//top block of cfg
//===----------------------------------------------------------------------===//
-#include "Graph.h"
+#include "llvm/Transforms/Instrumentation/Graph.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iOther.h"
#include "llvm/iOperators.h"
#include "llvm/iPHINode.h"
+#include "llvm/Module.h"
+#include "llvm/SymbolTable.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Constants.h"//llvm/ConstantVals.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/Function.h"
+#include <string.h>
+#include <stdio.h>
+#include <iostream>
+
+#define INSERT_LOAD_COUNT
+#define INSERT_STORE
using std::vector;
+
+void getTriggerCode(Module *M, BasicBlock *BB, int MethNo, Value *pathNo,
+ Value *cnt){
+ // return;
+ //cerr<<"In trigger code"<<endl;
+ static int i=-1;
+ i++;
+ char gstr[100];
+ sprintf(gstr,"globalVar%d",i);
+ std::string globalVarName=gstr;
+ SymbolTable *ST = M->getSymbolTable();
+ vector<const Type*> args;
+ args.push_back(PointerType::get(Type::SByteTy));
+ args.push_back(Type::IntTy);
+ args.push_back(Type::IntTy);
+ args.push_back(Type::IntTy);
+ const FunctionType *MTy =
+ FunctionType::get(Type::VoidTy, args, false);
+
+ // Function *triggerMeth = M->getOrInsertFunction("trigger", MTy);
+ Function *trigMeth = M->getOrInsertFunction("trigger", MTy);
+ assert(trigMeth && "trigger method could not be inserted!");
+ //if (Value *triggerMeth = ST->lookup(PointerType::get(MTy), "trigger")) {
+ //Function *trigMeth = cast<Function>(triggerMeth);
+ vector<Value *> trargs;
+
+ //pred_iterator piter=BB->pred_begin();
+ std::string predName=BB->getName();
+ Constant *bbName=ConstantArray::get(predName);//BB->getName());
+ GlobalVariable *gbl=new GlobalVariable(ArrayType::get(Type::SByteTy,
+ predName.size()+1),
+ true, true, bbName, gstr);
+ M->getGlobalList().push_back(gbl);
+
+ vector<Value *> elargs;
+ elargs.push_back(ConstantUInt::get(Type::UIntTy, 0));
+ elargs.push_back(ConstantUInt::get(Type::UIntTy, 0));
+
+ Instruction *getElmntInst=new GetElementPtrInst(gbl,elargs,"elmntInst");
+
+ //trargs.push_back(ConstantArray::get(BB->getName()));
+ trargs.push_back(getElmntInst);
+ trargs.push_back(ConstantSInt::get(Type::IntTy,MethNo));
+
+ //trargs.push_back(ConstantSInt::get(Type::IntTy,-1));//erase this
+ trargs.push_back(pathNo);
+ trargs.push_back(cnt);
+ Instruction *callInst=new CallInst(trigMeth,trargs);
+
+ BasicBlock::InstListType& instList=BB->getInstList();
+ BasicBlock::iterator here=instList.begin();
+ here = ++instList.insert(here, getElmntInst);
+ instList.insert(here,callInst);
+ //}
+ //else{
+ //insert trigger method
+
+ //assert(0&&"No method trigger");
+ //}
+}
+
+
//get the code to be inserted on the edge
//This is determined from cond (1-6)
void getEdgeCode::getCode(Instruction *rInst,
Instruction *countInst,
Function *M,
- BasicBlock *BB){
+ BasicBlock *BB, int numPaths, int MethNo){
BasicBlock::InstListType& instList=BB->getInstList();
BasicBlock::iterator here=instList.begin();
switch(cond){
case 1:{
Value *val=ConstantSInt::get(Type::IntTy,inc);
+#ifdef INSERT_STORE
Instruction *stInst=new StoreInst(val, rInst);
- here=++instList.insert(here,stInst);
+ here = ++instList.insert(here,stInst);
+#endif
break;
}
//case: r=0 to be inserted
case 2:{
Value *val=ConstantSInt::get(Type::IntTy,0);
+#ifdef INSERT_STORE
Instruction *stInst=new StoreInst(val, rInst);
- here=++instList.insert(here,stInst);
+ here = ++instList.insert(here,stInst);
+#endif
break;
}
//r+=k
case 3:{
+
Instruction *ldInst=new LoadInst(rInst, "ti1");
Value *val=ConstantSInt::get(Type::IntTy,inc);
Instruction *addIn=BinaryOperator::
create(Instruction::Add, ldInst, val,"ti2");
-
+#ifdef INSERT_STORE
Instruction *stInst=new StoreInst(addIn, rInst);
- here=++instList.insert(here,ldInst);
- here=++instList.insert(here,addIn);
- here=++instList.insert(here,stInst);
+#endif
+ here = ++instList.insert(here,ldInst);
+ here = ++instList.insert(here,addIn);
+#ifdef INSERT_STORE
+ here = ++instList.insert(here,stInst);
+#endif
break;
}
//count[inc]++
case 4:{
+
+ assert(inc>=0 && inc<=numPaths && "inc out of bound!");
+
Instruction *ldInst=new
LoadInst(countInst,vector<Value *>
(1,ConstantUInt::get(Type::UIntTy, inc)), "ti1");
Instruction *addIn=BinaryOperator::
create(Instruction::Add, ldInst, val,"ti2");
+ //insert trigger
+ getTriggerCode(M->getParent(), BB, MethNo,
+ ConstantSInt::get(Type::IntTy,inc), addIn);
+ here=instList.begin();
+ //end trigger code
+
assert(inc>=0 && "IT MUST BE POSITIVE NOW");
+#ifdef INSERT_STORE
Instruction *stInst=new
StoreInst(addIn, countInst, vector<Value *>
(1, ConstantUInt::get(Type::UIntTy,inc)));
-
- here=++instList.insert(here,ldInst);
- here=++instList.insert(here,addIn);
- here=++instList.insert(here,stInst);
+#endif
+ here = ++instList.insert(here,ldInst);
+ here = ++instList.insert(here,addIn);
+#ifdef INSERT_STORE
+ here = ++instList.insert(here,stInst);
+#endif
break;
}
//case: count[r+inc]++
case 5:{
+
//ti1=inc+r
Instruction *ldIndex=new LoadInst(rInst, "ti1");
Value *val=ConstantSInt::get(Type::IntTy,inc);
Instruction *addIndex=BinaryOperator::
create(Instruction::Add, ldIndex, val,"ti2");
-
+ //erase following 1 line
+ //Value *valtemp=ConstantSInt::get(Type::IntTy,999);
//now load count[addIndex]
+
Instruction *castInst=new CastInst(addIndex,
Type::UIntTy,"ctin");
Instruction *ldInst=new
LoadInst(countInst, vector<Value *>(1,castInst), "ti3");
Value *cons=ConstantSInt::get(Type::IntTy,1);
-
//count[addIndex]++
Instruction *addIn=BinaryOperator::
create(Instruction::Add, ldInst, cons,"ti4");
+
+ //insert trigger
+ getTriggerCode(M->getParent(), BB, MethNo, addIndex, addIn);
+ here=instList.begin();
+ //end trigger code
+
+#ifdef INSERT_STORE
+ ///*
Instruction *stInst=new
StoreInst(addIn, countInst,
vector<Value *>(1,castInst));
-
- here=++instList.insert(here,ldIndex);
- here=++instList.insert(here,addIndex);
- here=++instList.insert(here,castInst);
- here=++instList.insert(here,ldInst);
- here=++instList.insert(here,addIn);
- here=++instList.insert(here,stInst);
+ //*/
+#endif
+ here = ++instList.insert(here,ldIndex);
+ here = ++instList.insert(here,addIndex);
+ here = ++instList.insert(here,castInst);
+ here = ++instList.insert(here,ldInst);
+ here = ++instList.insert(here,addIn);
+#ifdef INSERT_STORE
+ here = ++instList.insert(here,stInst);
+#endif
break;
}
//case: count[r]+
case 6:{
+
//ti1=inc+r
Instruction *ldIndex=new LoadInst(rInst, "ti1");
-
+
//now load count[addIndex]
Instruction *castInst2=new
CastInst(ldIndex, Type::UIntTy,"ctin");
//count[addIndex]++
Instruction *addIn=BinaryOperator::
create(Instruction::Add, ldInst, cons,"ti3");
+
+ //insert trigger
+ getTriggerCode(M->getParent(), BB, MethNo, ldIndex, addIn);
+ here=instList.begin();
+ //end trigger code
+#ifdef INSERT_STORE
Instruction *stInst=new
StoreInst(addIn, countInst, vector<Value *>(1,castInst2));
-
- here=++instList.insert(here,ldIndex);
- here=++instList.insert(here,castInst2);
- here=++instList.insert(here,ldInst);
- here=++instList.insert(here,addIn);
- here=++instList.insert(here,stInst);
+#endif
+ here = ++instList.insert(here,ldIndex);
+ here = ++instList.insert(here,castInst2);
+ here = instList.insert(here,ldInst);
+ here = instList.insert(here,addIn);
+#ifdef INSERT_STORE
+ here = instList.insert(here,stInst);
+#endif
break;
}
}
//now check for cdIn and cdOut
//first put cdOut
- if(cdOut!=NULL){
- cdOut->getCode(rInst, countInst, M, BB);
- }
if(cdIn!=NULL){
- cdIn->getCode(rInst, countInst, M, BB);
+ cdIn->getCode(rInst, countInst, M, BB, numPaths, MethNo);
+ }
+ if(cdOut!=NULL){
+ cdOut->getCode(rInst, countInst, M, BB, numPaths, MethNo);
}
-
}
here=++front->getInstList().insert(here,countVar);
//Initialize Count[...] with 0
+
for(int i=0;i<k; i++){
Instruction *stInstrC=new
StoreInst(ConstantInt::get(Type::IntTy, 0),
(1,ConstantUInt::get(Type::UIntTy, i)));
here=++front->getInstList().insert(here,stInstrC);
}
-
- here=++front->getInstList().insert(here,stInstr);
+
+ here = ++front->getInstList().insert(here,stInstr);
}
void insertBB(Edge ed,
getEdgeCode *edgeCode,
Instruction *rInst,
- Instruction *countInst){
-
+ Instruction *countInst,
+ int numPaths, int Methno){
+ static int i=-1;
+ i++;
BasicBlock* BB1=ed.getFirst()->getElement();
BasicBlock* BB2=ed.getSecond()->getElement();
- DEBUG(cerr << "Edges with codes ######################\n";
- cerr << BB1->getName() << "->" << BB2->getName() << "\n";
- cerr << "########################\n");
+#ifdef DEBUG_PATH_PROFILES
+ //debugging info
+ cerr<<"Edges with codes ######################\n";
+ cerr<<BB1->getName()<<"->"<<BB2->getName()<<"\n";
+ cerr<<"########################\n";
+#endif
+
+ char counterstr[100];
+ sprintf(counterstr,"counter%d",i);
+ std::string ctr=counterstr;
//We need to insert a BB between BB1 and BB2
TerminatorInst *TI=BB1->getTerminator();
- BasicBlock *newBB=new BasicBlock("counter", BB1->getParent());
+ BasicBlock *newBB=new BasicBlock(ctr, BB1->getParent());
//get code for the new BB
- edgeCode->getCode(rInst, countInst, BB1->getParent(), newBB);
+ edgeCode->getCode(rInst, countInst, BB1->getParent(), newBB, numPaths, Methno);
//Is terminator a branch instruction?
//then we need to change branch destinations to include new BB
newBB->getInstList().push_back(newBI2);
}
else{
- Value *cond=BI->getCondition();
- BasicBlock *fB, *tB;
-
- if (BI->getSuccessor(0) == BB2){
- tB=newBB;
- fB=BI->getSuccessor(1);
- } else {
- fB=newBB;
- tB=BI->getSuccessor(0);
- }
-
- BB1->getInstList().pop_back();
- BB1->getInstList().push_back(new BranchInst(tB,fB,cond));
- newBB->getInstList().push_back(new BranchInst(BB2));
+ if(BI->getSuccessor(0)==BB2)
+ BI->setSuccessor(0, newBB);
+
+ if(BI->getSuccessor(1)==BB2)
+ BI->setSuccessor(1, newBB);
+
+ Instruction *newBI2=new BranchInst(BB2);
+ newBB->getInstList().push_back(newBI2);
}
- //now iterate over BB2, and set its Phi nodes right
+ //get code for the new BB
+ //now iterate over BB2, and set its Phi nodes right
for(BasicBlock::iterator BB2Inst = BB2->begin(), BBend = BB2->end();
BB2Inst != BBend; ++BB2Inst){
if(PHINode *phiInst=dyn_cast<PHINode>(&*BB2Inst)){
- DEBUG(cerr<<"YYYYYYYYYYYYYYYYY\n");
-
int bbIndex=phiInst->getBasicBlockIndex(BB1);
- if(bbIndex>=0)
- phiInst->setIncomingBlock(bbIndex, newBB);
+ assert(bbIndex>=0);
+ phiInst->setIncomingBlock(bbIndex, newBB);
}
}
}
+
//
//===----------------------------------------------------------------------===//
-#include "Graph.h"
+#include "llvm/Transforms/Instrumentation/Graph.h"
#include "llvm/BasicBlock.h"
#include <algorithm>
#include <iostream>
-using std::list;
-using std::set;
+//using std::list;
+//using std::set;
using std::map;
using std::vector;
using std::cerr;
-static const graphListElement *findNodeInList(const Graph::nodeList &NL,
+const graphListElement *findNodeInList(const Graph::nodeList &NL,
Node *N) {
for(Graph::nodeList::const_iterator NI = NL.begin(), NE=NL.end(); NI != NE;
++NI)
return 0;
}
-static graphListElement *findNodeInList(Graph::nodeList &NL, Node *N) {
+graphListElement *findNodeInList(Graph::nodeList &NL, Node *N) {
for(Graph::nodeList::iterator NI = NL.begin(), NE=NL.end(); NI != NE; ++NI)
if (*NI->element== *N)
return &*NI;
}
//graph constructor with root and exit specified
-Graph::Graph(std::set<Node*> n, std::set<Edge> e,
+Graph::Graph(std::vector<Node*> n, std::vector<Edge> e,
Node *rt, Node *lt){
strt=rt;
ext=lt;
- for(set<Node* >::iterator x=n.begin(), en=n.end(); x!=en; ++x)
- nodes[*x] = list<graphListElement>();
+ for(vector<Node* >::iterator x=n.begin(), en=n.end(); x!=en; ++x)
+ //nodes[*x] = list<graphListElement>();
+ nodes[*x] = vector<graphListElement>();
- for(set<Edge >::iterator x=e.begin(), en=e.end(); x!=en; ++x){
+ for(vector<Edge >::iterator x=e.begin(), en=e.end(); x!=en; ++x){
Edge ee=*x;
int w=ee.getWeight();
- nodes[ee.getFirst()].push_front(graphListElement(ee.getSecond(),w));
+ //nodes[ee.getFirst()].push_front(graphListElement(ee.getSecond(),w, ee.getRandId()));
+ nodes[ee.getFirst()].push_back(graphListElement(ee.getSecond(),w, ee.getRandId()));
}
}
//add a node
void Graph::addNode(Node *nd){
- list<Node *> lt=getAllNodes();
+ vector<Node *> lt=getAllNodes();
- for(list<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE;++LI){
+ for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE;++LI){
if(**LI==*nd)
return;
}
-
- nodes[nd] = list<graphListElement>();
+ //chng
+ nodes[nd] =vector<graphListElement>(); //list<graphListElement>();
}
//add an edge
if(findNodeInList(nodes[ed.getFirst()], nd2))
return;
- ndList.push_front(graphListElement(nd2,w));
+ //ndList.push_front(graphListElement(nd2,w, ed.getRandId()));
+ ndList.push_back(graphListElement(nd2,w, ed.getRandId()));//chng
+
+ //sort(ndList.begin(), ndList.end(), NodeListSort());
}
//add an edge EVEN IF such an edge already exists
//which does happen when we add dummy edges
//to the graph, for compensating for back-edges
void Graph::addEdgeForce(Edge ed){
- nodes[ed.getFirst()].push_front(graphListElement(ed.getSecond(),
- ed.getWeight()));
+ //nodes[ed.getFirst()].push_front(graphListElement(ed.getSecond(),
+ //ed.getWeight(), ed.getRandId()));
+ nodes[ed.getFirst()].push_back
+ (graphListElement(ed.getSecond(), ed.getWeight(), ed.getRandId()));
+
+ //sort(nodes[ed.getFirst()].begin(), nodes[ed.getFirst()].end(), NodeListSort());
}
//remove an edge
}
}
+//remove an edge with a given wt
+//Note that it removes just one edge,
+//the first edge that is encountered
+void Graph::removeEdgeWithWt(Edge ed){
+ nodeList &ndList = nodes[ed.getFirst()];
+ Node &nd2 = *ed.getSecond();
+
+ for(nodeList::iterator NI=ndList.begin(), NE=ndList.end(); NI!=NE ;++NI) {
+ if(*NI->element == nd2 && NI->weight==ed.getWeight()) {
+ ndList.erase(NI);
+ break;
+ }
+ }
+}
+
//set the weight of an edge
void Graph::setWeight(Edge ed){
graphListElement *El = findNodeInList(nodes[ed.getFirst()], ed.getSecond());
//get the list of successor nodes
-list<Node *> Graph::getSuccNodes(Node *nd) const {
+vector<Node *> Graph::getSuccNodes(Node *nd) const {
nodeMapTy::const_iterator nli = nodes.find(nd);
assert(nli != nodes.end() && "Node must be in nodes map");
const nodeList &nl = nli->second;
- list<Node *> lt;
+ vector<Node *> lt;
for(nodeList::const_iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI)
lt.push_back(NI->element);
return lt;
}
+//get the number of outgoing edges
+int Graph::getNumberOfOutgoingEdges(Node *nd) const {
+ nodeMapTy::const_iterator nli = nodes.find(nd);
+ assert(nli != nodes.end() && "Node must be in nodes map");
+ const nodeList &nl = nli->second;
+
+ int count=0;
+ for(nodeList::const_iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI)
+ count++;
+
+ return count;
+}
+
//get the list of predecessor nodes
-list<Node *> Graph::getPredNodes(Node *nd) const{
- list<Node *> lt;
+vector<Node *> Graph::getPredNodes(Node *nd) const{
+ vector<Node *> lt;
for(nodeMapTy::const_iterator EI=nodes.begin(), EE=nodes.end(); EI!=EE ;++EI){
Node *lnode=EI->first;
const nodeList &nl = getNodeList(lnode);
return lt;
}
+//get the number of predecessor nodes
+int Graph::getNumberOfIncomingEdges(Node *nd) const{
+ int count=0;
+ for(nodeMapTy::const_iterator EI=nodes.begin(), EE=nodes.end(); EI!=EE ;++EI){
+ Node *lnode=EI->first;
+ const nodeList &nl = getNodeList(lnode);
+ for(Graph::nodeList::const_iterator NI = nl.begin(), NE=nl.end(); NI != NE;
+ ++NI)
+ if (*NI->element== *nd)
+ count++;
+ }
+ return count;
+}
+
//get the list of all the vertices in graph
-list<Node *> Graph::getAllNodes() const{
- list<Node *> lt;
+vector<Node *> Graph::getAllNodes() const{
+ vector<Node *> lt;
for(nodeMapTy::const_iterator x=nodes.begin(), en=nodes.end(); x != en; ++x)
lt.push_back(x->first);
return lt;
}
+//get the list of all the vertices in graph
+vector<Node *> Graph::getAllNodes(){
+ vector<Node *> lt;
+ for(nodeMapTy::const_iterator x=nodes.begin(), en=nodes.end(); x != en; ++x)
+ lt.push_back(x->first);
+
+ return lt;
+}
//class to compare two nodes in graph
//based on their wt: this is used in
Graph *st=new Graph();//max spanning tree, undirected edges
int inf=9999999;//largest key
- list<Node *> lt = getAllNodes();
+ vector<Node *> lt = getAllNodes();
//initially put all vertices in vector vt
//assign wt(root)=0
//initialize: wt(root)=0, wt(others)=infinity
//parent(root)=NULL, parent(others) not defined (but not null)
- for(list<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
+ for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
Node *thisNode=*LI;
if(*thisNode == *getRoot()){
thisNode->setWeight(0);
//print the graph (for debugging)
void Graph::printGraph(){
- list<Node *> lt=getAllNodes();
+ vector<Node *> lt=getAllNodes();
cerr<<"Graph---------------------\n";
- for(list<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
+ for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
cerr<<((*LI)->getElement())->getName()<<"->";
Graph::nodeList nl=getNodeList(*LI);
for(Graph::nodeList::iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI){
//get a list of nodes in the graph
//in r-topological sorted order
//note that we assumed graph to be connected
-list<Node *> Graph::reverseTopologicalSort() const{
- list <Node *> toReturn;
- list<Node *> lt=getAllNodes();
- for(list<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
+vector<Node *> Graph::reverseTopologicalSort() const{
+ vector <Node *> toReturn;
+ vector<Node *> lt=getAllNodes();
+ for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
if((*LI)->getWeight()!=GREY && (*LI)->getWeight()!=BLACK)
DFS_Visit(*LI, toReturn);
}
//a private method for doing DFS traversal of graph
//this is used in determining the reverse topological sort
//of the graph
-void Graph::DFS_Visit(Node *nd, list<Node *> &toReturn) const {
+void Graph::DFS_Visit(Node *nd, vector<Node *> &toReturn) const {
nd->setWeight(GREY);
- list<Node *> lt=getSuccNodes(nd);
- for(list<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
+ vector<Node *> lt=getSuccNodes(nd);
+ for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
if((*LI)->getWeight()!=GREY && (*LI)->getWeight()!=BLACK)
DFS_Visit(*LI, toReturn);
}
//This is done by adding an edge
//v->u for all existing edges u->v
void Graph::makeUnDirectional(){
- list<Node* > allNodes=getAllNodes();
- for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
+ vector<Node* > allNodes=getAllNodes();
+ for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI) {
nodeList nl=getNodeList(*NI);
for(nodeList::iterator NLI=nl.begin(), NLE=nl.end(); NLI!=NLE; ++NLI){
//this way, max-spanning tree could be obtained
//usin min-spanning tree, and vice versa
void Graph::reverseWts(){
- list<Node *> allNodes=getAllNodes();
- for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
+ vector<Node *> allNodes=getAllNodes();
+ for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI) {
nodeList node_list=getNodeList(*NI);
for(nodeList::iterator NLI=nodes[*NI].begin(), NLE=nodes[*NI].end();
void Graph::getBackEdges(vector<Edge > &be) const{
map<Node *, Color > color;
map<Node *, int > d;
- list<Node *> allNodes=getAllNodes();
+ vector<Node *> allNodes=getAllNodes();
int time=0;
- for(list<Node *>::const_iterator NI=allNodes.begin(), NE=allNodes.end();
+ for(vector<Node *>::const_iterator NI=allNodes.begin(), NE=allNodes.end();
NI!=NE; ++NI){
if(color[*NI]!=GREY && color[*NI]!=BLACK)
getBackEdgesVisit(*NI, be, color, d, time);
color[u]=GREY;
time++;
d[u]=time;
- list<Node *> succ_list=getSuccNodes(u);
- for(list<Node *>::const_iterator v=succ_list.begin(), ve=succ_list.end();
- v!=ve; ++v){
- if(color[*v]!=GREY && color[*v]!=BLACK){
- getBackEdgesVisit(*v, be, color, d, time);
+ vector<graphListElement> succ_list=getNodeList(u);
+ for(vector<graphListElement>::const_iterator vl=succ_list.begin(),
+ ve=succ_list.end(); vl!=ve; ++vl){
+ Node *v=vl->element;
+ // for(vector<Node *>::const_iterator v=succ_list.begin(), ve=succ_list.end();
+ // v!=ve; ++v){
+
+ if(color[v]!=GREY && color[v]!=BLACK){
+ getBackEdgesVisit(v, be, color, d, time);
}
//now checking for d and f vals
- if(color[*v]==GREY){
+ if(color[v]==GREY){
//so v is ancestor of u if time of u > time of v
- if(d[u] >= d[*v]){
- Edge *ed=new Edge(u, *v);
- if (!(*u == *getExit() && **v == *getRoot()))
+ if(d[u] >= d[v]){
+ Edge *ed=new Edge(u, v,vl->weight, vl->randId);
+ if (!(*u == *getExit() && *v == *getRoot()))
be.push_back(*ed); // choose the forward edges
}
}
//
//===----------------------------------------------------------------------===//
-#include "Graph.h"
+#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
+#include "llvm/Function.h"
+#include "llvm/Pass.h"
#include "llvm/BasicBlock.h"
+#include "llvm/Transforms/Instrumentation/Graph.h"
#include <algorithm>
#include <iostream>
-using std::list;
+//using std::list;
using std::map;
using std::vector;
using std::cerr;
static void getChords(vector<Edge > &chords, Graph &g, Graph st){
//make sure the spanning tree is directional
//iterate over ALL the edges of the graph
- list<Node *> allNodes=g.getAllNodes();
- for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
+ vector<Node *> allNodes=g.getAllNodes();
+ for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=g.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
- Edge f(*NI, NLI->element,NLI->weight);
+ Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
if(!(st.hasEdgeAndWt(f)))//addnl
chords.push_back(f);
}
//the tree so that now, all edge directions in the tree match
//the edge directions of corresponding edges in the directed graph
static void removeTreeEdges(Graph &g, Graph& t){
- list<Node* > allNodes=t.getAllNodes();
- for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
+ vector<Node* > allNodes=t.getAllNodes();
+ for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList nl=t.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=nl.begin(), NLE=nl.end(); NLI!=NLE;++NLI){
//add up the edge values, we get a path number that uniquely
//refers to the path we travelled
int valueAssignmentToEdges(Graph& g){
- list<Node *> revtop=g.reverseTopologicalSort();
+ vector<Node *> revtop=g.reverseTopologicalSort();
+ /*
+ std::cerr<<"-----------Reverse topological sort\n";
+ for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
+ std::cerr<<(*RI)->getElement()->getName()<<":";
+ }
+ std::cerr<<"\n----------------------"<<std::endl;
+ */
map<Node *,int > NumPaths;
- for(list<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
+ for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
if(g.isLeaf(*RI))
NumPaths[*RI]=1;
else{
NumPaths[*RI]=0;
- list<Node *> succ=g.getSuccNodes(*RI);
- for(list<Node *>::iterator SI=succ.begin(), SE=succ.end(); SI!=SE; ++SI){
- Edge ed(*RI,*SI,NumPaths[*RI]);
- g.setWeight(ed);
- NumPaths[*RI]+=NumPaths[*SI];
+ /////
+ Graph::nodeList &nlist=g.getNodeList(*RI);
+ //sort nodelist by increasing order of numpaths
+
+ int sz=nlist.size();
+ for(int i=0;i<sz-1; i++){
+ int min=i;
+ for(int j=i+1; j<sz; j++)
+ if(NumPaths[nlist[j].element]<NumPaths[nlist[min].element]) min=j;
+
+ graphListElement tempEl=nlist[min];
+ nlist[min]=nlist[i];
+ nlist[i]=tempEl;
+ }
+ //sorted now!
+
+ for(Graph::nodeList::iterator GLI=nlist.begin(), GLE=nlist.end();
+ GLI!=GLE; ++GLI){
+ GLI->weight=NumPaths[*RI];
+ NumPaths[*RI]+=NumPaths[GLI->element];
}
}
}
return -1;
}
+
//used for getting edge increments (read comments above in inc_Dir)
//inc_DFS is a modification of DFS
-static void inc_DFS(Graph& g,Graph& t,map<Edge, int>& Increment,
+static void inc_DFS(Graph& g,Graph& t,map<Edge, int, EdgeCompare>& Increment,
int events, Node *v, Edge e){
- list<Node *> allNodes=t.getAllNodes();
-
- for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
+ vector<Node *> allNodes=t.getAllNodes();
+
+
+ //cerr<<"Called for\n";
+ //if(!e.isNull())
+ //printEdge(e);
+
+
+ for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=t.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!= NLE; ++NLI){
- Edge f(*NI, NLI->element,NLI->weight);
+ Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
if(!edgesEqual(f,e) && *v==*(f.getSecond())){
int dir_count=inc_Dir(e,f);
int wt=1*f.getWeight();
}
}
- for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
+ for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=t.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
- Edge f(*NI, NLI->element,NLI->weight);
+ Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
if(!edgesEqual(f,e) && *v==*(f.getFirst())){
int dir_count=inc_Dir(e,f);
- int wt=1*f.getWeight();
+ int wt=f.getWeight();
inc_DFS(g,t, Increment, dir_count*events+wt,
f.getSecond(), f);
}
}
allNodes=g.getAllNodes();
- for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
+ for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=g.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
- Edge f(*NI, NLI->element,NLI->weight);
+ Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
if(!(t.hasEdgeAndWt(f)) && (*v==*(f.getSecond()) ||
*v==*(f.getFirst()))){
int dir_count=inc_Dir(e,f);
Increment[f]+=dir_count*events;
+ //cerr<<"assigned "<<Increment[f]<<" to"<<endl;
+ //printEdge(f);
}
}
}
//and assign them some values such that
//if we consider just this subset, it still represents
//the path sum along any path in the graph
-static map<Edge, int> getEdgeIncrements(Graph& g, Graph& t){
+static map<Edge, int, EdgeCompare> getEdgeIncrements(Graph& g, Graph& t){
//get all edges in g-t
- map<Edge, int> Increment;
+ map<Edge, int, EdgeCompare> Increment;
- list<Node *> allNodes=g.getAllNodes();
+ vector<Node *> allNodes=g.getAllNodes();
- for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
+ for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=g.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
- Edge ed(*NI, NLI->element,NLI->weight);
- if(!(t.hasEdge(ed))){
+ Edge ed(*NI, NLI->element,NLI->weight,NLI->randId);
+ if(!(t.hasEdgeAndWt(ed))){
Increment[ed]=0;;
}
}
Edge *ed=new Edge();
inc_DFS(g,t,Increment, 0, g.getRoot(), *ed);
-
- for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
+ for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=g.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
- Edge ed(*NI, NLI->element,NLI->weight);
- if(!(t.hasEdge(ed))){
+ Edge ed(*NI, NLI->element,NLI->weight, NLI->randId);
+ if(!(t.hasEdgeAndWt(ed))){
int wt=ed.getWeight();
Increment[ed]+=wt;
}
return Increment;
}
+//push it up: TODO
+const graphListElement *findNodeInList(const Graph::nodeList &NL,
+ Node *N);
+
+graphListElement *findNodeInList(Graph::nodeList &NL, Node *N);
+//end TODO
+
//Based on edgeIncrements (above), now obtain
//the kind of code to be inserted along an edge
//The idea here is to minimize the computation
//by inserting only the needed code
-static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *> &instr,
+static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *, EdgeCompare> &instr,
vector<Edge > &chords,
- map<Edge,int> &edIncrements){
+ map<Edge,int, EdgeCompare> &edIncrements){
//Register initialization code
vector<Node *> ws;
int edgeWt=nl->weight;
Node *w=nl->element;
//if chords has v->w
- Edge ed(v,w);
-
+ Edge ed(v,w, edgeWt, nl->randId);
+ //cerr<<"Assign:\n";
+ //printEdge(ed);
bool hasEdge=false;
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end();
CI!=CE && !hasEdge;++CI){
- if(*CI==ed){
+ if(*CI==ed && CI->getWeight()==edgeWt){//modf
hasEdge=true;
}
}
- if(hasEdge){
+
+ if(hasEdge){//so its a chord edge
getEdgeCode *edCd=new getEdgeCode();
edCd->setCond(1);
edCd->setInc(edIncrements[ed]);
instr[ed]=edCd;
+ //std::cerr<<"Case 1\n";
}
- else if((g.getPredNodes(w)).size()==1){
+ else if(g.getNumberOfIncomingEdges(w)==1){
ws.push_back(w);
+ //std::cerr<<"Added w\n";
}
else{
getEdgeCode *edCd=new getEdgeCode();
edCd->setCond(2);
edCd->setInc(0);
instr[ed]=edCd;
+ //std::cerr<<"Case 2\n";
}
}
}
while(!ws.empty()) {
Node *w=ws.back();
ws.pop_back();
-
- //for each edge v->w
- list<Node *> preds=g.getPredNodes(w);
- for(list<Node *>::iterator pd=preds.begin(), pe=preds.end(); pd!=pe; ++pd){
- Node *v=*pd;
- //if chords has v->w
-
- Edge ed(v,w);
- getEdgeCode *edCd=new getEdgeCode();
- bool hasEdge=false;
- for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE;
- ++CI){
- if(*CI==ed){
- hasEdge=true;
- break;
+
+
+ ///////
+ //vector<Node *> lt;
+ vector<Node *> lllt=g.getAllNodes();
+ for(vector<Node *>::iterator EII=lllt.begin(); EII!=lllt.end() ;++EII){
+ Node *lnode=*EII;
+ Graph::nodeList &nl = g.getNodeList(lnode);
+ //cerr<<"Size:"<<lllt.size()<<"\n";
+ //cerr<<lnode->getElement()->getName()<<"\n";
+ graphListElement *N = findNodeInList(nl, w);
+ if (N){// lt.push_back(lnode);
+
+ //Node *v=*pd;
+ //Node *v=N->element;
+ Node *v=lnode;
+ //if chords has v->w
+
+ Edge ed(v,w, N->weight, N->randId);
+ getEdgeCode *edCd=new getEdgeCode();
+ bool hasEdge=false;
+ for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE;
+ ++CI){
+ if(*CI==ed && CI->getWeight()==N->weight){
+ hasEdge=true;
+ break;
+ }
}
- }
- if(hasEdge){
- char str[100];
- if(instr[ed]!=NULL && instr[ed]->getCond()==1){
- instr[ed]->setCond(4);
+ if(hasEdge){
+ char str[100];
+ if(instr[ed]!=NULL && instr[ed]->getCond()==1){
+ instr[ed]->setCond(4);
+ }
+ else{
+ edCd->setCond(5);
+ edCd->setInc(edIncrements[ed]);
+ instr[ed]=edCd;
+ }
+
}
+ else if(g.getNumberOfOutgoingEdges(v)==1)
+ ws.push_back(v);
else{
- edCd->setCond(5);
- edCd->setInc(edIncrements[ed]);
+ edCd->setCond(6);
instr[ed]=edCd;
}
-
- }
- else if(g.getSuccNodes(v).size()==1)
- ws.push_back(v);
- else{
- edCd->setCond(6);
- instr[ed]=edCd;
}
}
}
-
///// Register increment code
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE; ++CI){
getEdgeCode *edCd=new getEdgeCode();
//If a->b is a backedge
//then incoming dummy edge is root->b
//and outgoing dummy edge is a->exit
+//changed
void addDummyEdges(vector<Edge > &stDummy,
vector<Edge > &exDummy,
Graph &g, vector<Edge> &be){
g.removeEdge(ed);
if(!(*second==*(g.getRoot()))){
- Edge *st=new Edge(g.getRoot(), second);
-
- //check if stDummy doesn't have it already
- if(find(stDummy.begin(), stDummy.end(), *st) == stDummy.end())
- stDummy.push_back(*st);
+ Edge *st=new Edge(g.getRoot(), second, ed.getWeight(), ed.getRandId());
+ stDummy.push_back(*st);
g.addEdgeForce(*st);
}
if(!(*first==*(g.getExit()))){
- Edge *ex=new Edge(first, g.getExit());
-
- if (find(exDummy.begin(), exDummy.end(), *ex) == exDummy.end()) {
- exDummy.push_back(*ex);
- g.addEdgeForce(*ex);
- }
+ Edge *ex=new Edge(first, g.getExit(), ed.getWeight(), ed.getRandId());
+ exDummy.push_back(*ex);
+ g.addEdgeForce(*ex);
}
}
}
cerr<<((ed.getFirst())->getElement())
->getName()<<"->"<<((ed.getSecond())
->getElement())->getName()<<
- ":"<<ed.getWeight()<<"\n";
+ ":"<<ed.getWeight()<<" rndId::"<<ed.getRandId()<<"\n";
}
//Move the incoming dummy edge code and outgoing dummy
//edge code over to the corresponding back edge
-static void moveDummyCode(const vector<Edge> &stDummy,
- const vector<Edge> &exDummy,
- const vector<Edge> &be,
- map<Edge, getEdgeCode *> &insertions){
- typedef vector<Edge >::const_iterator vec_iter;
+static void moveDummyCode(vector<Edge> &stDummy,
+ vector<Edge> &exDummy,
+ vector<Edge> &be,
+ map<Edge, getEdgeCode *, EdgeCompare> &insertions,
+ Graph &g){
+ typedef vector<Edge >::iterator vec_iter;
- DEBUG( //print all back, st and ex dummy
- cerr<<"BackEdges---------------\n";
- for(vec_iter VI=be.begin(); VI!=be.end(); ++VI)
- printEdge(*VI);
- cerr<<"StEdges---------------\n";
- for(vec_iter VI=stDummy.begin(); VI!=stDummy.end(); ++VI)
- printEdge(*VI);
- cerr<<"ExitEdges---------------\n";
- for(vec_iter VI=exDummy.begin(); VI!=exDummy.end(); ++VI)
- printEdge(*VI);
- cerr<<"------end all edges\n");
-
+ map<Edge,getEdgeCode *, EdgeCompare> temp;
+ //iterate over edges with code
std::vector<Edge> toErase;
- for(map<Edge,getEdgeCode *>::iterator MI=insertions.begin(),
+ for(map<Edge,getEdgeCode *, EdgeCompare>::iterator MI=insertions.begin(),
ME=insertions.end(); MI!=ME; ++MI){
Edge ed=MI->first;
getEdgeCode *edCd=MI->second;
+
+ ///---new code
+ //iterate over be, and check if its starts and end vertices hv code
+ for(vector<Edge>::iterator BEI=be.begin(), BEE=be.end(); BEI!=BEE; ++BEI){
+ if(ed.getRandId()==BEI->getRandId()){
+
+ //cerr<<"Looking at edge--------\n";
+ //printEdge(ed);
+
+ if(temp[*BEI]==0)
+ temp[*BEI]=new getEdgeCode();
+
+ //so ed is either in st, or ex!
+ if(ed.getFirst()==g.getRoot()){
+ //so its in stDummy
+ temp[*BEI]->setCdIn(edCd);
+ toErase.push_back(ed);
+ }
+ else if(ed.getSecond()==g.getExit()){
+ //so its in exDummy
+ toErase.push_back(ed);
+ temp[*BEI]->setCdOut(edCd);
+ }
+ else{
+ assert(false && "Not found in either start or end! Rand failed?");
+ }
+ }
+ }
+ }
+
+ for(vector<Edge >::iterator vmi=toErase.begin(), vme=toErase.end(); vmi!=vme;
+ ++vmi){
+ insertions.erase(*vmi);
+ //cerr<<"Erasing from insertion\n";
+ //printEdge(*vmi);
+ g.removeEdgeWithWt(*vmi);
+ }
+
+ for(map<Edge,getEdgeCode *, EdgeCompare>::iterator MI=temp.begin(),
+ ME=temp.end(); MI!=ME; ++MI){
+ insertions[MI->first]=MI->second;
+ //cerr<<"inserting into insertion-----\n";
+ //printEdge(MI->first);
+ }
+ //cerr<<"----\n";
+
+ /*
+ ///---new code end
bool dummyHasIt=false;
DEBUG(cerr<<"Current edge considered---\n";
for(vec_iter VI=stDummy.begin(), VE=stDummy.end(); VI!=VE && !dummyHasIt;
++VI){
if(*VI==ed){
- DEBUG(cerr<<"Edge matched with stDummy\n");
-
+ //#ifdef DEBUG_PATH_PROFILES
+ cerr<<"Edge matched with stDummy\n";
+ printEdge(ed);
+ //#endif
dummyHasIt=true;
bool dummyInBe=false;
//dummy edge with code
Node *dm=ed.getSecond();
if(*dm==*st){
//so this is the back edge to use
- DEBUG(cerr<<"Moving to backedge\n";
- printEdge(backEdge));
-
+ //#ifdef DEBUG_PATH_PROFILES
+ cerr<<"Moving to backedge\n";
+ printEdge(backEdge);
+ //#endif
getEdgeCode *ged=new getEdgeCode();
ged->setCdIn(edCd);
- toErase.push_back(ed);
+ toErase.push_back(ed);//MI);//ed);
insertions[backEdge]=ged;
dummyInBe=true;
}
}
assert(dummyInBe);
+ //modf
+ //new
+ //vec_iter VII=VI;
+ stDummy.erase(VI);
+ break;
+ //end new
}
}
if(!dummyHasIt){
++VI){
if(*VI==ed){
inExDummy=true;
- DEBUG(cerr<<"Edge matched with exDummy\n");
+
+ //#ifdef DEBUG_PATH_PROFILES
+ cerr<<"Edge matched with exDummy\n";
+ //#endif
bool dummyInBe2=false;
//dummy edge with code
for(vec_iter BE=be.begin(), BEE=be.end(); BE!=BEE && !dummyInBe2;
Node *dm=ed.getFirst();
if(*dm==*st){
//so this is the back edge to use
+ cerr<<"Moving to backedge\n";
+ printEdge(backEdge);
getEdgeCode *ged;
if(insertions[backEdge]==NULL)
ged=new getEdgeCode();
else
ged=insertions[backEdge];
- toErase.push_back(ed);
+ toErase.push_back(ed);//MI);//ed);
ged->setCdOut(edCd);
insertions[backEdge]=ged;
dummyInBe2=true;
}
}
assert(dummyInBe2);
+ //modf
+ //vec_iter VII=VI;
+ exDummy.erase(VI);
+ break;
+ //end
}
}
}
}
- DEBUG(cerr<<"size of deletions: "<<toErase.size()<<"\n");
+ */
+#ifdef DEBUG_PATH_PROFILES
+ cerr<<"size of deletions: "<<toErase.size()<<"\n";
+#endif
+
+ /*
+ for(vector<map<Edge, getEdgeCode *>::iterator>::iterator
+ vmi=toErase.begin(), vme=toErase.end(); vmi!=vme; ++vmi)
- for(vector<Edge >::iterator vmi=toErase.begin(), vme=toErase.end(); vmi!=vme;
- ++vmi)
insertions.erase(*vmi);
+ */
+#ifdef DEBUG_PATH_PROFILES
+ cerr<<"SIZE OF INSERTIONS AFTER DEL "<<insertions.size()<<"\n";
+#endif
- DEBUG(cerr<<"SIZE OF INSERTIONS AFTER DEL "<<insertions.size()<<"\n");
}
//Do graph processing: to determine minimal edge increments,
Instruction *countInst,
vector<Edge >& be,
vector<Edge >& stDummy,
- vector<Edge >& exDummy){
+ vector<Edge >& exDummy,
+ int numPaths){
+
+ static int MethNo=0;
+ MethNo++;
//Given a graph: with exit->root edge, do the following in seq:
//1. get back edges
//2. insert dummy edges and remove back edges
DEBUG(printGraph(g2));
Graph *t=g2.getMaxSpanningTree();
- DEBUG(printGraph(*t));
-
+ //#ifdef DEBUG_PATH_PROFILES
+ //cerr<<"Original maxspanning tree\n";
+ //printGraph(*t);
+ //#endif
//now edges of tree t have weights reversed
//(negative) because the algorithm used
//to find max spanning tree is
//the edge directions of corresponding edges in the directed graph
removeTreeEdges(g, *t);
- DEBUG(cerr<<"Spanning tree---------\n";
- printGraph(*t);
- cerr<<"-------end spanning tree\n");
+#ifdef DEBUG_PATH_PROFILES
+ cerr<<"Final Spanning tree---------\n";
+ printGraph(*t);
+ cerr<<"-------end spanning tree\n";
+#endif
//now remove the exit->root node
//and re-add it with weight 0
//and assign them some values such that
//if we consider just this subset, it still represents
//the path sum along any path in the graph
- map<Edge, int> increment=getEdgeIncrements(g,*t);
-
- DEBUG(//print edge increments for debugging
- for(map<Edge, int>::iterator MI=increment.begin(), ME = increment.end();
- MI != ME; ++MI) {
- printEdge(MI->first);
- cerr << "Increment for above:" << MI->second << "\n";
- });
+
+ map<Edge, int, EdgeCompare> increment=getEdgeIncrements(g,*t);
+#ifdef DEBUG_PATH_PROFILES
+ //print edge increments for debugging
+
+ for(map<Edge, int, EdgeCompare>::iterator M_I=increment.begin(), M_E=increment.end();
+ M_I!=M_E; ++M_I){
+ printEdge(M_I->first);
+ cerr<<"Increment for above:"<<M_I->second<<"\n";
+ }
+#endif
+
//step 6: Get code insertions
vector<Edge> chords;
getChords(chords, g, *t);
- map<Edge, getEdgeCode *> codeInsertions;
+
+ //cerr<<"Graph before getCodeInsertion:\n";
+ //printGraph(g);
+ map<Edge, getEdgeCode *, EdgeCompare> codeInsertions;
getCodeInsertions(g, codeInsertions, chords,increment);
- DEBUG (//print edges with code for debugging
- cerr<<"Code inserted in following---------------\n";
- for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(),
- cd_e=codeInsertions.end(); cd_i!=cd_e; ++cd_i){
- printEdge(cd_i->first);
- cerr<<cd_i->second->getCond()<<":"<<cd_i->second->getInc()<<"\n";
- }
- cerr<<"-----end insertions\n");
+#ifdef DEBUG_PATH_PROFILES
+ //print edges with code for debugging
+ cerr<<"Code inserted in following---------------\n";
+ for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(),
+ cd_e=codeInsertions.end(); cd_i!=cd_e; ++cd_i){
+ printEdge(cd_i->first);
+ cerr<<cd_i->second->getCond()<<":"<<cd_i->second->getInc()<<"\n";
+ }
+ cerr<<"-----end insertions\n";
+#endif
//step 7: move code on dummy edges over to the back edges
//Move the incoming dummy edge code and outgoing dummy
//edge code over to the corresponding back edge
- moveDummyCode(stDummy, exDummy, be, codeInsertions);
-
- DEBUG(//debugging info
- cerr<<"After moving dummy code\n";
- for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(),
- cd_e=codeInsertions.end(); cd_i != cd_e; ++cd_i){
- printEdge(cd_i->first);
- cerr<<cd_i->second->getCond()<<":"
- <<cd_i->second->getInc()<<"\n";
- }
- cerr<<"Dummy end------------\n");
+
+ moveDummyCode(stDummy, exDummy, be, codeInsertions, g);
+ //cerr<<"After dummy removals\n";
+ //printGraph(g);
+
+#ifdef DEBUG_PATH_PROFILES
+ //debugging info
+ cerr<<"After moving dummy code\n";
+ for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(),
+ cd_e=codeInsertions.end(); cd_i != cd_e; ++cd_i){
+ printEdge(cd_i->first);
+ cerr<<cd_i->second->getCond()<<":"
+ <<cd_i->second->getInc()<<"\n";
+ }
+ cerr<<"Dummy end------------\n";
+#endif
+
//see what it looks like...
//now insert code along edges which have codes on them
for(map<Edge, getEdgeCode *>::iterator MI=codeInsertions.begin(),
ME=codeInsertions.end(); MI!=ME; ++MI){
Edge ed=MI->first;
- insertBB(ed, MI->second, rInst, countInst);
+ insertBB(ed, MI->second, rInst, countInst, numPaths, MethNo);
}
}
//print the graph (for debugging)
void printGraph(Graph &g){
- list<Node *> lt=g.getAllNodes();
+ vector<Node *> lt=g.getAllNodes();
cerr<<"Graph---------------------\n";
- for(list<Node *>::iterator LI=lt.begin();
+ for(vector<Node *>::iterator LI=lt.begin();
LI!=lt.end(); ++LI){
cerr<<((*LI)->getElement())->getName()<<"->";
Graph::nodeList nl=g.getNodeList(*LI);
for(Graph::nodeList::iterator NI=nl.begin();
NI!=nl.end(); ++NI){
cerr<<":"<<"("<<(NI->element->getElement())
- ->getName()<<":"<<NI->element->getWeight()<<","<<NI->weight<<")";
+ ->getName()<<":"<<NI->element->getWeight()<<","<<NI->weight<<","
+ <<NI->randId<<")";
}
cerr<<"\n";
}
cerr<<"--------------------Graph\n";
}
+
+
+/*
+////////// Getting back BBs from path number
+
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/iMemory.h"
+#include "llvm/iTerminators.h"
+#include "llvm/iOther.h"
+#include "llvm/iOperators.h"
+
+#include "llvm/Support/CFG.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/Pass.h"
+
+void getPathFrmNode(Node *n, vector<BasicBlock*> &vBB, int pathNo, Graph g,
+ vector<Edge> &stDummy, vector<Edge> &exDummy, vector<Edge> &be,
+ double strand){
+ Graph::nodeList nlist=g.getNodeList(n);
+ int maxCount=-9999999;
+ bool isStart=false;
+
+ if(*n==*g.getRoot())//its root: so first node of path
+ isStart=true;
+
+ double edgeRnd=0;
+ Node *nextRoot=n;
+ for(Graph::nodeList::iterator NLI=nlist.begin(), NLE=nlist.end(); NLI!=NLE;
+ ++NLI){
+ //cerr<<"Saw:"<<NLI->weight<<endl;
+ if(NLI->weight>maxCount && NLI->weight<=pathNo){
+ maxCount=NLI->weight;
+ nextRoot=NLI->element;
+ edgeRnd=NLI->randId;
+ if(isStart)
+ strand=NLI->randId;
+ }
+ }
+ //cerr<<"Max:"<<maxCount<<endl;
+
+ if(!isStart)
+ assert(strand!=-1 && "strand not assigned!");
+
+ assert(!(*nextRoot==*n && pathNo>0) && "No more BBs to go");
+ assert(!(*nextRoot==*g.getExit() && pathNo-maxCount!=0) && "Reached exit");
+
+ vBB.push_back(n->getElement());
+
+ if(pathNo-maxCount==0 && *nextRoot==*g.getExit()){
+
+ //look for strnd and edgeRnd now:
+ bool has1=false, has2=false;
+ //check if exit has it
+ for(vector<Edge>::iterator VI=exDummy.begin(), VE=exDummy.end(); VI!=VE;
+ ++VI){
+ if(VI->getRandId()==edgeRnd){
+ has2=true;
+ //cerr<<"has2: looking at"<<std::endl;
+ //printEdge(*VI);
+ break;
+ }
+ }
+
+ //check if start has it
+ for(vector<Edge>::iterator VI=stDummy.begin(), VE=stDummy.end(); VI!=VE;
+ ++VI){
+ if(VI->getRandId()==strand){
+ //cerr<<"has1: looking at"<<std::endl;
+ //printEdge(*VI);
+ has1=true;
+ break;
+ }
+ }
+
+ if(has1){
+ //find backedge with endpoint vBB[1]
+ for(vector<Edge>::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){
+ assert(vBB.size()>0 && "vector too small");
+ if( VI->getSecond()->getElement() == vBB[1] ){
+ vBB[0]=VI->getFirst()->getElement();
+ break;
+ }
+ }
+ }
+
+ if(has2){
+ //find backedge with startpoint vBB[vBB.size()-1]
+ for(vector<Edge>::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){
+ assert(vBB.size()>0 && "vector too small");
+ if( VI->getFirst()->getElement() == vBB[vBB.size()-1] ){
+ //if(vBB[0]==VI->getFirst()->getElement())
+ //vBB.erase(vBB.begin()+vBB.size()-1);
+ //else
+ vBB.push_back(VI->getSecond()->getElement());
+ break;
+ }
+ }
+ }
+ else
+ vBB.push_back(nextRoot->getElement());
+
+ return;
+ }
+
+ assert(pathNo-maxCount>=0);
+
+ return getPathFrmNode(nextRoot, vBB, pathNo-maxCount, g, stDummy,
+ exDummy, be, strand);
+}
+
+
+static Node *findBB(std::vector<Node *> &st, BasicBlock *BB){
+ for(std::vector<Node *>::iterator si=st.begin(); si!=st.end(); ++si){
+ if(((*si)->getElement())==BB){
+ return *si;
+ }
+ }
+ return NULL;
+}
+
+void getBBtrace(vector<BasicBlock *> &vBB, int pathNo, Function *M){
+
+ //step 1: create graph
+ //Transform the cfg s.t. we have just one exit node
+
+ std::vector<Node *> nodes;
+ std::vector<Edge> edges;
+ Node *tmp;
+ Node *exitNode=0, *startNode=0;
+
+ BasicBlock *ExitNode = 0;
+ for (Function::iterator I = M->begin(), E = M->end(); I != E; ++I) {
+ BasicBlock *BB = *I;
+ if (isa<ReturnInst>(BB->getTerminator())) {
+ ExitNode = BB;
+ break;
+ }
+ }
+
+ assert(ExitNode!=0 && "exitnode not found");
+
+ //iterating over BBs and making graph
+ //The nodes must be uniquesly identified:
+ //That is, no two nodes must hav same BB*
+
+ //First enter just nodes: later enter edges
+ for(Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
+ Node *nd=new Node(*BB);
+ nodes.push_back(nd);
+ if(*BB==ExitNode)
+ exitNode=nd;
+ if(*BB==M->front())
+ startNode=nd;
+ }
+
+ assert(exitNode!=0 && startNode!=0 && "Start or exit not found!");
+
+ for (Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
+ Node *nd=findBB(nodes, *BB);
+ assert(nd && "No node for this edge!");
+
+ for(BasicBlock::succ_iterator s=succ_begin(*BB), se=succ_end(*BB);
+ s!=se; ++s){
+ Node *nd2=findBB(nodes,*s);
+ assert(nd2 && "No node for this edge!");
+ Edge ed(nd,nd2,0);
+ edges.push_back(ed);
+ }
+ }
+
+ static bool printed=false;
+ Graph g(nodes,edges, startNode, exitNode);
+
+ //if(!printed)
+ //printGraph(g);
+
+ if (M->getBasicBlocks().size() <= 1) return; //uninstrumented
+
+ //step 2: getBackEdges
+ vector<Edge> be;
+ g.getBackEdges(be);
+
+ //cerr<<"BackEdges\n";
+ //for(vector<Edge>::iterator VI=be.begin(); VI!=be.end(); ++VI){
+ //printEdge(*VI);
+ //cerr<<"\n";
+ //}
+ //cerr<<"------\n";
+ //step 3: add dummy edges
+ vector<Edge> stDummy;
+ vector<Edge> exDummy;
+ addDummyEdges(stDummy, exDummy, g, be);
+
+ //cerr<<"After adding dummy edges\n";
+ //printGraph(g);
+
+ //step 4: value assgn to edges
+ int numPaths=valueAssignmentToEdges(g);
+
+ //if(!printed){
+ //printGraph(g);
+ //printed=true;
+ //}
+
+ //step 5: now travel from root, select max(edge) < pathNo,
+ //and go on until reach the exit
+ return getPathFrmNode(g.getRoot(), vBB, pathNo, g, stDummy, exDummy, be, -1);
+}
+
+*/
//
//===----------------------------------------------------------------------===//
-#include "Graph.h"
+#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
+#include "llvm/Function.h"
+#include "llvm/Pass.h"
#include "llvm/BasicBlock.h"
+#include "llvm/Transforms/Instrumentation/Graph.h"
#include <algorithm>
#include <iostream>
-using std::list;
+//using std::list;
using std::map;
using std::vector;
using std::cerr;
static void getChords(vector<Edge > &chords, Graph &g, Graph st){
//make sure the spanning tree is directional
//iterate over ALL the edges of the graph
- list<Node *> allNodes=g.getAllNodes();
- for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
+ vector<Node *> allNodes=g.getAllNodes();
+ for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=g.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
- Edge f(*NI, NLI->element,NLI->weight);
+ Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
if(!(st.hasEdgeAndWt(f)))//addnl
chords.push_back(f);
}
//the tree so that now, all edge directions in the tree match
//the edge directions of corresponding edges in the directed graph
static void removeTreeEdges(Graph &g, Graph& t){
- list<Node* > allNodes=t.getAllNodes();
- for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
+ vector<Node* > allNodes=t.getAllNodes();
+ for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList nl=t.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=nl.begin(), NLE=nl.end(); NLI!=NLE;++NLI){
//add up the edge values, we get a path number that uniquely
//refers to the path we travelled
int valueAssignmentToEdges(Graph& g){
- list<Node *> revtop=g.reverseTopologicalSort();
+ vector<Node *> revtop=g.reverseTopologicalSort();
+ /*
+ std::cerr<<"-----------Reverse topological sort\n";
+ for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
+ std::cerr<<(*RI)->getElement()->getName()<<":";
+ }
+ std::cerr<<"\n----------------------"<<std::endl;
+ */
map<Node *,int > NumPaths;
- for(list<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
+ for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
if(g.isLeaf(*RI))
NumPaths[*RI]=1;
else{
NumPaths[*RI]=0;
- list<Node *> succ=g.getSuccNodes(*RI);
- for(list<Node *>::iterator SI=succ.begin(), SE=succ.end(); SI!=SE; ++SI){
- Edge ed(*RI,*SI,NumPaths[*RI]);
- g.setWeight(ed);
- NumPaths[*RI]+=NumPaths[*SI];
+ /////
+ Graph::nodeList &nlist=g.getNodeList(*RI);
+ //sort nodelist by increasing order of numpaths
+
+ int sz=nlist.size();
+ for(int i=0;i<sz-1; i++){
+ int min=i;
+ for(int j=i+1; j<sz; j++)
+ if(NumPaths[nlist[j].element]<NumPaths[nlist[min].element]) min=j;
+
+ graphListElement tempEl=nlist[min];
+ nlist[min]=nlist[i];
+ nlist[i]=tempEl;
+ }
+ //sorted now!
+
+ for(Graph::nodeList::iterator GLI=nlist.begin(), GLE=nlist.end();
+ GLI!=GLE; ++GLI){
+ GLI->weight=NumPaths[*RI];
+ NumPaths[*RI]+=NumPaths[GLI->element];
}
}
}
return -1;
}
+
//used for getting edge increments (read comments above in inc_Dir)
//inc_DFS is a modification of DFS
-static void inc_DFS(Graph& g,Graph& t,map<Edge, int>& Increment,
+static void inc_DFS(Graph& g,Graph& t,map<Edge, int, EdgeCompare>& Increment,
int events, Node *v, Edge e){
- list<Node *> allNodes=t.getAllNodes();
-
- for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
+ vector<Node *> allNodes=t.getAllNodes();
+
+
+ //cerr<<"Called for\n";
+ //if(!e.isNull())
+ //printEdge(e);
+
+
+ for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=t.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!= NLE; ++NLI){
- Edge f(*NI, NLI->element,NLI->weight);
+ Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
if(!edgesEqual(f,e) && *v==*(f.getSecond())){
int dir_count=inc_Dir(e,f);
int wt=1*f.getWeight();
}
}
- for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
+ for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=t.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
- Edge f(*NI, NLI->element,NLI->weight);
+ Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
if(!edgesEqual(f,e) && *v==*(f.getFirst())){
int dir_count=inc_Dir(e,f);
- int wt=1*f.getWeight();
+ int wt=f.getWeight();
inc_DFS(g,t, Increment, dir_count*events+wt,
f.getSecond(), f);
}
}
allNodes=g.getAllNodes();
- for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
+ for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=g.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
- Edge f(*NI, NLI->element,NLI->weight);
+ Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
if(!(t.hasEdgeAndWt(f)) && (*v==*(f.getSecond()) ||
*v==*(f.getFirst()))){
int dir_count=inc_Dir(e,f);
Increment[f]+=dir_count*events;
+ //cerr<<"assigned "<<Increment[f]<<" to"<<endl;
+ //printEdge(f);
}
}
}
//and assign them some values such that
//if we consider just this subset, it still represents
//the path sum along any path in the graph
-static map<Edge, int> getEdgeIncrements(Graph& g, Graph& t){
+static map<Edge, int, EdgeCompare> getEdgeIncrements(Graph& g, Graph& t){
//get all edges in g-t
- map<Edge, int> Increment;
+ map<Edge, int, EdgeCompare> Increment;
- list<Node *> allNodes=g.getAllNodes();
+ vector<Node *> allNodes=g.getAllNodes();
- for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
+ for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=g.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
- Edge ed(*NI, NLI->element,NLI->weight);
- if(!(t.hasEdge(ed))){
+ Edge ed(*NI, NLI->element,NLI->weight,NLI->randId);
+ if(!(t.hasEdgeAndWt(ed))){
Increment[ed]=0;;
}
}
Edge *ed=new Edge();
inc_DFS(g,t,Increment, 0, g.getRoot(), *ed);
-
- for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
+ for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=g.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
- Edge ed(*NI, NLI->element,NLI->weight);
- if(!(t.hasEdge(ed))){
+ Edge ed(*NI, NLI->element,NLI->weight, NLI->randId);
+ if(!(t.hasEdgeAndWt(ed))){
int wt=ed.getWeight();
Increment[ed]+=wt;
}
return Increment;
}
+//push it up: TODO
+const graphListElement *findNodeInList(const Graph::nodeList &NL,
+ Node *N);
+
+graphListElement *findNodeInList(Graph::nodeList &NL, Node *N);
+//end TODO
+
//Based on edgeIncrements (above), now obtain
//the kind of code to be inserted along an edge
//The idea here is to minimize the computation
//by inserting only the needed code
-static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *> &instr,
+static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *, EdgeCompare> &instr,
vector<Edge > &chords,
- map<Edge,int> &edIncrements){
+ map<Edge,int, EdgeCompare> &edIncrements){
//Register initialization code
vector<Node *> ws;
int edgeWt=nl->weight;
Node *w=nl->element;
//if chords has v->w
- Edge ed(v,w);
-
+ Edge ed(v,w, edgeWt, nl->randId);
+ //cerr<<"Assign:\n";
+ //printEdge(ed);
bool hasEdge=false;
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end();
CI!=CE && !hasEdge;++CI){
- if(*CI==ed){
+ if(*CI==ed && CI->getWeight()==edgeWt){//modf
hasEdge=true;
}
}
- if(hasEdge){
+
+ if(hasEdge){//so its a chord edge
getEdgeCode *edCd=new getEdgeCode();
edCd->setCond(1);
edCd->setInc(edIncrements[ed]);
instr[ed]=edCd;
+ //std::cerr<<"Case 1\n";
}
- else if((g.getPredNodes(w)).size()==1){
+ else if(g.getNumberOfIncomingEdges(w)==1){
ws.push_back(w);
+ //std::cerr<<"Added w\n";
}
else{
getEdgeCode *edCd=new getEdgeCode();
edCd->setCond(2);
edCd->setInc(0);
instr[ed]=edCd;
+ //std::cerr<<"Case 2\n";
}
}
}
while(!ws.empty()) {
Node *w=ws.back();
ws.pop_back();
-
- //for each edge v->w
- list<Node *> preds=g.getPredNodes(w);
- for(list<Node *>::iterator pd=preds.begin(), pe=preds.end(); pd!=pe; ++pd){
- Node *v=*pd;
- //if chords has v->w
-
- Edge ed(v,w);
- getEdgeCode *edCd=new getEdgeCode();
- bool hasEdge=false;
- for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE;
- ++CI){
- if(*CI==ed){
- hasEdge=true;
- break;
+
+
+ ///////
+ //vector<Node *> lt;
+ vector<Node *> lllt=g.getAllNodes();
+ for(vector<Node *>::iterator EII=lllt.begin(); EII!=lllt.end() ;++EII){
+ Node *lnode=*EII;
+ Graph::nodeList &nl = g.getNodeList(lnode);
+ //cerr<<"Size:"<<lllt.size()<<"\n";
+ //cerr<<lnode->getElement()->getName()<<"\n";
+ graphListElement *N = findNodeInList(nl, w);
+ if (N){// lt.push_back(lnode);
+
+ //Node *v=*pd;
+ //Node *v=N->element;
+ Node *v=lnode;
+ //if chords has v->w
+
+ Edge ed(v,w, N->weight, N->randId);
+ getEdgeCode *edCd=new getEdgeCode();
+ bool hasEdge=false;
+ for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE;
+ ++CI){
+ if(*CI==ed && CI->getWeight()==N->weight){
+ hasEdge=true;
+ break;
+ }
}
- }
- if(hasEdge){
- char str[100];
- if(instr[ed]!=NULL && instr[ed]->getCond()==1){
- instr[ed]->setCond(4);
+ if(hasEdge){
+ char str[100];
+ if(instr[ed]!=NULL && instr[ed]->getCond()==1){
+ instr[ed]->setCond(4);
+ }
+ else{
+ edCd->setCond(5);
+ edCd->setInc(edIncrements[ed]);
+ instr[ed]=edCd;
+ }
+
}
+ else if(g.getNumberOfOutgoingEdges(v)==1)
+ ws.push_back(v);
else{
- edCd->setCond(5);
- edCd->setInc(edIncrements[ed]);
+ edCd->setCond(6);
instr[ed]=edCd;
}
-
- }
- else if(g.getSuccNodes(v).size()==1)
- ws.push_back(v);
- else{
- edCd->setCond(6);
- instr[ed]=edCd;
}
}
}
-
///// Register increment code
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE; ++CI){
getEdgeCode *edCd=new getEdgeCode();
//If a->b is a backedge
//then incoming dummy edge is root->b
//and outgoing dummy edge is a->exit
+//changed
void addDummyEdges(vector<Edge > &stDummy,
vector<Edge > &exDummy,
Graph &g, vector<Edge> &be){
g.removeEdge(ed);
if(!(*second==*(g.getRoot()))){
- Edge *st=new Edge(g.getRoot(), second);
-
- //check if stDummy doesn't have it already
- if(find(stDummy.begin(), stDummy.end(), *st) == stDummy.end())
- stDummy.push_back(*st);
+ Edge *st=new Edge(g.getRoot(), second, ed.getWeight(), ed.getRandId());
+ stDummy.push_back(*st);
g.addEdgeForce(*st);
}
if(!(*first==*(g.getExit()))){
- Edge *ex=new Edge(first, g.getExit());
-
- if (find(exDummy.begin(), exDummy.end(), *ex) == exDummy.end()) {
- exDummy.push_back(*ex);
- g.addEdgeForce(*ex);
- }
+ Edge *ex=new Edge(first, g.getExit(), ed.getWeight(), ed.getRandId());
+ exDummy.push_back(*ex);
+ g.addEdgeForce(*ex);
}
}
}
cerr<<((ed.getFirst())->getElement())
->getName()<<"->"<<((ed.getSecond())
->getElement())->getName()<<
- ":"<<ed.getWeight()<<"\n";
+ ":"<<ed.getWeight()<<" rndId::"<<ed.getRandId()<<"\n";
}
//Move the incoming dummy edge code and outgoing dummy
//edge code over to the corresponding back edge
-static void moveDummyCode(const vector<Edge> &stDummy,
- const vector<Edge> &exDummy,
- const vector<Edge> &be,
- map<Edge, getEdgeCode *> &insertions){
- typedef vector<Edge >::const_iterator vec_iter;
+static void moveDummyCode(vector<Edge> &stDummy,
+ vector<Edge> &exDummy,
+ vector<Edge> &be,
+ map<Edge, getEdgeCode *, EdgeCompare> &insertions,
+ Graph &g){
+ typedef vector<Edge >::iterator vec_iter;
- DEBUG( //print all back, st and ex dummy
- cerr<<"BackEdges---------------\n";
- for(vec_iter VI=be.begin(); VI!=be.end(); ++VI)
- printEdge(*VI);
- cerr<<"StEdges---------------\n";
- for(vec_iter VI=stDummy.begin(); VI!=stDummy.end(); ++VI)
- printEdge(*VI);
- cerr<<"ExitEdges---------------\n";
- for(vec_iter VI=exDummy.begin(); VI!=exDummy.end(); ++VI)
- printEdge(*VI);
- cerr<<"------end all edges\n");
-
+ map<Edge,getEdgeCode *, EdgeCompare> temp;
+ //iterate over edges with code
std::vector<Edge> toErase;
- for(map<Edge,getEdgeCode *>::iterator MI=insertions.begin(),
+ for(map<Edge,getEdgeCode *, EdgeCompare>::iterator MI=insertions.begin(),
ME=insertions.end(); MI!=ME; ++MI){
Edge ed=MI->first;
getEdgeCode *edCd=MI->second;
+
+ ///---new code
+ //iterate over be, and check if its starts and end vertices hv code
+ for(vector<Edge>::iterator BEI=be.begin(), BEE=be.end(); BEI!=BEE; ++BEI){
+ if(ed.getRandId()==BEI->getRandId()){
+
+ //cerr<<"Looking at edge--------\n";
+ //printEdge(ed);
+
+ if(temp[*BEI]==0)
+ temp[*BEI]=new getEdgeCode();
+
+ //so ed is either in st, or ex!
+ if(ed.getFirst()==g.getRoot()){
+ //so its in stDummy
+ temp[*BEI]->setCdIn(edCd);
+ toErase.push_back(ed);
+ }
+ else if(ed.getSecond()==g.getExit()){
+ //so its in exDummy
+ toErase.push_back(ed);
+ temp[*BEI]->setCdOut(edCd);
+ }
+ else{
+ assert(false && "Not found in either start or end! Rand failed?");
+ }
+ }
+ }
+ }
+
+ for(vector<Edge >::iterator vmi=toErase.begin(), vme=toErase.end(); vmi!=vme;
+ ++vmi){
+ insertions.erase(*vmi);
+ //cerr<<"Erasing from insertion\n";
+ //printEdge(*vmi);
+ g.removeEdgeWithWt(*vmi);
+ }
+
+ for(map<Edge,getEdgeCode *, EdgeCompare>::iterator MI=temp.begin(),
+ ME=temp.end(); MI!=ME; ++MI){
+ insertions[MI->first]=MI->second;
+ //cerr<<"inserting into insertion-----\n";
+ //printEdge(MI->first);
+ }
+ //cerr<<"----\n";
+
+ /*
+ ///---new code end
bool dummyHasIt=false;
DEBUG(cerr<<"Current edge considered---\n";
for(vec_iter VI=stDummy.begin(), VE=stDummy.end(); VI!=VE && !dummyHasIt;
++VI){
if(*VI==ed){
- DEBUG(cerr<<"Edge matched with stDummy\n");
-
+ //#ifdef DEBUG_PATH_PROFILES
+ cerr<<"Edge matched with stDummy\n";
+ printEdge(ed);
+ //#endif
dummyHasIt=true;
bool dummyInBe=false;
//dummy edge with code
Node *dm=ed.getSecond();
if(*dm==*st){
//so this is the back edge to use
- DEBUG(cerr<<"Moving to backedge\n";
- printEdge(backEdge));
-
+ //#ifdef DEBUG_PATH_PROFILES
+ cerr<<"Moving to backedge\n";
+ printEdge(backEdge);
+ //#endif
getEdgeCode *ged=new getEdgeCode();
ged->setCdIn(edCd);
- toErase.push_back(ed);
+ toErase.push_back(ed);//MI);//ed);
insertions[backEdge]=ged;
dummyInBe=true;
}
}
assert(dummyInBe);
+ //modf
+ //new
+ //vec_iter VII=VI;
+ stDummy.erase(VI);
+ break;
+ //end new
}
}
if(!dummyHasIt){
++VI){
if(*VI==ed){
inExDummy=true;
- DEBUG(cerr<<"Edge matched with exDummy\n");
+
+ //#ifdef DEBUG_PATH_PROFILES
+ cerr<<"Edge matched with exDummy\n";
+ //#endif
bool dummyInBe2=false;
//dummy edge with code
for(vec_iter BE=be.begin(), BEE=be.end(); BE!=BEE && !dummyInBe2;
Node *dm=ed.getFirst();
if(*dm==*st){
//so this is the back edge to use
+ cerr<<"Moving to backedge\n";
+ printEdge(backEdge);
getEdgeCode *ged;
if(insertions[backEdge]==NULL)
ged=new getEdgeCode();
else
ged=insertions[backEdge];
- toErase.push_back(ed);
+ toErase.push_back(ed);//MI);//ed);
ged->setCdOut(edCd);
insertions[backEdge]=ged;
dummyInBe2=true;
}
}
assert(dummyInBe2);
+ //modf
+ //vec_iter VII=VI;
+ exDummy.erase(VI);
+ break;
+ //end
}
}
}
}
- DEBUG(cerr<<"size of deletions: "<<toErase.size()<<"\n");
+ */
+#ifdef DEBUG_PATH_PROFILES
+ cerr<<"size of deletions: "<<toErase.size()<<"\n";
+#endif
+
+ /*
+ for(vector<map<Edge, getEdgeCode *>::iterator>::iterator
+ vmi=toErase.begin(), vme=toErase.end(); vmi!=vme; ++vmi)
- for(vector<Edge >::iterator vmi=toErase.begin(), vme=toErase.end(); vmi!=vme;
- ++vmi)
insertions.erase(*vmi);
+ */
+#ifdef DEBUG_PATH_PROFILES
+ cerr<<"SIZE OF INSERTIONS AFTER DEL "<<insertions.size()<<"\n";
+#endif
- DEBUG(cerr<<"SIZE OF INSERTIONS AFTER DEL "<<insertions.size()<<"\n");
}
//Do graph processing: to determine minimal edge increments,
Instruction *countInst,
vector<Edge >& be,
vector<Edge >& stDummy,
- vector<Edge >& exDummy){
+ vector<Edge >& exDummy,
+ int numPaths){
+
+ static int MethNo=0;
+ MethNo++;
//Given a graph: with exit->root edge, do the following in seq:
//1. get back edges
//2. insert dummy edges and remove back edges
DEBUG(printGraph(g2));
Graph *t=g2.getMaxSpanningTree();
- DEBUG(printGraph(*t));
-
+ //#ifdef DEBUG_PATH_PROFILES
+ //cerr<<"Original maxspanning tree\n";
+ //printGraph(*t);
+ //#endif
//now edges of tree t have weights reversed
//(negative) because the algorithm used
//to find max spanning tree is
//the edge directions of corresponding edges in the directed graph
removeTreeEdges(g, *t);
- DEBUG(cerr<<"Spanning tree---------\n";
- printGraph(*t);
- cerr<<"-------end spanning tree\n");
+#ifdef DEBUG_PATH_PROFILES
+ cerr<<"Final Spanning tree---------\n";
+ printGraph(*t);
+ cerr<<"-------end spanning tree\n";
+#endif
//now remove the exit->root node
//and re-add it with weight 0
//and assign them some values such that
//if we consider just this subset, it still represents
//the path sum along any path in the graph
- map<Edge, int> increment=getEdgeIncrements(g,*t);
-
- DEBUG(//print edge increments for debugging
- for(map<Edge, int>::iterator MI=increment.begin(), ME = increment.end();
- MI != ME; ++MI) {
- printEdge(MI->first);
- cerr << "Increment for above:" << MI->second << "\n";
- });
+
+ map<Edge, int, EdgeCompare> increment=getEdgeIncrements(g,*t);
+#ifdef DEBUG_PATH_PROFILES
+ //print edge increments for debugging
+
+ for(map<Edge, int, EdgeCompare>::iterator M_I=increment.begin(), M_E=increment.end();
+ M_I!=M_E; ++M_I){
+ printEdge(M_I->first);
+ cerr<<"Increment for above:"<<M_I->second<<"\n";
+ }
+#endif
+
//step 6: Get code insertions
vector<Edge> chords;
getChords(chords, g, *t);
- map<Edge, getEdgeCode *> codeInsertions;
+
+ //cerr<<"Graph before getCodeInsertion:\n";
+ //printGraph(g);
+ map<Edge, getEdgeCode *, EdgeCompare> codeInsertions;
getCodeInsertions(g, codeInsertions, chords,increment);
- DEBUG (//print edges with code for debugging
- cerr<<"Code inserted in following---------------\n";
- for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(),
- cd_e=codeInsertions.end(); cd_i!=cd_e; ++cd_i){
- printEdge(cd_i->first);
- cerr<<cd_i->second->getCond()<<":"<<cd_i->second->getInc()<<"\n";
- }
- cerr<<"-----end insertions\n");
+#ifdef DEBUG_PATH_PROFILES
+ //print edges with code for debugging
+ cerr<<"Code inserted in following---------------\n";
+ for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(),
+ cd_e=codeInsertions.end(); cd_i!=cd_e; ++cd_i){
+ printEdge(cd_i->first);
+ cerr<<cd_i->second->getCond()<<":"<<cd_i->second->getInc()<<"\n";
+ }
+ cerr<<"-----end insertions\n";
+#endif
//step 7: move code on dummy edges over to the back edges
//Move the incoming dummy edge code and outgoing dummy
//edge code over to the corresponding back edge
- moveDummyCode(stDummy, exDummy, be, codeInsertions);
-
- DEBUG(//debugging info
- cerr<<"After moving dummy code\n";
- for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(),
- cd_e=codeInsertions.end(); cd_i != cd_e; ++cd_i){
- printEdge(cd_i->first);
- cerr<<cd_i->second->getCond()<<":"
- <<cd_i->second->getInc()<<"\n";
- }
- cerr<<"Dummy end------------\n");
+
+ moveDummyCode(stDummy, exDummy, be, codeInsertions, g);
+ //cerr<<"After dummy removals\n";
+ //printGraph(g);
+
+#ifdef DEBUG_PATH_PROFILES
+ //debugging info
+ cerr<<"After moving dummy code\n";
+ for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(),
+ cd_e=codeInsertions.end(); cd_i != cd_e; ++cd_i){
+ printEdge(cd_i->first);
+ cerr<<cd_i->second->getCond()<<":"
+ <<cd_i->second->getInc()<<"\n";
+ }
+ cerr<<"Dummy end------------\n";
+#endif
+
//see what it looks like...
//now insert code along edges which have codes on them
for(map<Edge, getEdgeCode *>::iterator MI=codeInsertions.begin(),
ME=codeInsertions.end(); MI!=ME; ++MI){
Edge ed=MI->first;
- insertBB(ed, MI->second, rInst, countInst);
+ insertBB(ed, MI->second, rInst, countInst, numPaths, MethNo);
}
}
//print the graph (for debugging)
void printGraph(Graph &g){
- list<Node *> lt=g.getAllNodes();
+ vector<Node *> lt=g.getAllNodes();
cerr<<"Graph---------------------\n";
- for(list<Node *>::iterator LI=lt.begin();
+ for(vector<Node *>::iterator LI=lt.begin();
LI!=lt.end(); ++LI){
cerr<<((*LI)->getElement())->getName()<<"->";
Graph::nodeList nl=g.getNodeList(*LI);
for(Graph::nodeList::iterator NI=nl.begin();
NI!=nl.end(); ++NI){
cerr<<":"<<"("<<(NI->element->getElement())
- ->getName()<<":"<<NI->element->getWeight()<<","<<NI->weight<<")";
+ ->getName()<<":"<<NI->element->getWeight()<<","<<NI->weight<<","
+ <<NI->randId<<")";
}
cerr<<"\n";
}
cerr<<"--------------------Graph\n";
}
+
+
+/*
+////////// Getting back BBs from path number
+
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/iMemory.h"
+#include "llvm/iTerminators.h"
+#include "llvm/iOther.h"
+#include "llvm/iOperators.h"
+
+#include "llvm/Support/CFG.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/Pass.h"
+
+void getPathFrmNode(Node *n, vector<BasicBlock*> &vBB, int pathNo, Graph g,
+ vector<Edge> &stDummy, vector<Edge> &exDummy, vector<Edge> &be,
+ double strand){
+ Graph::nodeList nlist=g.getNodeList(n);
+ int maxCount=-9999999;
+ bool isStart=false;
+
+ if(*n==*g.getRoot())//its root: so first node of path
+ isStart=true;
+
+ double edgeRnd=0;
+ Node *nextRoot=n;
+ for(Graph::nodeList::iterator NLI=nlist.begin(), NLE=nlist.end(); NLI!=NLE;
+ ++NLI){
+ //cerr<<"Saw:"<<NLI->weight<<endl;
+ if(NLI->weight>maxCount && NLI->weight<=pathNo){
+ maxCount=NLI->weight;
+ nextRoot=NLI->element;
+ edgeRnd=NLI->randId;
+ if(isStart)
+ strand=NLI->randId;
+ }
+ }
+ //cerr<<"Max:"<<maxCount<<endl;
+
+ if(!isStart)
+ assert(strand!=-1 && "strand not assigned!");
+
+ assert(!(*nextRoot==*n && pathNo>0) && "No more BBs to go");
+ assert(!(*nextRoot==*g.getExit() && pathNo-maxCount!=0) && "Reached exit");
+
+ vBB.push_back(n->getElement());
+
+ if(pathNo-maxCount==0 && *nextRoot==*g.getExit()){
+
+ //look for strnd and edgeRnd now:
+ bool has1=false, has2=false;
+ //check if exit has it
+ for(vector<Edge>::iterator VI=exDummy.begin(), VE=exDummy.end(); VI!=VE;
+ ++VI){
+ if(VI->getRandId()==edgeRnd){
+ has2=true;
+ //cerr<<"has2: looking at"<<std::endl;
+ //printEdge(*VI);
+ break;
+ }
+ }
+
+ //check if start has it
+ for(vector<Edge>::iterator VI=stDummy.begin(), VE=stDummy.end(); VI!=VE;
+ ++VI){
+ if(VI->getRandId()==strand){
+ //cerr<<"has1: looking at"<<std::endl;
+ //printEdge(*VI);
+ has1=true;
+ break;
+ }
+ }
+
+ if(has1){
+ //find backedge with endpoint vBB[1]
+ for(vector<Edge>::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){
+ assert(vBB.size()>0 && "vector too small");
+ if( VI->getSecond()->getElement() == vBB[1] ){
+ vBB[0]=VI->getFirst()->getElement();
+ break;
+ }
+ }
+ }
+
+ if(has2){
+ //find backedge with startpoint vBB[vBB.size()-1]
+ for(vector<Edge>::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){
+ assert(vBB.size()>0 && "vector too small");
+ if( VI->getFirst()->getElement() == vBB[vBB.size()-1] ){
+ //if(vBB[0]==VI->getFirst()->getElement())
+ //vBB.erase(vBB.begin()+vBB.size()-1);
+ //else
+ vBB.push_back(VI->getSecond()->getElement());
+ break;
+ }
+ }
+ }
+ else
+ vBB.push_back(nextRoot->getElement());
+
+ return;
+ }
+
+ assert(pathNo-maxCount>=0);
+
+ return getPathFrmNode(nextRoot, vBB, pathNo-maxCount, g, stDummy,
+ exDummy, be, strand);
+}
+
+
+static Node *findBB(std::vector<Node *> &st, BasicBlock *BB){
+ for(std::vector<Node *>::iterator si=st.begin(); si!=st.end(); ++si){
+ if(((*si)->getElement())==BB){
+ return *si;
+ }
+ }
+ return NULL;
+}
+
+void getBBtrace(vector<BasicBlock *> &vBB, int pathNo, Function *M){
+
+ //step 1: create graph
+ //Transform the cfg s.t. we have just one exit node
+
+ std::vector<Node *> nodes;
+ std::vector<Edge> edges;
+ Node *tmp;
+ Node *exitNode=0, *startNode=0;
+
+ BasicBlock *ExitNode = 0;
+ for (Function::iterator I = M->begin(), E = M->end(); I != E; ++I) {
+ BasicBlock *BB = *I;
+ if (isa<ReturnInst>(BB->getTerminator())) {
+ ExitNode = BB;
+ break;
+ }
+ }
+
+ assert(ExitNode!=0 && "exitnode not found");
+
+ //iterating over BBs and making graph
+ //The nodes must be uniquesly identified:
+ //That is, no two nodes must hav same BB*
+
+ //First enter just nodes: later enter edges
+ for(Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
+ Node *nd=new Node(*BB);
+ nodes.push_back(nd);
+ if(*BB==ExitNode)
+ exitNode=nd;
+ if(*BB==M->front())
+ startNode=nd;
+ }
+
+ assert(exitNode!=0 && startNode!=0 && "Start or exit not found!");
+
+ for (Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
+ Node *nd=findBB(nodes, *BB);
+ assert(nd && "No node for this edge!");
+
+ for(BasicBlock::succ_iterator s=succ_begin(*BB), se=succ_end(*BB);
+ s!=se; ++s){
+ Node *nd2=findBB(nodes,*s);
+ assert(nd2 && "No node for this edge!");
+ Edge ed(nd,nd2,0);
+ edges.push_back(ed);
+ }
+ }
+
+ static bool printed=false;
+ Graph g(nodes,edges, startNode, exitNode);
+
+ //if(!printed)
+ //printGraph(g);
+
+ if (M->getBasicBlocks().size() <= 1) return; //uninstrumented
+
+ //step 2: getBackEdges
+ vector<Edge> be;
+ g.getBackEdges(be);
+
+ //cerr<<"BackEdges\n";
+ //for(vector<Edge>::iterator VI=be.begin(); VI!=be.end(); ++VI){
+ //printEdge(*VI);
+ //cerr<<"\n";
+ //}
+ //cerr<<"------\n";
+ //step 3: add dummy edges
+ vector<Edge> stDummy;
+ vector<Edge> exDummy;
+ addDummyEdges(stDummy, exDummy, g, be);
+
+ //cerr<<"After adding dummy edges\n";
+ //printGraph(g);
+
+ //step 4: value assgn to edges
+ int numPaths=valueAssignmentToEdges(g);
+
+ //if(!printed){
+ //printGraph(g);
+ //printed=true;
+ //}
+
+ //step 5: now travel from root, select max(edge) < pathNo,
+ //and go on until reach the exit
+ return getPathFrmNode(g.getRoot(), vBB, pathNo, g, stDummy, exDummy, be, -1);
+}
+
+*/
// of a function is identified through a unique number. the code insertion
// is optimal in the sense that its inserted over a minimal set of edges. Also,
// the algorithm makes sure than initialization, path increment and counter
-// update can be collapsed into minmimum number of edges.
+// update can be collapsed into minimum number of edges.
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/ProfilePaths.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iMemory.h"
-#include "Graph.h"
+#include "llvm/Transforms/Instrumentation/Graph.h"
+#include <iostream>
+#include <fstream>
using std::vector;
}
-static Node *findBB(std::set<Node *> &st, BasicBlock *BB){
- for(std::set<Node *>::iterator si=st.begin(); si!=st.end(); ++si){
+static Node *findBB(std::vector<Node *> &st, BasicBlock *BB){
+ for(std::vector<Node *>::iterator si=st.begin(); si!=st.end(); ++si){
if(((*si)->getElement())==BB){
return *si;
}
//Per function pass for inserting counters and trigger code
bool ProfilePaths::runOnFunction(Function &F){
+
+ static int mn = -1;
// Transform the cfg s.t. we have just one exit node
BasicBlock *ExitNode = getAnalysis<UnifyFunctionExitNodes>().getExitNode();
-
- // iterating over BBs and making graph
- std::set<Node *> nodes;
- std::set<Edge> edges;
+
+ //iterating over BBs and making graph
+ std::vector<Node *> nodes;
+ std::vector<Edge> edges;
+
Node *tmp;
Node *exitNode, *startNode;
// That is, no two nodes must hav same BB*
// First enter just nodes: later enter edges
+ //<<<<<<< ProfilePaths.cpp
+ //for (Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
+ //Node *nd=new Node(*BB);
+ //nodes.push_back(nd);
+ //if(*BB==ExitNode)
+ //=======
for (Function::iterator BB = F.begin(), BE = F.end(); BB != BE; ++BB) {
Node *nd=new Node(BB);
- nodes.insert(nd);
+ nodes.push_back(nd);
if(&*BB == ExitNode)
+ //>>>>>>> 1.13
exitNode=nd;
if(&*BB==F.begin())
startNode=nd;
for (Function::iterator BB = F.begin(), BE = F.end(); BB != BE; ++BB){
Node *nd=findBB(nodes, BB);
assert(nd && "No node for this edge!");
+
for(BasicBlock::succ_iterator s=succ_begin(BB), se=succ_end(BB);
s!=se; ++s){
+ //tempVec.push_back(*s);
+ //}
+
+ //sort(tempVec.begin(), tempVec.end(), BBSort());
+
+ //for(vector<BasicBlock *>::iterator s=tempVec.begin(), se=tempVec.end();
+ //s!=se; ++s){
Node *nd2=findBB(nodes,*s);
assert(nd2 && "No node for this edge!");
Edge ed(nd,nd2,0);
- edges.insert(ed);
+ edges.push_back(ed);
}
}
Graph g(nodes,edges, startNode, exitNode);
- DEBUG(printGraph(g));
+ //#ifdef DEBUG_PATH_PROFILES
+ //std::cerr<<"Original graph\n";
+ //printGraph(g);
+ //#endif
BasicBlock *fr=&F.front();
// If only one BB, don't instrument
- if (++F.begin() == F.end()) {
+ if (++F.begin() == F.end()) {
+ mn++;
// The graph is made acyclic: this is done
// by removing back edges for now, and adding them later on
vector<Edge> be;
g.getBackEdges(be);
- DEBUG(cerr << "Backedges:" << be.size() << "\n");
-
- // Now we need to reflect the effect of back edges
- // This is done by adding dummy edges
- // If a->b is a back edge
- // Then we add 2 back edges for it:
- // 1. from root->b (in vector stDummy)
- // and 2. from a->exit (in vector exDummy)
+
+ //std::cerr<<"BackEdges-------------\n";
+ // for(vector<Edge>::iterator VI=be.begin(); VI!=be.end(); ++VI){
+ //printEdge(*VI);
+ //cerr<<"\n";
+ //}
+ //std::cerr<<"------\n";
+
+#ifdef DEBUG_PATH_PROFILES
+ cerr<<"Backedges:"<<be.size()<<endl;
+#endif
+ //Now we need to reflect the effect of back edges
+ //This is done by adding dummy edges
+ //If a->b is a back edge
+ //Then we add 2 back edges for it:
+ //1. from root->b (in vector stDummy)
+ //and 2. from a->exit (in vector exDummy)
vector<Edge> stDummy;
vector<Edge> exDummy;
addDummyEdges(stDummy, exDummy, g, be);
+
+ //std::cerr<<"After adding dummy edges\n";
+ //printGraph(g);
// Now, every edge in the graph is assigned a weight
// This weight later adds on to assign path
// since no back edges in the graph now
// numPaths is the number of acyclic paths in the graph
int numPaths=valueAssignmentToEdges(g);
-
- // create instruction allocation r and count
- // r is the variable that'll act like an accumulator
- // all along the path, we just add edge values to r
- // and at the end, r reflects the path number
- // count is an array: count[x] would store
- // the number of executions of path numbered x
+
+ //std::cerr<<"Numpaths="<<numPaths<<std::endl;
+ //printGraph(g);
+ //create instruction allocation r and count
+ //r is the variable that'll act like an accumulator
+ //all along the path, we just add edge values to r
+ //and at the end, r reflects the path number
+ //count is an array: count[x] would store
+ //the number of executions of path numbered x
+
Instruction *rVar=new
AllocaInst(PointerType::get(Type::IntTy),
ConstantUInt::get(Type::UIntTy,1),"R");
// this includes initializing r and count
insertInTopBB(&F.getEntryNode(),numPaths, rVar, countVar);
- // now process the graph: get path numbers,
- // get increments along different paths,
- // and assign "increments" and "updates" (to r and count)
- // "optimally". Finally, insert llvm code along various edges
- processGraph(g, rVar, countVar, be, stDummy, exDummy);
+ //now process the graph: get path numbers,
+ //get increments along different paths,
+ //and assign "increments" and "updates" (to r and count)
+ //"optimally". Finally, insert llvm code along various edges
+ processGraph(g, rVar, countVar, be, stDummy, exDummy, numPaths);
+ /*
+ //get the paths
+ static std::ofstream to("paths.sizes");
+ static std::ofstream bbs("paths.look");
+ assert(to && "Cannot open file\n");
+ assert(bbs && "Cannot open file\n");
+ for(int i=0;i<numPaths; ++i){
+ std::vector<BasicBlock *> vBB;
+
+ getBBtrace(vBB, i, M);
+ //get total size of vector
+ int size=0;
+ bbs<<"Meth:"<<mn<<" Path:"<<i<<"\n-------------\n";
+ for(vector<BasicBlock *>::iterator VBI=vBB.begin(); VBI!=vBB.end();
+ ++VBI){
+ BasicBlock *BB=*VBI;
+ size+=BB->size();
+ if(BB==M->front())
+ size-=numPaths;
+ bbs<<BB->getName()<<"->";
+ }
+ bbs<<"\n--------------\n";
+ to<<"::::: "<<mn<<" "<<i<<" "<<size<<"\n";
+ }
+ */
}
-
+
return true; // Always modifies function
}