setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
-
// Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
// handle type legalization for these operations here.
//
setPrefFunctionAlignment(4); // 2^4 bytes.
}
-
EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
if (!VT.isVector()) return MVT::i8;
return VT.changeVectorElementTypeToInteger();
}
-
/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
/// the desired ByVal argument alignment.
static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
return true;
}
-
//===----------------------------------------------------------------------===//
// Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//
return Chain;
}
-
//===----------------------------------------------------------------------===//
// C & StdCall & Fast Calling Convention implementation
//===----------------------------------------------------------------------===//
Ins, dl, DAG, InVals);
}
-
//===----------------------------------------------------------------------===//
// Fast Calling Convention (tail call) implementation
//===----------------------------------------------------------------------===//
return X86::createFastISel(funcInfo, libInfo);
}
-
//===----------------------------------------------------------------------===//
// Other Lowering Hooks
//===----------------------------------------------------------------------===//
return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
}
-
bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
bool hasSymbolicDisplacement) {
// Offset should fit into 32 bit immediate field.
return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
getShuffleCLImmediate(SVOp), DAG);
-
//===--------------------------------------------------------------------===//
// Since no target specific shuffle was selected for this generic one,
// lower it into other known shuffles. FIXME: this isn't true yet, but
return SDValue();
}
-
SDValue
X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
DebugLoc DL = Op.getDebugLoc();
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
-
// With PIC, the address is actually $g + Offset.
if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
!Subtarget->is64Bit()) {
llvm_unreachable("TLS not implemented for this target.");
}
-
/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
/// and take a 2 x i32 value to shift plus a shift amount.
SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
}
-
SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
SDValue Cond;
SDValue Op0 = Op.getOperand(0);
Chain, Dest, CC, Cond);
}
-
// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
// Calls to _alloca is needed to probe the stack when allocating more than 4k
// bytes in one go. Touching the stack at 4K increments is necessary to ensure
int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
-
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
MachineMemOperand::MOStore, 2, 2);
DAG.getConstant(1, MVT::i16)),
DAG.getConstant(3, MVT::i16));
-
return DAG.getNode((VT.getSizeInBits() < 16 ?
ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
}
}
}
-
static SDValue LowerMEMBARRIER(SDValue Op, const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
}
-
static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
EVT T = Op.getValueType();
return true;
}
-
bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
}
-
/// PerformTruncateCombine - Converts truncate operation to
/// a sequence of vector shuffle operations.
/// It is possible when we truncate 256-bit vector to 128-bit vector
if (unsigned Op = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget))
return DAG.getNode(Op, DL, N->getValueType(0), LHS, RHS);
-
// If we know that this node is legal then we know that it is going to be
// matched by one of the SSE/AVX BLEND instructions. These instructions only
// depend on the highest bit in each word. Try to use SimplifyDemandedBits
return SDValue();
}
-
/// PerformMulCombine - Optimize a single multiply with constant into two
/// in order to implement it with two cheaper instructions, e.g.
/// LEA + SHL, LEA + LEA.
}
}
-
// Hardware support for vector shifts is sparse which makes us scalarize the
// vector operations in many cases. Also, on sandybridge ADD is faster than
// shl.
}
}
-
// CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..))
// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
// and friends. Likewise for OR -> CMPNEQSS.
Chains.size());
}
-
// Turn load->store of MMX types into GPR load/stores. This avoids clobbering
// the FP state in cases where an emms may be missing.
// A preferable solution to the general problem is to figure out the right
N->getOperand(0), N->getOperand(1));
}
-
/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
// FAND(0.0, x) -> 0.0
return false;
}
-
-
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
X86TargetLowering::ConstraintType