OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
break;
}
-
// The return value of the call is this value. As such, there is no
// corresponding argument.
assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
}
OpInfo.ConstraintVT = OpVT;
- }
-
- // Second pass over the constraints: compute which constraint option to use
- // and assign registers to constraints that want a specific physreg.
- for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
-
- // If this is an output operand with a matching input operand, look up the
- // matching input. It might have a different type (e.g. the output might be
- // i32 and the input i64) and we need to pick the larger width to ensure we
- // reserve the right number of registers.
- if (OpInfo.hasMatchingInput()) {
- SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
- if (OpInfo.ConstraintVT != Input.ConstraintVT) {
- assert(OpInfo.ConstraintVT.isInteger() &&
- Input.ConstraintVT.isInteger() &&
- "Asm constraints must be the same or different sized integers");
- if (OpInfo.ConstraintVT.getSizeInBits() <
- Input.ConstraintVT.getSizeInBits())
- OpInfo.ConstraintVT = Input.ConstraintVT;
- else
- Input.ConstraintVT = OpInfo.ConstraintVT;
- }
- }
// Compute the constraint code and ConstraintType to use.
TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
// and set it as the value of the call.
if (!RetValRegs.Regs.empty()) {
SDValue Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
- MVT ResultType = TLI.getValueType(CS.getType());
-
+
// If any of the results of the inline asm is a vector, it may have the
// wrong width/num elts. This can happen for register classes that can
// contain multiple different value types. The preg or vreg allocated may
- // not have the same VT as was expected. Convert it to the right type
- // with bit_convert.
- // FIXME: Is this sufficient for inline asms with MRVs?
- if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
- Val = DAG.getNode(ISD::BIT_CONVERT, ResultType, Val);
-
- } else if (ResultType != Val.getValueType() &&
- ResultType.isInteger() && Val.getValueType().isInteger()) {
- // If a result value was tied to an input value, the computed result may
- // have a wider width than the expected result. Extract the relevant
- // portion.
- Val = DAG.getNode(ISD::TRUNCATE, ResultType, Val);
+ // not have the same VT as was expected. Convert it to the right type with
+ // bit_convert.
+ if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) {
+ for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) {
+ if (Val.getNode()->getValueType(i).isVector())
+ Val = DAG.getNode(ISD::BIT_CONVERT,
+ TLI.getValueType(ResSTy->getElementType(i)), Val);
+ }
+ } else {
+ if (Val.getValueType().isVector())
+ Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()),
+ Val);
}
-
- assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
+
setValue(CS.getInstruction(), Val);
}
Value != NumValues; ++Value) {
MVT VT = ValueVTs[Value];
const Type *ArgTy = VT.getTypeForMVT();
- SDValue Op = SDValue(Args[i].Node.getNode(),
- Args[i].Node.getResNo() + Value);
+ SDValue Op = SDValue(Args[i].Node.getNode(), Args[i].Node.getResNo() + Value);
ISD::ArgFlagsTy Flags;
unsigned OriginalAlignment =
getTargetData()->getABITypeAlignment(ArgTy);