Start of expression analysis support
authorChris Lattner <sabre@nondot.org>
Fri, 20 Jul 2001 19:17:55 +0000 (19:17 +0000)
committerChris Lattner <sabre@nondot.org>
Fri, 20 Jul 2001 19:17:55 +0000 (19:17 +0000)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219 91177308-0d34-0410-b5e6-96231b3b80d8

include/llvm/Analysis/Expressions.h [new file with mode: 0644]
lib/Analysis/Expressions.cpp [new file with mode: 0644]

diff --git a/include/llvm/Analysis/Expressions.h b/include/llvm/Analysis/Expressions.h
new file mode 100644 (file)
index 0000000..c21599f
--- /dev/null
@@ -0,0 +1,60 @@
+//===- llvm/Analysis/Expressions.h - Expression Analysis Utils ---*- C++ -*--=//
+//
+// This file defines a package of expression analysis utilties:
+//
+// ClassifyExpression: Analyze an expression to determine the complexity of the
+//   expression, and which other variables it depends on.  
+// 
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_EXPRESSIONS_H
+#define LLVM_ANALYSIS_EXPRESSIONS_H
+
+#include <assert.h>
+class Value;
+class ConstPoolInt;
+struct ExprAnalysisResult;
+
+// ClassifyExpression: Analyze an expression to determine the complexity of the
+// expression, and which other values it depends on.  
+//
+ExprAnalysisResult ClassifyExpression(Value *Expr);
+
+// ExprAnalysisResult - Represent an expression of the form CONST*VAR+CONST
+// or simpler.  The expression form that yields the least information about the
+// expression is just the Linear form with no offset.
+//
+struct ExprAnalysisResult {
+  enum ExpressionType {
+    Constant,            // Expr is a simple constant, Offset is value
+    Linear,              // Expr is linear expr, Value is Var+Offset
+    ScaledLinear,        // Expr is scaled linear exp, Value is Scale*Var+Offset
+  } ExprType;
+
+  const ConstPoolInt *Offset;  // Offset of expr, or null if 0
+  Value              *Var;     // Var referenced, if Linear or above (null if 0)
+  const ConstPoolInt *Scale;   // Scale of var if ScaledLinear expr (null if 1)
+
+  inline ExprAnalysisResult(const ConstPoolInt *CPV = 0) {
+    Offset = CPV; Var = 0; Scale = 0;
+    ExprType = Constant;
+  }
+  inline ExprAnalysisResult(Value *Val) {
+    Var = Val; Offset = Scale = 0;
+    ExprType = Var ? Linear : Constant;
+  }
+  inline ExprAnalysisResult(const ConstPoolInt *scale, Value *var, 
+                           const ConstPoolInt *offset) {
+    assert(!(Scale && !Var) && "Can't have scaled nonvariable!");
+    Scale = scale; Var = var; Offset = offset;
+    ExprType = Scale ? ScaledLinear : (Var ? Linear : Constant);
+  }
+
+
+private:
+  friend ExprAnalysisResult ClassifyExpression(Value *);
+  inline ExprAnalysisResult operator+(const ConstPoolInt *Offset);
+  
+};
+
+#endif
diff --git a/lib/Analysis/Expressions.cpp b/lib/Analysis/Expressions.cpp
new file mode 100644 (file)
index 0000000..ac6bdc1
--- /dev/null
@@ -0,0 +1,207 @@
+//===- Expressions.cpp - Expression Analysis Utilities ----------------------=//
+//
+// This file defines a package of expression analysis utilties:
+//
+// ClassifyExpression: Analyze an expression to determine the complexity of the
+//   expression, and which other variables it depends on.  
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/Expressions.h"
+#include "llvm/Optimizations/ConstantHandling.h"
+#include "llvm/ConstantPool.h"
+#include "llvm/Method.h"
+#include "llvm/BasicBlock.h"
+
+using namespace opt;  // Get all the constant handling stuff
+
+// getIntegralConstant - Wrapper around the ConstPoolInt member of the same
+// name.  This method first checks to see if the desired constant is already in
+// the constant pool.  If it is, it is quickly recycled, otherwise a new one
+// is allocated and added to the constant pool.
+//
+static ConstPoolInt *getIntegralConstant(ConstantPool &CP, unsigned char V,
+                                        const Type *Ty) {
+  // FIXME: Lookup prexisting constant in table!
+
+  ConstPoolInt *CPI = ConstPoolInt::get(Ty, V);
+  CP.insert(CPI);
+  return CPI;
+}
+
+static ConstPoolUInt *getUnsignedConstant(ConstantPool &CP, uint64_t V) {
+  // FIXME: Lookup prexisting constant in table!
+
+  ConstPoolUInt *CPUI = new ConstPoolUInt(Type::ULongTy, V);
+  CP.insert(CPUI);
+  return CPUI;
+}
+
+
+// Add - Helper function to make later code simpler.  Basically it just adds
+// the two constants together, inserts the result into the constant pool, and
+// returns it.  Of course life is not simple, and this is no exception.  Factors
+// that complicate matters:
+//   1. Either argument may be null.  If this is the case, the null argument is
+//      treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
+//   2. Types get in the way.  We want to do arithmetic operations without
+//      regard for the underlying types.  It is assumed that the constants are
+//      integral constants.  The new value takes the type of the left argument.
+//   3. If DefOne is true, a null return value indicates a value of 1, if DefOne
+//      is false, a null return value indicates a value of 0.
+//
+inline const ConstPoolInt *Add(ConstantPool &CP, const ConstPoolInt *Arg1, 
+                              const ConstPoolInt *Arg2, bool DefOne = false) {
+  if (DefOne == false) { // Handle degenerate cases first...
+    if (Arg1 == 0) return Arg2; // Also handles case of Arg1 == Arg2 == 0
+    if (Arg2 == 0) return Arg1;
+  } else {               // These aren't degenerate... :(
+    if (Arg1 == 0 && Arg2 == 0) return getIntegralConstant(CP, 2, Type::UIntTy);
+    if (Arg1 == 0) Arg1 = getIntegralConstant(CP, 1, Arg2->getType());
+    if (Arg2 == 0) Arg2 = getIntegralConstant(CP, 1, Arg2->getType());
+  }
+
+  assert(Arg1 && Arg2 && "No null arguments should exist now!");
+
+  // FIXME: Make types compatible!
+
+  // Actually perform the computation now!
+  ConstPoolVal *Result = *Arg1 + *Arg2;
+  assert(Result && Result->getType()->isIntegral() && "Couldn't perform add!");
+  ConstPoolInt *ResultI = (ConstPoolInt*)Result;
+
+  // Check to see if the result is one of the special cases that we want to
+  // recognize...
+  if (ResultI->equals(DefOne ? 1 : 0)) {
+    // Yes it is, simply delete the constant and return null.
+    delete ResultI;
+    return 0;
+  }
+
+  CP.insert(ResultI);
+  return ResultI;
+}
+
+
+ExprAnalysisResult ExprAnalysisResult::operator+(const ConstPoolInt *NewOff) {
+  if (NewOff == 0) return *this;   // No change!
+
+  ConstantPool &CP = (ConstantPool&)NewOff->getParent()->getConstantPool();
+  return ExprAnalysisResult(Scale, Var, Add(CP, Offset, NewOff));
+}
+
+
+// Mult - Helper function to make later code simpler.  Basically it just
+// multiplies the two constants together, inserts the result into the constant
+// pool, and returns it.  Of course life is not simple, and this is no
+// exception.  Factors that complicate matters:
+//   1. Either argument may be null.  If this is the case, the null argument is
+//      treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
+//   2. Types get in the way.  We want to do arithmetic operations without
+//      regard for the underlying types.  It is assumed that the constants are
+//      integral constants.
+//   3. If DefOne is true, a null return value indicates a value of 1, if DefOne
+//      is false, a null return value indicates a value of 0.
+//
+inline const ConstPoolInt *Mult(ConstantPool &CP, const ConstPoolInt *Arg1, 
+                               const ConstPoolInt *Arg2, bool DefOne = false) {
+  if (DefOne == false) { // Handle degenerate cases first...
+    if (Arg1 == 0 || Arg2 == 0) return 0;  // 0 * x == 0
+  } else {               // These aren't degenerate... :(
+    if (Arg1 == 0) return Arg2; // Also handles case of Arg1 == Arg2 == 0
+    if (Arg2 == 0) return Arg1;
+  }
+  assert(Arg1 && Arg2 && "No null arguments should exist now!");
+
+  // FIXME: Make types compatible!
+
+  // Actually perform the computation now!
+  ConstPoolVal *Result = *Arg1 * *Arg2;
+  assert(Result && Result->getType()->isIntegral() && "Couldn't perform mult!");
+  ConstPoolInt *ResultI = (ConstPoolInt*)Result;
+
+  // Check to see if the result is one of the special cases that we want to
+  // recognize...
+  if (ResultI->equals(DefOne ? 1 : 0)) {
+    // Yes it is, simply delete the constant and return null.
+    delete ResultI;
+    return 0;
+  }
+
+  CP.insert(ResultI);
+  return ResultI;
+}
+
+
+// ClassifyExpression: Analyze an expression to determine the complexity of the
+// expression, and which other values it depends on.  
+//
+// Note that this analysis cannot get into infinite loops because it treats PHI
+// nodes as being an unknown linear expression.
+//
+ExprAnalysisResult ClassifyExpression(Value *Expr) {
+  assert(Expr != 0 && "Can't classify a null expression!");
+  switch (Expr->getValueType()) {
+  case Value::InstructionVal: break;    // Instruction... hmmm... investigate.
+  case Value::TypeVal:   case Value::BasicBlockVal:
+  case Value::MethodVal: case Value::ModuleVal:
+    assert(0 && "Unexpected expression type to classify!");
+  case Value::MethodArgumentVal:        // Method arg: nothing known, return var
+    return Expr;
+  case Value::ConstantVal:              // Constant value, just return constant
+    ConstPoolVal *CPV = Expr->castConstantAsserting();
+    if (CPV->getType()->isIntegral()) { // It's an integral constant!
+      ConstPoolInt *CPI = (ConstPoolInt*)Expr;
+      return ExprAnalysisResult(CPI->equals(0) ? 0 : (ConstPoolInt*)Expr);
+    }
+    return Expr;
+  }
+  
+  Instruction *I = Expr->castInstructionAsserting();
+  ConstantPool &CP = I->getParent()->getParent()->getConstantPool();
+
+  switch (I->getOpcode()) {       // Handle each instruction type seperately
+  case Instruction::Add: {
+    ExprAnalysisResult LeftTy (ClassifyExpression(I->getOperand(0)));
+    ExprAnalysisResult RightTy(ClassifyExpression(I->getOperand(1)));
+    if (LeftTy.ExprType > RightTy.ExprType)
+      swap(LeftTy, RightTy);   // Make left be simpler than right
+
+    switch (LeftTy.ExprType) {
+    case ExprAnalysisResult::Constant:
+      return RightTy + LeftTy.Offset;
+    case ExprAnalysisResult::Linear:        // RHS side must be linear or scaled
+    case ExprAnalysisResult::ScaledLinear:  // RHS must be scaled
+      if (LeftTy.Var != RightTy.Var)        // Are they the same variables?
+       return ExprAnalysisResult(I);       //   if not, we don't know anything!
+
+      const ConstPoolInt *NewScale  = Add(CP, LeftTy.Scale, RightTy.Scale,true);
+      const ConstPoolInt *NewOffset = Add(CP, LeftTy.Offset, RightTy.Offset);
+      return ExprAnalysisResult(NewScale, LeftTy.Var, NewOffset);
+    }
+  }  // end case Instruction::Add
+
+  case Instruction::Shl: { 
+    ExprAnalysisResult RightTy(ClassifyExpression(I->getOperand(1)));
+    if (RightTy.ExprType != ExprAnalysisResult::Constant)
+      break;  // TODO: Can get some info if it's (<unsigned> X + <offset>)
+
+    ExprAnalysisResult LeftTy (ClassifyExpression(I->getOperand(0)));
+    if (RightTy.Offset == 0) return LeftTy;   // shl x, 0 = x
+    assert(RightTy.Offset->getType() == Type::UByteTy &&
+          "Shift amount must always be a unsigned byte!");
+    uint64_t ShiftAmount = ((ConstPoolUInt*)RightTy.Offset)->getValue();
+    ConstPoolUInt *Multiplier = getUnsignedConstant(CP, 1ULL << ShiftAmount);
+    
+    return ExprAnalysisResult(Mult(CP, LeftTy.Scale, Multiplier, true),
+                             LeftTy.Var,
+                             Mult(CP, LeftTy.Offset, Multiplier));
+  }  // end case Instruction::Shl
+
+    // TODO: Handle CAST, SUB, MULT (at least!)
+
+  }  // end switch
+
+  // Otherwise, I don't know anything about this value!
+  return ExprAnalysisResult(I);
+}