X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=utils%2FTableGen%2FDAGISelMatcherGen.cpp;h=f1550c924ae11f43664696804b31ce32e6670e0c;hb=1ac6c458c85d76a05638761eaf401a2340e71f12;hp=e2ffb8e7171dac7a66cfea42797e1ac0bf26d8ce;hpb=8dc4f2bb609989c5c73990435d1b6d1aeb13297a;p=oota-llvm.git diff --git a/utils/TableGen/DAGISelMatcherGen.cpp b/utils/TableGen/DAGISelMatcherGen.cpp index e2ffb8e7171..f1550c924ae 100644 --- a/utils/TableGen/DAGISelMatcherGen.cpp +++ b/utils/TableGen/DAGISelMatcherGen.cpp @@ -9,63 +9,152 @@ #include "DAGISelMatcher.h" #include "CodeGenDAGPatterns.h" -#include "Record.h" +#include "CodeGenRegisters.h" +#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" +#include "llvm/TableGen/Error.h" +#include "llvm/TableGen/Record.h" +#include using namespace llvm; + +/// getRegisterValueType - Look up and return the ValueType of the specified +/// register. If the register is a member of multiple register classes which +/// have different associated types, return MVT::Other. +static MVT::SimpleValueType getRegisterValueType(Record *R, + const CodeGenTarget &T) { + bool FoundRC = false; + MVT::SimpleValueType VT = MVT::Other; + const CodeGenRegister *Reg = T.getRegBank().getReg(R); + ArrayRef RCs = T.getRegBank().getRegClasses(); + + for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) { + const CodeGenRegisterClass &RC = *RCs[rc]; + if (!RC.contains(Reg)) + continue; + + if (!FoundRC) { + FoundRC = true; + VT = RC.getValueTypeNum(0); + continue; + } + + // If this occurs in multiple register classes, they all have to agree. + assert(VT == RC.getValueTypeNum(0)); + } + return VT; +} + + namespace { class MatcherGen { const PatternToMatch &Pattern; const CodeGenDAGPatterns &CGP; - + /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts /// out with all of the types removed. This allows us to insert type checks /// as we scan the tree. TreePatternNode *PatWithNoTypes; - + /// VariableMap - A map from variable names ('$dst') to the recorded operand /// number that they were captured as. These are biased by 1 to make /// insertion easier. StringMap VariableMap; + + /// This maintains the recorded operand number that OPC_CheckComplexPattern + /// drops each sub-operand into. We don't want to insert these into + /// VariableMap because that leads to identity checking if they are + /// encountered multiple times. Biased by 1 like VariableMap for + /// consistency. + StringMap NamedComplexPatternOperands; + + /// NextRecordedOperandNo - As we emit opcodes to record matched values in + /// the RecordedNodes array, this keeps track of which slot will be next to + /// record into. unsigned NextRecordedOperandNo; - - /// InputChains - This maintains the position in the recorded nodes array of - /// all of the recorded input chains. - SmallVector InputChains; - + + /// MatchedChainNodes - This maintains the position in the recorded nodes + /// array of all of the recorded input nodes that have chains. + SmallVector MatchedChainNodes; + + /// MatchedGlueResultNodes - This maintains the position in the recorded + /// nodes array of all of the recorded input nodes that have glue results. + SmallVector MatchedGlueResultNodes; + + /// MatchedComplexPatterns - This maintains a list of all of the + /// ComplexPatterns that we need to check. The second element of each pair + /// is the recorded operand number of the input node. + SmallVector, 2> MatchedComplexPatterns; + + /// PhysRegInputs - List list has an entry for each explicitly specified + /// physreg input to the pattern. The first elt is the Register node, the + /// second is the recorded slot number the input pattern match saved it in. + SmallVector, 2> PhysRegInputs; + /// Matcher - This is the top level of the generated matcher, the result. - MatcherNodeWithChild *Matcher; - + Matcher *TheMatcher; + /// CurPredicate - As we emit matcher nodes, this points to the latest check - /// which should have future checks stuck into its child position. - MatcherNodeWithChild *CurPredicate; + /// which should have future checks stuck into its Next position. + Matcher *CurPredicate; public: MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); - + ~MatcherGen() { delete PatWithNoTypes; } - - void EmitMatcherCode(); - - MatcherNodeWithChild *GetMatcher() const { return Matcher; } - MatcherNodeWithChild *GetCurPredicate() const { return CurPredicate; } + + bool EmitMatcherCode(unsigned Variant); + void EmitResultCode(); + + Matcher *GetMatcher() const { return TheMatcher; } private: - void AddMatcherNode(MatcherNodeWithChild *NewNode); + void AddMatcher(Matcher *NewNode); void InferPossibleTypes(); + + // Matcher Generation. void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes); void EmitLeafMatchCode(const TreePatternNode *N); void EmitOperatorMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes); - }; - + + /// If this is the first time a node with unique identifier Name has been + /// seen, record it. Otherwise, emit a check to make sure this is the same + /// node. Returns true if this is the first encounter. + bool recordUniqueNode(std::string Name); + + // Result Code Generation. + unsigned getNamedArgumentSlot(StringRef Name) { + unsigned VarMapEntry = VariableMap[Name]; + assert(VarMapEntry != 0 && + "Variable referenced but not defined and not caught earlier!"); + return VarMapEntry-1; + } + + /// GetInstPatternNode - Get the pattern for an instruction. + const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins, + const TreePatternNode *N); + + void EmitResultOperand(const TreePatternNode *N, + SmallVectorImpl &ResultOps); + void EmitResultOfNamedOperand(const TreePatternNode *N, + SmallVectorImpl &ResultOps); + void EmitResultLeafAsOperand(const TreePatternNode *N, + SmallVectorImpl &ResultOps); + void EmitResultInstructionAsOperand(const TreePatternNode *N, + SmallVectorImpl &ResultOps); + void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, + SmallVectorImpl &ResultOps); + }; + } // end anon namespace. MatcherGen::MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp) : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), - Matcher(0), CurPredicate(0) { + TheMatcher(nullptr), CurPredicate(nullptr) { // We need to produce the matcher tree for the patterns source pattern. To do // this we need to match the structure as well as the types. To do the type // matching, we want to figure out the fewest number of type checks we need to @@ -80,7 +169,7 @@ MatcherGen::MatcherGen(const PatternToMatch &pattern, // PatWithNoTypes = Pattern.getSrcPattern()->clone(); PatWithNoTypes->RemoveAllTypes(); - + // If there are types that are manifestly known, infer them. InferPossibleTypes(); } @@ -93,58 +182,90 @@ void MatcherGen::InferPossibleTypes() { // TP - Get *SOME* tree pattern, we don't care which. It is only used for // diagnostics, which we know are impossible at this point. TreePattern &TP = *CGP.pf_begin()->second; - - try { - bool MadeChange = true; - while (MadeChange) - MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP, - true/*Ignore reg constraints*/); - } catch (...) { - errs() << "Type constraint application shouldn't fail!"; - abort(); - } + + bool MadeChange = true; + while (MadeChange) + MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP, + true/*Ignore reg constraints*/); } -/// AddMatcherNode - Add a matcher node to the current graph we're building. -void MatcherGen::AddMatcherNode(MatcherNodeWithChild *NewNode) { - if (CurPredicate != 0) - CurPredicate->setChild(NewNode); +/// AddMatcher - Add a matcher node to the current graph we're building. +void MatcherGen::AddMatcher(Matcher *NewNode) { + if (CurPredicate) + CurPredicate->setNext(NewNode); else - Matcher = NewNode; + TheMatcher = NewNode; CurPredicate = NewNode; } +//===----------------------------------------------------------------------===// +// Pattern Match Generation +//===----------------------------------------------------------------------===// /// EmitLeafMatchCode - Generate matching code for leaf nodes. void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { assert(N->isLeaf() && "Not a leaf?"); + // Direct match against an integer constant. - if (IntInit *II = dynamic_cast(N->getLeafValue())) - return AddMatcherNode(new CheckIntegerMatcherNode(II->getValue())); - - DefInit *DI = dynamic_cast(N->getLeafValue()); - if (DI == 0) { - errs() << "Unknown leaf kind: " << *DI << "\n"; + if (IntInit *II = dyn_cast(N->getLeafValue())) { + // If this is the root of the dag we're matching, we emit a redundant opcode + // check to ensure that this gets folded into the normal top-level + // OpcodeSwitch. + if (N == Pattern.getSrcPattern()) { + const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm")); + AddMatcher(new CheckOpcodeMatcher(NI)); + } + + return AddMatcher(new CheckIntegerMatcher(II->getValue())); + } + + // An UnsetInit represents a named node without any constraints. + if (N->getLeafValue() == UnsetInit::get()) { + assert(N->hasName() && "Unnamed ? leaf"); + return; + } + + DefInit *DI = dyn_cast(N->getLeafValue()); + if (!DI) { + errs() << "Unknown leaf kind: " << *N << "\n"; abort(); } - + Record *LeafRec = DI->getDef(); + + // A ValueType leaf node can represent a register when named, or itself when + // unnamed. + if (LeafRec->isSubClassOf("ValueType")) { + // A named ValueType leaf always matches: (add i32:$a, i32:$b). + if (N->hasName()) + return; + // An unnamed ValueType as in (sext_inreg GPR:$foo, i8). + return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName())); + } + if (// Handle register references. Nothing to do here, they always match. - LeafRec->isSubClassOf("RegisterClass") || + LeafRec->isSubClassOf("RegisterClass") || + LeafRec->isSubClassOf("RegisterOperand") || LeafRec->isSubClassOf("PointerLikeRegClass") || - LeafRec->isSubClassOf("Register") || + LeafRec->isSubClassOf("SubRegIndex") || // Place holder for SRCVALUE nodes. Nothing to do here. LeafRec->getName() == "srcvalue") return; - - if (LeafRec->isSubClassOf("ValueType")) - return AddMatcherNode(new CheckValueTypeMatcherNode(LeafRec->getName())); - + + // If we have a physreg reference like (mul gpr:$src, EAX) then we need to + // record the register + if (LeafRec->isSubClassOf("Register")) { + AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(), + NextRecordedOperandNo)); + PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++)); + return; + } + if (LeafRec->isSubClassOf("CondCode")) - return AddMatcherNode(new CheckCondCodeMatcherNode(LeafRec->getName())); - + return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName())); + if (LeafRec->isSubClassOf("ComplexPattern")) { // We can't model ComplexPattern uses that don't have their name taken yet. // The OPC_CheckComplexPattern operation implicitly records the results. @@ -152,23 +273,14 @@ void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { errs() << "We expect complex pattern uses to have names: " << *N << "\n"; exit(1); } - - // Handle complex pattern. - const ComplexPattern &CP = CGP.getComplexPattern(LeafRec); - AddMatcherNode(new CheckComplexPatMatcherNode(CP)); - - // If the complex pattern has a chain, then we need to keep track of the - // fact that we just recorded a chain input. The chain input will be - // matched as the last operand of the predicate if it was successful. - if (CP.hasProperty(SDNPHasChain)) { - // It is the last operand recorded. - assert(NextRecordedOperandNo > 1 && - "Should have recorded input/result chains at least!"); - InputChains.push_back(NextRecordedOperandNo-1); - } + + // Remember this ComplexPattern so that we can emit it after all the other + // structural matches are done. + unsigned InputOperand = VariableMap[N->getName()] - 1; + MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand)); return; } - + errs() << "Unknown leaf kind: " << *N << "\n"; abort(); } @@ -176,8 +288,27 @@ void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes) { assert(!N->isLeaf() && "Not an operator?"); + + if (N->getOperator()->isSubClassOf("ComplexPattern")) { + // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is + // "MY_PAT:op1:op2". We should already have validated that the uses are + // consistent. + std::string PatternName = N->getOperator()->getName(); + for (unsigned i = 0; i < N->getNumChildren(); ++i) { + PatternName += ":"; + PatternName += N->getChild(i)->getName(); + } + + if (recordUniqueNode(PatternName)) { + auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1); + MatchedComplexPatterns.push_back(NodeAndOpNum); + } + + return; + } + const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator()); - + // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is // a constant without a predicate fn that has more that one bit set, handle // this as a special case. This is usually for targets that have special @@ -188,52 +319,52 @@ void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, // them from the mask in the dag. For example, it might turn 'AND X, 255' // into 'AND X, 254' if it knows the low bit is set. Emit code that checks // to handle this. - if ((N->getOperator()->getName() == "and" || + if ((N->getOperator()->getName() == "and" || N->getOperator()->getName() == "or") && - N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty()) { - if (IntInit *II = dynamic_cast(N->getChild(1)->getLeafValue())) { + N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() && + N->getPredicateFns().empty()) { + if (IntInit *II = dyn_cast(N->getChild(1)->getLeafValue())) { if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. + // If this is at the root of the pattern, we emit a redundant + // CheckOpcode so that the following checks get factored properly under + // a single opcode check. + if (N == Pattern.getSrcPattern()) + AddMatcher(new CheckOpcodeMatcher(CInfo)); + + // Emit the CheckAndImm/CheckOrImm node. if (N->getOperator()->getName() == "and") - AddMatcherNode(new CheckAndImmMatcherNode(II->getValue())); + AddMatcher(new CheckAndImmMatcher(II->getValue())); else - AddMatcherNode(new CheckOrImmMatcherNode(II->getValue())); + AddMatcher(new CheckOrImmMatcher(II->getValue())); // Match the LHS of the AND as appropriate. - AddMatcherNode(new MoveChildMatcherNode(0)); + AddMatcher(new MoveChildMatcher(0)); EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0)); - AddMatcherNode(new MoveParentMatcherNode()); + AddMatcher(new MoveParentMatcher()); return; } } } - + // Check that the current opcode lines up. - AddMatcherNode(new CheckOpcodeMatcherNode(CInfo.getEnumName())); - + AddMatcher(new CheckOpcodeMatcher(CInfo)); + + // If this node has memory references (i.e. is a load or store), tell the + // interpreter to capture them in the memref array. + if (N->NodeHasProperty(SDNPMemOperand, CGP)) + AddMatcher(new RecordMemRefMatcher()); + // If this node has a chain, then the chain is operand #0 is the SDNode, and // the child numbers of the node are all offset by one. unsigned OpNo = 0; if (N->NodeHasProperty(SDNPHasChain, CGP)) { - // Record the input chain, which is always input #0 of the SDNode. - AddMatcherNode(new MoveChildMatcherNode(0)); - AddMatcherNode(new RecordMatcherNode("'" + N->getOperator()->getName() + - "' input chain")); - + // Record the node and remember it in our chained nodes list. + AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() + + "' chained node", + NextRecordedOperandNo)); // Remember all of the input chains our pattern will match. - InputChains.push_back(NextRecordedOperandNo); - ++NextRecordedOperandNo; - AddMatcherNode(new MoveParentMatcherNode()); - - // If this is the second (e.g. indbr(load) or store(add(load))) or third - // input chain (e.g. (store (add (load, load))) from msp430) we need to make - // sure that folding the chain won't induce cycles in the DAG. This could - // happen if there were an intermediate node between the indbr and load, for - // example. - - // FIXME: Emit "IsChainCompatible(lastchain.getNode(), CurrentNode)". - // Rename IsChainCompatible -> IsChainUnreachable, add comment about - // complexity. - + MatchedChainNodes.push_back(NextRecordedOperandNo++); + // Don't look at the input chain when matching the tree pattern to the // SDNode. OpNo = 1; @@ -264,11 +395,11 @@ void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, // If there is a node between the root and this node, then we definitely // need to emit the check. bool NeedCheck = !Root->hasChild(N); - + // If it *is* an immediate child of the root, we can still need a check if // the root SDNode has multiple inputs. For us, this means that it is an // intrinsic, has multiple operands, or has other inputs like chain or - // flag). + // glue). if (!NeedCheck) { const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator()); NeedCheck = @@ -277,112 +408,600 @@ void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || PInfo.getNumOperands() > 1 || PInfo.hasProperty(SDNPHasChain) || - PInfo.hasProperty(SDNPInFlag) || - PInfo.hasProperty(SDNPOptInFlag); + PInfo.hasProperty(SDNPInGlue) || + PInfo.hasProperty(SDNPOptInGlue); } - + if (NeedCheck) - AddMatcherNode(new CheckFoldableChainNodeMatcherNode()); + AddMatcher(new CheckFoldableChainNodeMatcher()); } } - + + // If this node has an output glue and isn't the root, remember it. + if (N->NodeHasProperty(SDNPOutGlue, CGP) && + N != Pattern.getSrcPattern()) { + // TODO: This redundantly records nodes with both glues and chains. + + // Record the node and remember it in our chained nodes list. + AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() + + "' glue output node", + NextRecordedOperandNo)); + // Remember all of the nodes with output glue our pattern will match. + MatchedGlueResultNodes.push_back(NextRecordedOperandNo++); + } + + // If this node is known to have an input glue or if it *might* have an input + // glue, capture it as the glue input of the pattern. + if (N->NodeHasProperty(SDNPOptInGlue, CGP) || + N->NodeHasProperty(SDNPInGlue, CGP)) + AddMatcher(new CaptureGlueInputMatcher()); + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { // Get the code suitable for matching this child. Move to the child, check // it then move back to the parent. - AddMatcherNode(new MoveChildMatcherNode(OpNo)); + AddMatcher(new MoveChildMatcher(OpNo)); EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i)); - AddMatcherNode(new MoveParentMatcherNode()); + AddMatcher(new MoveParentMatcher()); } } +bool MatcherGen::recordUniqueNode(std::string Name) { + unsigned &VarMapEntry = VariableMap[Name]; + if (VarMapEntry == 0) { + // If it is a named node, we must emit a 'Record' opcode. + AddMatcher(new RecordMatcher("$" + Name, NextRecordedOperandNo)); + VarMapEntry = ++NextRecordedOperandNo; + return true; + } + + // If we get here, this is a second reference to a specific name. Since + // we already have checked that the first reference is valid, we don't + // have to recursively match it, just check that it's the same as the + // previously named thing. + AddMatcher(new CheckSameMatcher(VarMapEntry-1)); + return false; +} void MatcherGen::EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes) { // If N and NodeNoTypes don't agree on a type, then this is a case where we - // need to do a type check. Emit the check, apply the tyep to NodeNoTypes and + // need to do a type check. Emit the check, apply the type to NodeNoTypes and // reinfer any correlated types. - if (NodeNoTypes->getExtTypes() != N->getExtTypes()) { - AddMatcherNode(new CheckTypeMatcherNode(N->getTypeNum(0))); - NodeNoTypes->setTypes(N->getExtTypes()); + SmallVector ResultsToTypeCheck; + + for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) { + if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue; + NodeNoTypes->setType(i, N->getExtType(i)); InferPossibleTypes(); + ResultsToTypeCheck.push_back(i); } - + // If this node has a name associated with it, capture it in VariableMap. If // we already saw this in the pattern, emit code to verify dagness. - if (!N->getName().empty()) { - unsigned &VarMapEntry = VariableMap[N->getName()]; - if (VarMapEntry == 0) { - VarMapEntry = NextRecordedOperandNo+1; - - unsigned NumRecorded; - - // If this is a complex pattern, the match operation for it will - // implicitly record all of the outputs of it (which may be more than - // one). - if (const ComplexPattern *AM = N->getComplexPatternInfo(CGP)) { - // Record the right number of operands. - NumRecorded = AM->getNumOperands()-1; - - if (AM->hasProperty(SDNPHasChain)) - NumRecorded += 2; // Input and output chains. - } else { - // If it is a normal named node, we must emit a 'Record' opcode. - AddMatcherNode(new RecordMatcherNode("$" + N->getName())); - NumRecorded = 1; - } - NextRecordedOperandNo += NumRecorded; - - } else { - // If we get here, this is a second reference to a specific name. Since - // we already have checked that the first reference is valid, we don't - // have to recursively match it, just check that it's the same as the - // previously named thing. - AddMatcherNode(new CheckSameMatcherNode(VarMapEntry-1)); + if (!N->getName().empty()) + if (!recordUniqueNode(N->getName())) return; - } - } - - // If there are node predicates for this node, generate their checks. - for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) - AddMatcherNode(new CheckPredicateMatcherNode(N->getPredicateFns()[i])); if (N->isLeaf()) EmitLeafMatchCode(N); else EmitOperatorMatchCode(N, NodeNoTypes); + + // If there are node predicates for this node, generate their checks. + for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) + AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i])); + + for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i) + AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]), + ResultsToTypeCheck[i])); } -void MatcherGen::EmitMatcherCode() { +/// EmitMatcherCode - Generate the code that matches the predicate of this +/// pattern for the specified Variant. If the variant is invalid this returns +/// true and does not generate code, if it is valid, it returns false. +bool MatcherGen::EmitMatcherCode(unsigned Variant) { + // If the root of the pattern is a ComplexPattern and if it is specified to + // match some number of root opcodes, these are considered to be our variants. + // Depending on which variant we're generating code for, emit the root opcode + // check. + if (const ComplexPattern *CP = + Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) { + const std::vector &OpNodes = CP->getRootNodes(); + assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match"); + if (Variant >= OpNodes.size()) return true; + + AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant]))); + } else { + if (Variant != 0) return true; + } + + // Emit the matcher for the pattern structure and types. + EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes); + // If the pattern has a predicate on it (e.g. only enabled when a subtarget // feature is around, do the check). if (!Pattern.getPredicateCheck().empty()) - AddMatcherNode(new - CheckPatternPredicateMatcherNode(Pattern.getPredicateCheck())); - - // Emit the matcher for the pattern structure and types. - EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes); + AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck())); + + // Now that we've completed the structural type match, emit any ComplexPattern + // checks (e.g. addrmode matches). We emit this after the structural match + // because they are generally more expensive to evaluate and more difficult to + // factor. + for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) { + const TreePatternNode *N = MatchedComplexPatterns[i].first; + + // Remember where the results of this match get stuck. + if (N->isLeaf()) { + NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1; + } else { + unsigned CurOp = NextRecordedOperandNo; + for (unsigned i = 0; i < N->getNumChildren(); ++i) { + NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1; + CurOp += N->getChild(i)->getNumMIResults(CGP); + } + } + + // Get the slot we recorded the value in from the name on the node. + unsigned RecNodeEntry = MatchedComplexPatterns[i].second; + + const ComplexPattern &CP = *N->getComplexPatternInfo(CGP); + + // Emit a CheckComplexPat operation, which does the match (aborting if it + // fails) and pushes the matched operands onto the recorded nodes list. + AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry, + N->getName(), NextRecordedOperandNo)); + + // Record the right number of operands. + NextRecordedOperandNo += CP.getNumOperands(); + if (CP.hasProperty(SDNPHasChain)) { + // If the complex pattern has a chain, then we need to keep track of the + // fact that we just recorded a chain input. The chain input will be + // matched as the last operand of the predicate if it was successful. + ++NextRecordedOperandNo; // Chained node operand. + + // It is the last operand recorded. + assert(NextRecordedOperandNo > 1 && + "Should have recorded input/result chains at least!"); + MatchedChainNodes.push_back(NextRecordedOperandNo-1); + } + + // TODO: Complex patterns can't have output glues, if they did, we'd want + // to record them. + } + + return false; } -MatcherNode *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, - const CodeGenDAGPatterns &CGP) { - MatcherGen Gen(Pattern, CGP); +//===----------------------------------------------------------------------===// +// Node Result Generation +//===----------------------------------------------------------------------===// - // Generate the code for the matcher. - Gen.EmitMatcherCode(); - - // If the match succeeds, then we generate Pattern. - EmitNodeMatcherNode *Result = new EmitNodeMatcherNode(Pattern); - - // Link it into the pattern. - if (MatcherNodeWithChild *Pred = Gen.GetCurPredicate()) { - Pred->setChild(Result); - return Gen.GetMatcher(); +void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N, + SmallVectorImpl &ResultOps){ + assert(!N->getName().empty() && "Operand not named!"); + + if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) { + // Complex operands have already been completely selected, just find the + // right slot ant add the arguments directly. + for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) + ResultOps.push_back(SlotNo - 1 + i); + + return; } - // Unconditional match. - return Result; + unsigned SlotNo = getNamedArgumentSlot(N->getName()); + + // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target + // version of the immediate so that it doesn't get selected due to some other + // node use. + if (!N->isLeaf()) { + StringRef OperatorName = N->getOperator()->getName(); + if (OperatorName == "imm" || OperatorName == "fpimm") { + AddMatcher(new EmitConvertToTargetMatcher(SlotNo)); + ResultOps.push_back(NextRecordedOperandNo++); + return; + } + } + + for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) + ResultOps.push_back(SlotNo + i); } +void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N, + SmallVectorImpl &ResultOps) { + assert(N->isLeaf() && "Must be a leaf"); + + if (IntInit *II = dyn_cast(N->getLeafValue())) { + AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0))); + ResultOps.push_back(NextRecordedOperandNo++); + return; + } + + // If this is an explicit register reference, handle it. + if (DefInit *DI = dyn_cast(N->getLeafValue())) { + Record *Def = DI->getDef(); + if (Def->isSubClassOf("Register")) { + const CodeGenRegister *Reg = + CGP.getTargetInfo().getRegBank().getReg(Def); + AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0))); + ResultOps.push_back(NextRecordedOperandNo++); + return; + } + + if (Def->getName() == "zero_reg") { + AddMatcher(new EmitRegisterMatcher(nullptr, N->getType(0))); + ResultOps.push_back(NextRecordedOperandNo++); + return; + } + + // Handle a reference to a register class. This is used + // in COPY_TO_SUBREG instructions. + if (Def->isSubClassOf("RegisterOperand")) + Def = Def->getValueAsDef("RegClass"); + if (Def->isSubClassOf("RegisterClass")) { + std::string Value = getQualifiedName(Def) + "RegClassID"; + AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); + ResultOps.push_back(NextRecordedOperandNo++); + return; + } + + // Handle a subregister index. This is used for INSERT_SUBREG etc. + if (Def->isSubClassOf("SubRegIndex")) { + std::string Value = getQualifiedName(Def); + AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); + ResultOps.push_back(NextRecordedOperandNo++); + return; + } + } + + errs() << "unhandled leaf node: \n"; + N->dump(); +} + +/// GetInstPatternNode - Get the pattern for an instruction. +/// +const TreePatternNode *MatcherGen:: +GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) { + const TreePattern *InstPat = Inst.getPattern(); + + // FIXME2?: Assume actual pattern comes before "implicit". + TreePatternNode *InstPatNode; + if (InstPat) + InstPatNode = InstPat->getTree(0); + else if (/*isRoot*/ N == Pattern.getDstPattern()) + InstPatNode = Pattern.getSrcPattern(); + else + return nullptr; + + if (InstPatNode && !InstPatNode->isLeaf() && + InstPatNode->getOperator()->getName() == "set") + InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1); + + return InstPatNode; +} + +static bool +mayInstNodeLoadOrStore(const TreePatternNode *N, + const CodeGenDAGPatterns &CGP) { + Record *Op = N->getOperator(); + const CodeGenTarget &CGT = CGP.getTargetInfo(); + CodeGenInstruction &II = CGT.getInstruction(Op); + return II.mayLoad || II.mayStore; +} + +static unsigned +numNodesThatMayLoadOrStore(const TreePatternNode *N, + const CodeGenDAGPatterns &CGP) { + if (N->isLeaf()) + return 0; + + Record *OpRec = N->getOperator(); + if (!OpRec->isSubClassOf("Instruction")) + return 0; + + unsigned Count = 0; + if (mayInstNodeLoadOrStore(N, CGP)) + ++Count; + + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) + Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP); + + return Count; +} + +void MatcherGen:: +EmitResultInstructionAsOperand(const TreePatternNode *N, + SmallVectorImpl &OutputOps) { + Record *Op = N->getOperator(); + const CodeGenTarget &CGT = CGP.getTargetInfo(); + CodeGenInstruction &II = CGT.getInstruction(Op); + const DAGInstruction &Inst = CGP.getInstruction(Op); + + // If we can, get the pattern for the instruction we're generating. We derive + // a variety of information from this pattern, such as whether it has a chain. + // + // FIXME2: This is extremely dubious for several reasons, not the least of + // which it gives special status to instructions with patterns that Pat<> + // nodes can't duplicate. + const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N); + + // NodeHasChain - Whether the instruction node we're creating takes chains. + bool NodeHasChain = InstPatNode && + InstPatNode->TreeHasProperty(SDNPHasChain, CGP); + + // Instructions which load and store from memory should have a chain, + // regardless of whether they happen to have an internal pattern saying so. + if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP) + && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad || + II.hasSideEffects)) + NodeHasChain = true; + + bool isRoot = N == Pattern.getDstPattern(); + + // TreeHasOutGlue - True if this tree has glue. + bool TreeHasInGlue = false, TreeHasOutGlue = false; + if (isRoot) { + const TreePatternNode *SrcPat = Pattern.getSrcPattern(); + TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) || + SrcPat->TreeHasProperty(SDNPInGlue, CGP); + + // FIXME2: this is checking the entire pattern, not just the node in + // question, doing this just for the root seems like a total hack. + TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP); + } + + // NumResults - This is the number of results produced by the instruction in + // the "outs" list. + unsigned NumResults = Inst.getNumResults(); + + // Loop over all of the operands of the instruction pattern, emitting code + // to fill them all in. The node 'N' usually has number children equal to + // the number of input operands of the instruction. However, in cases + // where there are predicate operands for an instruction, we need to fill + // in the 'execute always' values. Match up the node operands to the + // instruction operands to do this. + SmallVector InstOps; + for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.Operands.size(); + InstOpNo != e; ++InstOpNo) { + + // Determine what to emit for this operand. + Record *OperandNode = II.Operands[InstOpNo].Rec; + if (OperandNode->isSubClassOf("OperandWithDefaultOps") && + !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) { + // This is a predicate or optional def operand; emit the + // 'default ops' operands. + const DAGDefaultOperand &DefaultOp + = CGP.getDefaultOperand(OperandNode); + for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) + EmitResultOperand(DefaultOp.DefaultOps[i], InstOps); + continue; + } + // Otherwise this is a normal operand or a predicate operand without + // 'execute always'; emit it. + // For operands with multiple sub-operands we may need to emit + // multiple child patterns to cover them all. However, ComplexPattern + // children may themselves emit multiple MI operands. + unsigned NumSubOps = 1; + if (OperandNode->isSubClassOf("Operand")) { + DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); + if (unsigned NumArgs = MIOpInfo->getNumArgs()) + NumSubOps = NumArgs; + } + + unsigned FinalNumOps = InstOps.size() + NumSubOps; + while (InstOps.size() < FinalNumOps) { + const TreePatternNode *Child = N->getChild(ChildNo); + unsigned BeforeAddingNumOps = InstOps.size(); + EmitResultOperand(Child, InstOps); + assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands"); + + // If the operand is an instruction and it produced multiple results, just + // take the first one. + if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction")) + InstOps.resize(BeforeAddingNumOps+1); + + ++ChildNo; + } + } + + // If this node has input glue or explicitly specified input physregs, we + // need to add chained and glued copyfromreg nodes and materialize the glue + // input. + if (isRoot && !PhysRegInputs.empty()) { + // Emit all of the CopyToReg nodes for the input physical registers. These + // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src). + for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) + AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second, + PhysRegInputs[i].first)); + // Even if the node has no other glue inputs, the resultant node must be + // glued to the CopyFromReg nodes we just generated. + TreeHasInGlue = true; + } + + // Result order: node results, chain, glue + + // Determine the result types. + SmallVector ResultVTs; + for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) + ResultVTs.push_back(N->getType(i)); + + // If this is the root instruction of a pattern that has physical registers in + // its result pattern, add output VTs for them. For example, X86 has: + // (set AL, (mul ...)) + // This also handles implicit results like: + // (implicit EFLAGS) + if (isRoot && !Pattern.getDstRegs().empty()) { + // If the root came from an implicit def in the instruction handling stuff, + // don't re-add it. + Record *HandledReg = nullptr; + if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) + HandledReg = II.ImplicitDefs[0]; + + for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) { + Record *Reg = Pattern.getDstRegs()[i]; + if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; + ResultVTs.push_back(getRegisterValueType(Reg, CGT)); + } + } + + // If this is the root of the pattern and the pattern we're matching includes + // a node that is variadic, mark the generated node as variadic so that it + // gets the excess operands from the input DAG. + int NumFixedArityOperands = -1; + if (isRoot && + (Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))) + NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren(); + + // If this is the root node and multiple matched nodes in the input pattern + // have MemRefs in them, have the interpreter collect them and plop them onto + // this node. If there is just one node with MemRefs, leave them on that node + // even if it is not the root. + // + // FIXME3: This is actively incorrect for result patterns with multiple + // memory-referencing instructions. + bool PatternHasMemOperands = + Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP); + + bool NodeHasMemRefs = false; + if (PatternHasMemOperands) { + unsigned NumNodesThatLoadOrStore = + numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP); + bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) && + NumNodesThatLoadOrStore == 1; + NodeHasMemRefs = + NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) || + NumNodesThatLoadOrStore != 1)); + } + + assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) && + "Node has no result"); + + AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(), + ResultVTs, InstOps, + NodeHasChain, TreeHasInGlue, TreeHasOutGlue, + NodeHasMemRefs, NumFixedArityOperands, + NextRecordedOperandNo)); + + // The non-chain and non-glue results of the newly emitted node get recorded. + for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) { + if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break; + OutputOps.push_back(NextRecordedOperandNo++); + } +} + +void MatcherGen:: +EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, + SmallVectorImpl &ResultOps) { + assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?"); + + // Emit the operand. + SmallVector InputOps; + + // FIXME2: Could easily generalize this to support multiple inputs and outputs + // to the SDNodeXForm. For now we just support one input and one output like + // the old instruction selector. + assert(N->getNumChildren() == 1); + EmitResultOperand(N->getChild(0), InputOps); + + // The input currently must have produced exactly one result. + assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm"); + + AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator())); + ResultOps.push_back(NextRecordedOperandNo++); +} + +void MatcherGen::EmitResultOperand(const TreePatternNode *N, + SmallVectorImpl &ResultOps) { + // This is something selected from the pattern we matched. + if (!N->getName().empty()) + return EmitResultOfNamedOperand(N, ResultOps); + + if (N->isLeaf()) + return EmitResultLeafAsOperand(N, ResultOps); + + Record *OpRec = N->getOperator(); + if (OpRec->isSubClassOf("Instruction")) + return EmitResultInstructionAsOperand(N, ResultOps); + if (OpRec->isSubClassOf("SDNodeXForm")) + return EmitResultSDNodeXFormAsOperand(N, ResultOps); + errs() << "Unknown result node to emit code for: " << *N << '\n'; + PrintFatalError("Unknown node in result pattern!"); +} + +void MatcherGen::EmitResultCode() { + // Patterns that match nodes with (potentially multiple) chain inputs have to + // merge them together into a token factor. This informs the generated code + // what all the chained nodes are. + if (!MatchedChainNodes.empty()) + AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes)); + + // Codegen the root of the result pattern, capturing the resulting values. + SmallVector Ops; + EmitResultOperand(Pattern.getDstPattern(), Ops); + + // At this point, we have however many values the result pattern produces. + // However, the input pattern might not need all of these. If there are + // excess values at the end (such as implicit defs of condition codes etc) + // just lop them off. This doesn't need to worry about glue or chains, just + // explicit results. + // + unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes(); + + // If the pattern also has (implicit) results, count them as well. + if (!Pattern.getDstRegs().empty()) { + // If the root came from an implicit def in the instruction handling stuff, + // don't re-add it. + Record *HandledReg = nullptr; + const TreePatternNode *DstPat = Pattern.getDstPattern(); + if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){ + const CodeGenTarget &CGT = CGP.getTargetInfo(); + CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator()); + + if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) + HandledReg = II.ImplicitDefs[0]; + } + + for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) { + Record *Reg = Pattern.getDstRegs()[i]; + if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; + ++NumSrcResults; + } + } + + assert(Ops.size() >= NumSrcResults && "Didn't provide enough results"); + Ops.resize(NumSrcResults); + + // If the matched pattern covers nodes which define a glue result, emit a node + // that tells the matcher about them so that it can update their results. + if (!MatchedGlueResultNodes.empty()) + AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes)); + + AddMatcher(new CompleteMatchMatcher(Ops, Pattern)); +} + + +/// ConvertPatternToMatcher - Create the matcher for the specified pattern with +/// the specified variant. If the variant number is invalid, this returns null. +Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, + unsigned Variant, + const CodeGenDAGPatterns &CGP) { + MatcherGen Gen(Pattern, CGP); + + // Generate the code for the matcher. + if (Gen.EmitMatcherCode(Variant)) + return nullptr; + + // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence. + // FIXME2: Split result code out to another table, and make the matcher end + // with an "Emit " command. This allows result generation stuff to be + // shared and factored? + + // If the match succeeds, then we generate Pattern. + Gen.EmitResultCode(); + + // Unconditional match. + return Gen.GetMatcher(); +}