+++ /dev/null
-//===- DependenceGraph.cpp - Dependence graph for a function ----*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements an explicit representation for the dependence graph
-// of a function, with one node per instruction and one edge per dependence.
-// Dependences include both data and control dependences.
-//
-// Each dep. graph node (class DepGraphNode) keeps lists of incoming and
-// outgoing dependence edges.
-//
-// Each dep. graph edge (class Dependence) keeps a pointer to one end-point
-// of the dependence. This saves space and is important because dep. graphs
-// can grow quickly. It works just fine because the standard idiom is to
-// start with a known node and enumerate the dependences to or from that node.
-//===----------------------------------------------------------------------===//
-
-
-#include "DependenceGraph.h"
-#include "llvm/Function.h"
-
-namespace llvm {
-
-//----------------------------------------------------------------------------
-// class Dependence:
-//
-// A representation of a simple (non-loop-related) dependence
-//----------------------------------------------------------------------------
-
-void Dependence::print(std::ostream &O) const
-{
- assert(depType != NoDependence && "This dependence should never be created!");
- switch (depType) {
- case TrueDependence: O << "TRUE dependence"; break;
- case AntiDependence: O << "ANTI dependence"; break;
- case OutputDependence: O << "OUTPUT dependence"; break;
- case ControlDependence: O << "CONTROL dependence"; break;
- default: assert(0 && "Invalid dependence type"); break;
- }
-}
-
-
-//----------------------------------------------------------------------------
-// class DepGraphNode
-//----------------------------------------------------------------------------
-
-void DepGraphNode::print(std::ostream &O) const
-{
- const_iterator DI = outDepBegin(), DE = outDepEnd();
-
- O << "\nDeps. from instr:" << getInstr();
-
- for ( ; DI != DE; ++DI)
- {
- O << "\t";
- DI->print(O);
- O << " to instruction:";
- O << DI->getSink()->getInstr();
- }
-}
-
-//----------------------------------------------------------------------------
-// class DependenceGraph
-//----------------------------------------------------------------------------
-
-DependenceGraph::~DependenceGraph()
-{
- // Free all DepGraphNode objects created for this graph
- for (map_iterator I = depNodeMap.begin(), E = depNodeMap.end(); I != E; ++I)
- delete I->second;
-}
-
-void DependenceGraph::print(const Function& func, std::ostream &O) const
-{
- O << "DEPENDENCE GRAPH FOR FUNCTION " << func.getName() << ":\n";
- for (Function::const_iterator BB=func.begin(), FE=func.end(); BB != FE; ++BB)
- for (BasicBlock::const_iterator II=BB->begin(), IE=BB->end(); II !=IE; ++II)
- if (const DepGraphNode* dgNode = this->getNode(*II))
- dgNode->print(O);
-}
-
-} // End llvm namespace
+++ /dev/null
-//===- DependenceGraph.h - Dependence graph for a function ------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file provides an explicit representation for the dependence graph
-// of a function, with one node per instruction and one edge per dependence.
-// Dependences include both data and control dependences.
-//
-// Each dep. graph node (class DepGraphNode) keeps lists of incoming and
-// outgoing dependence edges.
-//
-// Each dep. graph edge (class Dependence) keeps a pointer to one end-point
-// of the dependence. This saves space and is important because dep. graphs
-// can grow quickly. It works just fine because the standard idiom is to
-// start with a known node and enumerate the dependences to or from that node.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_ANALYSIS_DEPENDENCEGRAPH_H
-#define LLVM_ANALYSIS_DEPENDENCEGRAPH_H
-
-#include "llvm/ADT/hash_map"
-#include <cassert>
-#include <iosfwd>
-#include <utility>
-#include <vector>
-
-namespace llvm {
-
-class Instruction;
-class Function;
-class Dependence;
-class DepGraphNode;
-class DependenceGraph;
-
-//----------------------------------------------------------------------------
-/// enum DependenceType - The standard data dependence types
-///
-enum DependenceType {
- NoDependence = 0x0,
- TrueDependence = 0x1,
- AntiDependence = 0x2,
- OutputDependence = 0x4,
- ControlDependence = 0x8, // from a terminator to some other instr.
- IncomingFlag = 0x10 // is this an incoming or outgoing dep?
-};
-
-//----------------------------------------------------------------------------
-/// Dependence Class - A representation of a simple (non-loop-related)
-/// dependence.
-///
-class Dependence {
- DepGraphNode* toOrFromNode;
- unsigned char depType;
-
-public:
- Dependence(DepGraphNode* toOrFromN, DependenceType type, bool isIncoming)
- : toOrFromNode(toOrFromN),
- depType(type | (isIncoming? IncomingFlag : 0x0)) { }
-
- Dependence(const Dependence& D) : toOrFromNode(D.toOrFromNode),
- depType(D.depType) { }
-
- bool operator==(const Dependence& D) const {
- return toOrFromNode == D.toOrFromNode && depType == D.depType;
- }
-
- /// Get information about the type of dependence.
- ///
- unsigned getDepType() const {
- return depType;
- }
-
- /// Get source or sink depending on what type of node this is!
- ///
- DepGraphNode* getSrc() {
- assert(depType & IncomingFlag); return toOrFromNode;
- }
- const DepGraphNode* getSrc() const {
- assert(depType & IncomingFlag); return toOrFromNode;
- }
-
- DepGraphNode* getSink() {
- assert(! (depType & IncomingFlag)); return toOrFromNode;
- }
- const DepGraphNode* getSink() const {
- assert(! (depType & IncomingFlag)); return toOrFromNode;
- }
-
- /// Debugging support methods
- ///
- void print(std::ostream &O) const;
-
- // Default constructor: Do not use directly except for graph builder code
- //
- Dependence() : toOrFromNode(NULL), depType(NoDependence) { }
-};
-
-#ifdef SUPPORTING_LOOP_DEPENDENCES
-struct LoopDependence: public Dependence {
- DependenceDirection dir;
- int distance;
- short level;
- LoopInfo* enclosingLoop;
-};
-#endif
-
-
-//----------------------------------------------------------------------------
-/// DepGraphNode Class - A representation of a single node in a dependence
-/// graph, corresponding to a single instruction.
-///
-class DepGraphNode {
- Instruction* instr;
- std::vector<Dependence> inDeps;
- std::vector<Dependence> outDeps;
- friend class DependenceGraph;
-
- typedef std::vector<Dependence>:: iterator iterator;
- typedef std::vector<Dependence>::const_iterator const_iterator;
-
- iterator inDepBegin() { return inDeps.begin(); }
- const_iterator inDepBegin() const { return inDeps.begin(); }
- iterator inDepEnd() { return inDeps.end(); }
- const_iterator inDepEnd() const { return inDeps.end(); }
-
- iterator outDepBegin() { return outDeps.begin(); }
- const_iterator outDepBegin() const { return outDeps.begin(); }
- iterator outDepEnd() { return outDeps.end(); }
- const_iterator outDepEnd() const { return outDeps.end(); }
-
-public:
- DepGraphNode(Instruction& I) : instr(&I) { }
-
- Instruction& getInstr() { return *instr; }
- const Instruction& getInstr() const { return *instr; }
-
- /// Debugging support methods
- ///
- void print(std::ostream &O) const;
-};
-
-
-//----------------------------------------------------------------------------
-/// DependenceGraph Class - A representation of a dependence graph for a
-/// procedure. The primary query operation here is to look up a DepGraphNode for
-/// a particular instruction, and then use the in/out dependence iterators
-/// for the node.
-///
-class DependenceGraph {
- DependenceGraph(const DependenceGraph&); // DO NOT IMPLEMENT
- void operator=(const DependenceGraph&); // DO NOT IMPLEMENT
-
- typedef hash_map<Instruction*, DepGraphNode*> DepNodeMapType;
- typedef DepNodeMapType:: iterator map_iterator;
- typedef DepNodeMapType::const_iterator const_map_iterator;
-
- DepNodeMapType depNodeMap;
-
- inline DepGraphNode* getNodeInternal(Instruction& inst,
- bool createIfMissing = false) {
- map_iterator I = depNodeMap.find(&inst);
- if (I == depNodeMap.end())
- return (!createIfMissing)? NULL :
- depNodeMap.insert(
- std::make_pair(&inst, new DepGraphNode(inst))).first->second;
- else
- return I->second;
- }
-
-public:
- typedef std::vector<Dependence>:: iterator iterator;
- typedef std::vector<Dependence>::const_iterator const_iterator;
-
-public:
- DependenceGraph() { }
- ~DependenceGraph();
-
- /// Get the graph node for an instruction. There will be one if and
- /// only if there are any dependences incident on this instruction.
- /// If there is none, these methods will return NULL.
- ///
- DepGraphNode* getNode(Instruction& inst, bool createIfMissing = false) {
- return getNodeInternal(inst, createIfMissing);
- }
- const DepGraphNode* getNode(const Instruction& inst) const {
- return const_cast<DependenceGraph*>(this)
- ->getNodeInternal(const_cast<Instruction&>(inst));
- }
-
- iterator inDepBegin(DepGraphNode& T) {
- return T.inDeps.begin();
- }
- const_iterator inDepBegin (const DepGraphNode& T) const {
- return T.inDeps.begin();
- }
-
- iterator inDepEnd(DepGraphNode& T) {
- return T.inDeps.end();
- }
- const_iterator inDepEnd(const DepGraphNode& T) const {
- return T.inDeps.end();
- }
-
- iterator outDepBegin(DepGraphNode& F) {
- return F.outDeps.begin();
- }
- const_iterator outDepBegin(const DepGraphNode& F) const {
- return F.outDeps.begin();
- }
-
- iterator outDepEnd(DepGraphNode& F) {
- return F.outDeps.end();
- }
- const_iterator outDepEnd(const DepGraphNode& F) const {
- return F.outDeps.end();
- }
-
- /// Debugging support methods
- ///
- void print(const Function& func, std::ostream &O) const;
-
-public:
- /// AddSimpleDependence - adding and modifying the dependence graph.
- /// These should to be used only by dependence analysis implementations.
- ///
- void AddSimpleDependence(Instruction& fromI, Instruction& toI,
- DependenceType depType) {
- DepGraphNode* fromNode = getNodeInternal(fromI, /*create*/ true);
- DepGraphNode* toNode = getNodeInternal(toI, /*create*/ true);
- fromNode->outDeps.push_back(Dependence(toNode, depType, false));
- toNode-> inDeps. push_back(Dependence(fromNode, depType, true));
- }
-
-#ifdef SUPPORTING_LOOP_DEPENDENCES
- // This interface is a placeholder to show what information is needed.
- // It will probably change when it starts being used.
- void AddLoopDependence(Instruction& fromI,
- Instruction& toI,
- DependenceType depType,
- DependenceDirection dir,
- int distance,
- short level,
- LoopInfo* enclosingLoop);
-#endif // SUPPORTING_LOOP_DEPENDENCES
-};
-
-} // End llvm namespace
-
-#endif
+++ /dev/null
-//===- IPModRef.cpp - Compute IP Mod/Ref information ------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// See high-level comments in IPModRef.h
-//
-//===----------------------------------------------------------------------===//
-
-#include "IPModRef.h"
-#include "llvm/Analysis/DataStructure/DataStructure.h"
-#include "llvm/Analysis/DataStructure/DSGraph.h"
-#include "llvm/Module.h"
-#include "llvm/Instructions.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/StringExtras.h"
-#include <vector>
-
-namespace llvm {
-
-//----------------------------------------------------------------------------
-// Private constants and data
-//----------------------------------------------------------------------------
-
-static RegisterAnalysis<IPModRef>
-Z("ipmodref", "Interprocedural mod/ref analysis");
-
-
-//----------------------------------------------------------------------------
-// class ModRefInfo
-//----------------------------------------------------------------------------
-
-void ModRefInfo::print(std::ostream &O,
- const std::string& sprefix) const
-{
- O << sprefix << "Modified nodes = " << modNodeSet;
- O << sprefix << "Referenced nodes = " << refNodeSet;
-}
-
-void ModRefInfo::dump() const
-{
- print(std::cerr);
-}
-
-//----------------------------------------------------------------------------
-// class FunctionModRefInfo
-//----------------------------------------------------------------------------
-
-
-// This constructor computes a node numbering for the TD graph.
-//
-FunctionModRefInfo::FunctionModRefInfo(const Function& func,
- IPModRef& ipmro,
- DSGraph* tdgClone)
- : F(func), IPModRefObj(ipmro),
- funcTDGraph(tdgClone),
- funcModRefInfo(tdgClone->getGraphSize())
-{
- unsigned i = 0;
- for (DSGraph::node_iterator NI = funcTDGraph->node_begin(),
- E = funcTDGraph->node_end(); NI != E; ++NI)
- NodeIds[*NI] = i++;
-}
-
-
-FunctionModRefInfo::~FunctionModRefInfo()
-{
- for(std::map<const Instruction*, ModRefInfo*>::iterator
- I=callSiteModRefInfo.begin(), E=callSiteModRefInfo.end(); I != E; ++I)
- delete(I->second);
-
- // Empty map just to make problems easier to track down
- callSiteModRefInfo.clear();
-
- delete funcTDGraph;
-}
-
-unsigned FunctionModRefInfo::getNodeId(const Value* value) const {
- return getNodeId(funcTDGraph->getNodeForValue(const_cast<Value*>(value))
- .getNode());
-}
-
-
-
-// Compute Mod/Ref bit vectors for the entire function.
-// These are simply copies of the Read/Write flags from the nodes of
-// the top-down DS graph.
-//
-void FunctionModRefInfo::computeModRef(const Function &func)
-{
- // Mark all nodes in the graph that are marked MOD as being mod
- // and all those marked REF as being ref.
- unsigned i = 0;
- for (DSGraph::node_iterator NI = funcTDGraph->node_begin(),
- E = funcTDGraph->node_end(); NI != E; ++NI, ++i) {
- if ((*NI)->isModified()) funcModRefInfo.setNodeIsMod(i);
- if ((*NI)->isRead()) funcModRefInfo.setNodeIsRef(i);
- }
-
- // Compute the Mod/Ref info for all call sites within the function.
- // The call sites are recorded in the TD graph.
- const std::vector<DSCallSite>& callSites = funcTDGraph->getFunctionCalls();
- for (unsigned i = 0, N = callSites.size(); i < N; ++i)
- computeModRef(callSites[i].getCallSite());
-}
-
-
-// ResolveCallSiteModRefInfo - This method performs the following actions:
-//
-// 1. It clones the top-down graph for the current function
-// 2. It clears all of the mod/ref bits in the cloned graph
-// 3. It then merges the bottom-up graph(s) for the specified call-site into
-// the clone (bringing new mod/ref bits).
-// 4. It returns the clone, and a mapping of nodes from the original TDGraph to
-// the cloned graph with Mod/Ref info for the callsite.
-//
-// NOTE: Because this clones a dsgraph and returns it, the caller is responsible
-// for deleting the returned graph!
-// NOTE: This method may return a null pointer if it is unable to determine the
-// requested information (because the call site calls an external
-// function or we cannot determine the complete set of functions invoked).
-//
-DSGraph* FunctionModRefInfo::ResolveCallSiteModRefInfo(CallSite CS,
- hash_map<const DSNode*, DSNodeHandle> &NodeMap)
-{
- // Step #0: Quick check if we are going to fail anyway: avoid
- // all the graph cloning and map copying in steps #1 and #2.
- //
- if (const Function *F = CS.getCalledFunction()) {
- if (F->isExternal())
- return 0; // We cannot compute Mod/Ref info for this callsite...
- } else {
- // Eventually, should check here if any callee is external.
- // For now we are not handling this case anyway.
- std::cerr << "IP Mod/Ref indirect call not implemented yet: "
- << "Being conservative\n";
- return 0; // We cannot compute Mod/Ref info for this callsite...
- }
-
- // Step #1: Clone the top-down graph...
- DSGraph *Result = new DSGraph(*funcTDGraph, NodeMap);
-
- // Step #2: Clear Mod/Ref information...
- Result->maskNodeTypes(~(DSNode::Modified | DSNode::Read));
-
- // Step #3: clone the bottom up graphs for the callees into the caller graph
- if (Function *F = CS.getCalledFunction())
- {
- assert(!F->isExternal());
-
- // Build up a DSCallSite for our invocation point here...
-
- // If the call returns a value, make sure to merge the nodes...
- DSNodeHandle RetVal;
- if (DS::isPointerType(CS.getInstruction()->getType()))
- RetVal = Result->getNodeForValue(CS.getInstruction());
-
- // Populate the arguments list...
- std::vector<DSNodeHandle> Args;
- for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
- I != E; ++I)
- if (DS::isPointerType((*I)->getType()))
- Args.push_back(Result->getNodeForValue(*I));
-
- // Build the call site...
- DSCallSite NCS(CS, RetVal, F, Args);
-
- // Perform the merging now of the graph for the callee, which will
- // come with mod/ref bits set...
- Result->mergeInGraph(NCS, *F, IPModRefObj.getBUDSGraph(*F),
- DSGraph::StripAllocaBit
- | DSGraph::DontCloneCallNodes
- | DSGraph::DontCloneAuxCallNodes);
- }
- else
- assert(0 && "See error message");
-
- // Remove dead nodes aggressively to match the caller's original graph.
- Result->removeDeadNodes(DSGraph::KeepUnreachableGlobals);
-
- // Step #4: Return the clone + the mapping (by ref)
- return Result;
-}
-
-// Compute Mod/Ref bit vectors for a single call site.
-// These are copies of the Read/Write flags from the nodes of
-// the graph produced by clearing all flags in the caller's TD graph
-// and then inlining the callee's BU graph into the caller's TD graph.
-//
-void
-FunctionModRefInfo::computeModRef(CallSite CS)
-{
- // Allocate the mod/ref info for the call site. Bits automatically cleared.
- ModRefInfo* callModRefInfo = new ModRefInfo(funcTDGraph->getGraphSize());
- callSiteModRefInfo[CS.getInstruction()] = callModRefInfo;
-
- // Get a copy of the graph for the callee with the callee inlined
- hash_map<const DSNode*, DSNodeHandle> NodeMap;
- DSGraph* csgp = ResolveCallSiteModRefInfo(CS, NodeMap);
- if (!csgp)
- { // Callee's side effects are unknown: mark all nodes Mod and Ref.
- // Eventually this should only mark nodes visible to the callee, i.e.,
- // exclude stack variables not reachable from any outgoing argument
- // or any global.
- callModRefInfo->getModSet().set();
- callModRefInfo->getRefSet().set();
- return;
- }
-
- // For all nodes in the graph, extract the mod/ref information
- for (DSGraph::node_iterator NI = funcTDGraph->node_begin(),
- E = funcTDGraph->node_end(); NI != E; ++NI) {
- DSNode* csgNode = NodeMap[*NI].getNode();
- assert(csgNode && "Inlined and original graphs do not correspond!");
- if (csgNode->isModified())
- callModRefInfo->setNodeIsMod(getNodeId(*NI));
- if (csgNode->isRead())
- callModRefInfo->setNodeIsRef(getNodeId(*NI));
- }
-
- // Drop nodemap before we delete the graph...
- NodeMap.clear();
- delete csgp;
-}
-
-
-class DSGraphPrintHelper {
- const DSGraph& tdGraph;
- std::vector<std::vector<const Value*> > knownValues; // identifiable objects
-
-public:
- /*ctor*/ DSGraphPrintHelper(const FunctionModRefInfo& fmrInfo)
- : tdGraph(fmrInfo.getFuncGraph())
- {
- knownValues.resize(tdGraph.getGraphSize());
-
- // For every identifiable value, save Value pointer in knownValues[i]
- for (hash_map<Value*, DSNodeHandle>::const_iterator
- I = tdGraph.getScalarMap().begin(),
- E = tdGraph.getScalarMap().end(); I != E; ++I)
- if (isa<GlobalValue>(I->first) ||
- isa<Argument>(I->first) ||
- isa<LoadInst>(I->first) ||
- isa<AllocaInst>(I->first) ||
- isa<MallocInst>(I->first))
- {
- unsigned nodeId = fmrInfo.getNodeId(I->second.getNode());
- knownValues[nodeId].push_back(I->first);
- }
- }
-
- void printValuesInBitVec(std::ostream &O, const BitSetVector& bv) const
- {
- assert(bv.size() == knownValues.size());
-
- if (bv.none())
- { // No bits are set: just say so and return
- O << "\tNONE.\n";
- return;
- }
-
- if (bv.all())
- { // All bits are set: just say so and return
- O << "\tALL GRAPH NODES.\n";
- return;
- }
-
- for (unsigned i=0, N=bv.size(); i < N; ++i)
- if (bv.test(i))
- {
- O << "\tNode# " << i << " : ";
- if (! knownValues[i].empty())
- for (unsigned j=0, NV=knownValues[i].size(); j < NV; j++)
- {
- const Value* V = knownValues[i][j];
-
- if (isa<GlobalValue>(V)) O << "(Global) ";
- else if (isa<Argument>(V)) O << "(Target of FormalParm) ";
- else if (isa<LoadInst>(V)) O << "(Target of LoadInst ) ";
- else if (isa<AllocaInst>(V)) O << "(Target of AllocaInst) ";
- else if (isa<MallocInst>(V)) O << "(Target of MallocInst) ";
-
- if (V->hasName()) O << V->getName();
- else if (isa<Instruction>(V)) O << *V;
- else O << "(Value*) 0x" << (void*) V;
-
- O << std::string((j < NV-1)? "; " : "\n");
- }
-#if 0
- else
- tdGraph.getNodes()[i]->print(O, /*graph*/ NULL);
-#endif
- }
- }
-};
-
-
-// Print the results of the pass.
-// Currently this just prints bit-vectors and is not very readable.
-//
-void FunctionModRefInfo::print(std::ostream &O) const
-{
- DSGraphPrintHelper DPH(*this);
-
- O << "========== Mod/ref information for function "
- << F.getName() << "========== \n\n";
-
- // First: Print Globals and Locals modified anywhere in the function.
- //
- O << " -----Mod/Ref in the body of function " << F.getName()<< ":\n";
-
- O << " --Objects modified in the function body:\n";
- DPH.printValuesInBitVec(O, funcModRefInfo.getModSet());
-
- O << " --Objects referenced in the function body:\n";
- DPH.printValuesInBitVec(O, funcModRefInfo.getRefSet());
-
- O << " --Mod and Ref vectors for the nodes listed above:\n";
- funcModRefInfo.print(O, "\t");
-
- O << "\n";
-
- // Second: Print Globals and Locals modified at each call site in function
- //
- for (std::map<const Instruction *, ModRefInfo*>::const_iterator
- CI = callSiteModRefInfo.begin(), CE = callSiteModRefInfo.end();
- CI != CE; ++CI)
- {
- O << " ----Mod/Ref information for call site\n" << *CI->first;
-
- O << " --Objects modified at call site:\n";
- DPH.printValuesInBitVec(O, CI->second->getModSet());
-
- O << " --Objects referenced at call site:\n";
- DPH.printValuesInBitVec(O, CI->second->getRefSet());
-
- O << " --Mod and Ref vectors for the nodes listed above:\n";
- CI->second->print(O, "\t");
-
- O << "\n";
- }
-
- O << "\n";
-}
-
-void FunctionModRefInfo::dump() const
-{
- print(std::cerr);
-}
-
-
-//----------------------------------------------------------------------------
-// class IPModRef: An interprocedural pass that computes IP Mod/Ref info.
-//----------------------------------------------------------------------------
-
-// Free the FunctionModRefInfo objects cached in funcToModRefInfoMap.
-//
-void IPModRef::releaseMemory()
-{
- for(std::map<const Function*, FunctionModRefInfo*>::iterator
- I=funcToModRefInfoMap.begin(), E=funcToModRefInfoMap.end(); I != E; ++I)
- delete(I->second);
-
- // Clear map so memory is not re-released if we are called again
- funcToModRefInfoMap.clear();
-}
-
-// Run the "interprocedural" pass on each function. This needs to do
-// NO real interprocedural work because all that has been done the
-// data structure analysis.
-//
-bool IPModRef::runOnModule(Module &theModule)
-{
- M = &theModule;
-
- for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
- if (! FI->isExternal())
- getFuncInfo(*FI, /*computeIfMissing*/ true);
- return true;
-}
-
-
-FunctionModRefInfo& IPModRef::getFuncInfo(const Function& func,
- bool computeIfMissing)
-{
- FunctionModRefInfo*& funcInfo = funcToModRefInfoMap[&func];
- assert (funcInfo != NULL || computeIfMissing);
- if (funcInfo == NULL)
- { // Create a new FunctionModRefInfo object.
- // Clone the top-down graph and remove any dead nodes first, because
- // otherwise original and merged graphs will not match.
- // The memory for this graph clone will be freed by FunctionModRefInfo.
- DSGraph* funcTDGraph =
- new DSGraph(getAnalysis<TDDataStructures>().getDSGraph(func));
- funcTDGraph->removeDeadNodes(DSGraph::KeepUnreachableGlobals);
-
- funcInfo = new FunctionModRefInfo(func, *this, funcTDGraph); //auto-insert
- funcInfo->computeModRef(func); // computes the mod/ref info
- }
- return *funcInfo;
-}
-
-/// getBUDSGraph - This method returns the BU data structure graph for F through
-/// the use of the BUDataStructures object.
-///
-const DSGraph &IPModRef::getBUDSGraph(const Function &F) {
- return getAnalysis<BUDataStructures>().getDSGraph(F);
-}
-
-
-// getAnalysisUsage - This pass requires top-down data structure graphs.
-// It modifies nothing.
-//
-void IPModRef::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<LocalDataStructures>();
- AU.addRequired<BUDataStructures>();
- AU.addRequired<TDDataStructures>();
-}
-
-
-void IPModRef::print(std::ostream &O, const Module*) const
-{
- O << "\nRESULTS OF INTERPROCEDURAL MOD/REF ANALYSIS:\n\n";
-
- for (std::map<const Function*, FunctionModRefInfo*>::const_iterator
- mapI = funcToModRefInfoMap.begin(), mapE = funcToModRefInfoMap.end();
- mapI != mapE; ++mapI)
- mapI->second->print(O);
-
- O << "\n";
-}
-
-
-void IPModRef::dump() const
-{
- print(std::cerr);
-}
-
-} // End llvm namespace
+++ /dev/null
-//===- IPModRef.h - Compute IP Mod/Ref information --------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// class IPModRef:
-//
-// class IPModRef is an interprocedural analysis pass that computes
-// flow-insensitive IP Mod and Ref information for every function
-// (the GMOD and GREF problems) and for every call site (MOD and REF).
-//
-// In practice, this needs to do NO real interprocedural work because
-// all that is needed is done by the data structure analysis.
-// This uses the top-down DS graph for a function and the bottom-up DS graph
-// for each callee (including the Mod/Ref flags in the bottom-up graph)
-// to compute the set of nodes that are Mod and Ref for the function and
-// for each of its call sites.
-//
-//
-// class FunctionModRefInfo:
-//
-// The results of IPModRef are encapsulated in the class FunctionModRefInfo.
-// The results are stored as bit vectors: bit i represents node i
-// in the TD DSGraph for the current function. (This node numbering is
-// implemented by class FunctionModRefInfo.) Each FunctionModRefInfo
-// includes:
-// -- 2 bit vectors for the function (GMOD and GREF), and
-// -- 2 bit vectors for each call site (MOD and REF).
-//
-//
-// IPModRef vs. Alias Analysis for Clients:
-//
-// The IPModRef pass does not provide simpler query interfaces for specific
-// LLVM values, instructions, or pointers because those results should be
-// obtained through alias analysis (e.g., class DSAliasAnalysis).
-// class IPModRef is primarily meant for other analysis passes that need to
-// use Mod/Ref information efficiently for more complicated purposes;
-// the bit-vector representations make propagation very efficient.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_ANALYSIS_IPMODREF_H
-#define LLVM_ANALYSIS_IPMODREF_H
-
-#include "llvm/Pass.h"
-#include "llvm/ADT/BitSetVector.h"
-#include "llvm/ADT/hash_map"
-
-namespace llvm {
-
-class Module;
-class Function;
-class CallSite;
-class Instruction;
-class CallInst;
-class InvokeInst;
-class DSNode;
-class DSGraph;
-class DSNodeHandle;
-class ModRefInfo; // Result of IP Mod/Ref for one entity
-class FunctionModRefInfo; // ModRefInfo for a func and all calls in it
-class IPModRef; // Pass that computes IP Mod/Ref info
-
-//----------------------------------------------------------------------------
-/// ModRefInfo Class - Representation of Mod/Ref information for a single
-/// function or callsite. This is represented as a pair of bit vectors, one each
-/// for Mod and Ref. Each bit vector is indexed by the node id of the DS graph
-/// node index.
-///
-class ModRefInfo {
- BitSetVector modNodeSet; // set of modified nodes
- BitSetVector refNodeSet; // set of referenced nodes
-
-public:
- // Methods to construct ModRefInfo objects.
- ModRefInfo(unsigned int numNodes)
- : modNodeSet(numNodes),
- refNodeSet(numNodes) { }
-
- unsigned getSize() const {
- assert(modNodeSet.size() == refNodeSet.size() &&
- "Mod & Ref different size?");
- return modNodeSet.size();
- }
-
- void setNodeIsMod (unsigned nodeId) { modNodeSet[nodeId] = true; }
- void setNodeIsRef (unsigned nodeId) { refNodeSet[nodeId] = true; }
-
- // Methods to query the mod/ref info
- bool nodeIsMod (unsigned nodeId) const { return modNodeSet.test(nodeId); }
- bool nodeIsRef (unsigned nodeId) const { return refNodeSet.test(nodeId); }
- bool nodeIsKill(unsigned nodeId) const { return false; }
-
- const BitSetVector& getModSet() const { return modNodeSet; }
- BitSetVector& getModSet() { return modNodeSet; }
-
- const BitSetVector& getRefSet() const { return refNodeSet; }
- BitSetVector& getRefSet() { return refNodeSet; }
-
- // Debugging support methods
- void print(std::ostream &O, const std::string& prefix=std::string("")) const;
- void dump() const;
-};
-
-
-//----------------------------------------------------------------------------
-/// FunctionModRefInfo Class - Representation of the results of IP Mod/Ref
-/// analysis for a function and for each of the call sites within the function.
-/// Each of these are represented as bit vectors of size = the number of nodes
-/// in the top-dwon DS graph of the function. Nodes are identified by their
-/// nodeId, in the range [0 .. funcTDGraph.size()-1].
-///
-class FunctionModRefInfo {
- const Function& F; // The function
- IPModRef& IPModRefObj; // The IPModRef Object owning this
- DSGraph* funcTDGraph; // Top-down DS graph for function
- ModRefInfo funcModRefInfo; // ModRefInfo for the function body
- std::map<const Instruction*, ModRefInfo*>
- callSiteModRefInfo; // ModRefInfo for each callsite
- std::map<const DSNode*, unsigned> NodeIds;
-
- friend class IPModRef;
-
- void computeModRef(const Function &func);
- void computeModRef(CallSite call);
- DSGraph*
- ResolveCallSiteModRefInfo(CallSite CS,
- hash_map<const DSNode*, DSNodeHandle> &NodeMap);
-
-public:
- FunctionModRefInfo(const Function& func, IPModRef &IPModRefObj,
- DSGraph* tdgClone);
- ~FunctionModRefInfo();
-
- // Identify the function and its relevant DS graph
- //
- const Function& getFunction() const { return F; }
- const DSGraph& getFuncGraph() const { return *funcTDGraph; }
-
- // Retrieve Mod/Ref results for a single call site and for the function body
- //
- const ModRefInfo* getModRefInfo(const Function& func) const {
- return &funcModRefInfo;
- }
- const ModRefInfo* getModRefInfo(const CallInst& callInst) const {
- std::map<const Instruction*, ModRefInfo*>::const_iterator I =
- callSiteModRefInfo.find((Instruction*)&callInst);
- return (I == callSiteModRefInfo.end()) ? NULL : I->second;
- }
- const ModRefInfo* getModRefInfo(const InvokeInst& II) const {
- std::map<const Instruction*, ModRefInfo*>::const_iterator I =
- callSiteModRefInfo.find((Instruction*)&II);
- return (I == callSiteModRefInfo.end()) ? NULL : I->second;
- }
-
- // Get the nodeIds used to index all Mod/Ref information for current function
- //
- unsigned getNodeId(const DSNode* node) const {
- std::map<const DSNode*, unsigned>::const_iterator iter = NodeIds.find(node);
- assert(iter != NodeIds.end() && iter->second < funcModRefInfo.getSize());
- return iter->second;
- }
-
- unsigned getNodeId(const Value* value) const;
-
- // Debugging support methods
- void print(std::ostream &O) const;
- void dump() const;
-};
-
-
-//----------------------------------------------------------------------------
-/// IPModRef Class - An interprocedural pass that computes IP Mod/Ref info for
-/// functions and for individual call sites.
-///
-/// Given the DSGraph of a function, this class can be queried for
-/// a ModRefInfo object describing all the nodes in the DSGraph that are
-/// (a) modified, and (b) referenced during an execution of the function
-/// from an arbitrary callsite, or during an execution of a single call-site
-/// within the function.
-///
-class IPModRef : public ModulePass {
- std::map<const Function*, FunctionModRefInfo*> funcToModRefInfoMap;
- Module* M;
-
- FunctionModRefInfo& getFuncInfo(const Function& func,
- bool computeIfMissing = false);
-public:
- IPModRef() : M(NULL) {}
- ~IPModRef() {}
-
- /// run - Driver function to run IP Mod/Ref on a Module.
- /// This initializes the module reference, and then computes IPModRef
- /// results immediately if demand-driven analysis was *not* specified.
- ///
- virtual bool runOnModule(Module &M);
-
- /// getFunctionModRefInfo - Retrieve the Mod/Ref information for a single
- /// function
- ///
- const FunctionModRefInfo& getFunctionModRefInfo(const Function& func) {
- return getFuncInfo(func);
- }
-
- /// getBUDSGraph - This method returns the BU data structure graph for F
- /// through the use of the BUDataStructures object.
- ///
- const DSGraph &getBUDSGraph(const Function &F);
-
- // Debugging support methods
- //
- void print(std::ostream &O, const Module* = 0) const;
- void dump() const;
-
- /// releaseMemory - Release memory held by this pass when the pass pipeline is
- /// done
- ///
- virtual void releaseMemory();
-
- /// getAnalysisUsage - This pass requires top-down data structure graphs.
- /// It modifies nothing.
- ///
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
-};
-
-} // End llvm namespace
-
-#endif
+++ /dev/null
-//===- MemoryDepAnalysis.cpp - Compute dep graph for memory ops -----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements a pass (MemoryDepAnalysis) that computes memory-based
-// data dependences between instructions for each function in a module.
-// Memory-based dependences occur due to load and store operations, but
-// also the side-effects of call instructions.
-//
-// The result of this pass is a DependenceGraph for each function
-// representing the memory-based data dependences between instructions.
-//
-//===----------------------------------------------------------------------===//
-
-#include "MemoryDepAnalysis.h"
-#include "IPModRef.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/Analysis/DataStructure/DataStructure.h"
-#include "llvm/Analysis/DataStructure/DSGraph.h"
-#include "llvm/Support/InstVisitor.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/ADT/SCCIterator.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/hash_map"
-#include "llvm/ADT/hash_set"
-
-namespace llvm {
-
-///--------------------------------------------------------------------------
-/// struct ModRefTable:
-///
-/// A data structure that tracks ModRefInfo for instructions:
-/// -- modRefMap is a map of Instruction* -> ModRefInfo for the instr.
-/// -- definers is a vector of instructions that define any node
-/// -- users is a vector of instructions that reference any node
-/// -- numUsersBeforeDef is a vector indicating that the number of users
-/// seen before definers[i] is numUsersBeforeDef[i].
-///
-/// numUsersBeforeDef[] effectively tells us the exact interleaving of
-/// definers and users within the ModRefTable.
-/// This is only maintained when constructing the table for one SCC, and
-/// not copied over from one table to another since it is no longer useful.
-///--------------------------------------------------------------------------
-
-class ModRefTable {
-public:
- typedef hash_map<Instruction*, ModRefInfo> ModRefMap;
- typedef ModRefMap::const_iterator const_map_iterator;
- typedef ModRefMap:: iterator map_iterator;
- typedef std::vector<Instruction*>::const_iterator const_ref_iterator;
- typedef std::vector<Instruction*>:: iterator ref_iterator;
-
- ModRefMap modRefMap;
- std::vector<Instruction*> definers;
- std::vector<Instruction*> users;
- std::vector<unsigned> numUsersBeforeDef;
-
- // Iterators to enumerate all the defining instructions
- const_ref_iterator defsBegin() const { return definers.begin(); }
- ref_iterator defsBegin() { return definers.begin(); }
- const_ref_iterator defsEnd() const { return definers.end(); }
- ref_iterator defsEnd() { return definers.end(); }
-
- // Iterators to enumerate all the user instructions
- const_ref_iterator usersBegin() const { return users.begin(); }
- ref_iterator usersBegin() { return users.begin(); }
- const_ref_iterator usersEnd() const { return users.end(); }
- ref_iterator usersEnd() { return users.end(); }
-
- // Iterator identifying the last user that was seen *before* a
- // specified def. In particular, all users in the half-closed range
- // [ usersBegin(), usersBeforeDef_End(defPtr) )
- // were seen *before* the specified def. All users in the half-closed range
- // [ usersBeforeDef_End(defPtr), usersEnd() )
- // were seen *after* the specified def.
- //
- ref_iterator usersBeforeDef_End(const_ref_iterator defPtr) {
- unsigned defIndex = (unsigned) (defPtr - defsBegin());
- assert(defIndex < numUsersBeforeDef.size());
- assert(usersBegin() + numUsersBeforeDef[defIndex] <= usersEnd());
- return usersBegin() + numUsersBeforeDef[defIndex];
- }
- const_ref_iterator usersBeforeDef_End(const_ref_iterator defPtr) const {
- return const_cast<ModRefTable*>(this)->usersBeforeDef_End(defPtr);
- }
-
- //
- // Modifier methods
- //
- void AddDef(Instruction* D) {
- definers.push_back(D);
- numUsersBeforeDef.push_back(users.size());
- }
- void AddUse(Instruction* U) {
- users.push_back(U);
- }
- void Insert(const ModRefTable& fromTable) {
- modRefMap.insert(fromTable.modRefMap.begin(), fromTable.modRefMap.end());
- definers.insert(definers.end(),
- fromTable.definers.begin(), fromTable.definers.end());
- users.insert(users.end(),
- fromTable.users.begin(), fromTable.users.end());
- numUsersBeforeDef.clear(); /* fromTable.numUsersBeforeDef is ignored */
- }
-};
-
-
-///--------------------------------------------------------------------------
-/// class ModRefInfoBuilder:
-///
-/// A simple InstVisitor<> class that retrieves the Mod/Ref info for
-/// Load/Store/Call instructions and inserts this information in
-/// a ModRefTable. It also records all instructions that Mod any node
-/// and all that use any node.
-///--------------------------------------------------------------------------
-
-class ModRefInfoBuilder : public InstVisitor<ModRefInfoBuilder> {
- const DSGraph& funcGraph;
- const FunctionModRefInfo& funcModRef;
- class ModRefTable& modRefTable;
-
- ModRefInfoBuilder(); // DO NOT IMPLEMENT
- ModRefInfoBuilder(const ModRefInfoBuilder&); // DO NOT IMPLEMENT
- void operator=(const ModRefInfoBuilder&); // DO NOT IMPLEMENT
-
-public:
- ModRefInfoBuilder(const DSGraph& _funcGraph,
- const FunctionModRefInfo& _funcModRef,
- ModRefTable& _modRefTable)
- : funcGraph(_funcGraph), funcModRef(_funcModRef), modRefTable(_modRefTable)
- {
- }
-
- // At a call instruction, retrieve the ModRefInfo using IPModRef results.
- // Add the call to the defs list if it modifies any nodes and to the uses
- // list if it refs any nodes.
- //
- void visitCallInst(CallInst& callInst) {
- ModRefInfo safeModRef(funcGraph.getGraphSize());
- const ModRefInfo* callModRef = funcModRef.getModRefInfo(callInst);
- if (callModRef == NULL) {
- // call to external/unknown function: mark all nodes as Mod and Ref
- safeModRef.getModSet().set();
- safeModRef.getRefSet().set();
- callModRef = &safeModRef;
- }
-
- modRefTable.modRefMap.insert(std::make_pair(&callInst,
- ModRefInfo(*callModRef)));
- if (callModRef->getModSet().any())
- modRefTable.AddDef(&callInst);
- if (callModRef->getRefSet().any())
- modRefTable.AddUse(&callInst);
- }
-
- // At a store instruction, add to the mod set the single node pointed to
- // by the pointer argument of the store. Interestingly, if there is no
- // such node, that would be a null pointer reference!
- void visitStoreInst(StoreInst& storeInst) {
- const DSNodeHandle& ptrNode =
- funcGraph.getNodeForValue(storeInst.getPointerOperand());
- if (const DSNode* target = ptrNode.getNode()) {
- unsigned nodeId = funcModRef.getNodeId(target);
- ModRefInfo& minfo =
- modRefTable.modRefMap.insert(
- std::make_pair(&storeInst,
- ModRefInfo(funcGraph.getGraphSize()))).first->second;
- minfo.setNodeIsMod(nodeId);
- modRefTable.AddDef(&storeInst);
- } else
- std::cerr << "Warning: Uninitialized pointer reference!\n";
- }
-
- // At a load instruction, add to the ref set the single node pointed to
- // by the pointer argument of the load. Interestingly, if there is no
- // such node, that would be a null pointer reference!
- void visitLoadInst(LoadInst& loadInst) {
- const DSNodeHandle& ptrNode =
- funcGraph.getNodeForValue(loadInst.getPointerOperand());
- if (const DSNode* target = ptrNode.getNode()) {
- unsigned nodeId = funcModRef.getNodeId(target);
- ModRefInfo& minfo =
- modRefTable.modRefMap.insert(
- std::make_pair(&loadInst,
- ModRefInfo(funcGraph.getGraphSize()))).first->second;
- minfo.setNodeIsRef(nodeId);
- modRefTable.AddUse(&loadInst);
- } else
- std::cerr << "Warning: Uninitialized pointer reference!\n";
- }
-};
-
-
-//----------------------------------------------------------------------------
-// class MemoryDepAnalysis: A dep. graph for load/store/call instructions
-//----------------------------------------------------------------------------
-
-
-/// getAnalysisUsage - This does not modify anything. It uses the Top-Down DS
-/// Graph and IPModRef.
-///
-void MemoryDepAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<TDDataStructures>();
- AU.addRequired<IPModRef>();
-}
-
-
-/// Basic dependence gathering algorithm, using scc_iterator on CFG:
-///
-/// for every SCC S in the CFG in PostOrder on the SCC DAG
-/// {
-/// for every basic block BB in S in *postorder*
-/// for every instruction I in BB in reverse
-/// Add (I, ModRef[I]) to ModRefCurrent
-/// if (Mod[I] != NULL)
-/// Add I to DefSetCurrent: { I \in S : Mod[I] != NULL }
-/// if (Ref[I] != NULL)
-/// Add I to UseSetCurrent: { I : Ref[I] != NULL }
-///
-/// for every def D in DefSetCurrent
-///
-/// // NOTE: D comes after itself iff S contains a loop
-/// if (HasLoop(S) && D & D)
-/// Add output-dep: D -> D2
-///
-/// for every def D2 *after* D in DefSetCurrent
-/// // NOTE: D2 comes before D in execution order
-/// if (D & D2)
-/// Add output-dep: D2 -> D
-/// if (HasLoop(S))
-/// Add output-dep: D -> D2
-///
-/// for every use U in UseSetCurrent that was seen *before* D
-/// // NOTE: U comes after D in execution order
-/// if (U & D)
-/// if (U != D || HasLoop(S))
-/// Add true-dep: D -> U
-/// if (HasLoop(S))
-/// Add anti-dep: U -> D
-///
-/// for every use U in UseSetCurrent that was seen *after* D
-/// // NOTE: U comes before D in execution order
-/// if (U & D)
-/// if (U != D || HasLoop(S))
-/// Add anti-dep: U -> D
-/// if (HasLoop(S))
-/// Add true-dep: D -> U
-///
-/// for every def Dnext in DefSetAfter
-/// // NOTE: Dnext comes after D in execution order
-/// if (Dnext & D)
-/// Add output-dep: D -> Dnext
-///
-/// for every use Unext in UseSetAfter
-/// // NOTE: Unext comes after D in execution order
-/// if (Unext & D)
-/// Add true-dep: D -> Unext
-///
-/// for every use U in UseSetCurrent
-/// for every def Dnext in DefSetAfter
-/// // NOTE: Dnext comes after U in execution order
-/// if (Dnext & D)
-/// Add anti-dep: U -> Dnext
-///
-/// Add ModRefCurrent to ModRefAfter: { (I, ModRef[I] ) }
-/// Add DefSetCurrent to DefSetAfter: { I : Mod[I] != NULL }
-/// Add UseSetCurrent to UseSetAfter: { I : Ref[I] != NULL }
-/// }
-///
-///
-void MemoryDepAnalysis::ProcessSCC(std::vector<BasicBlock*> &S,
- ModRefTable& ModRefAfter, bool hasLoop) {
- ModRefTable ModRefCurrent;
- ModRefTable::ModRefMap& mapCurrent = ModRefCurrent.modRefMap;
- ModRefTable::ModRefMap& mapAfter = ModRefAfter.modRefMap;
-
- // Builder class fills out a ModRefTable one instruction at a time.
- // To use it, we just invoke it's visit function for each basic block:
- //
- // for each basic block BB in the SCC in *postorder*
- // for each instruction I in BB in *reverse*
- // ModRefInfoBuilder::visit(I)
- // : Add (I, ModRef[I]) to ModRefCurrent.modRefMap
- // : Add I to ModRefCurrent.definers if it defines any node
- // : Add I to ModRefCurrent.users if it uses any node
- //
- ModRefInfoBuilder builder(*funcGraph, *funcModRef, ModRefCurrent);
- for (std::vector<BasicBlock*>::iterator BI = S.begin(), BE = S.end();
- BI != BE; ++BI)
- // Note: BBs in the SCC<> created by scc_iterator are in postorder.
- for (BasicBlock::reverse_iterator II=(*BI)->rbegin(), IE=(*BI)->rend();
- II != IE; ++II)
- builder.visit(*II);
-
- /// for every def D in DefSetCurrent
- ///
- for (ModRefTable::ref_iterator II=ModRefCurrent.defsBegin(),
- IE=ModRefCurrent.defsEnd(); II != IE; ++II)
- {
- /// // NOTE: D comes after itself iff S contains a loop
- /// if (HasLoop(S))
- /// Add output-dep: D -> D2
- if (hasLoop)
- funcDepGraph->AddSimpleDependence(**II, **II, OutputDependence);
-
- /// for every def D2 *after* D in DefSetCurrent
- /// // NOTE: D2 comes before D in execution order
- /// if (D2 & D)
- /// Add output-dep: D2 -> D
- /// if (HasLoop(S))
- /// Add output-dep: D -> D2
- for (ModRefTable::ref_iterator JI=II+1; JI != IE; ++JI)
- if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
- mapCurrent.find(*JI)->second.getModSet()))
- {
- funcDepGraph->AddSimpleDependence(**JI, **II, OutputDependence);
- if (hasLoop)
- funcDepGraph->AddSimpleDependence(**II, **JI, OutputDependence);
- }
-
- /// for every use U in UseSetCurrent that was seen *before* D
- /// // NOTE: U comes after D in execution order
- /// if (U & D)
- /// if (U != D || HasLoop(S))
- /// Add true-dep: U -> D
- /// if (HasLoop(S))
- /// Add anti-dep: D -> U
- {
- ModRefTable::ref_iterator JI=ModRefCurrent.usersBegin();
- ModRefTable::ref_iterator JE = ModRefCurrent.usersBeforeDef_End(II);
- for ( ; JI != JE; ++JI)
- if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
- mapCurrent.find(*JI)->second.getRefSet()))
- {
- if (*II != *JI || hasLoop)
- funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence);
- if (hasLoop)
- funcDepGraph->AddSimpleDependence(**JI, **II, AntiDependence);
- }
-
- /// for every use U in UseSetCurrent that was seen *after* D
- /// // NOTE: U comes before D in execution order
- /// if (U & D)
- /// if (U != D || HasLoop(S))
- /// Add anti-dep: U -> D
- /// if (HasLoop(S))
- /// Add true-dep: D -> U
- for (/*continue JI*/ JE = ModRefCurrent.usersEnd(); JI != JE; ++JI)
- if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
- mapCurrent.find(*JI)->second.getRefSet()))
- {
- if (*II != *JI || hasLoop)
- funcDepGraph->AddSimpleDependence(**JI, **II, AntiDependence);
- if (hasLoop)
- funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence);
- }
- }
-
- /// for every def Dnext in DefSetPrev
- /// // NOTE: Dnext comes after D in execution order
- /// if (Dnext & D)
- /// Add output-dep: D -> Dnext
- for (ModRefTable::ref_iterator JI=ModRefAfter.defsBegin(),
- JE=ModRefAfter.defsEnd(); JI != JE; ++JI)
- if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
- mapAfter.find(*JI)->second.getModSet()))
- funcDepGraph->AddSimpleDependence(**II, **JI, OutputDependence);
-
- /// for every use Unext in UseSetAfter
- /// // NOTE: Unext comes after D in execution order
- /// if (Unext & D)
- /// Add true-dep: D -> Unext
- for (ModRefTable::ref_iterator JI=ModRefAfter.usersBegin(),
- JE=ModRefAfter.usersEnd(); JI != JE; ++JI)
- if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
- mapAfter.find(*JI)->second.getRefSet()))
- funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence);
- }
-
- ///
- /// for every use U in UseSetCurrent
- /// for every def Dnext in DefSetAfter
- /// // NOTE: Dnext comes after U in execution order
- /// if (Dnext & D)
- /// Add anti-dep: U -> Dnext
- for (ModRefTable::ref_iterator II=ModRefCurrent.usersBegin(),
- IE=ModRefCurrent.usersEnd(); II != IE; ++II)
- for (ModRefTable::ref_iterator JI=ModRefAfter.defsBegin(),
- JE=ModRefAfter.defsEnd(); JI != JE; ++JI)
- if (!Disjoint(mapCurrent.find(*II)->second.getRefSet(),
- mapAfter.find(*JI)->second.getModSet()))
- funcDepGraph->AddSimpleDependence(**II, **JI, AntiDependence);
-
- /// Add ModRefCurrent to ModRefAfter: { (I, ModRef[I] ) }
- /// Add DefSetCurrent to DefSetAfter: { I : Mod[I] != NULL }
- /// Add UseSetCurrent to UseSetAfter: { I : Ref[I] != NULL }
- ModRefAfter.Insert(ModRefCurrent);
-}
-
-
-/// Debugging support methods
-///
-void MemoryDepAnalysis::print(std::ostream &O, const Module*) const
-{
- // TEMPORARY LOOP
- for (hash_map<Function*, DependenceGraph*>::const_iterator
- I = funcMap.begin(), E = funcMap.end(); I != E; ++I)
- {
- Function* func = I->first;
- DependenceGraph* depGraph = I->second;
-
- O << "\n================================================================\n";
- O << "DEPENDENCE GRAPH FOR MEMORY OPERATIONS IN FUNCTION " << func->getName();
- O << "\n================================================================\n\n";
- depGraph->print(*func, O);
-
- }
-}
-
-
-///
-/// Run the pass on a function
-///
-bool MemoryDepAnalysis::runOnFunction(Function &F) {
- assert(!F.isExternal());
-
- // Get the FunctionModRefInfo holding IPModRef results for this function.
- // Use the TD graph recorded within the FunctionModRefInfo object, which
- // may not be the same as the original TD graph computed by DS analysis.
- //
- funcModRef = &getAnalysis<IPModRef>().getFunctionModRefInfo(F);
- funcGraph = &funcModRef->getFuncGraph();
-
- // TEMPORARY: ptr to depGraph (later just becomes "this").
- assert(!funcMap.count(&F) && "Analyzing function twice?");
- funcDepGraph = funcMap[&F] = new DependenceGraph();
-
- ModRefTable ModRefAfter;
-
- for (scc_iterator<Function*> I = scc_begin(&F), E = scc_end(&F); I != E; ++I)
- ProcessSCC(*I, ModRefAfter, I.hasLoop());
-
- return true;
-}
-
-
-//-------------------------------------------------------------------------
-// TEMPORARY FUNCTIONS TO MAKE THIS A MODULE PASS ---
-// These functions will go away once this class becomes a FunctionPass.
-//
-
-// Driver function to compute dependence graphs for every function.
-// This is temporary and will go away once this is a FunctionPass.
-//
-bool MemoryDepAnalysis::runOnModule(Module& M)
-{
- for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)
- if (! FI->isExternal())
- runOnFunction(*FI); // automatically inserts each depGraph into funcMap
- return true;
-}
-
-// Release all the dependence graphs in the map.
-void MemoryDepAnalysis::releaseMemory()
-{
- for (hash_map<Function*, DependenceGraph*>::const_iterator
- I = funcMap.begin(), E = funcMap.end(); I != E; ++I)
- delete I->second;
- funcMap.clear();
-
- // Clear pointers because the pass constructor will not be invoked again.
- funcDepGraph = NULL;
- funcGraph = NULL;
- funcModRef = NULL;
-}
-
-MemoryDepAnalysis::~MemoryDepAnalysis()
-{
- releaseMemory();
-}
-
-//----END TEMPORARY FUNCTIONS----------------------------------------------
-
-
-void MemoryDepAnalysis::dump() const
-{
- this->print(std::cerr);
-}
-
-static RegisterAnalysis<MemoryDepAnalysis>
-Z("memdep", "Memory Dependence Analysis");
-
-
-} // End llvm namespace
+++ /dev/null
-//===- MemoryDepAnalysis.h - Compute dep graph for memory ops ---*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file provides a pass (MemoryDepAnalysis) that computes memory-based
-// data dependences between instructions for each function in a module.
-// Memory-based dependences occur due to load and store operations, but
-// also the side-effects of call instructions.
-//
-// The result of this pass is a DependenceGraph for each function
-// representing the memory-based data dependences between instructions.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_ANALYSIS_MEMORYDEPANALYSIS_H
-#define LLVM_ANALYSIS_MEMORYDEPANALYSIS_H
-
-#include "DependenceGraph.h"
-#include "llvm/Pass.h"
-#include "llvm/ADT/hash_map"
-
-namespace llvm {
-
-class ModRefTable;
-class DSGraph;
-class FunctionModRefInfo;
-
-///---------------------------------------------------------------------------
-/// class MemoryDepGraph:
-/// Dependence analysis for load/store/call instructions using IPModRef info
-/// computed at the granularity of individual DSGraph nodes.
-///
-/// This pass computes memory dependences for each function in a module.
-/// It can be made a FunctionPass once a Pass (such as Parallelize) is
-/// allowed to use a FunctionPass such as this one.
-///---------------------------------------------------------------------------
-
-class MemoryDepAnalysis : public ModulePass {
- /// The following map and depGraph pointer are temporary until this class
- /// becomes a FunctionPass instead of a module Pass.
- hash_map<Function*, DependenceGraph*> funcMap;
- DependenceGraph* funcDepGraph;
-
- /// Information about one function being analyzed.
- const DSGraph* funcGraph;
- const FunctionModRefInfo* funcModRef;
-
- /// Internal routine that processes each SCC of the CFG.
- ///
- void ProcessSCC(std::vector<BasicBlock*> &SCC, ModRefTable& ModRefAfter,
- bool HasLoop);
-
- friend class PgmDependenceGraph;
-
-public:
- MemoryDepAnalysis() : funcDepGraph(0), funcGraph(0), funcModRef(0) {}
- ~MemoryDepAnalysis();
-
- /// Driver function to compute dependence graphs for every function.
- ///
- bool runOnModule(Module &M);
-
- /// getGraph - Retrieve the dependence graph for a function.
- /// This is temporary and will go away once this is a FunctionPass.
- /// At that point, this class should directly inherit from DependenceGraph.
- ///
- DependenceGraph& getGraph(Function& F) {
- hash_map<Function*, DependenceGraph*>::iterator I = funcMap.find(&F);
- assert(I != funcMap.end());
- return *I->second;
- }
- const DependenceGraph& getGraph(Function& F) const {
- hash_map<Function*, DependenceGraph*>::const_iterator I = funcMap.find(&F);
- assert(I != funcMap.end());
- return *I->second;
- }
-
- /// Release depGraphs held in the Function -> DepGraph map.
- ///
- virtual void releaseMemory();
-
- /// Driver functions to compute the Load/Store Dep. Graph per function.
- ///
- bool runOnFunction(Function &F);
-
- /// getAnalysisUsage - This does not modify anything. It uses the Top-Down DS
- /// Graph and IPModRef.
- void getAnalysisUsage(AnalysisUsage &AU) const;
-
- /// Debugging support methods
- ///
- void print(std::ostream &O, const Module* = 0) const;
- void dump() const;
-};
-
-} // End llvm namespace
-
-#endif
+++ /dev/null
-//===- Parallelize.cpp - Auto parallelization using DS Graphs -------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements a pass that automatically parallelizes a program,
-// using the Cilk multi-threaded runtime system to execute parallel code.
-//
-// The pass uses the Program Dependence Graph (class PDGIterator) to
-// identify parallelizable function calls, i.e., calls whose instances
-// can be executed in parallel with instances of other function calls.
-// (In the future, this should also execute different instances of the same
-// function call in parallel, but that requires parallelizing across
-// loop iterations.)
-//
-// The output of the pass is LLVM code with:
-// (1) all parallelizable functions renamed to flag them as parallelizable;
-// (2) calls to a sync() function introduced at synchronization points.
-// The CWriter recognizes these functions and inserts the appropriate Cilk
-// keywords when writing out C code. This C code must be compiled with cilk2c.
-//
-// Current algorithmic limitations:
-// -- no array dependence analysis
-// -- no parallelization for function calls in different loop iterations
-// (except in unlikely trivial cases)
-//
-// Limitations of using Cilk:
-// -- No parallelism within a function body, e.g., in a loop;
-// -- Simplistic synchronization model requiring all parallel threads
-// created within a function to block at a sync().
-// -- Excessive overhead at "spawned" function calls, which has no benefit
-// once all threads are busy (especially common when the degree of
-// parallelism is low).
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "PgmDependenceGraph.h"
-#include "llvm/Analysis/Passes.h"
-#include "llvm/Analysis/DataStructure/DataStructure.h"
-#include "llvm/Analysis/DataStructure/DSGraph.h"
-#include "llvm/Support/InstVisitor.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/hash_set"
-#include "llvm/ADT/hash_map"
-#include <functional>
-#include <algorithm>
-using namespace llvm;
-
-//----------------------------------------------------------------------------
-// Global constants used in marking Cilk functions and function calls.
-//----------------------------------------------------------------------------
-
-static const char * const CilkSuffix = ".llvm2cilk";
-static const char * const DummySyncFuncName = "__sync.llvm2cilk";
-
-//----------------------------------------------------------------------------
-// Routines to identify Cilk functions, calls to Cilk functions, and syncs.
-//----------------------------------------------------------------------------
-
-static bool isCilk(const Function& F) {
- return (F.getName().rfind(CilkSuffix) ==
- F.getName().size() - std::strlen(CilkSuffix));
-}
-
-static bool isCilkMain(const Function& F) {
- return F.getName() == "main" + std::string(CilkSuffix);
-}
-
-
-static bool isCilk(const CallInst& CI) {
- return CI.getCalledFunction() && isCilk(*CI.getCalledFunction());
-}
-
-static bool isSync(const CallInst& CI) {
- return CI.getCalledFunction() &&
- CI.getCalledFunction()->getName() == DummySyncFuncName;
-}
-
-
-//----------------------------------------------------------------------------
-// class Cilkifier
-//
-// Code generation pass that transforms code to identify where Cilk keywords
-// should be inserted. This relies on `llvm-dis -c' to print out the keywords.
-//----------------------------------------------------------------------------
-class Cilkifier: public InstVisitor<Cilkifier> {
- Function* DummySyncFunc;
-
- // Data used when transforming each function.
- hash_set<const Instruction*> stmtsVisited; // Flags for recursive DFS
- hash_map<const CallInst*, hash_set<CallInst*> > spawnToSyncsMap;
-
- // Input data for the transformation.
- const hash_set<Function*>* cilkFunctions; // Set of parallel functions
- PgmDependenceGraph* depGraph;
-
- void DFSVisitInstr (Instruction* I,
- Instruction* root,
- hash_set<const Instruction*>& depsOfRoot);
-
-public:
- /*ctor*/ Cilkifier (Module& M);
-
- // Transform a single function including its name, its call sites, and syncs
- //
- void TransformFunc (Function* F,
- const hash_set<Function*>& cilkFunctions,
- PgmDependenceGraph& _depGraph);
-
- // The visitor function that does most of the hard work, via DFSVisitInstr
- //
- void visitCallInst(CallInst& CI);
-};
-
-
-Cilkifier::Cilkifier(Module& M) {
- // create the dummy Sync function and add it to the Module
- DummySyncFunc = M.getOrInsertFunction(DummySyncFuncName, Type::VoidTy, 0);
-}
-
-void Cilkifier::TransformFunc(Function* F,
- const hash_set<Function*>& _cilkFunctions,
- PgmDependenceGraph& _depGraph) {
- // Memoize the information for this function
- cilkFunctions = &_cilkFunctions;
- depGraph = &_depGraph;
-
- // Add the marker suffix to the Function name
- // This should automatically mark all calls to the function also!
- F->setName(F->getName() + CilkSuffix);
-
- // Insert sync operations for each separate spawn
- visit(*F);
-
- // Now traverse the CFG in rPostorder and eliminate redundant syncs, i.e.,
- // two consecutive sync's on a straight-line path with no intervening spawn.
-
-}
-
-
-void Cilkifier::DFSVisitInstr(Instruction* I,
- Instruction* root,
- hash_set<const Instruction*>& depsOfRoot)
-{
- assert(stmtsVisited.find(I) == stmtsVisited.end());
- stmtsVisited.insert(I);
-
- // If there is a dependence from root to I, insert Sync and return
- if (depsOfRoot.find(I) != depsOfRoot.end()) {
- // Insert a sync before I and stop searching along this path.
- // If I is a Phi instruction, the dependence can only be an SSA dep.
- // and we need to insert the sync in the predecessor on the appropriate
- // incoming edge!
- CallInst* syncI = 0;
- if (PHINode* phiI = dyn_cast<PHINode>(I)) {
- // check all operands of the Phi and insert before each one
- for (unsigned i = 0, N = phiI->getNumIncomingValues(); i < N; ++i)
- if (phiI->getIncomingValue(i) == root)
- syncI = new CallInst(DummySyncFunc, std::vector<Value*>(), "",
- phiI->getIncomingBlock(i)->getTerminator());
- } else
- syncI = new CallInst(DummySyncFunc, std::vector<Value*>(), "", I);
-
- // Remember the sync for each spawn to eliminate redundant ones later
- spawnToSyncsMap[cast<CallInst>(root)].insert(syncI);
-
- return;
- }
-
- // else visit unvisited successors
- if (BranchInst* brI = dyn_cast<BranchInst>(I)) {
- // visit first instruction in each successor BB
- for (unsigned i = 0, N = brI->getNumSuccessors(); i < N; ++i)
- if (stmtsVisited.find(&brI->getSuccessor(i)->front())
- == stmtsVisited.end())
- DFSVisitInstr(&brI->getSuccessor(i)->front(), root, depsOfRoot);
- } else
- if (Instruction* nextI = I->getNext())
- if (stmtsVisited.find(nextI) == stmtsVisited.end())
- DFSVisitInstr(nextI, root, depsOfRoot);
-}
-
-
-void Cilkifier::visitCallInst(CallInst& CI)
-{
- assert(CI.getCalledFunction() != 0 && "Only direct calls can be spawned.");
- if (cilkFunctions->find(CI.getCalledFunction()) == cilkFunctions->end())
- return; // not a spawn
-
- // Find all the outgoing memory dependences.
- hash_set<const Instruction*> depsOfRoot;
- for (PgmDependenceGraph::iterator DI =
- depGraph->outDepBegin(CI, MemoryDeps); ! DI.fini(); ++DI)
- depsOfRoot.insert(&DI->getSink()->getInstr());
-
- // Now find all outgoing SSA dependences to the eventual non-Phi users of
- // the call value (i.e., direct users that are not phis, and for any
- // user that is a Phi, direct non-Phi users of that Phi, and recursively).
- std::vector<const PHINode*> phiUsers;
- hash_set<const PHINode*> phisSeen; // ensures we don't visit a phi twice
- for (Value::use_iterator UI=CI.use_begin(), UE=CI.use_end(); UI != UE; ++UI)
- if (const PHINode* phiUser = dyn_cast<PHINode>(*UI)) {
- if (phisSeen.find(phiUser) == phisSeen.end()) {
- phiUsers.push_back(phiUser);
- phisSeen.insert(phiUser);
- }
- }
- else
- depsOfRoot.insert(cast<Instruction>(*UI));
-
- // Now we've found the non-Phi users and immediate phi users.
- // Recursively walk the phi users and add their non-phi users.
- for (const PHINode* phiUser; !phiUsers.empty(); phiUsers.pop_back()) {
- phiUser = phiUsers.back();
- for (Value::use_const_iterator UI=phiUser->use_begin(),
- UE=phiUser->use_end(); UI != UE; ++UI)
- if (const PHINode* pn = dyn_cast<PHINode>(*UI)) {
- if (phisSeen.find(pn) == phisSeen.end()) {
- phiUsers.push_back(pn);
- phisSeen.insert(pn);
- }
- } else
- depsOfRoot.insert(cast<Instruction>(*UI));
- }
-
- // Walk paths of the CFG starting at the call instruction and insert
- // one sync before the first dependence on each path, if any.
- if (! depsOfRoot.empty()) {
- stmtsVisited.clear(); // start a new DFS for this CallInst
- assert(CI.getNext() && "Call instruction cannot be a terminator!");
- DFSVisitInstr(CI.getNext(), &CI, depsOfRoot);
- }
-
- // Now, eliminate all users of the SSA value of the CallInst, i.e.,
- // if the call instruction returns a value, delete the return value
- // register and replace it by a stack slot.
- if (CI.getType() != Type::VoidTy)
- DemoteRegToStack(CI);
-}
-
-
-//----------------------------------------------------------------------------
-// class FindParallelCalls
-//
-// Find all CallInst instructions that have at least one other CallInst
-// that is independent. These are the instructions that can produce
-// useful parallelism.
-//----------------------------------------------------------------------------
-
-class FindParallelCalls : public InstVisitor<FindParallelCalls> {
- typedef hash_set<CallInst*> DependentsSet;
- typedef DependentsSet::iterator Dependents_iterator;
- typedef DependentsSet::const_iterator Dependents_const_iterator;
-
- PgmDependenceGraph& depGraph; // dependence graph for the function
- hash_set<Instruction*> stmtsVisited; // flags for DFS walk of depGraph
- hash_map<CallInst*, bool > completed; // flags marking if a CI is done
- hash_map<CallInst*, DependentsSet> dependents; // dependent CIs for each CI
-
- void VisitOutEdges(Instruction* I,
- CallInst* root,
- DependentsSet& depsOfRoot);
-
- FindParallelCalls(const FindParallelCalls &); // DO NOT IMPLEMENT
- void operator=(const FindParallelCalls&); // DO NOT IMPLEMENT
-public:
- std::vector<CallInst*> parallelCalls;
-
-public:
- /*ctor*/ FindParallelCalls (Function& F, PgmDependenceGraph& DG);
- void visitCallInst (CallInst& CI);
-};
-
-
-FindParallelCalls::FindParallelCalls(Function& F,
- PgmDependenceGraph& DG)
- : depGraph(DG)
-{
- // Find all CallInsts reachable from each CallInst using a recursive DFS
- visit(F);
-
- // Now we've found all CallInsts reachable from each CallInst.
- // Find those CallInsts that are parallel with at least one other CallInst
- // by counting total inEdges and outEdges.
- unsigned long totalNumCalls = completed.size();
-
- if (totalNumCalls == 1) {
- // Check first for the special case of a single call instruction not
- // in any loop. It is not parallel, even if it has no dependences
- // (this is why it is a special case).
- //
- // FIXME:
- // THIS CASE IS NOT HANDLED RIGHT NOW, I.E., THERE IS NO
- // PARALLELISM FOR CALLS IN DIFFERENT ITERATIONS OF A LOOP.
- return;
- }
-
- hash_map<CallInst*, unsigned long> numDeps;
- for (hash_map<CallInst*, DependentsSet>::iterator II = dependents.begin(),
- IE = dependents.end(); II != IE; ++II) {
- CallInst* fromCI = II->first;
- numDeps[fromCI] += II->second.size();
- for (Dependents_iterator DI = II->second.begin(), DE = II->second.end();
- DI != DE; ++DI)
- numDeps[*DI]++; // *DI can be reached from II->first
- }
-
- for (hash_map<CallInst*, DependentsSet>::iterator
- II = dependents.begin(), IE = dependents.end(); II != IE; ++II)
-
- // FIXME: Remove "- 1" when considering parallelism in loops
- if (numDeps[II->first] < totalNumCalls - 1)
- parallelCalls.push_back(II->first);
-}
-
-
-void FindParallelCalls::VisitOutEdges(Instruction* I,
- CallInst* root,
- DependentsSet& depsOfRoot)
-{
- assert(stmtsVisited.find(I) == stmtsVisited.end() && "Stmt visited twice?");
- stmtsVisited.insert(I);
-
- if (CallInst* CI = dyn_cast<CallInst>(I))
- // FIXME: Ignoring parallelism in a loop. Here we're actually *ignoring*
- // a self-dependence in order to get the count comparison right above.
- // When we include loop parallelism, self-dependences should be included.
- if (CI != root) {
- // CallInst root has a path to CallInst I and any calls reachable from I
- depsOfRoot.insert(CI);
- if (completed[CI]) {
- // We have already visited I so we know all nodes it can reach!
- DependentsSet& depsOfI = dependents[CI];
- depsOfRoot.insert(depsOfI.begin(), depsOfI.end());
- return;
- }
- }
-
- // If we reach here, we need to visit all children of I
- for (PgmDependenceGraph::iterator DI = depGraph.outDepBegin(*I);
- ! DI.fini(); ++DI) {
- Instruction* sink = &DI->getSink()->getInstr();
- if (stmtsVisited.find(sink) == stmtsVisited.end())
- VisitOutEdges(sink, root, depsOfRoot);
- }
-}
-
-
-void FindParallelCalls::visitCallInst(CallInst& CI) {
- if (completed[&CI])
- return;
- stmtsVisited.clear(); // clear flags to do a fresh DFS
-
- // Visit all children of CI using a recursive walk through dep graph
- DependentsSet& depsOfRoot = dependents[&CI];
- for (PgmDependenceGraph::iterator DI = depGraph.outDepBegin(CI);
- ! DI.fini(); ++DI) {
- Instruction* sink = &DI->getSink()->getInstr();
- if (stmtsVisited.find(sink) == stmtsVisited.end())
- VisitOutEdges(sink, &CI, depsOfRoot);
- }
-
- completed[&CI] = true;
-}
-
-
-//----------------------------------------------------------------------------
-// class Parallelize
-//
-// (1) Find candidate parallel functions: any function F s.t.
-// there is a call C1 to the function F that is followed or preceded
-// by at least one other call C2 that is independent of this one
-// (i.e., there is no dependence path from C1 to C2 or C2 to C1)
-// (2) Label such a function F as a cilk function.
-// (3) Convert every call to F to a spawn
-// (4) For every function X, insert sync statements so that
-// every spawn is postdominated by a sync before any statements
-// with a data dependence to/from the call site for the spawn
-//
-//----------------------------------------------------------------------------
-
-namespace {
- class Parallelize : public ModulePass {
- public:
- /// Driver functions to transform a program
- ///
- bool runOnModule(Module& M);
-
- /// getAnalysisUsage - Modifies extensively so preserve nothing.
- /// Uses the DependenceGraph and the Top-down DS Graph (only to find
- /// all functions called via an indirect call).
- ///
- void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<TDDataStructures>();
- AU.addRequired<MemoryDepAnalysis>(); // force this not to be released
- AU.addRequired<PgmDependenceGraph>(); // because it is needed by this
- }
- };
-
- RegisterOpt<Parallelize> X("parallel", "Parallelize program using Cilk");
-}
-
-ModulePass *llvm::createParallelizePass() { return new Parallelize(); }
-
-
-bool Parallelize::runOnModule(Module& M) {
- hash_set<Function*> parallelFunctions;
- hash_set<Function*> safeParallelFunctions;
- hash_set<const GlobalValue*> indirectlyCalled;
-
- // If there is no main (i.e., for an incomplete program), we can do nothing.
- // If there is a main, mark main as a parallel function.
- Function* mainFunc = M.getMainFunction();
- if (!mainFunc)
- return false;
-
- // (1) Find candidate parallel functions and mark them as Cilk functions
- for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)
- if (! FI->isExternal()) {
- Function* F = FI;
- DSGraph& tdg = getAnalysis<TDDataStructures>().getDSGraph(*F);
-
- // All the hard analysis work gets done here!
- FindParallelCalls finder(*F,
- getAnalysis<PgmDependenceGraph>().getGraph(*F));
- /* getAnalysis<MemoryDepAnalysis>().getGraph(*F)); */
-
- // Now we know which call instructions are useful to parallelize.
- // Remember those callee functions.
- for (std::vector<CallInst*>::iterator
- CII = finder.parallelCalls.begin(),
- CIE = finder.parallelCalls.end(); CII != CIE; ++CII) {
- // Check if this is a direct call...
- if ((*CII)->getCalledFunction() != NULL) {
- // direct call: if this is to a non-external function,
- // mark it as a parallelizable function
- if (! (*CII)->getCalledFunction()->isExternal())
- parallelFunctions.insert((*CII)->getCalledFunction());
- } else {
- // Indirect call: mark all potential callees as bad
- std::vector<GlobalValue*> callees =
- tdg.getNodeForValue((*CII)->getCalledValue())
- .getNode()->getGlobals();
- indirectlyCalled.insert(callees.begin(), callees.end());
- }
- }
- }
-
- // Remove all indirectly called functions from the list of Cilk functions.
- for (hash_set<Function*>::iterator PFI = parallelFunctions.begin(),
- PFE = parallelFunctions.end(); PFI != PFE; ++PFI)
- if (indirectlyCalled.count(*PFI) == 0)
- safeParallelFunctions.insert(*PFI);
-
-#undef CAN_USE_BIND1ST_ON_REFERENCE_TYPE_ARGS
-#ifdef CAN_USE_BIND1ST_ON_REFERENCE_TYPE_ARGS
- // Use this indecipherable STLese because erase invalidates iterators.
- // Otherwise we have to copy sets as above.
- hash_set<Function*>::iterator extrasBegin =
- std::remove_if(parallelFunctions.begin(), parallelFunctions.end(),
- compose1(std::bind2nd(std::greater<int>(), 0),
- bind_obj(&indirectlyCalled,
- &hash_set<const GlobalValue*>::count)));
- parallelFunctions.erase(extrasBegin, parallelFunctions.end());
-#endif
-
- // If there are no parallel functions, we can just give up.
- if (safeParallelFunctions.empty())
- return false;
-
- // Add main as a parallel function since Cilk requires this.
- safeParallelFunctions.insert(mainFunc);
-
- // (2,3) Transform each Cilk function and all its calls simply by
- // adding a unique suffix to the function name.
- // This should identify both functions and calls to such functions
- // to the code generator.
- // (4) Also, insert calls to sync at appropriate points.
- Cilkifier cilkifier(M);
- for (hash_set<Function*>::iterator CFI = safeParallelFunctions.begin(),
- CFE = safeParallelFunctions.end(); CFI != CFE; ++CFI) {
- cilkifier.TransformFunc(*CFI, safeParallelFunctions,
- getAnalysis<PgmDependenceGraph>().getGraph(**CFI));
- /* getAnalysis<MemoryDepAnalysis>().getGraph(**CFI)); */
- }
-
- return true;
-}
-
+++ /dev/null
-//===- PgmDependenceGraph.cpp - Enumerate PDG for a function ----*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// The Program Dependence Graph (PDG) for a single function represents all
-// data and control dependences for the function. This file provides an
-// iterator to enumerate all these dependences. In particular, it enumerates:
-//
-// -- Data dependences on memory locations, computed using the
-// MemoryDepAnalysis pass;
-// -- Data dependences on SSA registers, directly from Def-Use edges of Values;
-// -- Control dependences, computed using postdominance frontiers
-// (NOT YET IMPLEMENTED).
-//
-// Note that this file does not create an explicit dependence graph --
-// it only provides an iterator to traverse the PDG conceptually.
-// The MemoryDepAnalysis does build an explicit graph, which is used internally
-// here. That graph could be augmented with the other dependences above if
-// desired, but for most uses there will be little need to do that.
-//
-//===----------------------------------------------------------------------===//
-
-#include "PgmDependenceGraph.h"
-#include "llvm/Analysis/PostDominators.h"
-#include "llvm/Function.h"
-#include <iostream>
-
-namespace llvm {
-
-//----------------------------------------------------------------------------
-// class DepIterState
-//----------------------------------------------------------------------------
-
-const DepIterState::IterStateFlags DepIterState::NoFlag = 0x0;
-const DepIterState::IterStateFlags DepIterState::MemDone = 0x1;
-const DepIterState::IterStateFlags DepIterState::SSADone = 0x2;
-const DepIterState::IterStateFlags DepIterState::AllDone = 0x4;
-const DepIterState::IterStateFlags DepIterState::FirstTimeFlag= 0x8;
-
-// Find the first memory dependence for the current Mem In/Out iterators.
-// Find the first memory dependence for the current Mem In/Out iterators.
-// Sets dep to that dependence and returns true if one is found.
-//
-bool DepIterState::SetFirstMemoryDep()
-{
- if (! (depFlags & MemoryDeps))
- return false;
-
- bool doIncomingDeps = dep.getDepType() & IncomingFlag;
-
- if (( doIncomingDeps && memDepIter == memDepGraph->inDepEnd( *depNode)) ||
- (!doIncomingDeps && memDepIter == memDepGraph->outDepEnd(*depNode)))
- {
- iterFlags |= MemDone;
- return false;
- }
-
- dep = *memDepIter; // simple copy from dependence in memory DepGraph
-
- return true;
-}
-
-
-// Find the first valid data dependence for the current SSA In/Out iterators.
-// A valid data dependence is one that is to/from an Instruction.
-// E.g., an SSA edge from a formal parameter is not a valid dependence.
-// Sets dep to that dependence and returns true if a valid one is found.
-// Returns false and leaves dep unchanged otherwise.
-//
-bool DepIterState::SetFirstSSADep()
-{
- if (! (depFlags & SSADeps))
- return false;
-
- bool doIncomingDeps = dep.getDepType() & IncomingFlag;
- Instruction* firstTarget = NULL;
-
- // Increment the In or Out iterator till it runs out or we find a valid dep
- if (doIncomingDeps)
- for (Instruction::op_iterator E = depNode->getInstr().op_end();
- ssaInEdgeIter != E &&
- (firstTarget = dyn_cast<Instruction>(ssaInEdgeIter))== NULL; )
- ++ssaInEdgeIter;
- else
- for (Value::use_iterator E = depNode->getInstr().use_end();
- ssaOutEdgeIter != E &&
- (firstTarget = dyn_cast<Instruction>(*ssaOutEdgeIter)) == NULL; )
- ++ssaOutEdgeIter;
-
- // If the iterator ran out before we found a valid dep, there isn't one.
- if (!firstTarget)
- {
- iterFlags |= SSADone;
- return false;
- }
-
- // Create a simple dependence object to represent this SSA dependence.
- dep = Dependence(memDepGraph->getNode(*firstTarget, /*create*/ true),
- TrueDependence, doIncomingDeps);
-
- return true;
-}
-
-
-DepIterState::DepIterState(DependenceGraph* _memDepGraph,
- Instruction& I,
- bool incomingDeps,
- PDGIteratorFlags whichDeps)
- : memDepGraph(_memDepGraph),
- depFlags(whichDeps),
- iterFlags(NoFlag)
-{
- depNode = memDepGraph->getNode(I, /*create*/ true);
-
- if (incomingDeps)
- {
- if (whichDeps & MemoryDeps) memDepIter= memDepGraph->inDepBegin(*depNode);
- if (whichDeps & SSADeps) ssaInEdgeIter = I.op_begin();
- /* Initialize control dependence iterator here. */
- }
- else
- {
- if (whichDeps & MemoryDeps) memDepIter=memDepGraph->outDepBegin(*depNode);
- if (whichDeps & SSADeps) ssaOutEdgeIter = I.use_begin();
- /* Initialize control dependence iterator here. */
- }
-
- // Set the dependence to the first of a memory dep or an SSA dep
- // and set the done flag if either is found. Otherwise, set the
- // init flag to indicate that the iterators have just been initialized.
- //
- if (!SetFirstMemoryDep() && !SetFirstSSADep())
- iterFlags |= AllDone;
- else
- iterFlags |= FirstTimeFlag;
-}
-
-
-// Helper function for ++ operator that bumps iterator by 1 (to next
-// dependence) and resets the dep field to represent the new dependence.
-//
-void DepIterState::Next()
-{
- // firstMemDone and firstSsaDone are used to indicate when the memory or
- // SSA iterators just ran out, or when this is the very first increment.
- // In either case, the next iterator (if any) should not be incremented.
- //
- bool firstMemDone = iterFlags & FirstTimeFlag;
- bool firstSsaDone = iterFlags & FirstTimeFlag;
- bool doIncomingDeps = dep.getDepType() & IncomingFlag;
-
- if (depFlags & MemoryDeps && ! (iterFlags & MemDone))
- {
- iterFlags &= ~FirstTimeFlag; // clear "firstTime" flag
- ++memDepIter;
- if (SetFirstMemoryDep())
- return;
- firstMemDone = true; // flags that we _just_ rolled over
- }
-
- if (depFlags & SSADeps && ! (iterFlags & SSADone))
- {
- // Don't increment the SSA iterator if we either just rolled over from
- // the memory dep iterator, or if the SSA iterator is already done.
- iterFlags &= ~FirstTimeFlag; // clear "firstTime" flag
- if (! firstMemDone)
- if (doIncomingDeps) ++ssaInEdgeIter;
- else ++ssaOutEdgeIter;
- if (SetFirstSSADep())
- return;
- firstSsaDone = true; // flags if we just rolled over
- }
-
- if ((depFlags & ControlDeps) != 0)
- {
- assert(0 && "Cannot handle control deps");
- // iterFlags &= ~FirstTimeFlag; // clear "firstTime" flag
- }
-
- // This iterator is now complete.
- iterFlags |= AllDone;
-}
-
-
-//----------------------------------------------------------------------------
-// class PgmDependenceGraph
-//----------------------------------------------------------------------------
-
-
-// MakeIterator -- Create and initialize an iterator as specified.
-//
-PDGIterator PgmDependenceGraph::MakeIterator(Instruction& I,
- bool incomingDeps,
- PDGIteratorFlags whichDeps)
-{
- assert(memDepGraph && "Function not initialized!");
- return PDGIterator(new DepIterState(memDepGraph, I, incomingDeps, whichDeps));
-}
-
-
-void PgmDependenceGraph::printOutgoingSSADeps(Instruction& I,
- std::ostream &O)
-{
- iterator SI = this->outDepBegin(I, SSADeps);
- iterator SE = this->outDepEnd(I, SSADeps);
- if (SI == SE)
- return;
-
- O << "\n Outgoing SSA dependences:\n";
- for ( ; SI != SE; ++SI)
- {
- O << "\t";
- SI->print(O);
- O << " to instruction:";
- O << SI->getSink()->getInstr();
- }
-}
-
-
-void PgmDependenceGraph::print(std::ostream &O, const Module*) const
-{
- MemoryDepAnalysis& graphSet = getAnalysis<MemoryDepAnalysis>();
-
- // TEMPORARY LOOP
- for (hash_map<Function*, DependenceGraph*>::iterator
- I = graphSet.funcMap.begin(), E = graphSet.funcMap.end();
- I != E; ++I)
- {
- Function* func = I->first;
- DependenceGraph* depGraph = I->second;
- const_cast<PgmDependenceGraph*>(this)->runOnFunction(*func);
-
- O << "DEPENDENCE GRAPH FOR FUNCTION " << func->getName() << ":\n";
- for (Function::iterator BB=func->begin(), FE=func->end(); BB != FE; ++BB)
- for (BasicBlock::iterator II=BB->begin(), IE=BB->end(); II !=IE; ++II)
- {
- DepGraphNode* dgNode = depGraph->getNode(*II, /*create*/ true);
- dgNode->print(O);
- const_cast<PgmDependenceGraph*>(this)->printOutgoingSSADeps(*II, O);
- }
- } // END TEMPORARY LOOP
-}
-
-
-void PgmDependenceGraph::dump() const
-{
- this->print(std::cerr);
-}
-
-static RegisterAnalysis<PgmDependenceGraph>
-Z("pgmdep", "Enumerate Program Dependence Graph (data and control)");
-
-} // End llvm namespace
+++ /dev/null
-//===- PgmDependenceGraph.h - Enumerate the PDG for a function --*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// The Program Dependence Graph (PDG) for a single function represents all
-// data and control dependences for the function. This file provides an
-// iterator to enumerate all these dependences. In particular, it enumerates:
-//
-// -- Data dependences on memory locations, computed using the
-// MemoryDepAnalysis pass;
-// -- Data dependences on SSA registers, directly from Def-Use edges of Values;
-// -- Control dependences, computed using postdominance frontiers
-// (NOT YET IMPLEMENTED).
-//
-// Note that this file does not create an explicit dependence graph --
-// it only provides an iterator to traverse the PDG conceptually.
-// The MemoryDepAnalysis does build an explicit graph, which is used internally
-// here. That graph could be augmented with the other dependences above if
-// desired, but for most uses there will be little need to do that.
-//
-// Key Classes:
-//
-// enum PDGIteratorFlags -- Specify which dependences to enumerate.
-//
-// class PDGIterator -- The PDG iterator. This is essentially like a
-// pointer to class Dependence, but doesn't explicitly
-// construct a Dependence object for each dependence.
-//
-// class PgmDependenceGraph -- Interface to obtain PDGIterators for each
-// instruction.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_ANALYSIS_PGMDEPENDENCEGRAPH_H
-#define LLVM_ANALYSIS_PGMDEPENDENCEGRAPH_H
-
-#include "MemoryDepAnalysis.h"
-/* #include "llvm/Analysis/PostDominators.h" -- see below */
-#include "llvm/Instruction.h"
-#include "llvm/Pass.h"
-#include "llvm/ADT/iterator"
-
-namespace llvm {
-
-class DSGraph;
-class DependenceGraph;
-class PgmDependenceGraph;
-
-//---------------------------------------------------------------------------
-/// enum PDGIteratorFlags - specify which dependences incident on a statement
-/// are to be enumerated: Memory deps, SSA deps, Control deps, or any
-/// combination thereof.
-///
-enum PDGIteratorFlags {
- MemoryDeps = 0x1, // load/store/call deps
- SSADeps = 0x2, // SSA deps (true)
- ControlDeps = /* 0x4*/ 0x0, // control dependences
- AllDataDeps = MemoryDeps | SSADeps, // shorthand for data deps
- AllDeps = MemoryDeps | SSADeps | ControlDeps // shorthand for all three
-};
-
-//---------------------------------------------------------------------------
-/// struct DepIterState - an internal implementation detail.
-/// It are exposed here only to give inlinable access to field dep,
-/// which is the representation for the current dependence pointed to by
-/// a PgmDependenceGraph::iterator.
-///
-class DepIterState {
-private:
- typedef char IterStateFlags;
- static const IterStateFlags NoFlag, MemDone, SSADone, AllDone, FirstTimeFlag;
-
-public:
- DepGraphNode* depNode; // the node being enumerated
- DependenceGraph::iterator memDepIter; // pointer to current memory dep
- Instruction::op_iterator ssaInEdgeIter; // pointer to current SSA in-dep
- Value::use_iterator ssaOutEdgeIter; // pointer to current SSA out-dep
- DependenceGraph* memDepGraph; // the core dependence graph
- Dependence dep; // the "current" dependence
- PDGIteratorFlags depFlags:8; // which deps are we enumerating?
- IterStateFlags iterFlags:8; // marking where the iter stands
-
- DepIterState(DependenceGraph* _memDepGraph,
- Instruction& I,
- bool incomingDeps,
- PDGIteratorFlags whichDeps);
-
- bool operator==(const DepIterState& S) {
- assert(memDepGraph == S.memDepGraph &&
- "Incompatible iterators! This is a probable sign of something BAD.");
- return (iterFlags == S.iterFlags &&
- dep == S.dep && depFlags == S.depFlags && depNode == S.depNode &&
- memDepIter == S.memDepIter && ssaInEdgeIter == S.ssaInEdgeIter &&
- ssaOutEdgeIter == S.ssaOutEdgeIter);
- }
-
- // Is the iteration completely done?
- //
- bool done() const { return iterFlags & AllDone; }
-
- /// Next - Bump this iterator logically by 1 (to next dependence) and reset
- /// the dep field to represent the new dependence if there is one.
- /// Set done = true otherwise.
- ///
- void Next();
-
- /// SetFirstMemoryDep - Find the first memory dependence for the current Mem
- /// In/Out iterators. Sets dep to that dependence and returns true if one is
- /// found. Returns false and leaves dep unchanged otherwise.
- ///
- bool SetFirstMemoryDep();
-
- /// SetFirstSSADep - Find the next valid data dependence for the current SSA
- /// In/Out iterators. A valid data dependence is one that is to/from an
- /// Instruction. E.g., an SSA edge from a formal parameter is not a valid
- /// dependence. Sets dep to that dependence and returns true if a valid one is
- /// found. Returns false and leaves dep unchanged otherwise.
- ///
- bool SetFirstSSADep();
-};
-
-
-//---------------------------------------------------------------------------
-/// PDGIterator Class - represents a pointer to a single dependence in the
-/// program dependence graph. It is essentially like a pointer to an object of
-/// class Dependence but it is much more efficient to retrieve information about
-/// the dependence directly rather than constructing the equivalent Dependence
-/// object (since that object is normally not constructed for SSA def-use
-/// dependences).
-///
-class PDGIterator: public forward_iterator<Dependence, ptrdiff_t> {
- DepIterState* istate;
-
-#if 0
- /*copy*/ PDGIterator (const PDGIterator& I); // do not implement!
- PDGIterator& operator= (const PDGIterator& I); // do not implement!
-
- /*copy*/ PDGIterator (PDGIterator& I) : istate(I.istate) {
- I.istate = NULL; // ensure this is not deleted twice.
- }
-#endif
-
- friend class PgmDependenceGraph;
-
-public:
- typedef PDGIterator _Self;
-
- PDGIterator(DepIterState* _istate) : istate(_istate) {}
- ~PDGIterator() { delete istate; }
-
- PDGIterator(const PDGIterator& I) :istate(new DepIterState(*I.istate)) {}
-
- PDGIterator& operator=(const PDGIterator& I) {
- if (istate) delete istate;
- istate = new DepIterState(*I.istate);
- return *this;
- }
-
- /// fini - check if the iteration is complete
- ///
- bool fini() const { return !istate || istate->done(); }
-
- // Retrieve the underlying Dependence. Returns NULL if fini().
- //
- Dependence* operator*() const { return fini() ? NULL : &istate->dep; }
- Dependence* operator->() const { assert(!fini()); return &istate->dep; }
-
- // Increment the iterator
- //
- _Self& operator++() { if (!fini()) istate->Next(); return *this;}
- _Self& operator++(int); // do not implement!
-
- // Equality comparison: a "null" state should compare equal to done
- // This is efficient for comparing with "end" or with itself, but could
- // be quite inefficient for other cases.
- //
- bool operator==(const PDGIterator& I) const {
- if (I.istate == NULL) // most common case: iter == end()
- return (istate == NULL || istate->done());
- if (istate == NULL)
- return (I.istate == NULL || I.istate->done());
- return (*istate == *I.istate);
- }
- bool operator!=(const PDGIterator& I) const {
- return ! (*this == I);
- }
-};
-
-
-///---------------------------------------------------------------------------
-/// class PgmDependenceGraph:
-///
-/// This pass enumerates dependences incident on each instruction in a function.
-/// It can be made a FunctionPass once a Pass (such as Parallelize) is
-/// allowed to use a FunctionPass such as this one.
-///---------------------------------------------------------------------------
-
-class PgmDependenceGraph: public ModulePass {
-
- /// Information about the function being analyzed.
- ///
- DependenceGraph* memDepGraph;
-
- // print helper function.
- void printOutgoingSSADeps(Instruction& I, std::ostream &O);
-
- /// MakeIterator - creates and initializes an iterator as specified.
- ///
- PDGIterator MakeIterator(Instruction& I,
- bool incomingDeps,
- PDGIteratorFlags whichDeps);
-
- /// MakeIterator - creates a null iterator representing end-of-iteration.
- ///
- PDGIterator MakeIterator() { return PDGIterator(NULL); }
-
- friend class PDGIterator;
- friend class DepIterState;
-
-public:
- typedef PDGIterator iterator;
- /* typedef PDGIterator<const Dependence> const iterator; */
-
-public:
- PgmDependenceGraph() : memDepGraph(NULL) {}
- ~PgmDependenceGraph() {}
-
- /// Iterators to enumerate the program dependence graph for a function.
- /// Note that this does not provide "end" iterators to check for completion.
- /// Instead, just use iterator::fini() or iterator::operator*() == NULL
- ///
- iterator inDepBegin(Instruction& I, PDGIteratorFlags whichDeps = AllDeps) {
- return MakeIterator(I, /*inDeps*/ true, whichDeps);
- }
- iterator inDepEnd (Instruction& I, PDGIteratorFlags whichDeps = AllDeps) {
- return MakeIterator();
- }
- iterator outDepBegin(Instruction& I, PDGIteratorFlags whichDeps = AllDeps) {
- return MakeIterator(I, /*inDeps*/ false, whichDeps);
- }
- iterator outDepEnd (Instruction& I, PDGIteratorFlags whichDeps = AllDeps) {
- return MakeIterator();
- }
-
- //------------------------------------------------------------------------
- /// TEMPORARY FUNCTIONS TO MAKE THIS A MODULE PASS ---
- /// These functions will go away once this class becomes a FunctionPass.
-
- /// Driver function to compute dependence graphs for every function.
- ///
- bool runOnModule(Module& M) { return true; }
-
- /// getGraph() -- Retrieve the pgm dependence graph for a function.
- /// This is temporary and will go away once this is a FunctionPass.
- /// At that point, this class itself will be the PgmDependenceGraph you want.
- ///
- PgmDependenceGraph& getGraph(Function& F) {
- Visiting(F);
- return *this;
- }
-
- private:
- void Visiting(Function& F) {
- memDepGraph = &getAnalysis<MemoryDepAnalysis>().getGraph(F);
- }
- public:
- ///----END TEMPORARY FUNCTIONS---------------------------------------------
-
-
- /// This initializes the program dependence graph iterator for a function.
- ///
- bool runOnFunction(Function& func) {
- Visiting(func);
- return true;
- }
-
- /// getAnalysisUsage - This does not modify anything.
- /// It uses the Memory Dependence Analysis pass.
- /// It needs to use the PostDominanceFrontier pass, but cannot because
- /// that is a FunctionPass. This means control dependence are not emumerated.
- ///
- void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<MemoryDepAnalysis>();
- /* AU.addRequired<PostDominanceFrontier>(); */
- }
-
- /// Debugging support methods
- ///
- void print(std::ostream &O, const Module* = 0) const;
- void dump() const;
-};
-
-} // End llvm namespace
-
-#endif