void LiveIntervals::computeNumbering() {
Index2MiMap OldI2MI = i2miMap_;
+ std::vector<IdxMBBPair> OldI2MBB = Idx2MBBMap;
Idx2MBBMap.clear();
MBB2IdxMap.clear();
MBB != E; ++MBB) {
unsigned StartIdx = MIIndex;
+ // Insert an empty slot at the beginning of each block.
+ MIIndex += InstrSlots::NUM;
+ i2miMap_.push_back(0);
+
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
I != E; ++I) {
bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
assert(inserted && "multiple MachineInstr -> index mappings");
i2miMap_.push_back(I);
MIIndex += InstrSlots::NUM;
- }
-
- if (StartIdx == MIIndex) {
- // Empty MBB
+
+ // Insert an empty slot after every instruction.
MIIndex += InstrSlots::NUM;
i2miMap_.push_back(0);
}
+
// Set the MBB2IdxMap entry for this MBB.
MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1);
Idx2MBBMap.push_back(std::make_pair(StartIdx, MBB));
std::sort(Idx2MBBMap.begin(), Idx2MBBMap.end(), Idx2MBBCompare());
if (!OldI2MI.empty())
- for (iterator I = begin(), E = end(); I != E; ++I)
- for (LiveInterval::iterator LI = I->second.begin(), LE = I->second.end();
- LI != LE; ++LI) {
+ for (iterator OI = begin(), OE = end(); OI != OE; ++OI)
+ for (LiveInterval::iterator LI = OI->second.begin(),
+ LE = OI->second.end(); LI != LE; ++LI) {
// Remap the start index of the live range to the corresponding new
// number, or our best guess at what it _should_ correspond to if the
// original instruction has been erased. This is either the following
// instruction or its predecessor.
+ unsigned index = LI->start / InstrSlots::NUM;
unsigned offset = LI->start % InstrSlots::NUM;
- if (OldI2MI[LI->start / InstrSlots::NUM])
- LI->start = mi2iMap_[OldI2MI[LI->start / InstrSlots::NUM]] + offset;
- else {
- unsigned i = 0;
- MachineInstr* newInstr = 0;
- do {
- newInstr = OldI2MI[LI->start / InstrSlots::NUM + i];
- i++;
- } while (!newInstr);
+ if (offset == InstrSlots::LOAD) {
+ std::vector<IdxMBBPair>::const_iterator I =
+ std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), index);
+ // Take the pair containing the index
+ std::vector<IdxMBBPair>::const_iterator J =
+ ((I != OldI2MBB.end() && I->first > index) ||
+ (I == OldI2MBB.end() && OldI2MBB.size()>0)) ? (I-1): I;
- if (mi2iMap_[newInstr] ==
- MBB2IdxMap[newInstr->getParent()->getNumber()].first)
- LI->start = mi2iMap_[newInstr];
- else
- LI->start = mi2iMap_[newInstr] - InstrSlots::NUM + offset;
+ LI->start = getMBBStartIdx(J->second);
+ } else {
+ LI->start = mi2iMap_[OldI2MI[index]] + offset;
}
// Remap the ending index in the same way that we remapped the start,
// except for the final step where we always map to the immediately
// following instruction.
- if (LI->end / InstrSlots::NUM < OldI2MI.size()) {
- offset = LI->end % InstrSlots::NUM;
- if (OldI2MI[LI->end / InstrSlots::NUM])
- LI->end = mi2iMap_[OldI2MI[LI->end / InstrSlots::NUM]] + offset;
- else {
- unsigned i = 0;
- MachineInstr* newInstr = 0;
- do {
- newInstr = OldI2MI[LI->end / InstrSlots::NUM + i];
- i++;
- } while (!newInstr);
-
- LI->end = mi2iMap_[newInstr];
- }
+ index = LI->end / InstrSlots::NUM;
+ offset = LI->end % InstrSlots::NUM;
+ if (offset == InstrSlots::STORE) {
+ std::vector<IdxMBBPair>::const_iterator I =
+ std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), index);
+ // Take the pair containing the index
+ std::vector<IdxMBBPair>::const_iterator J =
+ ((I != OldI2MBB.end() && I->first > index) ||
+ (I == OldI2MBB.end() && OldI2MBB.size()>0)) ? (I-1): I;
+
+ LI->start = getMBBEndIdx(J->second);
} else {
- LI->end = i2miMap_.size() * InstrSlots::NUM;
+ LI->end = mi2iMap_[OldI2MI[index]] + offset;
}
// Remap the VNInfo def index, which works the same as the
// start indices above.
VNInfo* vni = LI->valno;
+ index = vni->def / InstrSlots::NUM;
offset = vni->def % InstrSlots::NUM;
- if (OldI2MI[vni->def / InstrSlots::NUM])
- vni->def = mi2iMap_[OldI2MI[vni->def / InstrSlots::NUM]] + offset;
- else {
- unsigned i = 0;
- MachineInstr* newInstr = 0;
- do {
- newInstr = OldI2MI[vni->def / InstrSlots::NUM + i];
- i++;
- } while (!newInstr);
+ if (offset == InstrSlots::LOAD) {
+ std::vector<IdxMBBPair>::const_iterator I =
+ std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), index);
+ // Take the pair containing the index
+ std::vector<IdxMBBPair>::const_iterator J =
+ ((I != OldI2MBB.end() && I->first > index) ||
+ (I == OldI2MBB.end() && OldI2MBB.size()>0)) ? (I-1): I;
- if (mi2iMap_[newInstr] ==
- MBB2IdxMap[newInstr->getParent()->getNumber()].first)
- vni->def = mi2iMap_[newInstr];
- else
- vni->def = mi2iMap_[newInstr] - InstrSlots::NUM + offset;
+ vni->def = getMBBStartIdx(J->second);
+
+ } else {
+ vni->def = mi2iMap_[OldI2MI[index]] + offset;
}
// Remap the VNInfo kill indices, which works the same as
// the end indices above.
for (size_t i = 0; i < vni->kills.size(); ++i) {
+ index = vni->kills[i] / InstrSlots::NUM;
offset = vni->kills[i] % InstrSlots::NUM;
- if (OldI2MI[vni->kills[i] / InstrSlots::NUM])
- vni->kills[i] = mi2iMap_[OldI2MI[vni->kills[i] / InstrSlots::NUM]] +
- offset;
- else {
- unsigned e = 0;
- MachineInstr* newInstr = 0;
- do {
- newInstr = OldI2MI[vni->kills[i] / InstrSlots::NUM + e];
- e++;
- } while (!newInstr);
-
- vni->kills[i] = mi2iMap_[newInstr];
+ if (OldI2MI[vni->kills[i] / InstrSlots::NUM]) {
+ std::vector<IdxMBBPair>::const_iterator I =
+ std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), index);
+ // Take the pair containing the index
+ std::vector<IdxMBBPair>::const_iterator J =
+ ((I != OldI2MBB.end() && I->first > index) ||
+ (I == OldI2MBB.end() && OldI2MBB.size()>0)) ? (I-1): I;
+
+ vni->kills[i] = getMBBEndIdx(J->second);
+ } else {
+ vni->kills[i] = mi2iMap_[OldI2MI[index]] + offset;
}
}
}
// of the defining block, potentially live across some blocks, then is
// live into some number of blocks, but gets killed. Start by adding a
// range that goes from this definition to the end of the defining block.
- LiveRange NewLR(defIndex,
- getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
- ValNo);
+ LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
DOUT << " +" << NewLR;
interval.addRange(NewLR);
CopyMI = mi;
ValNo = interval.getNextValue(defIndex, CopyMI, VNInfoAllocator);
- unsigned killIndex = getInstructionIndex(&mbb->back()) + InstrSlots::NUM;
+ unsigned killIndex = getMBBEndIdx(mbb) + 1;
LiveRange LR(defIndex, killIndex, ValNo);
interval.addRange(LR);
interval.addKill(ValNo, killIndex);
// If it is not dead on definition, it must be killed by a
// subsequent instruction. Hence its interval is:
// [defSlot(def), useSlot(kill)+1)
+ baseIndex += InstrSlots::NUM;
while (++mi != MBB->end()) {
- baseIndex += InstrSlots::NUM;
+ while (getInstructionFromIndex(baseIndex) == 0)
+ baseIndex += InstrSlots::NUM;
if (mi->killsRegister(interval.reg, tri_)) {
DOUT << " killed";
end = getUseIndex(baseIndex) + 1;
end = getDefIndex(start) + 1;
goto exit;
}
+
+ baseIndex += InstrSlots::NUM;
}
// The only case we should have a dead physreg here without a killing or
}
baseIndex += InstrSlots::NUM;
+ while (getInstructionFromIndex(baseIndex) == 0)
+ baseIndex += InstrSlots::NUM;
++mi;
}
<< ((Value*)mf_->getFunction())->getName() << '\n';
// Track the index of the current machine instr.
unsigned MIIndex = 0;
+
+ // Skip over empty initial indices.
+ while (MIIndex / InstrSlots::NUM < i2miMap_.size() &&
+ getInstructionFromIndex(MIIndex) == 0)
+ MIIndex += InstrSlots::NUM;
+
for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
MBBI != E; ++MBBI) {
MachineBasicBlock *MBB = MBBI;
}
MIIndex += InstrSlots::NUM;
+
+ // Skip over empty indices.
+ while (MIIndex / InstrSlots::NUM < i2miMap_.size() &&
+ getInstructionFromIndex(MIIndex) == 0)
+ MIIndex += InstrSlots::NUM;
}
-
- if (MBB->begin() == miEnd) MIIndex += InstrSlots::NUM; // Empty MBB
}
}