// Handle this case efficiently, it is common to have constant iteration
// counts while computing loop exit values.
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
- APInt Val = SC->getValue()->getValue();
+ const APInt& Val = SC->getValue()->getValue();
APInt Result(Val.getBitWidth(), 1);
for (; NumSteps; --NumSteps)
Result *= Val-(NumSteps-1);
/// example, turn {4,+,8} -> 4. (S umod result) should always equal zero.
static APInt GetConstantFactor(SCEVHandle S) {
if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
- APInt V = C->getValue()->getValue();
+ const APInt& V = C->getValue()->getValue();
if (!V.isMinValue())
return V;
else // Zero is a multiple of everything.
}
uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
- APInt L(LC->getValue()->getValue());
- APInt M(MC->getValue()->getValue());
- APInt N(MC->getValue()->getValue());
+ const APInt& L = LC->getValue()->getValue();
+ const APInt& M = MC->getValue()->getValue();
+ const APInt& N = MC->getValue()->getValue();
APInt Two(BitWidth, 2);
APInt Four(BitWidth, 4);
{
using namespace APIntOps;
- APInt C(L);
+ const APInt& C = L;
// Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
// The B coefficient is M-N/2
APInt B(M);
B -= sdiv(N,Two);
// The A coefficient is N/2
- APInt A(N);
- A = A.sdiv(Two);
+ APInt A(N.sdiv(Two));
// Compute the B^2-4ac term.
APInt SqrtTerm(B);