getBinaryCodeForInstr(MI), 4);
+ emitWord(getBinaryCodeForInstr(**I));
}
void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI,
{
if (isPCRelative) { // must be a call, this is a major hack!
// Try looking up the function to see if it is already compiled!
- if (void *Addr = (void*)(intptr_t)MCE->getGlobalValueAddress(V)) {
- intptr_t CurByte = MCE->getCurrentPCValue();
+ if (void *Addr = (void*)(intptr_t)MCE.getGlobalValueAddress(V)) {
+ intptr_t CurByte = MCE.getCurrentPCValue();
// The real target of the call is Addr = PC + (target * 4)
// CurByte is the PC, Addr we just received
return (void*) (((long)Addr - (long)CurByte) >> 2);
} else {
if (Function *F = dyn_cast<Function>(V)) {
// Function has not yet been code generated!
- TheJITResolver->addFunctionReference(MCE->getCurrentPCValue(),
+ TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(),
cast<Function>(V));
// Delayed resolution...
return
} else if (Constant *C = ConstantPointerRef::get(V)) {
if (ConstantMap.find(C) != ConstantMap.end()) {
- return ConstantMap[C];
+ return (void*)
+ (intptr_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]);
} else {
std::cerr << "Constant: 0x" << std::hex << &*C << std::dec
<< ", " << *V << " not found in ConstantMap!\n";
abort();
}
-
-#if 0
- } else if (const GlobalVariable *G = dyn_cast<GlobalVariable>(V)) {
- if (G->isConstant()) {
- const Constant* C = G->getInitializer();
- if (ConstantMap.find(C) != ConstantMap.end()) {
- return ConstantMap[C];
- } else {
- std::cerr << "Constant: " << *G << " not found in ConstantMap!\n";
- abort();
- }
- } else {
- std::cerr << "Variable: " << *G << " address not found!\n";
- abort();
- }
-#endif
} else {
std::cerr << "Unhandled global: " << *V << "\n";
abort();
}
}
} else {
- return convertAddress((intptr_t)MCE->getGlobalValueAddress(V),
- isPCRelative);
+ return (void*)(intptr_t)MCE.getGlobalValueAddress(V);
}
}