MBB->addSuccessor(TrueMBB);
return true;
}
+ } else if (ExtractValueInst *EI =
+ dyn_cast<ExtractValueInst>(BI->getCondition())) {
+ // Check to see if the branch instruction is from an "arithmetic with
+ // overflow" intrinsic. The main way these intrinsics are used is:
+ //
+ // %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
+ // %sum = extractvalue { i32, i1 } %t, 0
+ // %obit = extractvalue { i32, i1 } %t, 1
+ // br i1 %obit, label %overflow, label %normal
+ //
+ // The %sum and %obit are converted in an ADD and a SETO/SETC before
+ // reaching the branch. Therefore, we search backwards through the MBB
+ // looking for the SETO/SETC instruction. If an instruction modifies the
+ // EFLAGS register before we reach the SETO/SETC instruction, then we can't
+ // convert the branch into a JO/JC instruction.
+ const MachineInstr *SetMI = 0;
+ unsigned Reg = lookUpRegForValue(EI);
+
+ for (MachineBasicBlock::const_reverse_iterator
+ RI = MBB->rbegin(), RE = MBB->rend(); RI != RE; ++RI) {
+ const MachineInstr &MI = *RI;
+
+ if (MI.modifiesRegister(Reg)) {
+ unsigned Src, Dst;
+
+ if (getInstrInfo()->isMoveInstr(MI, Src, Dst)) {
+ Reg = Src;
+ continue;
+ }
+
+ SetMI = &MI;
+ break;
+ }
+
+ const TargetInstrDesc &TID = MI.getDesc();
+ const unsigned *ImpDefs = TID.getImplicitDefs();
+
+ if (TID.hasUnmodeledSideEffects()) break;
+
+ bool ModifiesEFlags = false;
+
+ if (ImpDefs) {
+ for (unsigned u = 0; ImpDefs[u]; ++u)
+ if (ImpDefs[u] == X86::EFLAGS) {
+ ModifiesEFlags = true;
+ break;
+ }
+ }
+
+ if (ModifiesEFlags) break;
+ }
+
+ if (SetMI) {
+ unsigned OpCode = SetMI->getOpcode();
+
+ if (OpCode == X86::SETOr || OpCode == X86::SETCr) {
+ BuildMI(MBB, TII.get((OpCode == X86::SETOr) ?
+ X86::JO : X86::JC)).addMBB(TrueMBB);
+ FastEmitBranch(FalseMBB);
+ MBB->addSuccessor(TrueMBB);
+ return true;
+ }
+ }
}
// Otherwise do a clumsy setcc and re-test it.