BlockT *getHeader() const { return Blocks.front(); }
LoopT *getParentLoop() const { return ParentLoop; }
- /// contains - Return true if the specified basic block is in this loop
+ /// contains - Return true if the specified loop is contained within in
+ /// this loop.
+ ///
+ bool contains(const LoopT *L) const {
+ if (L == this) return true;
+ if (L == 0) return false;
+ return contains(L->getParentLoop());
+ }
+
+ /// contains - Return true if the specified basic block is in this loop.
///
bool contains(const BlockT *BB) const {
return std::find(block_begin(), block_end(), BB) != block_end();
}
+ /// contains - Return true if the specified instruction is in this loop.
+ ///
+ template<class InstT>
+ bool contains(const InstT *Inst) const {
+ return contains(Inst->getParent());
+ }
+
/// iterator/begin/end - Return the loops contained entirely within this loop.
///
const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
if (newLoop == L)
return false;
// if newLoop is an outer loop of L, this is OK.
- if (newLoop->contains(L->getHeader()))
+ if (newLoop->contains(L))
return false;
}
return true;
Loop *L, LoopInfo *LI, DominatorTree *DT,
Pass *P) {
// If the user is in the loop, use the preinc value.
- if (L->contains(User->getParent())) return false;
+ if (L->contains(User)) return false;
BasicBlock *LatchBlock = L->getLoopLatch();
if (!LatchBlock)
return false; // Non-reducible symbolic expression, bail out.
// Keep things simple. Don't touch loop-variant strides.
- if (!Stride->isLoopInvariant(L) && L->contains(I->getParent()))
+ if (!Stride->isLoopInvariant(L) && L->contains(I))
return false;
SmallPtrSet<Instruction *, 4> UniqueUsers;
if (U.isUseOfPostIncrementedValue())
RetVal = SE->getAddExpr(RetVal, U.getParent()->Stride);
// Evaluate the expression out of the loop, if possible.
- if (!L->contains(U.getUser()->getParent())) {
+ if (!L->contains(U.getUser())) {
const SCEV *ExitVal = SE->getSCEVAtScope(RetVal, L->getParentLoop());
if (ExitVal->isLoopInvariant(L))
RetVal = ExitVal;
/// loop-invariant.
///
bool Loop::isLoopInvariant(Instruction *I) const {
- return !contains(I->getParent());
+ return !contains(I);
}
/// makeLoopInvariant - If the given value is an instruciton inside of the
return false;
// This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
- if (QueryLoop->contains(L->getHeader()))
+ if (QueryLoop->contains(L))
return false;
// This recurrence is variant w.r.t. QueryLoop if any of its operands
// Instructions are never considered invariant in the function body
// (null loop) because they are defined within the "loop".
if (Instruction *I = dyn_cast<Instruction>(V))
- return L && !L->contains(I->getParent());
+ return L && !L->contains(I);
return true;
}
// If this is not an instruction, or if this is an instruction outside of the
// loop, it can't be derived from a loop PHI.
Instruction *I = dyn_cast<Instruction>(V);
- if (I == 0 || !L->contains(I->getParent())) return 0;
+ if (I == 0 || !L->contains(I)) return 0;
if (PHINode *PN = dyn_cast<PHINode>(I)) {
if (L->getHeader() == I->getParent())
// If this is a loop recurrence for a loop that does not contain L, then we
// are dealing with the final value computed by the loop.
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
- if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
+ if (!L || !AddRec->getLoop()->contains(L)) {
// To evaluate this recurrence, we need to know how many times the AddRec
// loop iterates. Compute this now.
const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
// If the loop contains the definition of an operand, then the instruction
// isn't loop invariant.
- if (CurLoop->contains(RegInfo->getVRegDef(Reg)->getParent()))
+ if (CurLoop->contains(RegInfo->getVRegDef(Reg)))
return false;
}
// Check that InVal is defined in the loop.
Instruction *Inst = cast<Instruction>(InVal);
- if (!L->contains(Inst->getParent()))
+ if (!L->contains(Inst))
continue;
// Okay, this instruction has a user outside of the current loop
if (PN->getIncomingValue(i) == &I)
if (CurLoop->contains(PN->getIncomingBlock(i)))
return false;
- } else if (CurLoop->contains(User->getParent())) {
+ } else if (CurLoop->contains(User)) {
return false;
}
}
UI != UE; ++UI) {
// Ignore instructions not in this loop.
Instruction *Use = dyn_cast<Instruction>(*UI);
- if (!Use || !CurLoop->contains(Use->getParent()))
+ if (!Use || !CurLoop->contains(Use))
continue;
if (!isa<LoadInst>(Use) && !isa<StoreInst>(Use)) {
// isUsedOutsideLoop - Returns true iff V is used outside the loop L.
static bool isUsedOutsideLoop(Value *V, Loop *L) {
for(Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
- if (!L->contains(cast<Instruction>(*UI)->getParent()))
+ if (!L->contains(cast<Instruction>(*UI)))
return true;
return false;
}
for (Value::use_iterator UI = PHV->use_begin(), E = PHV->use_end();
UI != E; ++UI)
if (PHINode *U = dyn_cast<PHINode>(*UI))
- if (LP->contains(U->getParent())) {
+ if (LP->contains(U)) {
NewV = U;
break;
}
// If this is a use outside the loop (which means after, since it is based
// on a loop indvar) we use the post-incremented value, so that we don't
// artificially make the preinc value live out the bottom of the loop.
- if (!isUseOfPostIncrementedValue && L->contains(Inst->getParent())) {
+ if (!isUseOfPostIncrementedValue && L->contains(Inst)) {
if (NewBasePt && isa<PHINode>(OperandValToReplace)) {
InsertPt = NewBasePt;
++InsertPt;
// that case(?).
Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
BasicBlock *PHIPred = PN->getIncomingBlock(i);
- if (L->contains(OldLoc->getParent())) {
+ if (L->contains(OldLoc)) {
// If this is a critical edge, split the edge so that we do not insert
// the code on all predecessor/successor paths. We do this unless this
// is the canonical backedge for this loop, as this can make some
// is outside of the loop, and PredTI is in the loop, we want to
// move the block to be immediately before the PHI block, not
// immediately after PredTI.
- if (L->contains(PHIPred) && !L->contains(PN->getParent()))
+ if (L->contains(PHIPred) && !L->contains(PN))
NewBB->moveBefore(PN->getParent());
// Splitting the edge can reduce the number of PHI entries we have.
Value *&Code = InsertedCode[PHIPred];
if (!Code) {
// Insert the code into the end of the predecessor block.
- Instruction *InsertPt = (L->contains(OldLoc->getParent())) ?
+ Instruction *InsertPt = (L->contains(OldLoc)) ?
PHIPred->getTerminator() :
OldLoc->getParent()->getTerminator();
Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(),
// it is clearly shared across all the IV's. If the use is outside the loop
// (which means after it) we don't want to factor anything *into* the loop,
// so just use 0 as the base.
- if (L->contains(Uses[0].Inst->getParent()))
+ if (L->contains(Uses[0].Inst))
std::swap(Result, Uses[0].Base);
return Result;
}
// after the loop to affect base computation of values *inside* the loop,
// because we can always add their offsets to the result IV after the loop
// is done, ensuring we get good code inside the loop.
- if (!L->contains(Uses[i].Inst->getParent()))
+ if (!L->contains(Uses[i].Inst))
continue;
NumUsesInsideLoop++;
// and a Result in the same instruction (for example because it would
// require too many registers). Check this.
for (unsigned i=0; i<NumUses; ++i) {
- if (!L->contains(Uses[i].Inst->getParent()))
+ if (!L->contains(Uses[i].Inst))
continue;
// We know this is an addressing mode use; if there are any uses that
// are not, FreeResult would be Zero.
// the final IV value coming into those uses does. Instead of trying to
// remove the pieces of the common base, which might not be there,
// subtract off the base to compensate for this.
- if (!L->contains(Uses[i].Inst->getParent())) {
+ if (!L->contains(Uses[i].Inst)) {
Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result);
continue;
}
// If the user is not in the current loop, this means it is using the exit
// value of the IV. Do not put anything in the base, make sure it's all in
// the immediate field to allow as much factoring as possible.
- if (!L->contains(UsersToProcess[i].Inst->getParent())) {
+ if (!L->contains(UsersToProcess[i].Inst)) {
UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm,
UsersToProcess[i].Base);
UsersToProcess[i].Base =
const Loop *L) {
if (UsersToProcess.size() == 1 &&
UsersToProcess[0].isUseOfPostIncrementedValue &&
- L->contains(UsersToProcess[0].Inst->getParent()))
+ L->contains(UsersToProcess[0].Inst))
return UsersToProcess[0].Inst;
return L->getLoopLatch()->getTerminator();
}
// loop to ensure it is dominated by the increment. In case it's the
// only use of the iv, the increment instruction is already before the
// use.
- if (L->contains(User.Inst->getParent()) && User.Inst != IVIncInsertPt)
+ if (L->contains(User.Inst) && User.Inst != IVIncInsertPt)
User.Inst->moveBefore(IVIncInsertPt);
}
// common base, and are adding it back here. Use the same expression
// as before, rather than CommonBaseV, so DAGCombiner will zap it.
if (!CommonExprs->isZero()) {
- if (L->contains(User.Inst->getParent()))
+ if (L->contains(User.Inst))
RewriteExpr = SE->getAddExpr(RewriteExpr,
SE->getUnknown(CommonBaseV));
else
static bool ShouldCountToZero(ICmpInst *Cond, IVStrideUse* &CondUse,
ScalarEvolution *SE, Loop *L,
const TargetLowering *TLI = 0) {
- if (!L->contains(Cond->getParent()))
+ if (!L->contains(Cond))
return false;
if (!isa<SCEVConstant>(CondUse->getOffset()))
for (unsigned i = 0, e = Users.size(); i != e; ++i)
if (Instruction *U = cast<Instruction>(Users[i])) {
- if (!L->contains(U->getParent()))
+ if (!L->contains(U))
continue;
U->replaceUsesOfWith(LIC, Replacement);
Worklist.push_back(U);
// can. This case occurs when we unswitch switch statements.
for (unsigned i = 0, e = Users.size(); i != e; ++i)
if (Instruction *U = cast<Instruction>(Users[i])) {
- if (!L->contains(U->getParent()))
+ if (!L->contains(U))
continue;
Worklist.push_back(U);
if (TIL == DestLoop) {
// Both in the same loop, the NewBB joins loop.
DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
- } else if (TIL->contains(DestLoop->getHeader())) {
+ } else if (TIL->contains(DestLoop)) {
// Edge from an outer loop to an inner loop. Add to the outer loop.
TIL->addBasicBlockToLoop(NewBB, LI->getBase());
- } else if (DestLoop->contains(TIL->getHeader())) {
+ } else if (DestLoop->contains(TIL)) {
// Edge from an inner loop to an outer loop. Add to the outer loop.
DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
} else {
OrigPHINode.push_back(PN);
if (Instruction *I =
dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
- if (L->contains(I->getParent()))
+ if (L->contains(I))
LastValueMap[I] = I;
}
PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]);
Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
if (Instruction *InValI = dyn_cast<Instruction>(InVal))
- if (It > 1 && L->contains(InValI->getParent()))
+ if (It > 1 && L->contains(InValI))
InVal = LastValueMap[InValI];
ValueMap[OrigPHINode[i]] = InVal;
New->getInstList().erase(NewPHI);
UI != UE;) {
Instruction *UseInst = cast<Instruction>(*UI);
++UI;
- if (isa<PHINode>(UseInst) && !L->contains(UseInst->getParent())) {
+ if (isa<PHINode>(UseInst) && !L->contains(UseInst)) {
PHINode *phi = cast<PHINode>(UseInst);
Value *Incoming = phi->getIncomingValueForBlock(*BB);
phi->addIncoming(Incoming, New);
// If this value was defined in the loop, take the value defined by the
// last iteration of the loop.
if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
- if (L->contains(InValI->getParent()))
+ if (L->contains(InValI))
InVal = LastValueMap[InVal];
}
PN->addIncoming(InVal, LastIterationBB);