X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=utils%2FTableGen%2FDAGISelEmitter.cpp;h=c97582b30b598555b3c826f79d7128814ee78e37;hb=a7d479c7bd9723cabdd7c9e1e9a1e6e482f78e7e;hp=3b58817cf42aff617064b392c3a92c1be9c570d8;hpb=5298de51b81ac44992f3aa4357267c05ea916231;p=oota-llvm.git diff --git a/utils/TableGen/DAGISelEmitter.cpp b/utils/TableGen/DAGISelEmitter.cpp index 3b58817cf42..c97582b30b5 100644 --- a/utils/TableGen/DAGISelEmitter.cpp +++ b/utils/TableGen/DAGISelEmitter.cpp @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by Chris Lattner and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -14,1923 +14,57 @@ #include "DAGISelEmitter.h" #include "Record.h" #include "llvm/ADT/StringExtras.h" +#include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" -#include -#include -using namespace llvm; - -//===----------------------------------------------------------------------===// -// Helpers for working with extended types. - -/// FilterVTs - Filter a list of VT's according to a predicate. -/// -template -static std::vector -FilterVTs(const std::vector &InVTs, T Filter) { - std::vector Result; - for (unsigned i = 0, e = InVTs.size(); i != e; ++i) - if (Filter(InVTs[i])) - Result.push_back(InVTs[i]); - return Result; -} - -template -static std::vector -FilterEVTs(const std::vector &InVTs, T Filter) { - std::vector Result; - for (unsigned i = 0, e = InVTs.size(); i != e; ++i) - if (Filter((MVT::ValueType)InVTs[i])) - Result.push_back(InVTs[i]); - return Result; -} - -static std::vector -ConvertVTs(const std::vector &InVTs) { - std::vector Result; - for (unsigned i = 0, e = InVTs.size(); i != e; ++i) - Result.push_back(InVTs[i]); - return Result; -} - -static bool LHSIsSubsetOfRHS(const std::vector &LHS, - const std::vector &RHS) { - if (LHS.size() > RHS.size()) return false; - for (unsigned i = 0, e = LHS.size(); i != e; ++i) - if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end()) - return false; - return true; -} - -/// isExtIntegerVT - Return true if the specified extended value type vector -/// contains isInt or an integer value type. -static bool isExtIntegerInVTs(const std::vector &EVTs) { - assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); - return EVTs[0] == MVT::isInt || !(FilterEVTs(EVTs, MVT::isInteger).empty()); -} - -/// isExtFloatingPointVT - Return true if the specified extended value type -/// vector contains isFP or a FP value type. -static bool isExtFloatingPointInVTs(const std::vector &EVTs) { - assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); - return EVTs[0] == MVT::isFP || - !(FilterEVTs(EVTs, MVT::isFloatingPoint).empty()); -} - -//===----------------------------------------------------------------------===// -// SDTypeConstraint implementation -// - -SDTypeConstraint::SDTypeConstraint(Record *R) { - OperandNo = R->getValueAsInt("OperandNum"); - - if (R->isSubClassOf("SDTCisVT")) { - ConstraintType = SDTCisVT; - x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); - } else if (R->isSubClassOf("SDTCisPtrTy")) { - ConstraintType = SDTCisPtrTy; - } else if (R->isSubClassOf("SDTCisInt")) { - ConstraintType = SDTCisInt; - } else if (R->isSubClassOf("SDTCisFP")) { - ConstraintType = SDTCisFP; - } else if (R->isSubClassOf("SDTCisSameAs")) { - ConstraintType = SDTCisSameAs; - x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); - } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { - ConstraintType = SDTCisVTSmallerThanOp; - x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = - R->getValueAsInt("OtherOperandNum"); - } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { - ConstraintType = SDTCisOpSmallerThanOp; - x.SDTCisOpSmallerThanOp_Info.BigOperandNum = - R->getValueAsInt("BigOperandNum"); - } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) { - ConstraintType = SDTCisIntVectorOfSameSize; - x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum = - R->getValueAsInt("OtherOpNum"); - } else { - std::cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; - exit(1); - } -} - -/// getOperandNum - Return the node corresponding to operand #OpNo in tree -/// N, which has NumResults results. -TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo, - TreePatternNode *N, - unsigned NumResults) const { - assert(NumResults <= 1 && - "We only work with nodes with zero or one result so far!"); - - if (OpNo >= (NumResults + N->getNumChildren())) { - std::cerr << "Invalid operand number " << OpNo << " "; - N->dump(); - std::cerr << '\n'; - exit(1); - } - - if (OpNo < NumResults) - return N; // FIXME: need value # - else - return N->getChild(OpNo-NumResults); -} - -/// ApplyTypeConstraint - Given a node in a pattern, apply this type -/// constraint to the nodes operands. This returns true if it makes a -/// change, false otherwise. If a type contradiction is found, throw an -/// exception. -bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, - const SDNodeInfo &NodeInfo, - TreePattern &TP) const { - unsigned NumResults = NodeInfo.getNumResults(); - assert(NumResults <= 1 && - "We only work with nodes with zero or one result so far!"); - - // Check that the number of operands is sane. Negative operands -> varargs. - if (NodeInfo.getNumOperands() >= 0) { - if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands()) - TP.error(N->getOperator()->getName() + " node requires exactly " + - itostr(NodeInfo.getNumOperands()) + " operands!"); - } - - const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo(); - - TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults); - - switch (ConstraintType) { - default: assert(0 && "Unknown constraint type!"); - case SDTCisVT: - // Operand must be a particular type. - return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP); - case SDTCisPtrTy: { - // Operand must be same as target pointer type. - return NodeToApply->UpdateNodeType(MVT::iPTR, TP); - } - case SDTCisInt: { - // If there is only one integer type supported, this must be it. - std::vector IntVTs = - FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger); - - // If we found exactly one supported integer type, apply it. - if (IntVTs.size() == 1) - return NodeToApply->UpdateNodeType(IntVTs[0], TP); - return NodeToApply->UpdateNodeType(MVT::isInt, TP); - } - case SDTCisFP: { - // If there is only one FP type supported, this must be it. - std::vector FPVTs = - FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint); - - // If we found exactly one supported FP type, apply it. - if (FPVTs.size() == 1) - return NodeToApply->UpdateNodeType(FPVTs[0], TP); - return NodeToApply->UpdateNodeType(MVT::isFP, TP); - } - case SDTCisSameAs: { - TreePatternNode *OtherNode = - getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults); - return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) | - OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP); - } - case SDTCisVTSmallerThanOp: { - // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must - // have an integer type that is smaller than the VT. - if (!NodeToApply->isLeaf() || - !dynamic_cast(NodeToApply->getLeafValue()) || - !static_cast(NodeToApply->getLeafValue())->getDef() - ->isSubClassOf("ValueType")) - TP.error(N->getOperator()->getName() + " expects a VT operand!"); - MVT::ValueType VT = - getValueType(static_cast(NodeToApply->getLeafValue())->getDef()); - if (!MVT::isInteger(VT)) - TP.error(N->getOperator()->getName() + " VT operand must be integer!"); - - TreePatternNode *OtherNode = - getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults); - - // It must be integer. - bool MadeChange = false; - MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP); - - // This code only handles nodes that have one type set. Assert here so - // that we can change this if we ever need to deal with multiple value - // types at this point. - assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!"); - if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT) - OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error. - return false; - } - case SDTCisOpSmallerThanOp: { - TreePatternNode *BigOperand = - getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults); - - // Both operands must be integer or FP, but we don't care which. - bool MadeChange = false; - - // This code does not currently handle nodes which have multiple types, - // where some types are integer, and some are fp. Assert that this is not - // the case. - assert(!(isExtIntegerInVTs(NodeToApply->getExtTypes()) && - isExtFloatingPointInVTs(NodeToApply->getExtTypes())) && - !(isExtIntegerInVTs(BigOperand->getExtTypes()) && - isExtFloatingPointInVTs(BigOperand->getExtTypes())) && - "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); - if (isExtIntegerInVTs(NodeToApply->getExtTypes())) - MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP); - else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) - MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP); - if (isExtIntegerInVTs(BigOperand->getExtTypes())) - MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP); - else if (isExtFloatingPointInVTs(BigOperand->getExtTypes())) - MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP); - - std::vector VTs = CGT.getLegalValueTypes(); - - if (isExtIntegerInVTs(NodeToApply->getExtTypes())) { - VTs = FilterVTs(VTs, MVT::isInteger); - } else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) { - VTs = FilterVTs(VTs, MVT::isFloatingPoint); - } else { - VTs.clear(); - } - - switch (VTs.size()) { - default: // Too many VT's to pick from. - case 0: break; // No info yet. - case 1: - // Only one VT of this flavor. Cannot ever satisify the constraints. - return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw - case 2: - // If we have exactly two possible types, the little operand must be the - // small one, the big operand should be the big one. Common with - // float/double for example. - assert(VTs[0] < VTs[1] && "Should be sorted!"); - MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP); - MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP); - break; - } - return MadeChange; - } - case SDTCisIntVectorOfSameSize: { - TreePatternNode *OtherOperand = - getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum, - N, NumResults); - if (OtherOperand->hasTypeSet()) { - if (!MVT::isVector(OtherOperand->getTypeNum(0))) - TP.error(N->getOperator()->getName() + " VT operand must be a vector!"); - MVT::ValueType IVT = OtherOperand->getTypeNum(0); - IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT)); - return NodeToApply->UpdateNodeType(IVT, TP); - } - return false; - } - } - return false; -} - - -//===----------------------------------------------------------------------===// -// SDNodeInfo implementation -// -SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { - EnumName = R->getValueAsString("Opcode"); - SDClassName = R->getValueAsString("SDClass"); - Record *TypeProfile = R->getValueAsDef("TypeProfile"); - NumResults = TypeProfile->getValueAsInt("NumResults"); - NumOperands = TypeProfile->getValueAsInt("NumOperands"); - - // Parse the properties. - Properties = 0; - std::vector PropList = R->getValueAsListOfDefs("Properties"); - for (unsigned i = 0, e = PropList.size(); i != e; ++i) { - if (PropList[i]->getName() == "SDNPCommutative") { - Properties |= 1 << SDNPCommutative; - } else if (PropList[i]->getName() == "SDNPAssociative") { - Properties |= 1 << SDNPAssociative; - } else if (PropList[i]->getName() == "SDNPHasChain") { - Properties |= 1 << SDNPHasChain; - } else if (PropList[i]->getName() == "SDNPOutFlag") { - Properties |= 1 << SDNPOutFlag; - } else if (PropList[i]->getName() == "SDNPInFlag") { - Properties |= 1 << SDNPInFlag; - } else if (PropList[i]->getName() == "SDNPOptInFlag") { - Properties |= 1 << SDNPOptInFlag; - } else { - std::cerr << "Unknown SD Node property '" << PropList[i]->getName() - << "' on node '" << R->getName() << "'!\n"; - exit(1); - } - } - - - // Parse the type constraints. - std::vector ConstraintList = - TypeProfile->getValueAsListOfDefs("Constraints"); - TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); -} - -//===----------------------------------------------------------------------===// -// TreePatternNode implementation -// - -TreePatternNode::~TreePatternNode() { -#if 0 // FIXME: implement refcounted tree nodes! - for (unsigned i = 0, e = getNumChildren(); i != e; ++i) - delete getChild(i); -#endif -} - -/// UpdateNodeType - Set the node type of N to VT if VT contains -/// information. If N already contains a conflicting type, then throw an -/// exception. This returns true if any information was updated. -/// -bool TreePatternNode::UpdateNodeType(const std::vector &ExtVTs, - TreePattern &TP) { - assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!"); - - if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs)) - return false; - if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) { - setTypes(ExtVTs); - return true; - } - - if (getExtTypeNum(0) == MVT::iPTR) { - if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt) - return false; - if (isExtIntegerInVTs(ExtVTs)) { - std::vector FVTs = FilterEVTs(ExtVTs, MVT::isInteger); - if (FVTs.size()) { - setTypes(ExtVTs); - return true; - } - } - } - - if (ExtVTs[0] == MVT::isInt && isExtIntegerInVTs(getExtTypes())) { - assert(hasTypeSet() && "should be handled above!"); - std::vector FVTs = FilterEVTs(getExtTypes(), MVT::isInteger); - if (getExtTypes() == FVTs) - return false; - setTypes(FVTs); - return true; - } - if (ExtVTs[0] == MVT::iPTR && isExtIntegerInVTs(getExtTypes())) { - //assert(hasTypeSet() && "should be handled above!"); - std::vector FVTs = FilterEVTs(getExtTypes(), MVT::isInteger); - if (getExtTypes() == FVTs) - return false; - if (FVTs.size()) { - setTypes(FVTs); - return true; - } - } - if (ExtVTs[0] == MVT::isFP && isExtFloatingPointInVTs(getExtTypes())) { - assert(hasTypeSet() && "should be handled above!"); - std::vector FVTs = - FilterEVTs(getExtTypes(), MVT::isFloatingPoint); - if (getExtTypes() == FVTs) - return false; - setTypes(FVTs); - return true; - } - - // If we know this is an int or fp type, and we are told it is a specific one, - // take the advice. - // - // Similarly, we should probably set the type here to the intersection of - // {isInt|isFP} and ExtVTs - if ((getExtTypeNum(0) == MVT::isInt && isExtIntegerInVTs(ExtVTs)) || - (getExtTypeNum(0) == MVT::isFP && isExtFloatingPointInVTs(ExtVTs))) { - setTypes(ExtVTs); - return true; - } - if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) { - setTypes(ExtVTs); - return true; - } - - if (isLeaf()) { - dump(); - std::cerr << " "; - TP.error("Type inference contradiction found in node!"); - } else { - TP.error("Type inference contradiction found in node " + - getOperator()->getName() + "!"); - } - return true; // unreachable -} - - -void TreePatternNode::print(std::ostream &OS) const { - if (isLeaf()) { - OS << *getLeafValue(); - } else { - OS << "(" << getOperator()->getName(); - } - - // FIXME: At some point we should handle printing all the value types for - // nodes that are multiply typed. - switch (getExtTypeNum(0)) { - case MVT::Other: OS << ":Other"; break; - case MVT::isInt: OS << ":isInt"; break; - case MVT::isFP : OS << ":isFP"; break; - case MVT::isUnknown: ; /*OS << ":?";*/ break; - case MVT::iPTR: OS << ":iPTR"; break; - default: { - std::string VTName = llvm::getName(getTypeNum(0)); - // Strip off MVT:: prefix if present. - if (VTName.substr(0,5) == "MVT::") - VTName = VTName.substr(5); - OS << ":" << VTName; - break; - } - } - - if (!isLeaf()) { - if (getNumChildren() != 0) { - OS << " "; - getChild(0)->print(OS); - for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { - OS << ", "; - getChild(i)->print(OS); - } - } - OS << ")"; - } - - if (!PredicateFn.empty()) - OS << "<>"; - if (TransformFn) - OS << "<getName() << ">>"; - if (!getName().empty()) - OS << ":$" << getName(); - -} -void TreePatternNode::dump() const { - print(std::cerr); -} - -/// isIsomorphicTo - Return true if this node is recursively isomorphic to -/// the specified node. For this comparison, all of the state of the node -/// is considered, except for the assigned name. Nodes with differing names -/// that are otherwise identical are considered isomorphic. -bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const { - if (N == this) return true; - if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || - getPredicateFn() != N->getPredicateFn() || - getTransformFn() != N->getTransformFn()) - return false; - - if (isLeaf()) { - if (DefInit *DI = dynamic_cast(getLeafValue())) - if (DefInit *NDI = dynamic_cast(N->getLeafValue())) - return DI->getDef() == NDI->getDef(); - return getLeafValue() == N->getLeafValue(); - } - - if (N->getOperator() != getOperator() || - N->getNumChildren() != getNumChildren()) return false; - for (unsigned i = 0, e = getNumChildren(); i != e; ++i) - if (!getChild(i)->isIsomorphicTo(N->getChild(i))) - return false; - return true; -} - -/// clone - Make a copy of this tree and all of its children. -/// -TreePatternNode *TreePatternNode::clone() const { - TreePatternNode *New; - if (isLeaf()) { - New = new TreePatternNode(getLeafValue()); - } else { - std::vector CChildren; - CChildren.reserve(Children.size()); - for (unsigned i = 0, e = getNumChildren(); i != e; ++i) - CChildren.push_back(getChild(i)->clone()); - New = new TreePatternNode(getOperator(), CChildren); - } - New->setName(getName()); - New->setTypes(getExtTypes()); - New->setPredicateFn(getPredicateFn()); - New->setTransformFn(getTransformFn()); - return New; -} - -/// SubstituteFormalArguments - Replace the formal arguments in this tree -/// with actual values specified by ArgMap. -void TreePatternNode:: -SubstituteFormalArguments(std::map &ArgMap) { - if (isLeaf()) return; - - for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { - TreePatternNode *Child = getChild(i); - if (Child->isLeaf()) { - Init *Val = Child->getLeafValue(); - if (dynamic_cast(Val) && - static_cast(Val)->getDef()->getName() == "node") { - // We found a use of a formal argument, replace it with its value. - Child = ArgMap[Child->getName()]; - assert(Child && "Couldn't find formal argument!"); - setChild(i, Child); - } - } else { - getChild(i)->SubstituteFormalArguments(ArgMap); - } - } -} - - -/// InlinePatternFragments - If this pattern refers to any pattern -/// fragments, inline them into place, giving us a pattern without any -/// PatFrag references. -TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { - if (isLeaf()) return this; // nothing to do. - Record *Op = getOperator(); - - if (!Op->isSubClassOf("PatFrag")) { - // Just recursively inline children nodes. - for (unsigned i = 0, e = getNumChildren(); i != e; ++i) - setChild(i, getChild(i)->InlinePatternFragments(TP)); - return this; - } - - // Otherwise, we found a reference to a fragment. First, look up its - // TreePattern record. - TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op); - - // Verify that we are passing the right number of operands. - if (Frag->getNumArgs() != Children.size()) - TP.error("'" + Op->getName() + "' fragment requires " + - utostr(Frag->getNumArgs()) + " operands!"); - - TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); - - // Resolve formal arguments to their actual value. - if (Frag->getNumArgs()) { - // Compute the map of formal to actual arguments. - std::map ArgMap; - for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) - ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); - - FragTree->SubstituteFormalArguments(ArgMap); - } - - FragTree->setName(getName()); - FragTree->UpdateNodeType(getExtTypes(), TP); - - // Get a new copy of this fragment to stitch into here. - //delete this; // FIXME: implement refcounting! - return FragTree; -} - -/// getImplicitType - Check to see if the specified record has an implicit -/// type which should be applied to it. This infer the type of register -/// references from the register file information, for example. -/// -static std::vector getImplicitType(Record *R, bool NotRegisters, - TreePattern &TP) { - // Some common return values - std::vector Unknown(1, MVT::isUnknown); - std::vector Other(1, MVT::Other); - - // Check to see if this is a register or a register class... - if (R->isSubClassOf("RegisterClass")) { - if (NotRegisters) - return Unknown; - const CodeGenRegisterClass &RC = - TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R); - return ConvertVTs(RC.getValueTypes()); - } else if (R->isSubClassOf("PatFrag")) { - // Pattern fragment types will be resolved when they are inlined. - return Unknown; - } else if (R->isSubClassOf("Register")) { - if (NotRegisters) - return Unknown; - const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo(); - return T.getRegisterVTs(R); - } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { - // Using a VTSDNode or CondCodeSDNode. - return Other; - } else if (R->isSubClassOf("ComplexPattern")) { - if (NotRegisters) - return Unknown; - std::vector - ComplexPat(1, TP.getDAGISelEmitter().getComplexPattern(R).getValueType()); - return ComplexPat; - } else if (R->getName() == "node" || R->getName() == "srcvalue") { - // Placeholder. - return Unknown; - } - - TP.error("Unknown node flavor used in pattern: " + R->getName()); - return Other; -} - -/// ApplyTypeConstraints - Apply all of the type constraints relevent to -/// this node and its children in the tree. This returns true if it makes a -/// change, false otherwise. If a type contradiction is found, throw an -/// exception. -bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { - DAGISelEmitter &ISE = TP.getDAGISelEmitter(); - if (isLeaf()) { - if (DefInit *DI = dynamic_cast(getLeafValue())) { - // If it's a regclass or something else known, include the type. - return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP); - } else if (IntInit *II = dynamic_cast(getLeafValue())) { - // Int inits are always integers. :) - bool MadeChange = UpdateNodeType(MVT::isInt, TP); - - if (hasTypeSet()) { - // At some point, it may make sense for this tree pattern to have - // multiple types. Assert here that it does not, so we revisit this - // code when appropriate. - assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!"); - MVT::ValueType VT = getTypeNum(0); - for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i) - assert(getTypeNum(i) == VT && "TreePattern has too many types!"); - - VT = getTypeNum(0); - if (VT != MVT::iPTR) { - unsigned Size = MVT::getSizeInBits(VT); - // Make sure that the value is representable for this type. - if (Size < 32) { - int Val = (II->getValue() << (32-Size)) >> (32-Size); - if (Val != II->getValue()) - TP.error("Sign-extended integer value '" + itostr(II->getValue())+ - "' is out of range for type '" + - getEnumName(getTypeNum(0)) + "'!"); - } - } - } - - return MadeChange; - } - return false; - } - - // special handling for set, which isn't really an SDNode. - if (getOperator()->getName() == "set") { - assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!"); - bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); - MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); - - // Types of operands must match. - MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getExtTypes(), TP); - MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getExtTypes(), TP); - MadeChange |= UpdateNodeType(MVT::isVoid, TP); - return MadeChange; - } else if (getOperator() == ISE.get_intrinsic_void_sdnode() || - getOperator() == ISE.get_intrinsic_w_chain_sdnode() || - getOperator() == ISE.get_intrinsic_wo_chain_sdnode()) { - unsigned IID = - dynamic_cast(getChild(0)->getLeafValue())->getValue(); - const CodeGenIntrinsic &Int = ISE.getIntrinsicInfo(IID); - bool MadeChange = false; - - // Apply the result type to the node. - MadeChange = UpdateNodeType(Int.ArgVTs[0], TP); - - if (getNumChildren() != Int.ArgVTs.size()) - TP.error("Intrinsic '" + Int.Name + "' expects " + - utostr(Int.ArgVTs.size()-1) + " operands, not " + - utostr(getNumChildren()-1) + " operands!"); - - // Apply type info to the intrinsic ID. - MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP); - - for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { - MVT::ValueType OpVT = Int.ArgVTs[i]; - MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP); - MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); - } - return MadeChange; - } else if (getOperator()->isSubClassOf("SDNode")) { - const SDNodeInfo &NI = ISE.getSDNodeInfo(getOperator()); - - bool MadeChange = NI.ApplyTypeConstraints(this, TP); - for (unsigned i = 0, e = getNumChildren(); i != e; ++i) - MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); - // Branch, etc. do not produce results and top-level forms in instr pattern - // must have void types. - if (NI.getNumResults() == 0) - MadeChange |= UpdateNodeType(MVT::isVoid, TP); - - // If this is a vector_shuffle operation, apply types to the build_vector - // operation. The types of the integers don't matter, but this ensures they - // won't get checked. - if (getOperator()->getName() == "vector_shuffle" && - getChild(2)->getOperator()->getName() == "build_vector") { - TreePatternNode *BV = getChild(2); - const std::vector &LegalVTs - = ISE.getTargetInfo().getLegalValueTypes(); - MVT::ValueType LegalIntVT = MVT::Other; - for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i) - if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) { - LegalIntVT = LegalVTs[i]; - break; - } - assert(LegalIntVT != MVT::Other && "No legal integer VT?"); - - for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i) - MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP); - } - return MadeChange; - } else if (getOperator()->isSubClassOf("Instruction")) { - const DAGInstruction &Inst = ISE.getInstruction(getOperator()); - bool MadeChange = false; - unsigned NumResults = Inst.getNumResults(); - - assert(NumResults <= 1 && - "Only supports zero or one result instrs!"); - - CodeGenInstruction &InstInfo = - ISE.getTargetInfo().getInstruction(getOperator()->getName()); - // Apply the result type to the node - if (NumResults == 0 || InstInfo.noResults) { // FIXME: temporary hack... - MadeChange = UpdateNodeType(MVT::isVoid, TP); - } else { - Record *ResultNode = Inst.getResult(0); - assert(ResultNode->isSubClassOf("RegisterClass") && - "Operands should be register classes!"); - - const CodeGenRegisterClass &RC = - ISE.getTargetInfo().getRegisterClass(ResultNode); - MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); - } - - if (getNumChildren() != Inst.getNumOperands()) - TP.error("Instruction '" + getOperator()->getName() + " expects " + - utostr(Inst.getNumOperands()) + " operands, not " + - utostr(getNumChildren()) + " operands!"); - for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { - Record *OperandNode = Inst.getOperand(i); - MVT::ValueType VT; - if (OperandNode->isSubClassOf("RegisterClass")) { - const CodeGenRegisterClass &RC = - ISE.getTargetInfo().getRegisterClass(OperandNode); - //VT = RC.getValueTypeNum(0); - MadeChange |=getChild(i)->UpdateNodeType(ConvertVTs(RC.getValueTypes()), - TP); - } else if (OperandNode->isSubClassOf("Operand")) { - VT = getValueType(OperandNode->getValueAsDef("Type")); - MadeChange |= getChild(i)->UpdateNodeType(VT, TP); - } else { - assert(0 && "Unknown operand type!"); - abort(); - } - MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); - } - return MadeChange; - } else { - assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); - - // Node transforms always take one operand. - if (getNumChildren() != 1) - TP.error("Node transform '" + getOperator()->getName() + - "' requires one operand!"); - - // If either the output or input of the xform does not have exact - // type info. We assume they must be the same. Otherwise, it is perfectly - // legal to transform from one type to a completely different type. - if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { - bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP); - MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP); - return MadeChange; - } - return false; - } -} - -/// canPatternMatch - If it is impossible for this pattern to match on this -/// target, fill in Reason and return false. Otherwise, return true. This is -/// used as a santity check for .td files (to prevent people from writing stuff -/// that can never possibly work), and to prevent the pattern permuter from -/// generating stuff that is useless. -bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){ - if (isLeaf()) return true; - - for (unsigned i = 0, e = getNumChildren(); i != e; ++i) - if (!getChild(i)->canPatternMatch(Reason, ISE)) - return false; - - // If this is an intrinsic, handle cases that would make it not match. For - // example, if an operand is required to be an immediate. - if (getOperator()->isSubClassOf("Intrinsic")) { - // TODO: - return true; - } - - // If this node is a commutative operator, check that the LHS isn't an - // immediate. - const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator()); - if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) { - // Scan all of the operands of the node and make sure that only the last one - // is a constant node. - for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) - if (!getChild(i)->isLeaf() && - getChild(i)->getOperator()->getName() == "imm") { - Reason = "Immediate value must be on the RHS of commutative operators!"; - return false; - } - } - - return true; -} - -//===----------------------------------------------------------------------===// -// TreePattern implementation -// - -TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, - DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { - isInputPattern = isInput; - for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) - Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i))); -} - -TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, - DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { - isInputPattern = isInput; - Trees.push_back(ParseTreePattern(Pat)); -} - -TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, - DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { - isInputPattern = isInput; - Trees.push_back(Pat); -} - - - -void TreePattern::error(const std::string &Msg) const { - dump(); - throw "In " + TheRecord->getName() + ": " + Msg; -} - -TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) { - DefInit *OpDef = dynamic_cast(Dag->getOperator()); - if (!OpDef) error("Pattern has unexpected operator type!"); - Record *Operator = OpDef->getDef(); - - if (Operator->isSubClassOf("ValueType")) { - // If the operator is a ValueType, then this must be "type cast" of a leaf - // node. - if (Dag->getNumArgs() != 1) - error("Type cast only takes one operand!"); - - Init *Arg = Dag->getArg(0); - TreePatternNode *New; - if (DefInit *DI = dynamic_cast(Arg)) { - Record *R = DI->getDef(); - if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { - Dag->setArg(0, new DagInit(DI, - std::vector >())); - return ParseTreePattern(Dag); - } - New = new TreePatternNode(DI); - } else if (DagInit *DI = dynamic_cast(Arg)) { - New = ParseTreePattern(DI); - } else if (IntInit *II = dynamic_cast(Arg)) { - New = new TreePatternNode(II); - if (!Dag->getArgName(0).empty()) - error("Constant int argument should not have a name!"); - } else if (BitsInit *BI = dynamic_cast(Arg)) { - // Turn this into an IntInit. - Init *II = BI->convertInitializerTo(new IntRecTy()); - if (II == 0 || !dynamic_cast(II)) - error("Bits value must be constants!"); - - New = new TreePatternNode(dynamic_cast(II)); - if (!Dag->getArgName(0).empty()) - error("Constant int argument should not have a name!"); - } else { - Arg->dump(); - error("Unknown leaf value for tree pattern!"); - return 0; - } - - // Apply the type cast. - New->UpdateNodeType(getValueType(Operator), *this); - New->setName(Dag->getArgName(0)); - return New; - } - - // Verify that this is something that makes sense for an operator. - if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") && - !Operator->isSubClassOf("Instruction") && - !Operator->isSubClassOf("SDNodeXForm") && - !Operator->isSubClassOf("Intrinsic") && - Operator->getName() != "set") - error("Unrecognized node '" + Operator->getName() + "'!"); - - // Check to see if this is something that is illegal in an input pattern. - if (isInputPattern && (Operator->isSubClassOf("Instruction") || - Operator->isSubClassOf("SDNodeXForm"))) - error("Cannot use '" + Operator->getName() + "' in an input pattern!"); - - std::vector Children; - - for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { - Init *Arg = Dag->getArg(i); - if (DagInit *DI = dynamic_cast(Arg)) { - Children.push_back(ParseTreePattern(DI)); - if (Children.back()->getName().empty()) - Children.back()->setName(Dag->getArgName(i)); - } else if (DefInit *DefI = dynamic_cast(Arg)) { - Record *R = DefI->getDef(); - // Direct reference to a leaf DagNode or PatFrag? Turn it into a - // TreePatternNode if its own. - if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { - Dag->setArg(i, new DagInit(DefI, - std::vector >())); - --i; // Revisit this node... - } else { - TreePatternNode *Node = new TreePatternNode(DefI); - Node->setName(Dag->getArgName(i)); - Children.push_back(Node); - - // Input argument? - if (R->getName() == "node") { - if (Dag->getArgName(i).empty()) - error("'node' argument requires a name to match with operand list"); - Args.push_back(Dag->getArgName(i)); - } - } - } else if (IntInit *II = dynamic_cast(Arg)) { - TreePatternNode *Node = new TreePatternNode(II); - if (!Dag->getArgName(i).empty()) - error("Constant int argument should not have a name!"); - Children.push_back(Node); - } else if (BitsInit *BI = dynamic_cast(Arg)) { - // Turn this into an IntInit. - Init *II = BI->convertInitializerTo(new IntRecTy()); - if (II == 0 || !dynamic_cast(II)) - error("Bits value must be constants!"); - - TreePatternNode *Node = new TreePatternNode(dynamic_cast(II)); - if (!Dag->getArgName(i).empty()) - error("Constant int argument should not have a name!"); - Children.push_back(Node); - } else { - std::cerr << '"'; - Arg->dump(); - std::cerr << "\": "; - error("Unknown leaf value for tree pattern!"); - } - } - - // If the operator is an intrinsic, then this is just syntactic sugar for for - // (intrinsic_* , ..children..). Pick the right intrinsic node, and - // convert the intrinsic name to a number. - if (Operator->isSubClassOf("Intrinsic")) { - const CodeGenIntrinsic &Int = getDAGISelEmitter().getIntrinsic(Operator); - unsigned IID = getDAGISelEmitter().getIntrinsicID(Operator)+1; - - // If this intrinsic returns void, it must have side-effects and thus a - // chain. - if (Int.ArgVTs[0] == MVT::isVoid) { - Operator = getDAGISelEmitter().get_intrinsic_void_sdnode(); - } else if (Int.ModRef != CodeGenIntrinsic::NoMem) { - // Has side-effects, requires chain. - Operator = getDAGISelEmitter().get_intrinsic_w_chain_sdnode(); - } else { - // Otherwise, no chain. - Operator = getDAGISelEmitter().get_intrinsic_wo_chain_sdnode(); - } - - TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID)); - Children.insert(Children.begin(), IIDNode); - } - - return new TreePatternNode(Operator, Children); -} - -/// InferAllTypes - Infer/propagate as many types throughout the expression -/// patterns as possible. Return true if all types are infered, false -/// otherwise. Throw an exception if a type contradiction is found. -bool TreePattern::InferAllTypes() { - bool MadeChange = true; - while (MadeChange) { - MadeChange = false; - for (unsigned i = 0, e = Trees.size(); i != e; ++i) - MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); - } - - bool HasUnresolvedTypes = false; - for (unsigned i = 0, e = Trees.size(); i != e; ++i) - HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); - return !HasUnresolvedTypes; -} - -void TreePattern::print(std::ostream &OS) const { - OS << getRecord()->getName(); - if (!Args.empty()) { - OS << "(" << Args[0]; - for (unsigned i = 1, e = Args.size(); i != e; ++i) - OS << ", " << Args[i]; - OS << ")"; - } - OS << ": "; - - if (Trees.size() > 1) - OS << "[\n"; - for (unsigned i = 0, e = Trees.size(); i != e; ++i) { - OS << "\t"; - Trees[i]->print(OS); - OS << "\n"; - } - - if (Trees.size() > 1) - OS << "]\n"; -} - -void TreePattern::dump() const { print(std::cerr); } - - - -//===----------------------------------------------------------------------===// -// DAGISelEmitter implementation -// - -// Parse all of the SDNode definitions for the target, populating SDNodes. -void DAGISelEmitter::ParseNodeInfo() { - std::vector Nodes = Records.getAllDerivedDefinitions("SDNode"); - while (!Nodes.empty()) { - SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); - Nodes.pop_back(); - } - - // Get the buildin intrinsic nodes. - intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); - intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); - intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); -} - -/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms -/// map, and emit them to the file as functions. -void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) { - OS << "\n// Node transformations.\n"; - std::vector Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); - while (!Xforms.empty()) { - Record *XFormNode = Xforms.back(); - Record *SDNode = XFormNode->getValueAsDef("Opcode"); - std::string Code = XFormNode->getValueAsCode("XFormFunction"); - SDNodeXForms.insert(std::make_pair(XFormNode, - std::make_pair(SDNode, Code))); - - if (!Code.empty()) { - std::string ClassName = getSDNodeInfo(SDNode).getSDClassName(); - const char *C2 = ClassName == "SDNode" ? "N" : "inN"; - - OS << "inline SDOperand Transform_" << XFormNode->getName() - << "(SDNode *" << C2 << ") {\n"; - if (ClassName != "SDNode") - OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; - OS << Code << "\n}\n"; - } - - Xforms.pop_back(); - } -} - -void DAGISelEmitter::ParseComplexPatterns() { - std::vector AMs = Records.getAllDerivedDefinitions("ComplexPattern"); - while (!AMs.empty()) { - ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); - AMs.pop_back(); - } -} - - -/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td -/// file, building up the PatternFragments map. After we've collected them all, -/// inline fragments together as necessary, so that there are no references left -/// inside a pattern fragment to a pattern fragment. -/// -/// This also emits all of the predicate functions to the output file. -/// -void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) { - std::vector Fragments = Records.getAllDerivedDefinitions("PatFrag"); - - // First step, parse all of the fragments and emit predicate functions. - OS << "\n// Predicate functions.\n"; - for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { - DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); - TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); - PatternFragments[Fragments[i]] = P; - - // Validate the argument list, converting it to map, to discard duplicates. - std::vector &Args = P->getArgList(); - std::set OperandsMap(Args.begin(), Args.end()); - - if (OperandsMap.count("")) - P->error("Cannot have unnamed 'node' values in pattern fragment!"); - - // Parse the operands list. - DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); - DefInit *OpsOp = dynamic_cast(OpsList->getOperator()); - if (!OpsOp || OpsOp->getDef()->getName() != "ops") - P->error("Operands list should start with '(ops ... '!"); - - // Copy over the arguments. - Args.clear(); - for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { - if (!dynamic_cast(OpsList->getArg(j)) || - static_cast(OpsList->getArg(j))-> - getDef()->getName() != "node") - P->error("Operands list should all be 'node' values."); - if (OpsList->getArgName(j).empty()) - P->error("Operands list should have names for each operand!"); - if (!OperandsMap.count(OpsList->getArgName(j))) - P->error("'" + OpsList->getArgName(j) + - "' does not occur in pattern or was multiply specified!"); - OperandsMap.erase(OpsList->getArgName(j)); - Args.push_back(OpsList->getArgName(j)); - } - - if (!OperandsMap.empty()) - P->error("Operands list does not contain an entry for operand '" + - *OperandsMap.begin() + "'!"); - - // If there is a code init for this fragment, emit the predicate code and - // keep track of the fact that this fragment uses it. - std::string Code = Fragments[i]->getValueAsCode("Predicate"); - if (!Code.empty()) { - assert(!P->getOnlyTree()->isLeaf() && "Can't be a leaf!"); - std::string ClassName = - getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName(); - const char *C2 = ClassName == "SDNode" ? "N" : "inN"; - - OS << "inline bool Predicate_" << Fragments[i]->getName() - << "(SDNode *" << C2 << ") {\n"; - if (ClassName != "SDNode") - OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; - OS << Code << "\n}\n"; - P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName()); - } - - // If there is a node transformation corresponding to this, keep track of - // it. - Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); - if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? - P->getOnlyTree()->setTransformFn(Transform); - } - - OS << "\n\n"; - - // Now that we've parsed all of the tree fragments, do a closure on them so - // that there are not references to PatFrags left inside of them. - for (std::map::iterator I = PatternFragments.begin(), - E = PatternFragments.end(); I != E; ++I) { - TreePattern *ThePat = I->second; - ThePat->InlinePatternFragments(); - - // Infer as many types as possible. Don't worry about it if we don't infer - // all of them, some may depend on the inputs of the pattern. - try { - ThePat->InferAllTypes(); - } catch (...) { - // If this pattern fragment is not supported by this target (no types can - // satisfy its constraints), just ignore it. If the bogus pattern is - // actually used by instructions, the type consistency error will be - // reported there. - } - - // If debugging, print out the pattern fragment result. - DEBUG(ThePat->dump()); - } -} - -/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an -/// instruction input. Return true if this is a real use. -static bool HandleUse(TreePattern *I, TreePatternNode *Pat, - std::map &InstInputs, - std::vector &InstImpInputs) { - // No name -> not interesting. - if (Pat->getName().empty()) { - if (Pat->isLeaf()) { - DefInit *DI = dynamic_cast(Pat->getLeafValue()); - if (DI && DI->getDef()->isSubClassOf("RegisterClass")) - I->error("Input " + DI->getDef()->getName() + " must be named!"); - else if (DI && DI->getDef()->isSubClassOf("Register")) - InstImpInputs.push_back(DI->getDef()); - } - return false; - } - - Record *Rec; - if (Pat->isLeaf()) { - DefInit *DI = dynamic_cast(Pat->getLeafValue()); - if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); - Rec = DI->getDef(); - } else { - assert(Pat->getNumChildren() == 0 && "can't be a use with children!"); - Rec = Pat->getOperator(); - } - - // SRCVALUE nodes are ignored. - if (Rec->getName() == "srcvalue") - return false; - - TreePatternNode *&Slot = InstInputs[Pat->getName()]; - if (!Slot) { - Slot = Pat; - } else { - Record *SlotRec; - if (Slot->isLeaf()) { - SlotRec = dynamic_cast(Slot->getLeafValue())->getDef(); - } else { - assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); - SlotRec = Slot->getOperator(); - } - - // Ensure that the inputs agree if we've already seen this input. - if (Rec != SlotRec) - I->error("All $" + Pat->getName() + " inputs must agree with each other"); - if (Slot->getExtTypes() != Pat->getExtTypes()) - I->error("All $" + Pat->getName() + " inputs must agree with each other"); - } - return true; -} - -/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is -/// part of "I", the instruction), computing the set of inputs and outputs of -/// the pattern. Report errors if we see anything naughty. -void DAGISelEmitter:: -FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, - std::map &InstInputs, - std::map&InstResults, - std::vector &InstImpInputs, - std::vector &InstImpResults) { - if (Pat->isLeaf()) { - bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); - if (!isUse && Pat->getTransformFn()) - I->error("Cannot specify a transform function for a non-input value!"); - return; - } else if (Pat->getOperator()->getName() != "set") { - // If this is not a set, verify that the children nodes are not void typed, - // and recurse. - for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { - if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid) - I->error("Cannot have void nodes inside of patterns!"); - FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, - InstImpInputs, InstImpResults); - } - - // If this is a non-leaf node with no children, treat it basically as if - // it were a leaf. This handles nodes like (imm). - bool isUse = false; - if (Pat->getNumChildren() == 0) - isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); - - if (!isUse && Pat->getTransformFn()) - I->error("Cannot specify a transform function for a non-input value!"); - return; - } - - // Otherwise, this is a set, validate and collect instruction results. - if (Pat->getNumChildren() == 0) - I->error("set requires operands!"); - else if (Pat->getNumChildren() & 1) - I->error("set requires an even number of operands"); - - if (Pat->getTransformFn()) - I->error("Cannot specify a transform function on a set node!"); - - // Check the set destinations. - unsigned NumValues = Pat->getNumChildren()/2; - for (unsigned i = 0; i != NumValues; ++i) { - TreePatternNode *Dest = Pat->getChild(i); - if (!Dest->isLeaf()) - I->error("set destination should be a register!"); - - DefInit *Val = dynamic_cast(Dest->getLeafValue()); - if (!Val) - I->error("set destination should be a register!"); - - if (Val->getDef()->isSubClassOf("RegisterClass")) { - if (Dest->getName().empty()) - I->error("set destination must have a name!"); - if (InstResults.count(Dest->getName())) - I->error("cannot set '" + Dest->getName() +"' multiple times"); - InstResults[Dest->getName()] = Dest; - } else if (Val->getDef()->isSubClassOf("Register")) { - InstImpResults.push_back(Val->getDef()); - } else { - I->error("set destination should be a register!"); - } - - // Verify and collect info from the computation. - FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues), - InstInputs, InstResults, - InstImpInputs, InstImpResults); - } -} - -/// ParseInstructions - Parse all of the instructions, inlining and resolving -/// any fragments involved. This populates the Instructions list with fully -/// resolved instructions. -void DAGISelEmitter::ParseInstructions() { - std::vector Instrs = Records.getAllDerivedDefinitions("Instruction"); - - for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { - ListInit *LI = 0; - - if (dynamic_cast(Instrs[i]->getValueInit("Pattern"))) - LI = Instrs[i]->getValueAsListInit("Pattern"); - - // If there is no pattern, only collect minimal information about the - // instruction for its operand list. We have to assume that there is one - // result, as we have no detailed info. - if (!LI || LI->getSize() == 0) { - std::vector Results; - std::vector Operands; - - CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName()); - - if (InstInfo.OperandList.size() != 0) { - // FIXME: temporary hack... - if (InstInfo.noResults) { - // These produce no results - for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j) - Operands.push_back(InstInfo.OperandList[j].Rec); - } else { - // Assume the first operand is the result. - Results.push_back(InstInfo.OperandList[0].Rec); - - // The rest are inputs. - for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j) - Operands.push_back(InstInfo.OperandList[j].Rec); - } - } - - // Create and insert the instruction. - std::vector ImpResults; - std::vector ImpOperands; - Instructions.insert(std::make_pair(Instrs[i], - DAGInstruction(0, Results, Operands, ImpResults, - ImpOperands))); - continue; // no pattern. - } - - // Parse the instruction. - TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); - // Inline pattern fragments into it. - I->InlinePatternFragments(); - - // Infer as many types as possible. If we cannot infer all of them, we can - // never do anything with this instruction pattern: report it to the user. - if (!I->InferAllTypes()) - I->error("Could not infer all types in pattern!"); - - // InstInputs - Keep track of all of the inputs of the instruction, along - // with the record they are declared as. - std::map InstInputs; - - // InstResults - Keep track of all the virtual registers that are 'set' - // in the instruction, including what reg class they are. - std::map InstResults; - - std::vector InstImpInputs; - std::vector InstImpResults; - - // Verify that the top-level forms in the instruction are of void type, and - // fill in the InstResults map. - for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { - TreePatternNode *Pat = I->getTree(j); - if (Pat->getExtTypeNum(0) != MVT::isVoid) - I->error("Top-level forms in instruction pattern should have" - " void types"); - - // Find inputs and outputs, and verify the structure of the uses/defs. - FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, - InstImpInputs, InstImpResults); - } - - // Now that we have inputs and outputs of the pattern, inspect the operands - // list for the instruction. This determines the order that operands are - // added to the machine instruction the node corresponds to. - unsigned NumResults = InstResults.size(); - - // Parse the operands list from the (ops) list, validating it. - std::vector &Args = I->getArgList(); - assert(Args.empty() && "Args list should still be empty here!"); - CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName()); - - // Check that all of the results occur first in the list. - std::vector Results; - TreePatternNode *Res0Node = NULL; - for (unsigned i = 0; i != NumResults; ++i) { - if (i == CGI.OperandList.size()) - I->error("'" + InstResults.begin()->first + - "' set but does not appear in operand list!"); - const std::string &OpName = CGI.OperandList[i].Name; - - // Check that it exists in InstResults. - TreePatternNode *RNode = InstResults[OpName]; - if (RNode == 0) - I->error("Operand $" + OpName + " does not exist in operand list!"); - - if (i == 0) - Res0Node = RNode; - Record *R = dynamic_cast(RNode->getLeafValue())->getDef(); - if (R == 0) - I->error("Operand $" + OpName + " should be a set destination: all " - "outputs must occur before inputs in operand list!"); - - if (CGI.OperandList[i].Rec != R) - I->error("Operand $" + OpName + " class mismatch!"); - - // Remember the return type. - Results.push_back(CGI.OperandList[i].Rec); - - // Okay, this one checks out. - InstResults.erase(OpName); - } - - // Loop over the inputs next. Make a copy of InstInputs so we can destroy - // the copy while we're checking the inputs. - std::map InstInputsCheck(InstInputs); - - std::vector ResultNodeOperands; - std::vector Operands; - for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { - const std::string &OpName = CGI.OperandList[i].Name; - if (OpName.empty()) - I->error("Operand #" + utostr(i) + " in operands list has no name!"); - - if (!InstInputsCheck.count(OpName)) - I->error("Operand $" + OpName + - " does not appear in the instruction pattern"); - TreePatternNode *InVal = InstInputsCheck[OpName]; - InstInputsCheck.erase(OpName); // It occurred, remove from map. - - if (InVal->isLeaf() && - dynamic_cast(InVal->getLeafValue())) { - Record *InRec = static_cast(InVal->getLeafValue())->getDef(); - if (CGI.OperandList[i].Rec != InRec && - !InRec->isSubClassOf("ComplexPattern")) - I->error("Operand $" + OpName + "'s register class disagrees" - " between the operand and pattern"); - } - Operands.push_back(CGI.OperandList[i].Rec); - - // Construct the result for the dest-pattern operand list. - TreePatternNode *OpNode = InVal->clone(); - - // No predicate is useful on the result. - OpNode->setPredicateFn(""); - - // Promote the xform function to be an explicit node if set. - if (Record *Xform = OpNode->getTransformFn()) { - OpNode->setTransformFn(0); - std::vector Children; - Children.push_back(OpNode); - OpNode = new TreePatternNode(Xform, Children); - } - - ResultNodeOperands.push_back(OpNode); - } - - if (!InstInputsCheck.empty()) - I->error("Input operand $" + InstInputsCheck.begin()->first + - " occurs in pattern but not in operands list!"); - - TreePatternNode *ResultPattern = - new TreePatternNode(I->getRecord(), ResultNodeOperands); - // Copy fully inferred output node type to instruction result pattern. - if (NumResults > 0) - ResultPattern->setTypes(Res0Node->getExtTypes()); - - // Create and insert the instruction. - DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs); - Instructions.insert(std::make_pair(I->getRecord(), TheInst)); - - // Use a temporary tree pattern to infer all types and make sure that the - // constructed result is correct. This depends on the instruction already - // being inserted into the Instructions map. - TreePattern Temp(I->getRecord(), ResultPattern, false, *this); - Temp.InferAllTypes(); - - DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; - TheInsertedInst.setResultPattern(Temp.getOnlyTree()); - - DEBUG(I->dump()); - } - - // If we can, convert the instructions to be patterns that are matched! - for (std::map::iterator II = Instructions.begin(), - E = Instructions.end(); II != E; ++II) { - DAGInstruction &TheInst = II->second; - TreePattern *I = TheInst.getPattern(); - if (I == 0) continue; // No pattern. - - if (I->getNumTrees() != 1) { - std::cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!"; - continue; - } - TreePatternNode *Pattern = I->getTree(0); - TreePatternNode *SrcPattern; - if (Pattern->getOperator()->getName() == "set") { - if (Pattern->getNumChildren() != 2) - continue; // Not a set of a single value (not handled so far) - - SrcPattern = Pattern->getChild(1)->clone(); - } else{ - // Not a set (store or something?) - SrcPattern = Pattern; - } - - std::string Reason; - if (!SrcPattern->canPatternMatch(Reason, *this)) - I->error("Instruction can never match: " + Reason); - - Record *Instr = II->first; - TreePatternNode *DstPattern = TheInst.getResultPattern(); - PatternsToMatch. - push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"), - SrcPattern, DstPattern, - Instr->getValueAsInt("AddedComplexity"))); - } -} - -void DAGISelEmitter::ParsePatterns() { - std::vector Patterns = Records.getAllDerivedDefinitions("Pattern"); - - for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { - DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch"); - TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this); - - // Inline pattern fragments into it. - Pattern->InlinePatternFragments(); - - ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs"); - if (LI->getSize() == 0) continue; // no pattern. - - // Parse the instruction. - TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this); - - // Inline pattern fragments into it. - Result->InlinePatternFragments(); - - if (Result->getNumTrees() != 1) - Result->error("Cannot handle instructions producing instructions " - "with temporaries yet!"); - - bool IterateInference; - bool InferredAllPatternTypes, InferredAllResultTypes; - do { - // Infer as many types as possible. If we cannot infer all of them, we - // can never do anything with this pattern: report it to the user. - InferredAllPatternTypes = Pattern->InferAllTypes(); - - // Infer as many types as possible. If we cannot infer all of them, we can - // never do anything with this pattern: report it to the user. - InferredAllResultTypes = Result->InferAllTypes(); - - // Apply the type of the result to the source pattern. This helps us - // resolve cases where the input type is known to be a pointer type (which - // is considered resolved), but the result knows it needs to be 32- or - // 64-bits. Infer the other way for good measure. - IterateInference = Pattern->getOnlyTree()-> - UpdateNodeType(Result->getOnlyTree()->getExtTypes(), *Result); - IterateInference |= Result->getOnlyTree()-> - UpdateNodeType(Pattern->getOnlyTree()->getExtTypes(), *Result); - } while (IterateInference); - - // Verify that we inferred enough types that we can do something with the - // pattern and result. If these fire the user has to add type casts. - if (!InferredAllPatternTypes) - Pattern->error("Could not infer all types in pattern!"); - if (!InferredAllResultTypes) - Result->error("Could not infer all types in pattern result!"); - - // Validate that the input pattern is correct. - { - std::map InstInputs; - std::map InstResults; - std::vector InstImpInputs; - std::vector InstImpResults; - FindPatternInputsAndOutputs(Pattern, Pattern->getOnlyTree(), - InstInputs, InstResults, - InstImpInputs, InstImpResults); - } - - // Promote the xform function to be an explicit node if set. - std::vector ResultNodeOperands; - TreePatternNode *DstPattern = Result->getOnlyTree(); - for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { - TreePatternNode *OpNode = DstPattern->getChild(ii); - if (Record *Xform = OpNode->getTransformFn()) { - OpNode->setTransformFn(0); - std::vector Children; - Children.push_back(OpNode); - OpNode = new TreePatternNode(Xform, Children); - } - ResultNodeOperands.push_back(OpNode); - } - DstPattern = Result->getOnlyTree(); - if (!DstPattern->isLeaf()) - DstPattern = new TreePatternNode(DstPattern->getOperator(), - ResultNodeOperands); - DstPattern->setTypes(Result->getOnlyTree()->getExtTypes()); - TreePattern Temp(Result->getRecord(), DstPattern, false, *this); - Temp.InferAllTypes(); - - std::string Reason; - if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this)) - Pattern->error("Pattern can never match: " + Reason); - - PatternsToMatch. - push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"), - Pattern->getOnlyTree(), - Temp.getOnlyTree(), - Patterns[i]->getValueAsInt("AddedComplexity"))); - } -} - -/// CombineChildVariants - Given a bunch of permutations of each child of the -/// 'operator' node, put them together in all possible ways. -static void CombineChildVariants(TreePatternNode *Orig, - const std::vector > &ChildVariants, - std::vector &OutVariants, - DAGISelEmitter &ISE) { - // Make sure that each operand has at least one variant to choose from. - for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) - if (ChildVariants[i].empty()) - return; - - // The end result is an all-pairs construction of the resultant pattern. - std::vector Idxs; - Idxs.resize(ChildVariants.size()); - bool NotDone = true; - while (NotDone) { - // Create the variant and add it to the output list. - std::vector NewChildren; - for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) - NewChildren.push_back(ChildVariants[i][Idxs[i]]); - TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren); - - // Copy over properties. - R->setName(Orig->getName()); - R->setPredicateFn(Orig->getPredicateFn()); - R->setTransformFn(Orig->getTransformFn()); - R->setTypes(Orig->getExtTypes()); - - // If this pattern cannot every match, do not include it as a variant. - std::string ErrString; - if (!R->canPatternMatch(ErrString, ISE)) { - delete R; - } else { - bool AlreadyExists = false; - - // Scan to see if this pattern has already been emitted. We can get - // duplication due to things like commuting: - // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) - // which are the same pattern. Ignore the dups. - for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) - if (R->isIsomorphicTo(OutVariants[i])) { - AlreadyExists = true; - break; - } - - if (AlreadyExists) - delete R; - else - OutVariants.push_back(R); - } - - // Increment indices to the next permutation. - NotDone = false; - // Look for something we can increment without causing a wrap-around. - for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) { - if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) { - NotDone = true; // Found something to increment. - break; - } - Idxs[IdxsIdx] = 0; - } - } -} - -/// CombineChildVariants - A helper function for binary operators. -/// -static void CombineChildVariants(TreePatternNode *Orig, - const std::vector &LHS, - const std::vector &RHS, - std::vector &OutVariants, - DAGISelEmitter &ISE) { - std::vector > ChildVariants; - ChildVariants.push_back(LHS); - ChildVariants.push_back(RHS); - CombineChildVariants(Orig, ChildVariants, OutVariants, ISE); -} - - -static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, - std::vector &Children) { - assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); - Record *Operator = N->getOperator(); - - // Only permit raw nodes. - if (!N->getName().empty() || !N->getPredicateFn().empty() || - N->getTransformFn()) { - Children.push_back(N); - return; - } - - if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) - Children.push_back(N->getChild(0)); - else - GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/Debug.h" +#include +#include +#include +using namespace llvm; - if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) - Children.push_back(N->getChild(1)); - else - GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); -} +static cl::opt +GenDebug("gen-debug", cl::desc("Generate debug code"), cl::init(false)); -/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of -/// the (potentially recursive) pattern by using algebraic laws. -/// -static void GenerateVariantsOf(TreePatternNode *N, - std::vector &OutVariants, - DAGISelEmitter &ISE) { - // We cannot permute leaves. - if (N->isLeaf()) { - OutVariants.push_back(N); - return; - } +//===----------------------------------------------------------------------===// +// DAGISelEmitter Helper methods +// - // Look up interesting info about the node. - const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator()); - - // If this node is associative, reassociate. - if (NodeInfo.hasProperty(SDNodeInfo::SDNPAssociative)) { - // Reassociate by pulling together all of the linked operators - std::vector MaximalChildren; - GatherChildrenOfAssociativeOpcode(N, MaximalChildren); - - // Only handle child sizes of 3. Otherwise we'll end up trying too many - // permutations. - if (MaximalChildren.size() == 3) { - // Find the variants of all of our maximal children. - std::vector AVariants, BVariants, CVariants; - GenerateVariantsOf(MaximalChildren[0], AVariants, ISE); - GenerateVariantsOf(MaximalChildren[1], BVariants, ISE); - GenerateVariantsOf(MaximalChildren[2], CVariants, ISE); - - // There are only two ways we can permute the tree: - // (A op B) op C and A op (B op C) - // Within these forms, we can also permute A/B/C. - - // Generate legal pair permutations of A/B/C. - std::vector ABVariants; - std::vector BAVariants; - std::vector ACVariants; - std::vector CAVariants; - std::vector BCVariants; - std::vector CBVariants; - CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE); - CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE); - CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE); - CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE); - CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE); - CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE); - - // Combine those into the result: (x op x) op x - CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE); - CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE); - CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE); - CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE); - CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE); - CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE); - - // Combine those into the result: x op (x op x) - CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE); - CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE); - CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE); - CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE); - CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE); - CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE); - return; - } - } - - // Compute permutations of all children. - std::vector > ChildVariants; - ChildVariants.resize(N->getNumChildren()); - for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) - GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE); - - // Build all permutations based on how the children were formed. - CombineChildVariants(N, ChildVariants, OutVariants, ISE); - - // If this node is commutative, consider the commuted order. - if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) { - assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!"); - // Don't count children which are actually register references. - unsigned NC = 0; - for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { - TreePatternNode *Child = N->getChild(i); - if (Child->isLeaf()) - if (DefInit *DI = dynamic_cast(Child->getLeafValue())) { - Record *RR = DI->getDef(); - if (RR->isSubClassOf("Register")) - continue; - } - NC++; - } - // Consider the commuted order. - if (NC == 2) - CombineChildVariants(N, ChildVariants[1], ChildVariants[0], - OutVariants, ISE); - } +/// getNodeName - The top level Select_* functions have an "SDNode* N" +/// argument. When expanding the pattern-matching code, the intermediate +/// variables have type SDValue. This function provides a uniform way to +/// reference the underlying "SDNode *" for both cases. +static std::string getNodeName(const std::string &S) { + if (S == "N") return S; + return S + ".getNode()"; } - -// GenerateVariants - Generate variants. For example, commutative patterns can -// match multiple ways. Add them to PatternsToMatch as well. -void DAGISelEmitter::GenerateVariants() { - - DEBUG(std::cerr << "Generating instruction variants.\n"); - - // Loop over all of the patterns we've collected, checking to see if we can - // generate variants of the instruction, through the exploitation of - // identities. This permits the target to provide agressive matching without - // the .td file having to contain tons of variants of instructions. - // - // Note that this loop adds new patterns to the PatternsToMatch list, but we - // intentionally do not reconsider these. Any variants of added patterns have - // already been added. - // - for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { - std::vector Variants; - GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this); - - assert(!Variants.empty() && "Must create at least original variant!"); - Variants.erase(Variants.begin()); // Remove the original pattern. - - if (Variants.empty()) // No variants for this pattern. - continue; - - DEBUG(std::cerr << "FOUND VARIANTS OF: "; - PatternsToMatch[i].getSrcPattern()->dump(); - std::cerr << "\n"); - - for (unsigned v = 0, e = Variants.size(); v != e; ++v) { - TreePatternNode *Variant = Variants[v]; - - DEBUG(std::cerr << " VAR#" << v << ": "; - Variant->dump(); - std::cerr << "\n"); - - // Scan to see if an instruction or explicit pattern already matches this. - bool AlreadyExists = false; - for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { - // Check to see if this variant already exists. - if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) { - DEBUG(std::cerr << " *** ALREADY EXISTS, ignoring variant.\n"); - AlreadyExists = true; - break; - } - } - // If we already have it, ignore the variant. - if (AlreadyExists) continue; - - // Otherwise, add it to the list of patterns we have. - PatternsToMatch. - push_back(PatternToMatch(PatternsToMatch[i].getPredicates(), - Variant, PatternsToMatch[i].getDstPattern(), - PatternsToMatch[i].getAddedComplexity())); - } - - DEBUG(std::cerr << "\n"); - } +/// getNodeValue - Similar to getNodeName, except it provides a uniform +/// way to access the SDValue for both cases. +static std::string getValueName(const std::string &S) { + if (S == "N") return "SDValue(N, 0)"; + return S; } - -// NodeIsComplexPattern - return true if N is a leaf node and a subclass of -// ComplexPattern. -static bool NodeIsComplexPattern(TreePatternNode *N) -{ +/// NodeIsComplexPattern - return true if N is a leaf node and a subclass of +/// ComplexPattern. +static bool NodeIsComplexPattern(TreePatternNode *N) { return (N->isLeaf() && dynamic_cast(N->getLeafValue()) && static_cast(N->getLeafValue())->getDef()-> isSubClassOf("ComplexPattern")); } -// NodeGetComplexPattern - return the pointer to the ComplexPattern if N -// is a leaf node and a subclass of ComplexPattern, else it returns NULL. +/// NodeGetComplexPattern - return the pointer to the ComplexPattern if N +/// is a leaf node and a subclass of ComplexPattern, else it returns NULL. static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N, - DAGISelEmitter &ISE) -{ + CodeGenDAGPatterns &CGP) { if (N->isLeaf() && dynamic_cast(N->getLeafValue()) && static_cast(N->getLeafValue())->getDef()-> isSubClassOf("ComplexPattern")) { - return &ISE.getComplexPattern(static_cast(N->getLeafValue()) - ->getDef()); + return &CGP.getComplexPattern(static_cast(N->getLeafValue()) + ->getDef()); } return NULL; } @@ -1938,44 +72,45 @@ static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N, /// getPatternSize - Return the 'size' of this pattern. We want to match large /// patterns before small ones. This is used to determine the size of a /// pattern. -static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { - assert((isExtIntegerInVTs(P->getExtTypes()) || - isExtFloatingPointInVTs(P->getExtTypes()) || +static unsigned getPatternSize(TreePatternNode *P, CodeGenDAGPatterns &CGP) { + assert((EEVT::isExtIntegerInVTs(P->getExtTypes()) || + EEVT::isExtFloatingPointInVTs(P->getExtTypes()) || P->getExtTypeNum(0) == MVT::isVoid || P->getExtTypeNum(0) == MVT::Flag || - P->getExtTypeNum(0) == MVT::iPTR) && + P->getExtTypeNum(0) == MVT::iPTR || + P->getExtTypeNum(0) == MVT::iPTRAny) && "Not a valid pattern node to size!"); - unsigned Size = 2; // The node itself. + unsigned Size = 3; // The node itself. // If the root node is a ConstantSDNode, increases its size. // e.g. (set R32:$dst, 0). if (P->isLeaf() && dynamic_cast(P->getLeafValue())) - Size++; + Size += 2; // FIXME: This is a hack to statically increase the priority of patterns // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. // Later we can allow complexity / cost for each pattern to be (optionally) // specified. To get best possible pattern match we'll need to dynamically // calculate the complexity of all patterns a dag can potentially map to. - const ComplexPattern *AM = NodeGetComplexPattern(P, ISE); + const ComplexPattern *AM = NodeGetComplexPattern(P, CGP); if (AM) - Size += AM->getNumOperands() * 2; + Size += AM->getNumOperands() * 3; // If this node has some predicate function that must match, it adds to the // complexity of this node. - if (!P->getPredicateFn().empty()) + if (!P->getPredicateFns().empty()) ++Size; // Count children in the count if they are also nodes. for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { TreePatternNode *Child = P->getChild(i); if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other) - Size += getPatternSize(Child, ISE); + Size += getPatternSize(Child, CGP); else if (Child->isLeaf()) { if (dynamic_cast(Child->getLeafValue())) - Size += 3; // Matches a ConstantSDNode (+2) and a specific value (+1). + Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). else if (NodeIsComplexPattern(Child)) - Size += getPatternSize(Child, ISE); - else if (!Child->getPredicateFn().empty()) + Size += getPatternSize(Child, CGP); + else if (!Child->getPredicateFns().empty()) ++Size; } } @@ -1986,25 +121,27 @@ static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { /// getResultPatternCost - Compute the number of instructions for this pattern. /// This is a temporary hack. We should really include the instruction /// latencies in this calculation. -static unsigned getResultPatternCost(TreePatternNode *P, DAGISelEmitter &ISE) { +static unsigned getResultPatternCost(TreePatternNode *P, + CodeGenDAGPatterns &CGP) { if (P->isLeaf()) return 0; unsigned Cost = 0; Record *Op = P->getOperator(); if (Op->isSubClassOf("Instruction")) { Cost++; - CodeGenInstruction &II = ISE.getTargetInfo().getInstruction(Op->getName()); - if (II.usesCustomDAGSchedInserter) + CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op->getName()); + if (II.usesCustomInserter) Cost += 10; } for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) - Cost += getResultPatternCost(P->getChild(i), ISE); + Cost += getResultPatternCost(P->getChild(i), CGP); return Cost; } /// getResultPatternCodeSize - Compute the code size of instructions for this /// pattern. -static unsigned getResultPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { +static unsigned getResultPatternSize(TreePatternNode *P, + CodeGenDAGPatterns &CGP) { if (P->isLeaf()) return 0; unsigned Cost = 0; @@ -2013,7 +150,7 @@ static unsigned getResultPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { Cost += Op->getValueAsInt("CodeSize"); } for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) - Cost += getResultPatternSize(P->getChild(i), ISE); + Cost += getResultPatternSize(P->getChild(i), CGP); return Cost; } @@ -2021,35 +158,63 @@ static unsigned getResultPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { // In particular, we want to match maximal patterns first and lowest cost within // a particular complexity first. struct PatternSortingPredicate { - PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {}; - DAGISelEmitter &ISE; + PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {} + CodeGenDAGPatterns &CGP; - bool operator()(PatternToMatch *LHS, - PatternToMatch *RHS) { - unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), ISE); - unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), ISE); + typedef std::pair CodeLine; + typedef std::vector CodeList; + typedef std::vector > PatternList; + + bool operator()(const std::pair &LHSPair, + const std::pair &RHSPair) { + const PatternToMatch *LHS = LHSPair.first; + const PatternToMatch *RHS = RHSPair.first; + + unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), CGP); + unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), CGP); LHSSize += LHS->getAddedComplexity(); RHSSize += RHS->getAddedComplexity(); if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost if (LHSSize < RHSSize) return false; // If the patterns have equal complexity, compare generated instruction cost - unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), ISE); - unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), ISE); + unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP); + unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP); if (LHSCost < RHSCost) return true; if (LHSCost > RHSCost) return false; - return getResultPatternSize(LHS->getDstPattern(), ISE) < - getResultPatternSize(RHS->getDstPattern(), ISE); + return getResultPatternSize(LHS->getDstPattern(), CGP) < + getResultPatternSize(RHS->getDstPattern(), CGP); } }; -/// getRegisterValueType - Look up and return the first ValueType of specified -/// RegisterClass record -static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { - if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R)) - return RC->getValueTypeNum(0); - return MVT::Other; +/// getRegisterValueType - Look up and return the ValueType of the specified +/// register. If the register is a member of multiple register classes which +/// have different associated types, return MVT::Other. +static MVT::SimpleValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { + bool FoundRC = false; + MVT::SimpleValueType VT = MVT::Other; + const std::vector &RCs = T.getRegisterClasses(); + std::vector::const_iterator RC; + std::vector::const_iterator Element; + + for (RC = RCs.begin() ; RC != RCs.end() ; RC++) { + Element = find((*RC).Elements.begin(), (*RC).Elements.end(), R); + if (Element != (*RC).Elements.end()) { + if (!FoundRC) { + FoundRC = true; + VT = (*RC).getValueTypeNum(0); + } else { + // In multiple RC's + if (VT != (*RC).getValueTypeNum(0)) { + // Types of the RC's do not agree. Return MVT::Other. The + // target is responsible for handling this. + return MVT::Other; + } + } + } + } + return VT; } @@ -2062,49 +227,146 @@ static void RemoveAllTypes(TreePatternNode *N) { RemoveAllTypes(N->getChild(i)); } -Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const { - Record *N = Records.getDef(Name); - if (!N || !N->isSubClassOf("SDNode")) { - std::cerr << "Error getting SDNode '" << Name << "'!\n"; - exit(1); - } - return N; -} - /// NodeHasProperty - return true if TreePatternNode has the specified /// property. -static bool NodeHasProperty(TreePatternNode *N, SDNodeInfo::SDNP Property, - DAGISelEmitter &ISE) -{ - if (N->isLeaf()) return false; +static bool NodeHasProperty(TreePatternNode *N, SDNP Property, + CodeGenDAGPatterns &CGP) { + if (N->isLeaf()) { + const ComplexPattern *CP = NodeGetComplexPattern(N, CGP); + if (CP) + return CP->hasProperty(Property); + return false; + } Record *Operator = N->getOperator(); if (!Operator->isSubClassOf("SDNode")) return false; - const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator); - return NodeInfo.hasProperty(Property); + return CGP.getSDNodeInfo(Operator).hasProperty(Property); } -static bool PatternHasProperty(TreePatternNode *N, SDNodeInfo::SDNP Property, - DAGISelEmitter &ISE) -{ - if (NodeHasProperty(N, Property, ISE)) +static bool PatternHasProperty(TreePatternNode *N, SDNP Property, + CodeGenDAGPatterns &CGP) { + if (NodeHasProperty(N, Property, CGP)) return true; for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { TreePatternNode *Child = N->getChild(i); - if (PatternHasProperty(Child, Property, ISE)) + if (PatternHasProperty(Child, Property, CGP)) return true; } return false; } +static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { + return CGP.getSDNodeInfo(Op).getEnumName(); +} + +static +bool DisablePatternForFastISel(TreePatternNode *N, CodeGenDAGPatterns &CGP) { + bool isStore = !N->isLeaf() && + getOpcodeName(N->getOperator(), CGP) == "ISD::STORE"; + if (!isStore && NodeHasProperty(N, SDNPHasChain, CGP)) + return false; + + bool HasChain = false; + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { + TreePatternNode *Child = N->getChild(i); + if (PatternHasProperty(Child, SDNPHasChain, CGP)) { + HasChain = true; + break; + } + } + return HasChain; +} + +//===----------------------------------------------------------------------===// +// Node Transformation emitter implementation. +// +void DAGISelEmitter::EmitNodeTransforms(raw_ostream &OS) { + // Walk the pattern fragments, adding them to a map, which sorts them by + // name. + typedef std::map NXsByNameTy; + NXsByNameTy NXsByName; + + for (CodeGenDAGPatterns::nx_iterator I = CGP.nx_begin(), E = CGP.nx_end(); + I != E; ++I) + NXsByName.insert(std::make_pair(I->first->getName(), I->second)); + + OS << "\n// Node transformations.\n"; + + for (NXsByNameTy::iterator I = NXsByName.begin(), E = NXsByName.end(); + I != E; ++I) { + Record *SDNode = I->second.first; + std::string Code = I->second.second; + + if (Code.empty()) continue; // Empty code? Skip it. + + std::string ClassName = CGP.getSDNodeInfo(SDNode).getSDClassName(); + const char *C2 = ClassName == "SDNode" ? "N" : "inN"; + + OS << "inline SDValue Transform_" << I->first << "(SDNode *" << C2 + << ") {\n"; + if (ClassName != "SDNode") + OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; + OS << Code << "\n}\n"; + } +} + +//===----------------------------------------------------------------------===// +// Predicate emitter implementation. +// + +void DAGISelEmitter::EmitPredicateFunctions(raw_ostream &OS) { + OS << "\n// Predicate functions.\n"; + + // Walk the pattern fragments, adding them to a map, which sorts them by + // name. + typedef std::map > PFsByNameTy; + PFsByNameTy PFsByName; + + for (CodeGenDAGPatterns::pf_iterator I = CGP.pf_begin(), E = CGP.pf_end(); + I != E; ++I) + PFsByName.insert(std::make_pair(I->first->getName(), *I)); + + + for (PFsByNameTy::iterator I = PFsByName.begin(), E = PFsByName.end(); + I != E; ++I) { + Record *PatFragRecord = I->second.first;// Record that derives from PatFrag. + TreePattern *P = I->second.second; + + // If there is a code init for this fragment, emit the predicate code. + std::string Code = PatFragRecord->getValueAsCode("Predicate"); + if (Code.empty()) continue; + + if (P->getOnlyTree()->isLeaf()) + OS << "inline bool Predicate_" << PatFragRecord->getName() + << "(SDNode *N) {\n"; + else { + std::string ClassName = + CGP.getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName(); + const char *C2 = ClassName == "SDNode" ? "N" : "inN"; + + OS << "inline bool Predicate_" << PatFragRecord->getName() + << "(SDNode *" << C2 << ") {\n"; + if (ClassName != "SDNode") + OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; + } + OS << Code << "\n}\n"; + } + + OS << "\n\n"; +} + + +//===----------------------------------------------------------------------===// +// PatternCodeEmitter implementation. +// class PatternCodeEmitter { private: - DAGISelEmitter &ISE; + CodeGenDAGPatterns &CGP; // Predicates. - ListInit *Predicates; + std::string PredicateCheck; // Pattern cost. unsigned Cost; // Instruction selector pattern. @@ -2116,22 +378,41 @@ private: std::map VariableMap; // Node to operator mapping std::map OperatorMap; + // Name of the folded node which produces a flag. + std::pair FoldedFlag; // Names of all the folded nodes which produce chains. std::vector > FoldedChains; + // Original input chain(s). + std::vector > OrigChains; std::set Duplicates; - /// GeneratedCode - This is the buffer that we emit code to. The first bool + /// LSI - Load/Store information. + /// Save loads/stores matched by a pattern, and generate a MemOperandSDNode + /// for each memory access. This facilitates the use of AliasAnalysis in + /// the backend. + std::vector LSI; + + /// GeneratedCode - This is the buffer that we emit code to. The first int /// indicates whether this is an exit predicate (something that should be - /// tested, and if true, the match fails) [when true] or normal code to emit - /// [when false]. - std::vector > &GeneratedCode; - /// GeneratedDecl - This is the set of all SDOperand declarations needed for + /// tested, and if true, the match fails) [when 1], or normal code to emit + /// [when 0], or initialization code to emit [when 2]. + std::vector > &GeneratedCode; + /// GeneratedDecl - This is the set of all SDValue declarations needed for /// the set of patterns for each top-level opcode. - std::set > &GeneratedDecl; + std::set &GeneratedDecl; /// TargetOpcodes - The target specific opcodes used by the resulting /// instructions. std::vector &TargetOpcodes; std::vector &TargetVTs; + /// OutputIsVariadic - Records whether the instruction output pattern uses + /// variable_ops. This requires that the Emit function be passed an + /// additional argument to indicate where the input varargs operands + /// begin. + bool &OutputIsVariadic; + /// NumInputRootOps - Records the number of operands the root node of the + /// input pattern has. This information is used in the generated code to + /// pass to Emit functions when variable_ops processing is needed. + unsigned &NumInputRootOps; std::string ChainName; unsigned TmpNo; @@ -2140,15 +421,19 @@ private: void emitCheck(const std::string &S) { if (!S.empty()) - GeneratedCode.push_back(std::make_pair(true, S)); + GeneratedCode.push_back(std::make_pair(1, S)); } void emitCode(const std::string &S) { if (!S.empty()) - GeneratedCode.push_back(std::make_pair(false, S)); + GeneratedCode.push_back(std::make_pair(0, S)); + } + void emitInit(const std::string &S) { + if (!S.empty()) + GeneratedCode.push_back(std::make_pair(2, S)); } - void emitDecl(const std::string &S, unsigned T=0) { + void emitDecl(const std::string &S) { assert(!S.empty() && "Invalid declaration"); - GeneratedDecl.insert(std::make_pair(T, S)); + GeneratedDecl.insert(S); } void emitOpcode(const std::string &Opc) { TargetOpcodes.push_back(Opc); @@ -2159,48 +444,50 @@ private: VTNo++; } public: - PatternCodeEmitter(DAGISelEmitter &ise, ListInit *preds, + PatternCodeEmitter(CodeGenDAGPatterns &cgp, std::string predcheck, TreePatternNode *pattern, TreePatternNode *instr, - std::vector > &gc, - std::set > &gd, + std::vector > &gc, + std::set &gd, std::vector &to, - std::vector &tv) - : ISE(ise), Predicates(preds), Pattern(pattern), Instruction(instr), - GeneratedCode(gc), GeneratedDecl(gd), TargetOpcodes(to), TargetVTs(tv), + std::vector &tv, + bool &oiv, + unsigned &niro) + : CGP(cgp), PredicateCheck(predcheck), Pattern(pattern), Instruction(instr), + GeneratedCode(gc), GeneratedDecl(gd), + TargetOpcodes(to), TargetVTs(tv), + OutputIsVariadic(oiv), NumInputRootOps(niro), TmpNo(0), OpcNo(0), VTNo(0) {} /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo /// if the match fails. At this point, we already know that the opcode for N /// matches, and the SDNode for the result has the RootName specified name. void EmitMatchCode(TreePatternNode *N, TreePatternNode *P, - const std::string &RootName, const std::string &ParentName, - const std::string &ChainSuffix, bool &FoundChain) { + const std::string &RootName, const std::string &ChainSuffix, + bool &FoundChain) { + + // Save loads/stores matched by a pattern. + if (!N->isLeaf() && N->getName().empty()) { + if (NodeHasProperty(N, SDNPMemOperand, CGP)) + LSI.push_back(getNodeName(RootName)); + } + bool isRoot = (P == NULL); // Emit instruction predicates. Each predicate is just a string for now. if (isRoot) { - std::string PredicateCheck; - for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { - if (DefInit *Pred = dynamic_cast(Predicates->getElement(i))) { - Record *Def = Pred->getDef(); - if (!Def->isSubClassOf("Predicate")) { -#ifndef NDEBUG - Def->dump(); -#endif - assert(0 && "Unknown predicate type!"); - } - if (!PredicateCheck.empty()) - PredicateCheck += " || "; - PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; - } - } - + // Record input varargs info. + NumInputRootOps = N->getNumChildren(); + + if (DisablePatternForFastISel(N, CGP)) + emitCheck("OptLevel != CodeGenOpt::None"); + emitCheck(PredicateCheck); } if (N->isLeaf()) { if (IntInit *II = dynamic_cast(N->getLeafValue())) { - emitCheck("cast(" + RootName + - ")->getSignExtended() == " + itostr(II->getValue())); + emitCheck("cast(" + getNodeName(RootName) + + ")->getSExtValue() == INT64_C(" + + itostr(II->getValue()) + ")"); return; } else if (!NodeIsComplexPattern(N)) { assert(0 && "Cannot match this as a leaf value!"); @@ -2230,37 +517,17 @@ public: // Emit code to load the child nodes and match their contents recursively. unsigned OpNo = 0; - bool NodeHasChain = NodeHasProperty (N, SDNodeInfo::SDNPHasChain, ISE); - bool HasChain = PatternHasProperty(N, SDNodeInfo::SDNPHasChain, ISE); - bool HasOutFlag = PatternHasProperty(N, SDNodeInfo::SDNPOutFlag, ISE); + bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, CGP); + bool HasChain = PatternHasProperty(N, SDNPHasChain, CGP); bool EmittedUseCheck = false; if (HasChain) { if (NodeHasChain) OpNo = 1; if (!isRoot) { - const SDNodeInfo &CInfo = ISE.getSDNodeInfo(N->getOperator()); // Multiple uses of actual result? - emitCheck(RootName + ".hasOneUse()"); + emitCheck(getValueName(RootName) + ".hasOneUse()"); EmittedUseCheck = true; if (NodeHasChain) { - // FIXME: Don't fold if 1) the parent node writes a flag, 2) the node - // has a chain use. - // This a workaround for this problem: - // - // [ch, r : ld] - // ^ ^ - // | | - // [XX]--/ \- [flag : cmp] - // ^ ^ - // | | - // \---[br flag]- - // - // cmp + br should be considered as a single node as they are flagged - // together. So, if the ld is folded into the cmp, the XX node in the - // graph is now both an operand and a use of the ld/cmp/br node. - if (NodeHasProperty(P, SDNodeInfo::SDNPOutFlag, ISE)) - emitCheck(ParentName + ".Val->isOnlyUse(" + RootName + ".Val)"); - // If the immediate use can somehow reach this node through another // path, then can't fold it either or it will create a cycle. // e.g. In the following diagram, XX can reach ld through YY. If @@ -2274,25 +541,40 @@ public: // / [YY] // | ^ // [XX]-------| - const SDNodeInfo &PInfo = ISE.getSDNodeInfo(P->getOperator()); - if (PInfo.getNumOperands() > 1 || - PInfo.hasProperty(SDNodeInfo::SDNPHasChain) || - PInfo.hasProperty(SDNodeInfo::SDNPInFlag) || - PInfo.hasProperty(SDNodeInfo::SDNPOptInFlag)) - emitCheck("CanBeFoldedBy(" + RootName + ".Val, " + ParentName + - ".Val)"); + bool NeedCheck = P != Pattern; + if (!NeedCheck) { + const SDNodeInfo &PInfo = CGP.getSDNodeInfo(P->getOperator()); + NeedCheck = + P->getOperator() == CGP.get_intrinsic_void_sdnode() || + P->getOperator() == CGP.get_intrinsic_w_chain_sdnode() || + P->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || + PInfo.getNumOperands() > 1 || + PInfo.hasProperty(SDNPHasChain) || + PInfo.hasProperty(SDNPInFlag) || + PInfo.hasProperty(SDNPOptInFlag); + } + + if (NeedCheck) { + std::string ParentName(RootName.begin(), RootName.end()-1); + emitCheck("IsLegalAndProfitableToFold(" + getNodeName(RootName) + + ", " + getNodeName(ParentName) + ", N)"); + } } } if (NodeHasChain) { - if (FoundChain) - emitCheck("Chain.Val == " + RootName + ".Val"); - else + if (FoundChain) { + emitCheck("(" + ChainName + ".getNode() == " + + getNodeName(RootName) + " || " + "IsChainCompatible(" + ChainName + ".getNode(), " + + getNodeName(RootName) + "))"); + OrigChains.push_back(std::make_pair(ChainName, + getValueName(RootName))); + } else FoundChain = true; ChainName = "Chain" + ChainSuffix; - emitDecl(ChainName); - emitCode(ChainName + " = " + RootName + - ".getOperand(0);"); + emitInit("SDValue " + ChainName + " = " + getNodeName(RootName) + + "->getOperand(0);"); } } @@ -2302,542 +584,780 @@ public: // FIXME: If the optional incoming flag does not exist. Then it is ok to // fold it. if (!isRoot && - (PatternHasProperty(N, SDNodeInfo::SDNPInFlag, ISE) || - PatternHasProperty(N, SDNodeInfo::SDNPOptInFlag, ISE) || - PatternHasProperty(N, SDNodeInfo::SDNPOutFlag, ISE))) { - const SDNodeInfo &CInfo = ISE.getSDNodeInfo(N->getOperator()); + (PatternHasProperty(N, SDNPInFlag, CGP) || + PatternHasProperty(N, SDNPOptInFlag, CGP) || + PatternHasProperty(N, SDNPOutFlag, CGP))) { if (!EmittedUseCheck) { // Multiple uses of actual result? - emitCheck(RootName + ".hasOneUse()"); + emitCheck(getValueName(RootName) + ".hasOneUse()"); } } - for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { - emitDecl(RootName + utostr(OpNo)); - emitCode(RootName + utostr(OpNo) + " = " + - RootName + ".getOperand(" +utostr(OpNo) + ");"); - TreePatternNode *Child = N->getChild(i); + // If there are node predicates for this, emit the calls. + for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) + emitCheck(N->getPredicateFns()[i] + "(" + getNodeName(RootName) + ")"); + + // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is + // a constant without a predicate fn that has more that one bit set, handle + // this as a special case. This is usually for targets that have special + // handling of certain large constants (e.g. alpha with it's 8/16/32-bit + // handling stuff). Using these instructions is often far more efficient + // than materializing the constant. Unfortunately, both the instcombiner + // and the dag combiner can often infer that bits are dead, and thus drop + // them from the mask in the dag. For example, it might turn 'AND X, 255' + // into 'AND X, 254' if it knows the low bit is set. Emit code that checks + // to handle this. + if (!N->isLeaf() && + (N->getOperator()->getName() == "and" || + N->getOperator()->getName() == "or") && + N->getChild(1)->isLeaf() && + N->getChild(1)->getPredicateFns().empty()) { + if (IntInit *II = dynamic_cast(N->getChild(1)->getLeafValue())) { + if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. + emitInit("SDValue " + RootName + "0" + " = " + + getNodeName(RootName) + "->getOperand(" + utostr(0) + ");"); + emitInit("SDValue " + RootName + "1" + " = " + + getNodeName(RootName) + "->getOperand(" + utostr(1) + ");"); + + unsigned NTmp = TmpNo++; + emitCode("ConstantSDNode *Tmp" + utostr(NTmp) + + " = dyn_cast(" + + getNodeName(RootName + "1") + ");"); + emitCheck("Tmp" + utostr(NTmp)); + const char *MaskPredicate = N->getOperator()->getName() == "or" + ? "CheckOrMask(" : "CheckAndMask("; + emitCheck(MaskPredicate + getValueName(RootName + "0") + + ", Tmp" + utostr(NTmp) + + ", INT64_C(" + itostr(II->getValue()) + "))"); + + EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0), + ChainSuffix + utostr(0), FoundChain); + return; + } + } + } - if (!Child->isLeaf()) { - // If it's not a leaf, recursively match. - const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator()); - emitCheck(RootName + utostr(OpNo) + ".getOpcode() == " + - CInfo.getEnumName()); - EmitMatchCode(Child, N, RootName + utostr(OpNo), RootName, - ChainSuffix + utostr(OpNo), FoundChain); - if (NodeHasProperty(Child, SDNodeInfo::SDNPHasChain, ISE)) - FoldedChains.push_back(std::make_pair(RootName + utostr(OpNo), - CInfo.getNumResults())); - } else { - // If this child has a name associated with it, capture it in VarMap. If - // we already saw this in the pattern, emit code to verify dagness. - if (!Child->getName().empty()) { - std::string &VarMapEntry = VariableMap[Child->getName()]; - if (VarMapEntry.empty()) { - VarMapEntry = RootName + utostr(OpNo); - } else { - // If we get here, this is a second reference to a specific name. - // Since we already have checked that the first reference is valid, - // we don't have to recursively match it, just check that it's the - // same as the previously named thing. - emitCheck(VarMapEntry + " == " + RootName + utostr(OpNo)); - Duplicates.insert(RootName + utostr(OpNo)); - continue; - } + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { + emitInit("SDValue " + getValueName(RootName + utostr(OpNo)) + " = " + + getNodeName(RootName) + "->getOperand(" + utostr(OpNo) + ");"); + + EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo), + ChainSuffix + utostr(OpNo), FoundChain); + } + + // Handle cases when root is a complex pattern. + const ComplexPattern *CP; + if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) { + std::string Fn = CP->getSelectFunc(); + unsigned NumOps = CP->getNumOperands(); + for (unsigned i = 0; i < NumOps; ++i) { + emitDecl("CPTmp" + RootName + "_" + utostr(i)); + emitCode("SDValue CPTmp" + RootName + "_" + utostr(i) + ";"); + } + if (CP->hasProperty(SDNPHasChain)) { + emitDecl("CPInChain"); + emitDecl("Chain" + ChainSuffix); + emitCode("SDValue CPInChain;"); + emitCode("SDValue Chain" + ChainSuffix + ";"); + } + + std::string Code = Fn + "(" + + getNodeName(RootName) + ", " + + getValueName(RootName); + for (unsigned i = 0; i < NumOps; i++) + Code += ", CPTmp" + RootName + "_" + utostr(i); + if (CP->hasProperty(SDNPHasChain)) { + ChainName = "Chain" + ChainSuffix; + Code += ", CPInChain, Chain" + ChainSuffix; + } + emitCheck(Code + ")"); + } + } + + void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent, + const std::string &RootName, + const std::string &ChainSuffix, bool &FoundChain) { + if (!Child->isLeaf()) { + // If it's not a leaf, recursively match. + const SDNodeInfo &CInfo = CGP.getSDNodeInfo(Child->getOperator()); + emitCheck(getNodeName(RootName) + "->getOpcode() == " + + CInfo.getEnumName()); + EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain); + bool HasChain = false; + if (NodeHasProperty(Child, SDNPHasChain, CGP)) { + HasChain = true; + FoldedChains.push_back(std::make_pair(getValueName(RootName), + CInfo.getNumResults())); + } + if (NodeHasProperty(Child, SDNPOutFlag, CGP)) { + assert(FoldedFlag.first == "" && FoldedFlag.second == 0 && + "Pattern folded multiple nodes which produce flags?"); + FoldedFlag = std::make_pair(getValueName(RootName), + CInfo.getNumResults() + (unsigned)HasChain); + } + } else { + // If this child has a name associated with it, capture it in VarMap. If + // we already saw this in the pattern, emit code to verify dagness. + if (!Child->getName().empty()) { + std::string &VarMapEntry = VariableMap[Child->getName()]; + if (VarMapEntry.empty()) { + VarMapEntry = getValueName(RootName); + } else { + // If we get here, this is a second reference to a specific name. + // Since we already have checked that the first reference is valid, + // we don't have to recursively match it, just check that it's the + // same as the previously named thing. + emitCheck(VarMapEntry + " == " + getValueName(RootName)); + Duplicates.insert(getValueName(RootName)); + return; } + } - // Handle leaves of various types. - if (DefInit *DI = dynamic_cast(Child->getLeafValue())) { - Record *LeafRec = DI->getDef(); - if (LeafRec->isSubClassOf("RegisterClass")) { - // Handle register references. Nothing to do here. - } else if (LeafRec->isSubClassOf("Register")) { - // Handle register references. - } else if (LeafRec->isSubClassOf("ComplexPattern")) { - // Handle complex pattern. Nothing to do here. - } else if (LeafRec->getName() == "srcvalue") { - // Place holder for SRCVALUE nodes. Nothing to do here. - } else if (LeafRec->isSubClassOf("ValueType")) { - // Make sure this is the specified value type. - emitCheck("cast(" + RootName + utostr(OpNo) + - ")->getVT() == MVT::" + LeafRec->getName()); - } else if (LeafRec->isSubClassOf("CondCode")) { - // Make sure this is the specified cond code. - emitCheck("cast(" + RootName + utostr(OpNo) + - ")->get() == ISD::" + LeafRec->getName()); - } else { -#ifndef NDEBUG - Child->dump(); - std::cerr << " "; -#endif - assert(0 && "Unknown leaf type!"); + // Handle leaves of various types. + if (DefInit *DI = dynamic_cast(Child->getLeafValue())) { + Record *LeafRec = DI->getDef(); + if (LeafRec->isSubClassOf("RegisterClass") || + LeafRec->isSubClassOf("PointerLikeRegClass")) { + // Handle register references. Nothing to do here. + } else if (LeafRec->isSubClassOf("Register")) { + // Handle register references. + } else if (LeafRec->isSubClassOf("ComplexPattern")) { + // Handle complex pattern. + const ComplexPattern *CP = NodeGetComplexPattern(Child, CGP); + std::string Fn = CP->getSelectFunc(); + unsigned NumOps = CP->getNumOperands(); + for (unsigned i = 0; i < NumOps; ++i) { + emitDecl("CPTmp" + RootName + "_" + utostr(i)); + emitCode("SDValue CPTmp" + RootName + "_" + utostr(i) + ";"); + } + if (CP->hasProperty(SDNPHasChain)) { + const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Parent->getOperator()); + FoldedChains.push_back(std::make_pair("CPInChain", + PInfo.getNumResults())); + ChainName = "Chain" + ChainSuffix; + emitDecl("CPInChain"); + emitDecl(ChainName); + emitCode("SDValue CPInChain;"); + emitCode("SDValue " + ChainName + ";"); } - } else if (IntInit *II = - dynamic_cast(Child->getLeafValue())) { - emitCheck("isa(" + RootName + utostr(OpNo) + ")"); - unsigned CTmp = TmpNo++; - emitCode("int64_t CN"+utostr(CTmp)+" = cast("+ - RootName + utostr(OpNo) + ")->getSignExtended();"); - - emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue())); + + std::string Code = Fn + "(N, "; + if (CP->hasProperty(SDNPHasChain)) { + std::string ParentName(RootName.begin(), RootName.end()-1); + Code += getValueName(ParentName) + ", "; + } + Code += getValueName(RootName); + for (unsigned i = 0; i < NumOps; i++) + Code += ", CPTmp" + RootName + "_" + utostr(i); + if (CP->hasProperty(SDNPHasChain)) + Code += ", CPInChain, Chain" + ChainSuffix; + emitCheck(Code + ")"); + } else if (LeafRec->getName() == "srcvalue") { + // Place holder for SRCVALUE nodes. Nothing to do here. + } else if (LeafRec->isSubClassOf("ValueType")) { + // Make sure this is the specified value type. + emitCheck("cast(" + getNodeName(RootName) + + ")->getVT() == MVT::" + LeafRec->getName()); + } else if (LeafRec->isSubClassOf("CondCode")) { + // Make sure this is the specified cond code. + emitCheck("cast(" + getNodeName(RootName) + + ")->get() == ISD::" + LeafRec->getName()); } else { #ifndef NDEBUG Child->dump(); + errs() << " "; #endif assert(0 && "Unknown leaf type!"); } + + // If there are node predicates for this, emit the calls. + for (unsigned i = 0, e = Child->getPredicateFns().size(); i != e; ++i) + emitCheck(Child->getPredicateFns()[i] + "(" + getNodeName(RootName) + + ")"); + } else if (IntInit *II = + dynamic_cast(Child->getLeafValue())) { + unsigned NTmp = TmpNo++; + emitCode("ConstantSDNode *Tmp"+ utostr(NTmp) + + " = dyn_cast("+ + getNodeName(RootName) + ");"); + emitCheck("Tmp" + utostr(NTmp)); + unsigned CTmp = TmpNo++; + emitCode("int64_t CN"+ utostr(CTmp) + + " = Tmp" + utostr(NTmp) + "->getSExtValue();"); + emitCheck("CN" + utostr(CTmp) + " == " + "INT64_C(" +itostr(II->getValue()) + ")"); + } else { +#ifndef NDEBUG + Child->dump(); +#endif + assert(0 && "Unknown leaf type!"); } } - - // If there is a node predicate for this, emit the call. - if (!N->getPredicateFn().empty()) - emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)"); } /// EmitResultCode - Emit the action for a pattern. Now that it has matched /// we actually have to build a DAG! - std::pair - EmitResultCode(TreePatternNode *N, bool &RetSelected, bool LikeLeaf = false, - bool isRoot = false) { + std::vector + EmitResultCode(TreePatternNode *N, std::vector DstRegs, + bool InFlagDecled, bool ResNodeDecled, + bool LikeLeaf = false, bool isRoot = false) { + // List of arguments of getMachineNode() or SelectNodeTo(). + std::vector NodeOps; // This is something selected from the pattern we matched. if (!N->getName().empty()) { - std::string &Val = VariableMap[N->getName()]; - assert(!Val.empty() && - "Variable referenced but not defined and not caught earlier!"); + const std::string &VarName = N->getName(); + std::string Val = VariableMap[VarName]; + bool ModifiedVal = false; + if (Val.empty()) { + errs() << "Variable '" << VarName << " referenced but not defined " + << "and not caught earlier!\n"; + abort(); + } if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') { // Already selected this operand, just return the tmpval. - return std::make_pair(1, atoi(Val.c_str()+3)); + NodeOps.push_back(getValueName(Val)); + return NodeOps; } const ComplexPattern *CP; unsigned ResNo = TmpNo++; - unsigned NumRes = 1; if (!N->isLeaf() && N->getOperator()->getName() == "imm") { assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); std::string CastType; + std::string TmpVar = "Tmp" + utostr(ResNo); switch (N->getTypeNum(0)) { - default: assert(0 && "Unknown type for constant node!"); + default: + errs() << "Cannot handle " << getEnumName(N->getTypeNum(0)) + << " type as an immediate constant. Aborting\n"; + abort(); case MVT::i1: CastType = "bool"; break; case MVT::i8: CastType = "unsigned char"; break; case MVT::i16: CastType = "unsigned short"; break; case MVT::i32: CastType = "unsigned"; break; case MVT::i64: CastType = "uint64_t"; break; } - emitDecl("Tmp" + utostr(ResNo)); - emitCode("Tmp" + utostr(ResNo) + + emitCode("SDValue " + TmpVar + " = CurDAG->getTargetConstant(((" + CastType + - ") cast(" + Val + ")->getValue()), " + + ") cast(" + Val + ")->getZExtValue()), " + getEnumName(N->getTypeNum(0)) + ");"); + // Add Tmp to VariableMap, so that we don't multiply select this + // value if used multiple times by this pattern result. + Val = TmpVar; + ModifiedVal = true; + NodeOps.push_back(getValueName(Val)); + } else if (!N->isLeaf() && N->getOperator()->getName() == "fpimm") { + assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); + std::string TmpVar = "Tmp" + utostr(ResNo); + emitCode("SDValue " + TmpVar + + " = CurDAG->getTargetConstantFP(*cast(" + + Val + ")->getConstantFPValue(), cast(" + + Val + ")->getValueType(0));"); + // Add Tmp to VariableMap, so that we don't multiply select this + // value if used multiple times by this pattern result. + Val = TmpVar; + ModifiedVal = true; + NodeOps.push_back(getValueName(Val)); } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){ Record *Op = OperatorMap[N->getName()]; // Transform ExternalSymbol to TargetExternalSymbol if (Op && Op->getName() == "externalsym") { - emitDecl("Tmp" + utostr(ResNo)); - emitCode("Tmp" + utostr(ResNo) + " = CurDAG->getTarget" + std::string TmpVar = "Tmp"+utostr(ResNo); + emitCode("SDValue " + TmpVar + " = CurDAG->getTarget" "ExternalSymbol(cast(" + Val + ")->getSymbol(), " + getEnumName(N->getTypeNum(0)) + ");"); - } else { - emitDecl("Tmp" + utostr(ResNo)); - emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";"); + // Add Tmp to VariableMap, so that we don't multiply select + // this value if used multiple times by this pattern result. + Val = TmpVar; + ModifiedVal = true; } - } else if (!N->isLeaf() && N->getOperator()->getName() == "tglobaladdr") { + NodeOps.push_back(getValueName(Val)); + } else if (!N->isLeaf() && (N->getOperator()->getName() == "tglobaladdr" + || N->getOperator()->getName() == "tglobaltlsaddr")) { Record *Op = OperatorMap[N->getName()]; // Transform GlobalAddress to TargetGlobalAddress - if (Op && Op->getName() == "globaladdr") { - emitDecl("Tmp" + utostr(ResNo)); - emitCode("Tmp" + utostr(ResNo) + " = CurDAG->getTarget" + if (Op && (Op->getName() == "globaladdr" || + Op->getName() == "globaltlsaddr")) { + std::string TmpVar = "Tmp" + utostr(ResNo); + emitCode("SDValue " + TmpVar + " = CurDAG->getTarget" "GlobalAddress(cast(" + Val + ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) + ");"); - } else { - emitDecl("Tmp" + utostr(ResNo)); - emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";"); + // Add Tmp to VariableMap, so that we don't multiply select + // this value if used multiple times by this pattern result. + Val = TmpVar; + ModifiedVal = true; } - } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){ - emitDecl("Tmp" + utostr(ResNo)); - emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";"); - } else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") { - emitDecl("Tmp" + utostr(ResNo)); - emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";"); - } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) { - std::string Fn = CP->getSelectFunc(); - NumRes = CP->getNumOperands(); - for (unsigned i = 0; i < NumRes; ++i) - emitDecl("CPTmp" + utostr(i+ResNo)); - - std::string Code = Fn + "(" + Val; - for (unsigned i = 0; i < NumRes; i++) - Code += ", CPTmp" + utostr(i + ResNo); - emitCheck(Code + ")"); - - for (unsigned i = 0; i < NumRes; ++i) { - emitDecl("Tmp" + utostr(i+ResNo)); - emitCode("AddToQueue(Tmp" + utostr(i+ResNo) + ", CPTmp" + - utostr(i+ResNo) + ");"); + NodeOps.push_back(getValueName(Val)); + } else if (!N->isLeaf() + && (N->getOperator()->getName() == "texternalsym" + || N->getOperator()->getName() == "tconstpool")) { + // Do not rewrite the variable name, since we don't generate a new + // temporary. + NodeOps.push_back(getValueName(Val)); + } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) { + for (unsigned i = 0; i < CP->getNumOperands(); ++i) { + NodeOps.push_back(getValueName("CPTmp" + Val + "_" + utostr(i))); } - - TmpNo = ResNo + NumRes; } else { - emitDecl("Tmp" + utostr(ResNo)); - // This node, probably wrapped in a SDNodeXForms, behaves like a leaf + // This node, probably wrapped in a SDNodeXForm, behaves like a leaf // node even if it isn't one. Don't select it. - if (LikeLeaf) - emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";"); - else { - emitCode("AddToQueue(Tmp" + utostr(ResNo) + ", " + Val + ");"); + if (!LikeLeaf) { if (isRoot && N->isLeaf()) { - emitCode("ReplaceUses(N, Tmp" + utostr(ResNo) + ");"); - emitCode("Result = Tmp" + utostr(ResNo) + ";"); + emitCode("ReplaceUses(SDValue(N, 0), " + Val + ");"); emitCode("return NULL;"); } } + NodeOps.push_back(getValueName(Val)); + } + + if (ModifiedVal) { + VariableMap[VarName] = Val; } - // Add Tmp to VariableMap, so that we don't multiply select this - // value if used multiple times by this pattern result. - Val = "Tmp"+utostr(ResNo); - return std::make_pair(NumRes, ResNo); + return NodeOps; } if (N->isLeaf()) { // If this is an explicit register reference, handle it. if (DefInit *DI = dynamic_cast(N->getLeafValue())) { unsigned ResNo = TmpNo++; if (DI->getDef()->isSubClassOf("Register")) { - emitDecl("Tmp" + utostr(ResNo)); - emitCode("Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" + - ISE.getQualifiedName(DI->getDef()) + ", " + + emitCode("SDValue Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" + + getQualifiedName(DI->getDef()) + ", " + getEnumName(N->getTypeNum(0)) + ");"); - return std::make_pair(1, ResNo); + NodeOps.push_back(getValueName("Tmp" + utostr(ResNo))); + return NodeOps; + } else if (DI->getDef()->getName() == "zero_reg") { + emitCode("SDValue Tmp" + utostr(ResNo) + + " = CurDAG->getRegister(0, " + + getEnumName(N->getTypeNum(0)) + ");"); + NodeOps.push_back(getValueName("Tmp" + utostr(ResNo))); + return NodeOps; + } else if (DI->getDef()->isSubClassOf("RegisterClass")) { + // Handle a reference to a register class. This is used + // in COPY_TO_SUBREG instructions. + emitCode("SDValue Tmp" + utostr(ResNo) + + " = CurDAG->getTargetConstant(" + + getQualifiedName(DI->getDef()) + "RegClassID, " + + "MVT::i32);"); + NodeOps.push_back(getValueName("Tmp" + utostr(ResNo))); + return NodeOps; } } else if (IntInit *II = dynamic_cast(N->getLeafValue())) { unsigned ResNo = TmpNo++; assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); - emitDecl("Tmp" + utostr(ResNo)); - emitCode("Tmp" + utostr(ResNo) + - " = CurDAG->getTargetConstant(" + itostr(II->getValue()) + - ", " + getEnumName(N->getTypeNum(0)) + ");"); - return std::make_pair(1, ResNo); + emitCode("SDValue Tmp" + utostr(ResNo) + + " = CurDAG->getTargetConstant(0x" + + utohexstr((uint64_t) II->getValue()) + + "ULL, " + getEnumName(N->getTypeNum(0)) + ");"); + NodeOps.push_back(getValueName("Tmp" + utostr(ResNo))); + return NodeOps; } #ifndef NDEBUG N->dump(); #endif assert(0 && "Unknown leaf type!"); - return std::make_pair(1, ~0U); + return NodeOps; } Record *Op = N->getOperator(); if (Op->isSubClassOf("Instruction")) { - const CodeGenTarget &CGT = ISE.getTargetInfo(); + const CodeGenTarget &CGT = CGP.getTargetInfo(); CodeGenInstruction &II = CGT.getInstruction(Op->getName()); - const DAGInstruction &Inst = ISE.getInstruction(Op); - TreePattern *InstPat = Inst.getPattern(); + const DAGInstruction &Inst = CGP.getInstruction(Op); + const TreePattern *InstPat = Inst.getPattern(); + // FIXME: Assume actual pattern comes before "implicit". TreePatternNode *InstPatNode = - isRoot ? (InstPat ? InstPat->getOnlyTree() : Pattern) - : (InstPat ? InstPat->getOnlyTree() : NULL); - if (InstPatNode && InstPatNode->getOperator()->getName() == "set") { - InstPatNode = InstPatNode->getChild(1); + isRoot ? (InstPat ? InstPat->getTree(0) : Pattern) + : (InstPat ? InstPat->getTree(0) : NULL); + if (InstPatNode && !InstPatNode->isLeaf() && + InstPatNode->getOperator()->getName() == "set") { + InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1); } - bool HasVarOps = isRoot && II.hasVariableNumberOfOperands; + bool IsVariadic = isRoot && II.isVariadic; + // FIXME: fix how we deal with physical register operands. bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0; - bool HasImpResults = isRoot && Inst.getNumImpResults() > 0; + bool HasImpResults = isRoot && DstRegs.size() > 0; bool NodeHasOptInFlag = isRoot && - PatternHasProperty(Pattern, SDNodeInfo::SDNPOptInFlag, ISE); + PatternHasProperty(Pattern, SDNPOptInFlag, CGP); bool NodeHasInFlag = isRoot && - PatternHasProperty(Pattern, SDNodeInfo::SDNPInFlag, ISE); - bool NodeHasOutFlag = HasImpResults || (isRoot && - PatternHasProperty(Pattern, SDNodeInfo::SDNPOutFlag, ISE)); + PatternHasProperty(Pattern, SDNPInFlag, CGP); + bool NodeHasOutFlag = isRoot && + PatternHasProperty(Pattern, SDNPOutFlag, CGP); bool NodeHasChain = InstPatNode && - PatternHasProperty(InstPatNode, SDNodeInfo::SDNPHasChain, ISE); + PatternHasProperty(InstPatNode, SDNPHasChain, CGP); bool InputHasChain = isRoot && - NodeHasProperty(Pattern, SDNodeInfo::SDNPHasChain, ISE); + NodeHasProperty(Pattern, SDNPHasChain, CGP); + unsigned NumResults = Inst.getNumResults(); + unsigned NumDstRegs = HasImpResults ? DstRegs.size() : 0; + + // Record output varargs info. + OutputIsVariadic = IsVariadic; - if (NodeHasInFlag || NodeHasOutFlag || NodeHasOptInFlag || HasImpInputs) - emitDecl("InFlag"); if (NodeHasOptInFlag) { - emitDecl("HasInFlag", 2); - emitCode("HasInFlag = " - "(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);"); + emitCode("bool HasInFlag = " + "(N->getOperand(N->getNumOperands()-1).getValueType() == " + "MVT::Flag);"); } - if (HasVarOps) - emitCode("SmallVector Ops;"); + if (IsVariadic) + emitCode("SmallVector Ops" + utostr(OpcNo) + ";"); // How many results is this pattern expected to produce? - unsigned PatResults = 0; + unsigned NumPatResults = 0; for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) { - MVT::ValueType VT = Pattern->getTypeNum(i); + MVT::SimpleValueType VT = Pattern->getTypeNum(i); if (VT != MVT::isVoid && VT != MVT::Flag) - PatResults++; + NumPatResults++; } - // Determine operand emission order. Complex pattern first. - std::vector > EmitOrder; - std::vector >::iterator OI; - for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { - TreePatternNode *Child = N->getChild(i); - if (i == 0) { - EmitOrder.push_back(std::make_pair(i, Child)); - OI = EmitOrder.begin(); - } else if (NodeIsComplexPattern(Child)) { - OI = EmitOrder.insert(OI, std::make_pair(i, Child)); - } else { - EmitOrder.push_back(std::make_pair(i, Child)); + if (OrigChains.size() > 0) { + // The original input chain is being ignored. If it is not just + // pointing to the op that's being folded, we should create a + // TokenFactor with it and the chain of the folded op as the new chain. + // We could potentially be doing multiple levels of folding, in that + // case, the TokenFactor can have more operands. + emitCode("SmallVector InChains;"); + for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) { + emitCode("if (" + OrigChains[i].first + ".getNode() != " + + OrigChains[i].second + ".getNode()) {"); + emitCode(" InChains.push_back(" + OrigChains[i].first + ");"); + emitCode("}"); + } + emitCode("InChains.push_back(" + ChainName + ");"); + emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, " + "N->getDebugLoc(), MVT::Other, " + "&InChains[0], InChains.size());"); + if (GenDebug) { + emitCode("CurDAG->setSubgraphColor(" + ChainName +".getNode(), \"yellow\");"); + emitCode("CurDAG->setSubgraphColor(" + ChainName +".getNode(), \"black\");"); } } - // Emit all of the operands. - std::vector > NumTemps(EmitOrder.size()); - for (unsigned i = 0, e = EmitOrder.size(); i != e; ++i) { - unsigned OpOrder = EmitOrder[i].first; - TreePatternNode *Child = EmitOrder[i].second; - std::pair NumTemp = - EmitResultCode(Child, RetSelected); - NumTemps[OpOrder] = NumTemp; - } - - // List all the operands in the right order. - std::vector Ops; - for (unsigned i = 0, e = NumTemps.size(); i != e; i++) { - for (unsigned j = 0; j < NumTemps[i].first; j++) - Ops.push_back(NumTemps[i].second + j); + // Loop over all of the operands of the instruction pattern, emitting code + // to fill them all in. The node 'N' usually has number children equal to + // the number of input operands of the instruction. However, in cases + // where there are predicate operands for an instruction, we need to fill + // in the 'execute always' values. Match up the node operands to the + // instruction operands to do this. + std::vector AllOps; + for (unsigned ChildNo = 0, InstOpNo = NumResults; + InstOpNo != II.OperandList.size(); ++InstOpNo) { + std::vector Ops; + + // Determine what to emit for this operand. + Record *OperandNode = II.OperandList[InstOpNo].Rec; + if ((OperandNode->isSubClassOf("PredicateOperand") || + OperandNode->isSubClassOf("OptionalDefOperand")) && + !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) { + // This is a predicate or optional def operand; emit the + // 'default ops' operands. + const DAGDefaultOperand &DefaultOp = + CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec); + for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) { + Ops = EmitResultCode(DefaultOp.DefaultOps[i], DstRegs, + InFlagDecled, ResNodeDecled); + AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); + } + } else { + // Otherwise this is a normal operand or a predicate operand without + // 'execute always'; emit it. + Ops = EmitResultCode(N->getChild(ChildNo), DstRegs, + InFlagDecled, ResNodeDecled); + AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); + ++ChildNo; + } } // Emit all the chain and CopyToReg stuff. bool ChainEmitted = NodeHasChain; - if (NodeHasChain) - emitCode("AddToQueue(" + ChainName + ", " + ChainName + ");"); if (NodeHasInFlag || HasImpInputs) - EmitInFlagSelectCode(Pattern, "N", ChainEmitted, true); - if (NodeHasOptInFlag) { - emitCode("if (HasInFlag)"); - emitCode(" AddToQueue(InFlag, N.getOperand(N.getNumOperands()-1));"); + EmitInFlagSelectCode(Pattern, "N", ChainEmitted, + InFlagDecled, ResNodeDecled, true); + if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) { + if (!InFlagDecled) { + emitCode("SDValue InFlag(0, 0);"); + InFlagDecled = true; + } + if (NodeHasOptInFlag) { + emitCode("if (HasInFlag) {"); + emitCode(" InFlag = N->getOperand(N->getNumOperands()-1);"); + emitCode("}"); + } } - unsigned NumResults = Inst.getNumResults(); unsigned ResNo = TmpNo++; - if (!isRoot || InputHasChain || NodeHasChain || NodeHasOutFlag || - NodeHasOptInFlag) { - std::string Code; - std::string Code2; - std::string NodeName; - if (!isRoot) { - NodeName = "Tmp" + utostr(ResNo); - emitDecl(NodeName); - Code2 = NodeName + " = SDOperand("; - } else { - NodeName = "ResNode"; - emitDecl(NodeName, true); - Code2 = NodeName + " = "; - } - Code = "CurDAG->getTargetNode(Opc" + utostr(OpcNo); - emitOpcode(II.Namespace + "::" + II.TheDef->getName()); - - // Output order: results, chain, flags - // Result types. - if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) { - Code += ", VT" + utostr(VTNo); - emitVT(getEnumName(N->getTypeNum(0))); - } - if (NodeHasChain) - Code += ", MVT::Other"; - if (NodeHasOutFlag) - Code += ", MVT::Flag"; - - // Inputs. - for (unsigned i = 0, e = Ops.size(); i != e; ++i) { - if (HasVarOps) - emitCode("Ops.push_back(Tmp" + utostr(Ops[i]) + ");"); - else - Code += ", Tmp" + utostr(Ops[i]); - } - if (HasVarOps) { - if (NodeHasInFlag || HasImpInputs) - emitCode("for (unsigned i = 2, e = N.getNumOperands()-1; " - "i != e; ++i) {"); - else if (NodeHasOptInFlag) - emitCode("for (unsigned i = 2, e = N.getNumOperands()-" - "(HasInFlag?1:0); i != e; ++i) {"); - else - emitCode("for (unsigned i = 2, e = N.getNumOperands(); " - "i != e; ++i) {"); - emitCode(" SDOperand VarOp(0, 0);"); - emitCode(" AddToQueue(VarOp, N.getOperand(i));"); - emitCode(" Ops.push_back(VarOp);"); - emitCode("}"); - } + unsigned OpsNo = OpcNo; + std::string CodePrefix; + bool ChainAssignmentNeeded = NodeHasChain && !isRoot; + std::deque After; + std::string NodeName; + if (!isRoot) { + NodeName = "Tmp" + utostr(ResNo); + CodePrefix = "SDValue " + NodeName + "("; + } else { + NodeName = "ResNode"; + if (!ResNodeDecled) { + CodePrefix = "SDNode *" + NodeName + " = "; + ResNodeDecled = true; + } else + CodePrefix = NodeName + " = "; + } - if (NodeHasChain) { - if (HasVarOps) - emitCode("Ops.push_back(" + ChainName + ");"); - else - Code += ", " + ChainName; - } - if (NodeHasInFlag || HasImpInputs) { - if (HasVarOps) - emitCode("Ops.push_back(InFlag);"); - else - Code += ", InFlag"; - } else if (NodeHasOptInFlag && HasVarOps) { - emitCode("if (HasInFlag)"); - emitCode(" Ops.push_back(InFlag);"); - } + std::string Code = "Opc" + utostr(OpcNo); - if (HasVarOps) - Code += ", &Ops[0], Ops.size()"; + if (!isRoot || (InputHasChain && !NodeHasChain)) + // For call to "getMachineNode()". + Code += ", N->getDebugLoc()"; + + emitOpcode(II.Namespace + "::" + II.TheDef->getName()); + + // Output order: results, chain, flags + // Result types. + if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) { + Code += ", VT" + utostr(VTNo); + emitVT(getEnumName(N->getTypeNum(0))); + } + // Add types for implicit results in physical registers, scheduler will + // care of adding copyfromreg nodes. + for (unsigned i = 0; i < NumDstRegs; i++) { + Record *RR = DstRegs[i]; + if (RR->isSubClassOf("Register")) { + MVT::SimpleValueType RVT = getRegisterValueType(RR, CGT); + Code += ", " + getEnumName(RVT); + } + } + if (NodeHasChain) + Code += ", MVT::Other"; + if (NodeHasOutFlag) + Code += ", MVT::Flag"; + + // Inputs. + if (IsVariadic) { + for (unsigned i = 0, e = AllOps.size(); i != e; ++i) + emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");"); + AllOps.clear(); + + // Figure out whether any operands at the end of the op list are not + // part of the variable section. + std::string EndAdjust; + if (NodeHasInFlag || HasImpInputs) + EndAdjust = "-1"; // Always has one flag. else if (NodeHasOptInFlag) - Code = "HasInFlag ? " + Code + ", InFlag) : " + Code; + EndAdjust = "-(HasInFlag?1:0)"; // May have a flag. - if (!isRoot) - Code += "), 0"; - emitCode(Code2 + Code + ");"); - - if (NodeHasChain) - // Remember which op produces the chain. - if (!isRoot) - emitCode(ChainName + " = SDOperand(" + NodeName + - ".Val, " + utostr(PatResults) + ");"); - else - emitCode(ChainName + " = SDOperand(" + NodeName + - ", " + utostr(PatResults) + ");"); + emitCode("for (unsigned i = NumInputRootOps + " + utostr(NodeHasChain) + + ", e = N->getNumOperands()" + EndAdjust + "; i != e; ++i) {"); - if (!isRoot) - return std::make_pair(1, ResNo); + emitCode(" Ops" + utostr(OpsNo) + ".push_back(N->getOperand(i));"); + emitCode("}"); + } - bool NeedReplace = false; - if (NodeHasOutFlag) - emitCode("InFlag = SDOperand(ResNode, " + - utostr(NumResults + (unsigned)NodeHasChain) + ");"); + // Populate MemRefs with entries for each memory accesses covered by + // this pattern. + if (isRoot && !LSI.empty()) { + std::string MemRefs = "MemRefs" + utostr(OpsNo); + emitCode("MachineSDNode::mmo_iterator " + MemRefs + " = " + "MF->allocateMemRefsArray(" + utostr(LSI.size()) + ");"); + for (unsigned i = 0, e = LSI.size(); i != e; ++i) + emitCode(MemRefs + "[" + utostr(i) + "] = " + "cast(" + LSI[i] + ")->getMemOperand();"); + After.push_back("cast(ResNode)->setMemRefs(" + + MemRefs + ", " + MemRefs + " + " + utostr(LSI.size()) + + ");"); + } - if (HasImpResults && EmitCopyFromRegs(N, ChainEmitted)) { - emitCode("ReplaceUses(SDOperand(N.Val, 0), SDOperand(ResNode, 0));"); - NumResults = 1; - } + if (NodeHasChain) { + if (IsVariadic) + emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");"); + else + AllOps.push_back(ChainName); + } - if (FoldedChains.size() > 0) { - std::string Code; - for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) - emitCode("ReplaceUses(SDOperand(" + - FoldedChains[j].first + ".Val, " + - utostr(FoldedChains[j].second) + "), SDOperand(ResNode, " + - utostr(NumResults) + "));"); - NeedReplace = true; + if (IsVariadic) { + if (NodeHasInFlag || HasImpInputs) + emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);"); + else if (NodeHasOptInFlag) { + emitCode("if (HasInFlag)"); + emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);"); } - - if (NodeHasOutFlag) { - emitCode("ReplaceUses(SDOperand(N.Val, " + - utostr(PatResults + (unsigned)InputHasChain) +"), InFlag);"); - NeedReplace = true; + Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) + + ".size()"; + } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs) + AllOps.push_back("InFlag"); + + unsigned NumOps = AllOps.size(); + if (NumOps) { + if (!NodeHasOptInFlag && NumOps < 4) { + for (unsigned i = 0; i != NumOps; ++i) + Code += ", " + AllOps[i]; + } else { + std::string OpsCode = "SDValue Ops" + utostr(OpsNo) + "[] = { "; + for (unsigned i = 0; i != NumOps; ++i) { + OpsCode += AllOps[i]; + if (i != NumOps-1) + OpsCode += ", "; + } + emitCode(OpsCode + " };"); + Code += ", Ops" + utostr(OpsNo) + ", "; + if (NodeHasOptInFlag) { + Code += "HasInFlag ? "; + Code += utostr(NumOps) + " : " + utostr(NumOps-1); + } else + Code += utostr(NumOps); } + } + + if (!isRoot) + Code += "), 0"; - if (NeedReplace) { - for (unsigned i = 0; i < NumResults; i++) - emitCode("ReplaceUses(SDOperand(N.Val, " + - utostr(i) + "), SDOperand(ResNode, " + utostr(i) + "));"); - if (InputHasChain) - emitCode("ReplaceUses(SDOperand(N.Val, " + - utostr(PatResults) + "), SDOperand(" + ChainName + ".Val, " + - ChainName + ".ResNo" + "));"); + std::vector ReplaceFroms; + std::vector ReplaceTos; + if (!isRoot) { + NodeOps.push_back("Tmp" + utostr(ResNo)); + } else { + + if (NodeHasOutFlag) { + if (!InFlagDecled) { + After.push_back("SDValue InFlag(ResNode, " + + utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) + + ");"); + InFlagDecled = true; + } else + After.push_back("InFlag = SDValue(ResNode, " + + utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) + + ");"); + } + + for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) { + ReplaceFroms.push_back("SDValue(" + + FoldedChains[j].first + ".getNode(), " + + utostr(FoldedChains[j].second) + + ")"); + ReplaceTos.push_back("SDValue(ResNode, " + + utostr(NumResults+NumDstRegs) + ")"); + } + + if (NodeHasOutFlag) { + if (FoldedFlag.first != "") { + ReplaceFroms.push_back("SDValue(" + FoldedFlag.first + ".getNode(), " + + utostr(FoldedFlag.second) + ")"); + ReplaceTos.push_back("InFlag"); } else { - RetSelected = true; + assert(NodeHasProperty(Pattern, SDNPOutFlag, CGP)); + ReplaceFroms.push_back("SDValue(N, " + + utostr(NumPatResults + (unsigned)InputHasChain) + + ")"); + ReplaceTos.push_back("InFlag"); } + } - // User does not expect the instruction would produce a chain! - if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) { - if (PatResults == 0) { - emitCode("Result = SDOperand(ResNode, N.ResNo+1);"); - } else { - assert(PatResults == 1); - emitCode("Result = (N.ResNo == 0) ? SDOperand(ResNode, 0) :" - " SDOperand(ResNode, 1);"); - } - } else if (InputHasChain && !NodeHasChain) { - // One of the inner node produces a chain. - if (NodeHasOutFlag) { - emitCode("Result = (N.ResNo < " + utostr(PatResults) + - ") ? SDOperand(ResNode, N.ResNo) : " + - "(N.ResNo > " + utostr(PatResults) + ") ? " + - "SDOperand(ResNode, N.ResNo-1) : " + ChainName + "));"); - emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults+1) + - "), SDOperand(ResNode, N.ResNo-1));"); - } else { - emitCode("Result = (N.ResNo < " + utostr(PatResults) + - ") ? SDOperand(ResNode, N.ResNo) : " + - ChainName + ";"); - } - for (unsigned i = 0; i < PatResults; ++i) - emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(i) + - "), SDOperand(ResNode, " + utostr(i) + "));"); - emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults) + - "), " + ChainName + ");"); - RetSelected = false; - } else { - emitCode("Result = SDOperand(ResNode, N.ResNo);"); - } + if (!ReplaceFroms.empty() && InputHasChain) { + ReplaceFroms.push_back("SDValue(N, " + + utostr(NumPatResults) + ")"); + ReplaceTos.push_back("SDValue(" + ChainName + ".getNode(), " + + ChainName + ".getResNo()" + ")"); + ChainAssignmentNeeded |= NodeHasChain; + } + + // User does not expect the instruction would produce a chain! + if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) { + ; + } else if (InputHasChain && !NodeHasChain) { + // One of the inner node produces a chain. + assert(!NodeHasOutFlag && "Node has flag but not chain!"); + ReplaceFroms.push_back("SDValue(N, " + + utostr(NumPatResults) + ")"); + ReplaceTos.push_back(ChainName); + } + } + + if (ChainAssignmentNeeded) { + // Remember which op produces the chain. + std::string ChainAssign; + if (!isRoot) + ChainAssign = ChainName + " = SDValue(" + NodeName + + ".getNode(), " + utostr(NumResults+NumDstRegs) + ");"; + else + ChainAssign = ChainName + " = SDValue(" + NodeName + + ", " + utostr(NumResults+NumDstRegs) + ");"; + + After.push_front(ChainAssign); + } + + if (ReplaceFroms.size() == 1) { + After.push_back("ReplaceUses(" + ReplaceFroms[0] + ", " + + ReplaceTos[0] + ");"); + } else if (!ReplaceFroms.empty()) { + After.push_back("const SDValue Froms[] = {"); + for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i) + After.push_back(" " + ReplaceFroms[i] + (i + 1 != e ? "," : "")); + After.push_back("};"); + After.push_back("const SDValue Tos[] = {"); + for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i) + After.push_back(" " + ReplaceTos[i] + (i + 1 != e ? "," : "")); + After.push_back("};"); + After.push_back("ReplaceUses(Froms, Tos, " + + itostr(ReplaceFroms.size()) + ");"); + } - if (RetSelected) - emitCode("return Result.Val;"); - else - emitCode("return NULL;"); + // We prefer to use SelectNodeTo since it avoids allocation when + // possible and it avoids CSE map recalculation for the node's + // users, however it's tricky to use in a non-root context. + // + // We also don't use SelectNodeTo if the pattern replacement is being + // used to jettison a chain result, since morphing the node in place + // would leave users of the chain dangling. + // + if (!isRoot || (InputHasChain && !NodeHasChain)) { + Code = "CurDAG->getMachineNode(" + Code; } else { - // If this instruction is the root, and if there is only one use of it, - // use SelectNodeTo instead of getTargetNode to avoid an allocation. - emitCode("if (N.Val->hasOneUse()) {"); - std::string Code = " Result = CurDAG->SelectNodeTo(N.Val, Opc" + - utostr(OpcNo); - if (N->getTypeNum(0) != MVT::isVoid) - Code += ", VT" + utostr(VTNo); - if (NodeHasOutFlag) - Code += ", MVT::Flag"; - for (unsigned i = 0, e = Ops.size(); i != e; ++i) - Code += ", Tmp" + utostr(Ops[i]); - if (NodeHasInFlag || HasImpInputs) - Code += ", InFlag"; - emitCode(Code + ");"); - if (isRoot) - emitCode(" return NULL;"); - emitCode("} else {"); - emitDecl("ResNode", 1); - Code = " ResNode = CurDAG->getTargetNode(Opc" + utostr(OpcNo); - emitOpcode(II.Namespace + "::" + II.TheDef->getName()); - if (N->getTypeNum(0) != MVT::isVoid) { - Code += ", VT" + utostr(VTNo); - emitVT(getEnumName(N->getTypeNum(0))); + Code = "CurDAG->SelectNodeTo(N, " + Code; + } + if (isRoot) { + if (After.empty()) + CodePrefix = "return "; + else + After.push_back("return ResNode;"); + } + + emitCode(CodePrefix + Code + ");"); + + if (GenDebug) { + if (!isRoot) { + emitCode("CurDAG->setSubgraphColor(" + NodeName +".getNode(), \"yellow\");"); + emitCode("CurDAG->setSubgraphColor(" + NodeName +".getNode(), \"black\");"); + } + else { + emitCode("CurDAG->setSubgraphColor(" + NodeName +", \"yellow\");"); + emitCode("CurDAG->setSubgraphColor(" + NodeName +", \"black\");"); } - if (NodeHasOutFlag) - Code += ", MVT::Flag"; - for (unsigned i = 0, e = Ops.size(); i != e; ++i) - Code += ", Tmp" + utostr(Ops[i]); - if (NodeHasInFlag || HasImpInputs) - Code += ", InFlag"; - emitCode(Code + ");"); - emitCode(" Result = SDOperand(ResNode, 0);"); - if (isRoot) - emitCode(" return Result.Val;"); - emitCode("}"); } - return std::make_pair(1, ResNo); - } else if (Op->isSubClassOf("SDNodeXForm")) { + for (unsigned i = 0, e = After.size(); i != e; ++i) + emitCode(After[i]); + + return NodeOps; + } + if (Op->isSubClassOf("SDNodeXForm")) { assert(N->getNumChildren() == 1 && "node xform should have one child!"); // PatLeaf node - the operand may or may not be a leaf node. But it should // behave like one. - unsigned OpVal = EmitResultCode(N->getChild(0), RetSelected, true).second; + std::vector Ops = + EmitResultCode(N->getChild(0), DstRegs, InFlagDecled, + ResNodeDecled, true); unsigned ResNo = TmpNo++; - emitDecl("Tmp" + utostr(ResNo)); - emitCode("Tmp" + utostr(ResNo) + " = Transform_" + Op->getName() - + "(Tmp" + utostr(OpVal) + ".Val);"); - if (isRoot) { - //emitCode("ReplaceUses(N, Tmp" + utostr(ResNo) + ");"); - emitCode("Result = Tmp" + utostr(ResNo) + ";"); - emitCode("return Result.Val;"); - } - return std::make_pair(1, ResNo); - } else { - N->dump(); - std::cerr << "\n"; - throw std::string("Unknown node in result pattern!"); + emitCode("SDValue Tmp" + utostr(ResNo) + " = Transform_" + Op->getName() + + "(" + Ops.back() + ".getNode());"); + NodeOps.push_back("Tmp" + utostr(ResNo)); + if (isRoot) + emitCode("return Tmp" + utostr(ResNo) + ".getNode();"); + return NodeOps; } + + N->dump(); + errs() << "\n"; + throw std::string("Unknown node in result pattern!"); } /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat' @@ -2852,13 +1372,13 @@ public: Pat->setTypes(Other->getExtTypes()); // The top level node type is checked outside of the select function. if (!isRoot) - emitCheck(Prefix + ".Val->getValueType(0) == " + + emitCheck(Prefix + ".getValueType() == " + getName(Pat->getTypeNum(0))); return true; } unsigned OpNo = - (unsigned) NodeHasProperty(Pat, SDNodeInfo::SDNPHasChain, ISE); + (unsigned) NodeHasProperty(Pat, SDNPHasChain, CGP); for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo) if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i), Prefix + utostr(OpNo))) @@ -2870,15 +1390,17 @@ private: /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is /// being built. void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName, - bool &ChainEmitted, bool isRoot = false) { - const CodeGenTarget &T = ISE.getTargetInfo(); + bool &ChainEmitted, bool &InFlagDecled, + bool &ResNodeDecled, bool isRoot = false) { + const CodeGenTarget &T = CGP.getTargetInfo(); unsigned OpNo = - (unsigned) NodeHasProperty(N, SDNodeInfo::SDNPHasChain, ISE); - bool HasInFlag = NodeHasProperty(N, SDNodeInfo::SDNPInFlag, ISE); + (unsigned) NodeHasProperty(N, SDNPHasChain, CGP); + bool HasInFlag = NodeHasProperty(N, SDNPInFlag, CGP); for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { TreePatternNode *Child = N->getChild(i); if (!Child->isLeaf()) { - EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted); + EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted, + InFlagDecled, ResNodeDecled); } else { if (DefInit *DI = dynamic_cast(Child->getLeafValue())) { if (!Child->getName().empty()) { @@ -2890,90 +1412,77 @@ private: Record *RR = DI->getDef(); if (RR->isSubClassOf("Register")) { - MVT::ValueType RVT = getRegisterValueType(RR, T); + MVT::SimpleValueType RVT = getRegisterValueType(RR, T); if (RVT == MVT::Flag) { - emitCode("AddToQueue(InFlag, " + RootName + utostr(OpNo) + ");"); + if (!InFlagDecled) { + emitCode("SDValue InFlag = " + + getValueName(RootName + utostr(OpNo)) + ";"); + InFlagDecled = true; + } else + emitCode("InFlag = " + + getValueName(RootName + utostr(OpNo)) + ";"); } else { if (!ChainEmitted) { - emitDecl("Chain"); - emitCode("Chain = CurDAG->getEntryNode();"); + emitCode("SDValue Chain = CurDAG->getEntryNode();"); ChainName = "Chain"; ChainEmitted = true; } - emitCode("AddToQueue(" + RootName + utostr(OpNo) + ", " + - RootName + utostr(OpNo) + ");"); - emitCode("ResNode = CurDAG->getCopyToReg(" + ChainName + - ", CurDAG->getRegister(" + ISE.getQualifiedName(RR) + - ", " + getEnumName(RVT) + "), " + - RootName + utostr(OpNo) + ", InFlag).Val;"); - emitCode(ChainName + " = SDOperand(ResNode, 0);"); - emitCode("InFlag = SDOperand(ResNode, 1);"); + if (!InFlagDecled) { + emitCode("SDValue InFlag(0, 0);"); + InFlagDecled = true; + } + std::string Decl = (!ResNodeDecled) ? "SDNode *" : ""; + emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName + + ", " + getNodeName(RootName) + "->getDebugLoc()" + + ", " + getQualifiedName(RR) + + ", " + getValueName(RootName + utostr(OpNo)) + + ", InFlag).getNode();"); + ResNodeDecled = true; + emitCode(ChainName + " = SDValue(ResNode, 0);"); + emitCode("InFlag = SDValue(ResNode, 1);"); } } } } } - if (HasInFlag) - emitCode("AddToQueue(InFlag, " + RootName + - ".getOperand(" + utostr(OpNo) + "));"); - } - - /// EmitCopyFromRegs - Emit code to copy result to physical registers - /// as specified by the instruction. It returns true if any copy is - /// emitted. - bool EmitCopyFromRegs(TreePatternNode *N, bool &ChainEmitted) { - bool RetVal = false; - Record *Op = N->getOperator(); - if (Op->isSubClassOf("Instruction")) { - const DAGInstruction &Inst = ISE.getInstruction(Op); - const CodeGenTarget &CGT = ISE.getTargetInfo(); - unsigned NumImpResults = Inst.getNumImpResults(); - for (unsigned i = 0; i < NumImpResults; i++) { - Record *RR = Inst.getImpResult(i); - if (RR->isSubClassOf("Register")) { - MVT::ValueType RVT = getRegisterValueType(RR, CGT); - if (RVT != MVT::Flag) { - if (!ChainEmitted) { - emitDecl("Chain"); - emitCode("Chain = CurDAG->getEntryNode();"); - ChainEmitted = true; - ChainName = "Chain"; - } - emitCode("ResNode = CurDAG->getCopyFromReg(" + ChainName + - ", " + ISE.getQualifiedName(RR) + ", " + getEnumName(RVT) + - ", InFlag).Val;"); - emitCode(ChainName + " = SDOperand(ResNode, 1);"); - emitCode("InFlag = SDOperand(ResNode, 2);"); - RetVal = true; - } - } - } + if (HasInFlag) { + if (!InFlagDecled) { + emitCode("SDValue InFlag = " + getNodeName(RootName) + + "->getOperand(" + utostr(OpNo) + ");"); + InFlagDecled = true; + } else + emitCode("InFlag = " + getNodeName(RootName) + + "->getOperand(" + utostr(OpNo) + ");"); } - return RetVal; } }; /// EmitCodeForPattern - Given a pattern to match, emit code to the specified /// stream to match the pattern, and generate the code for the match if it /// succeeds. Returns true if the pattern is not guaranteed to match. -void DAGISelEmitter::GenerateCodeForPattern(PatternToMatch &Pattern, - std::vector > &GeneratedCode, - std::set > &GeneratedDecl, +void DAGISelEmitter::GenerateCodeForPattern(const PatternToMatch &Pattern, + std::vector > &GeneratedCode, + std::set &GeneratedDecl, std::vector &TargetOpcodes, - std::vector &TargetVTs) { - PatternCodeEmitter Emitter(*this, Pattern.getPredicates(), + std::vector &TargetVTs, + bool &OutputIsVariadic, + unsigned &NumInputRootOps) { + OutputIsVariadic = false; + NumInputRootOps = 0; + + PatternCodeEmitter Emitter(CGP, Pattern.getPredicateCheck(), Pattern.getSrcPattern(), Pattern.getDstPattern(), GeneratedCode, GeneratedDecl, - TargetOpcodes, TargetVTs); + TargetOpcodes, TargetVTs, + OutputIsVariadic, NumInputRootOps); // Emit the matcher, capturing named arguments in VariableMap. bool FoundChain = false; - Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", "", - FoundChain); + Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain); // TP - Get *SOME* tree pattern, we don't care which. - TreePattern &TP = *PatternFragments.begin()->second; + TreePattern &TP = *CGP.pf_begin()->second; // At this point, we know that we structurally match the pattern, but the // types of the nodes may not match. Figure out the fewest number of type @@ -3008,16 +1517,16 @@ void DAGISelEmitter::GenerateCodeForPattern(PatternToMatch &Pattern, // otherwise we are done. } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true)); - bool RetSelected = false; - Emitter.EmitResultCode(Pattern.getDstPattern(), RetSelected, false, true); + Emitter.EmitResultCode(Pattern.getDstPattern(), Pattern.getDstRegs(), + false, false, false, true); delete Pat; } /// EraseCodeLine - Erase one code line from all of the patterns. If removing /// a line causes any of them to be empty, remove them and return true when /// done. -static bool EraseCodeLine(std::vector > > > +static bool EraseCodeLine(std::vector > > > &Patterns) { bool ErasedPatterns = false; for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { @@ -3033,13 +1542,13 @@ static bool EraseCodeLine(std::vector > > > +void DAGISelEmitter::EmitPatterns(std::vector > > > &Patterns, unsigned Indent, - std::ostream &OS) { - typedef std::pair CodeLine; + raw_ostream &OS) { + typedef std::pair CodeLine; typedef std::vector CodeList; - typedef std::vector > PatternList; + typedef std::vector > PatternList; if (Patterns.empty()) return; @@ -3059,7 +1568,7 @@ void DAGISelEmitter::EmitPatterns(std::vectorprint(OS); OS << "\n" << std::string(Indent, ' ') << "// Emits: "; @@ -3067,24 +1576,24 @@ void DAGISelEmitter::EmitPatterns(std::vectorprint(OS); OS << "\n" << std::string(Indent, ' ') << "// Emits: "; @@ -3092,11 +1601,11 @@ void DAGISelEmitter::EmitPatterns(std::vectorgetName() < RHS->getName()) return true; - // If both names are equal, sort by pointer. - return LHS->getName() == RHS->getName() && LHS < RHS; - } - }; +static std::string getLegalCName(std::string OpName) { + std::string::size_type pos = OpName.find("::"); + if (pos != std::string::npos) + OpName.replace(pos, 2, "_"); + return OpName; } -void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { - std::string InstNS = Target.inst_begin()->second.Namespace; +void DAGISelEmitter::EmitInstructionSelector(raw_ostream &OS) { + const CodeGenTarget &Target = CGP.getTargetInfo(); + + // Get the namespace to insert instructions into. + std::string InstNS = Target.getInstNamespace(); if (!InstNS.empty()) InstNS += "::"; // Group the patterns by their top-level opcodes. - std::map, - CompareByRecordName> PatternsByOpcode; + std::map > PatternsByOpcode; // All unique target node emission functions. std::map EmitFunctions; - for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { - TreePatternNode *Node = PatternsToMatch[i].getSrcPattern(); + for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), + E = CGP.ptm_end(); I != E; ++I) { + const PatternToMatch &Pattern = *I; + + TreePatternNode *Node = Pattern.getSrcPattern(); if (!Node->isLeaf()) { - PatternsByOpcode[Node->getOperator()].push_back(&PatternsToMatch[i]); + PatternsByOpcode[getOpcodeName(Node->getOperator(), CGP)]. + push_back(&Pattern); } else { const ComplexPattern *CP; - if (IntInit *II = - dynamic_cast(Node->getLeafValue())) { - PatternsByOpcode[getSDNodeNamed("imm")].push_back(&PatternsToMatch[i]); - } else if ((CP = NodeGetComplexPattern(Node, *this))) { + if (dynamic_cast(Node->getLeafValue())) { + PatternsByOpcode[getOpcodeName(CGP.getSDNodeNamed("imm"), CGP)]. + push_back(&Pattern); + } else if ((CP = NodeGetComplexPattern(Node, CGP))) { std::vector OpNodes = CP->getRootNodes(); for (unsigned j = 0, e = OpNodes.size(); j != e; j++) { - PatternsByOpcode[OpNodes[j]] - .insert(PatternsByOpcode[OpNodes[j]].begin(), &PatternsToMatch[i]); + PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)] + .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)].begin(), + &Pattern); } } else { - std::cerr << "Unrecognized opcode '"; + errs() << "Unrecognized opcode '"; Node->dump(); - std::cerr << "' on tree pattern '"; - std::cerr << - PatternsToMatch[i].getDstPattern()->getOperator()->getName(); - std::cerr << "'!\n"; + errs() << "' on tree pattern '"; + errs() << Pattern.getDstPattern()->getOperator()->getName() << "'!\n"; exit(1); } } @@ -3203,92 +1709,56 @@ void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { // Emit one Select_* method for each top-level opcode. We do this instead of // emitting one giant switch statement to support compilers where this will // result in the recursive functions taking less stack space. - for (std::map, - CompareByRecordName>::iterator PBOI = PatternsByOpcode.begin(), - E = PatternsByOpcode.end(); PBOI != E; ++PBOI) { - const std::string &OpName = PBOI->first->getName(); - const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first); - std::vector &PatternsOfOp = PBOI->second; + for (std::map >::iterator + PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); + PBOI != E; ++PBOI) { + const std::string &OpName = PBOI->first; + std::vector &PatternsOfOp = PBOI->second; assert(!PatternsOfOp.empty() && "No patterns but map has entry?"); - // We want to emit all of the matching code now. However, we want to emit - // the matches in order of minimal cost. Sort the patterns so the least - // cost one is at the start. - std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(), - PatternSortingPredicate(*this)); - // Split them into groups by type. - std::map > PatternsByType; + std::map > PatternsByType; for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) { - PatternToMatch *Pat = PatternsOfOp[i]; + const PatternToMatch *Pat = PatternsOfOp[i]; TreePatternNode *SrcPat = Pat->getSrcPattern(); - if (OpcodeInfo.getNumResults() == 0 && SrcPat->getNumChildren() > 0) - SrcPat = SrcPat->getChild(0); - MVT::ValueType VT = SrcPat->getTypeNum(0); - std::map >::iterator TI = - PatternsByType.find(VT); - if (TI != PatternsByType.end()) - TI->second.push_back(Pat); - else { - std::vector PVec; - PVec.push_back(Pat); - PatternsByType.insert(std::make_pair(VT, PVec)); - } + PatternsByType[SrcPat->getTypeNum(0)].push_back(Pat); } - for (std::map >::iterator + for (std::map >::iterator II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE; ++II) { - MVT::ValueType OpVT = II->first; - std::vector &Patterns = II->second; - typedef std::vector > CodeList; - typedef std::vector >::iterator CodeListI; + MVT::SimpleValueType OpVT = II->first; + std::vector &Patterns = II->second; + typedef std::pair CodeLine; + typedef std::vector CodeList; + typedef CodeList::iterator CodeListI; - std::vector > CodeForPatterns; + std::vector > CodeForPatterns; std::vector > PatternOpcodes; std::vector > PatternVTs; - std::vector > > PatternDecls; - std::set > AllGenDecls; + std::vector > PatternDecls; + std::vector OutputIsVariadicFlags; + std::vector NumInputRootOpsCounts; for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { CodeList GeneratedCode; - std::set > GeneratedDecl; + std::set GeneratedDecl; std::vector TargetOpcodes; std::vector TargetVTs; + bool OutputIsVariadic; + unsigned NumInputRootOps; GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl, - TargetOpcodes, TargetVTs); - for (std::set >::iterator - si = GeneratedDecl.begin(), se = GeneratedDecl.end(); si!=se; ++si) - AllGenDecls.insert(*si); + TargetOpcodes, TargetVTs, + OutputIsVariadic, NumInputRootOps); CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode)); PatternDecls.push_back(GeneratedDecl); PatternOpcodes.push_back(TargetOpcodes); PatternVTs.push_back(TargetVTs); + OutputIsVariadicFlags.push_back(OutputIsVariadic); + NumInputRootOpsCounts.push_back(NumInputRootOps); } - // Scan the code to see if all of the patterns are reachable and if it is - // possible that the last one might not match. - bool mightNotMatch = true; - for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { - CodeList &GeneratedCode = CodeForPatterns[i].second; - mightNotMatch = false; - - for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) { - if (GeneratedCode[j].first) { // predicate. - mightNotMatch = true; - break; - } - } - - // If this pattern definitely matches, and if it isn't the last one, the - // patterns after it CANNOT ever match. Error out. - if (mightNotMatch == false && i != CodeForPatterns.size()-1) { - std::cerr << "Pattern '"; - CodeForPatterns[i+1].first->getSrcPattern()->print(std::cerr); - std::cerr << "' is impossible to select!\n"; - exit(1); - } - } - // Factor target node emission code (emitted by EmitResultCode) into // separate functions. Uniquing and share them among all instruction // selection routines. @@ -3296,59 +1766,50 @@ void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { CodeList &GeneratedCode = CodeForPatterns[i].second; std::vector &TargetOpcodes = PatternOpcodes[i]; std::vector &TargetVTs = PatternVTs[i]; - std::set > Decls = PatternDecls[i]; + std::set Decls = PatternDecls[i]; + bool OutputIsVariadic = OutputIsVariadicFlags[i]; + unsigned NumInputRootOps = NumInputRootOpsCounts[i]; + std::vector AddedInits; int CodeSize = (int)GeneratedCode.size(); int LastPred = -1; for (int j = CodeSize-1; j >= 0; --j) { - if (GeneratedCode[j].first) { + if (LastPred == -1 && GeneratedCode[j].first == 1) LastPred = j; - break; - } + else if (LastPred != -1 && GeneratedCode[j].first == 2) + AddedInits.push_back(GeneratedCode[j].second); } - std::string CalleeDecls; - std::string CalleeCode = "(SDOperand &Result, const SDOperand &N"; - std::string CallerCode = "(Result, N"; + std::string CalleeCode = "(SDNode *N"; + std::string CallerCode = "(N"; for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) { CalleeCode += ", unsigned Opc" + utostr(j); CallerCode += ", " + TargetOpcodes[j]; } for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) { - CalleeCode += ", MVT::ValueType VT" + utostr(j); + CalleeCode += ", MVT::SimpleValueType VT" + utostr(j); CallerCode += ", " + TargetVTs[j]; } - for (std::set >::iterator + for (std::set::iterator I = Decls.begin(), E = Decls.end(); I != E; ++I) { - std::string Name = I->second; - if (I->first == 0) { - if (Name == "InFlag" || - (Name.size() > 3 && - Name[0] == 'T' && Name[1] == 'm' && Name[2] == 'p')) { - CalleeDecls += " SDOperand " + Name + "(0, 0);\n"; - continue; - } - CalleeCode += ", SDOperand &" + Name; - CallerCode += ", " + Name; - } else if (I->first == 1) { - if (Name == "ResNode") { - CalleeDecls += " SDNode *" + Name + " = NULL;\n"; - continue; - } - CalleeCode += ", SDNode *" + Name; - CallerCode += ", " + Name; - } else { - CalleeCode += ", bool " + Name; - CallerCode += ", " + Name; - } + std::string Name = *I; + CalleeCode += ", SDValue &" + Name; + CallerCode += ", " + Name; + } + + if (OutputIsVariadic) { + CalleeCode += ", unsigned NumInputRootOps"; + CallerCode += ", " + utostr(NumInputRootOps); } + CallerCode += ");"; - CalleeCode += ") "; - // Prevent emission routines from being inlined to reduce selection - // routines stack frame sizes. - CalleeCode += "NOINLINE "; - CalleeCode += "{\n" + CalleeDecls; + CalleeCode += ") {\n"; + + for (std::vector::const_reverse_iterator + I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I) + CalleeCode += " " + *I + "\n"; + for (int j = LastPred+1; j < CodeSize; ++j) - CalleeCode += " " + GeneratedCode[j].second + '\n'; + CalleeCode += " " + GeneratedCode[j].second + "\n"; for (int j = LastPred+1; j < CodeSize; ++j) GeneratedCode.pop_back(); CalleeCode += "}\n"; @@ -3362,18 +1823,42 @@ void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { } else { EmitFuncNum = EmitFunctions.size(); EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum)); + // Prevent emission routines from being inlined to reduce selection + // routines stack frame sizes. + OS << "DISABLE_INLINE "; OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode; } // Replace the emission code within selection routines with calls to the // emission functions. - CallerCode = "return Emit_" + utostr(EmitFuncNum) + CallerCode; - GeneratedCode.push_back(std::make_pair(false, CallerCode)); + if (GenDebug) { + GeneratedCode.push_back(std::make_pair(0, "CurDAG->setSubgraphColor(N, \"red\");")); + } + CallerCode = "SDNode *Result = Emit_" + utostr(EmitFuncNum) + CallerCode; + GeneratedCode.push_back(std::make_pair(3, CallerCode)); + if (GenDebug) { + GeneratedCode.push_back(std::make_pair(0, "if(Result) {")); + GeneratedCode.push_back(std::make_pair(0, " CurDAG->setSubgraphColor(Result, \"yellow\");")); + GeneratedCode.push_back(std::make_pair(0, " CurDAG->setSubgraphColor(Result, \"black\");")); + GeneratedCode.push_back(std::make_pair(0, "}")); + //GeneratedCode.push_back(std::make_pair(0, "CurDAG->setSubgraphColor(N, \"black\");")); + } + GeneratedCode.push_back(std::make_pair(0, "return Result;")); } // Print function. - std::string OpVTStr = (OpVT != MVT::isVoid && OpVT != MVT::iPTR) - ? getEnumName(OpVT).substr(5) : "" ; + std::string OpVTStr; + if (OpVT == MVT::iPTR) { + OpVTStr = "_iPTR"; + } else if (OpVT == MVT::iPTRAny) { + OpVTStr = "_iPTRAny"; + } else if (OpVT == MVT::isVoid) { + // Nodes with a void result actually have a first result type of either + // Other (a chain) or Flag. Since there is no one-to-one mapping from + // void to this case, we handle it specially here. + } else { + OpVTStr = "_" + getEnumName(OpVT).substr(5); // Skip 'MVT::' + } std::map >::iterator OpVTI = OpcodeVTMap.find(OpName); if (OpVTI == OpcodeVTMap.end()) { @@ -3383,18 +1868,35 @@ void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { } else OpVTI->second.push_back(OpVTStr); - OS << "SDNode *Select_" << OpName << (OpVTStr != "" ? "_" : "") - << OpVTStr << "(SDOperand &Result, const SDOperand &N) {\n"; + // We want to emit all of the matching code now. However, we want to emit + // the matches in order of minimal cost. Sort the patterns so the least + // cost one is at the start. + std::stable_sort(CodeForPatterns.begin(), CodeForPatterns.end(), + PatternSortingPredicate(CGP)); - // Print all declarations. - for (std::set >::iterator - I = AllGenDecls.begin(), E = AllGenDecls.end(); I != E; ++I) - if (I->first == 0) - OS << " SDOperand " << I->second << "(0, 0);\n"; - else if (I->first == 1) - OS << " SDNode *" << I->second << " = NULL;\n"; - else - OS << " bool " << I->second << " = false;\n"; + // Scan the code to see if all of the patterns are reachable and if it is + // possible that the last one might not match. + bool mightNotMatch = true; + for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { + CodeList &GeneratedCode = CodeForPatterns[i].second; + mightNotMatch = false; + + for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) { + if (GeneratedCode[j].first == 1) { // predicate. + mightNotMatch = true; + break; + } + } + + // If this pattern definitely matches, and if it isn't the last one, the + // patterns after it CANNOT ever match. Error out. + if (mightNotMatch == false && i != CodeForPatterns.size()-1) { + errs() << "Pattern '"; + CodeForPatterns[i].first->getSrcPattern()->print(errs()); + errs() << "' is impossible to select!\n"; + exit(1); + } + } // Loop through and reverse all of the CodeList vectors, as we will be // accessing them from their logical front, but accessing the end of a @@ -3407,294 +1909,160 @@ void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { // Next, reverse the list of patterns itself for the same reason. std::reverse(CodeForPatterns.begin(), CodeForPatterns.end()); + OS << "SDNode *Select_" << getLegalCName(OpName) + << OpVTStr << "(SDNode *N) {\n"; + // Emit all of the patterns now, grouped together to share code. EmitPatterns(CodeForPatterns, 2, OS); - // If the last pattern has predicates (which could fail) emit code to catch - // the case where nothing handles a pattern. + // If the last pattern has predicates (which could fail) emit code to + // catch the case where nothing handles a pattern. if (mightNotMatch) { - OS << " std::cerr << \"Cannot yet select: \";\n"; - if (OpcodeInfo.getEnumName() != "ISD::INTRINSIC_W_CHAIN" && - OpcodeInfo.getEnumName() != "ISD::INTRINSIC_WO_CHAIN" && - OpcodeInfo.getEnumName() != "ISD::INTRINSIC_VOID") { - OS << " N.Val->dump(CurDAG);\n"; - } else { - OS << " unsigned iid = cast(N.getOperand(" - "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n" - << " std::cerr << \"intrinsic %\"<< " - "Intrinsic::getName((Intrinsic::ID)iid);\n"; - } - OS << " std::cerr << '\\n';\n" - << " abort();\n" - << " return NULL;\n"; + OS << "\n"; + if (OpName != "ISD::INTRINSIC_W_CHAIN" && + OpName != "ISD::INTRINSIC_WO_CHAIN" && + OpName != "ISD::INTRINSIC_VOID") + OS << " CannotYetSelect(N);\n"; + else + OS << " CannotYetSelectIntrinsic(N);\n"; + + OS << " return NULL;\n"; } OS << "}\n\n"; } } - // Emit boilerplate. - OS << "SDNode *Select_INLINEASM(SDOperand& Result, SDOperand N) {\n" - << " std::vector Ops(N.Val->op_begin(), N.Val->op_end());\n" - << " AddToQueue(Ops[0], N.getOperand(0)); // Select the chain.\n\n" - << " // Select the flag operand.\n" - << " if (Ops.back().getValueType() == MVT::Flag)\n" - << " AddToQueue(Ops.back(), Ops.back());\n" - << " SelectInlineAsmMemoryOperands(Ops, *CurDAG);\n" - << " std::vector VTs;\n" - << " VTs.push_back(MVT::Other);\n" - << " VTs.push_back(MVT::Flag);\n" - << " SDOperand New = CurDAG->getNode(ISD::INLINEASM, VTs, &Ops[0], " - "Ops.size());\n" - << " Result = New.getValue(N.ResNo);\n" - << " return Result.Val;\n" - << "}\n\n"; - OS << "// The main instruction selector code.\n" - << "SDNode *SelectCode(SDOperand &Result, SDOperand N) {\n" - << " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n" - << " N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS - << "INSTRUCTION_LIST_END)) {\n" - << " Result = N;\n" - << " return NULL; // Already selected.\n" - << " }\n\n" - << " switch (N.getOpcode()) {\n" - << " default: break;\n" - << " case ISD::EntryToken: // These leaves remain the same.\n" + << "SDNode *SelectCode(SDNode *N) {\n" + << " MVT::SimpleValueType NVT = N->getValueType(0).getSimpleVT().SimpleTy;\n" + << " switch (N->getOpcode()) {\n" + << " default:\n" + << " assert(!N->isMachineOpcode() && \"Node already selected!\");\n" + << " break;\n" + << " case ISD::EntryToken: // These nodes remain the same.\n" << " case ISD::BasicBlock:\n" << " case ISD::Register:\n" << " case ISD::HANDLENODE:\n" << " case ISD::TargetConstant:\n" + << " case ISD::TargetConstantFP:\n" << " case ISD::TargetConstantPool:\n" << " case ISD::TargetFrameIndex:\n" + << " case ISD::TargetExternalSymbol:\n" + << " case ISD::TargetBlockAddress:\n" << " case ISD::TargetJumpTable:\n" - << " case ISD::TargetGlobalAddress: {\n" - << " Result = N;\n" + << " case ISD::TargetGlobalTLSAddress:\n" + << " case ISD::TargetGlobalAddress:\n" + << " case ISD::TokenFactor:\n" + << " case ISD::CopyFromReg:\n" + << " case ISD::CopyToReg: {\n" << " return NULL;\n" << " }\n" << " case ISD::AssertSext:\n" << " case ISD::AssertZext: {\n" - << " AddToQueue(Result, N.getOperand(0));\n" - << " ReplaceUses(N, Result);\n" - << " return NULL;\n" - << " }\n" - << " case ISD::TokenFactor:\n" - << " case ISD::CopyFromReg:\n" - << " case ISD::CopyToReg: {\n" - << " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i) {\n" - << " SDOperand Dummy;\n" - << " AddToQueue(Dummy, N.getOperand(i));\n" - << " }\n" - << " Result = N;\n" + << " ReplaceUses(SDValue(N, 0), N->getOperand(0));\n" << " return NULL;\n" << " }\n" - << " case ISD::INLINEASM: return Select_INLINEASM(Result, N);\n"; + << " case ISD::INLINEASM: return Select_INLINEASM(N);\n" + << " case ISD::EH_LABEL: return Select_EH_LABEL(N);\n" + << " case ISD::UNDEF: return Select_UNDEF(N);\n"; - // Loop over all of the case statements, emiting a call to each method we // emitted above. - for (std::map, - CompareByRecordName>::iterator PBOI = PatternsByOpcode.begin(), - E = PatternsByOpcode.end(); PBOI != E; ++PBOI) { - const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first); - const std::string &OpName = PBOI->first->getName(); + for (std::map >::iterator + PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); + PBOI != E; ++PBOI) { + const std::string &OpName = PBOI->first; // Potentially multiple versions of select for this opcode. One for each // ValueType of the node (or its first true operand if it doesn't produce a // result. std::map >::iterator OpVTI = OpcodeVTMap.find(OpName); std::vector &OpVTs = OpVTI->second; - OS << " case " << OpcodeInfo.getEnumName() << ": {\n"; - if (OpVTs.size() == 1) { - std::string &VTStr = OpVTs[0]; - OS << " return Select_" << OpName - << (VTStr != "" ? "_" : "") << VTStr << "(Result, N);\n"; - } else { - if (OpcodeInfo.getNumResults()) - OS << " MVT::ValueType NVT = N.Val->getValueType(0);\n"; - else if (OpcodeInfo.hasProperty(SDNodeInfo::SDNPHasChain)) - OS << " MVT::ValueType NVT = (N.getNumOperands() > 1) ?" - << " N.getOperand(1).Val->getValueType(0) : MVT::isVoid;\n"; - else - OS << " MVT::ValueType NVT = (N.getNumOperands() > 0) ?" - << " N.getOperand(0).Val->getValueType(0) : MVT::isVoid;\n"; - int Default = -1; - OS << " switch (NVT) {\n"; - for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) { - std::string &VTStr = OpVTs[i]; - if (VTStr == "") { - Default = i; - continue; - } - OS << " case MVT::" << VTStr << ":\n" - << " return Select_" << OpName - << "_" << VTStr << "(Result, N);\n"; - } - OS << " default:\n"; - if (Default != -1) - OS << " return Select_" << OpName << "(Result, N);\n"; - else - OS << " break;\n"; - OS << " }\n"; + OS << " case " << OpName << ": {\n"; + // If we have only one variant and it's the default, elide the + // switch. Marginally faster, and makes MSVC happier. + if (OpVTs.size()==1 && OpVTs[0].empty()) { + OS << " return Select_" << getLegalCName(OpName) << "(N);\n"; OS << " break;\n"; + OS << " }\n"; + continue; } + // Keep track of whether we see a pattern that has an iPtr result. + bool HasPtrPattern = false; + bool HasDefaultPattern = false; + + OS << " switch (NVT) {\n"; + for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) { + std::string &VTStr = OpVTs[i]; + if (VTStr.empty()) { + HasDefaultPattern = true; + continue; + } + + // If this is a match on iPTR: don't emit it directly, we need special + // code. + if (VTStr == "_iPTR") { + HasPtrPattern = true; + continue; + } + OS << " case MVT::" << VTStr.substr(1) << ":\n" + << " return Select_" << getLegalCName(OpName) + << VTStr << "(N);\n"; + } + OS << " default:\n"; + + // If there is an iPTR result version of this pattern, emit it here. + if (HasPtrPattern) { + OS << " if (TLI.getPointerTy() == NVT)\n"; + OS << " return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n"; + } + if (HasDefaultPattern) { + OS << " return Select_" << getLegalCName(OpName) << "(N);\n"; + } + OS << " break;\n"; + OS << " }\n"; + OS << " break;\n"; OS << " }\n"; } OS << " } // end of big switch.\n\n" - << " std::cerr << \"Cannot yet select: \";\n" - << " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n" - << " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n" - << " N.getOpcode() != ISD::INTRINSIC_VOID) {\n" - << " N.Val->dump(CurDAG);\n" + << " if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n" + << " N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n" + << " N->getOpcode() != ISD::INTRINSIC_VOID) {\n" + << " CannotYetSelect(N);\n" << " } else {\n" - << " unsigned iid = cast(N.getOperand(" - "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n" - << " std::cerr << \"intrinsic %\"<< " - "Intrinsic::getName((Intrinsic::ID)iid);\n" + << " CannotYetSelectIntrinsic(N);\n" << " }\n" - << " std::cerr << '\\n';\n" - << " abort();\n" << " return NULL;\n" - << "}\n"; + << "}\n\n"; } -void DAGISelEmitter::run(std::ostream &OS) { - EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() + - " target", OS); +void DAGISelEmitter::run(raw_ostream &OS) { + EmitSourceFileHeader("DAG Instruction Selector for the " + + CGP.getTargetInfo().getName() + " target", OS); OS << "// *** NOTE: This file is #included into the middle of the target\n" << "// *** instruction selector class. These functions are really " << "methods.\n\n"; - - OS << "#if defined(__GNUC__) && \\\n"; - OS << " ((__GNUC__ > 3) || ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 4)))\n"; - OS << "#define NOINLINE __attribute__((noinline))\n"; - OS << "#else\n"; - OS << "#define NOINLINE\n"; - OS << "#endif\n\n"; - - OS << "// Instruction selector priority queue:\n" - << "std::vector ISelQueue;\n"; - OS << "/// Keep track of nodes which have already been added to queue.\n" - << "unsigned char *ISelQueued;\n"; - OS << "/// Keep track of nodes which have already been selected.\n" - << "unsigned char *ISelSelected;\n"; - OS << "/// Dummy parameter to ReplaceAllUsesOfValueWith().\n" - << "std::vector ISelKilled;\n\n"; - - OS << "/// Sorting functions for the selection queue.\n" - << "struct isel_sort : public std::binary_function" - << " {\n" - << " bool operator()(const SDNode* left, const SDNode* right) " - << "const {\n" - << " return (left->getNodeId() > right->getNodeId());\n" - << " }\n" - << "};\n\n"; - - OS << "inline void setQueued(int Id) {\n"; - OS << " ISelQueued[Id / 8] |= 1 << (Id % 8);\n"; - OS << "}\n"; - OS << "inline bool isQueued(int Id) {\n"; - OS << " return ISelQueued[Id / 8] & (1 << (Id % 8));\n"; - OS << "}\n"; - OS << "inline void setSelected(int Id) {\n"; - OS << " ISelSelected[Id / 8] |= 1 << (Id % 8);\n"; - OS << "}\n"; - OS << "inline bool isSelected(int Id) {\n"; - OS << " return ISelSelected[Id / 8] & (1 << (Id % 8));\n"; - OS << "}\n\n"; - - OS << "void AddToQueue(SDOperand &Result, SDOperand N) NOINLINE {\n"; - OS << " Result = N;\n"; - OS << " int Id = N.Val->getNodeId();\n"; - OS << " if (Id != -1 && !isQueued(Id)) {\n"; - OS << " ISelQueue.push_back(N.Val);\n"; - OS << " std::push_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; - OS << " setQueued(Id);\n"; - OS << " }\n"; - OS << "}\n\n"; - - OS << "inline void RemoveKilled() {\n"; -OS << " unsigned NumKilled = ISelKilled.size();\n"; - OS << " if (NumKilled) {\n"; - OS << " for (unsigned i = 0; i != NumKilled; ++i) {\n"; - OS << " SDNode *Temp = ISelKilled[i];\n"; - OS << " std::remove(ISelQueue.begin(), ISelQueue.end(), Temp);\n"; - OS << " };\n"; - OS << " std::make_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; - OS << " ISelKilled.clear();\n"; - OS << " }\n"; - OS << "}\n\n"; - - OS << "void ReplaceUses(SDOperand F, SDOperand T) NOINLINE {\n"; - OS << " CurDAG->ReplaceAllUsesOfValueWith(F, T, ISelKilled);\n"; - OS << " setSelected(F.Val->getNodeId());\n"; - OS << " RemoveKilled();\n"; - OS << "}\n"; - OS << "inline void ReplaceUses(SDNode *F, SDNode *T) {\n"; - OS << " CurDAG->ReplaceAllUsesWith(F, T, &ISelKilled);\n"; - OS << " setSelected(F->getNodeId());\n"; - OS << " RemoveKilled();\n"; - OS << "}\n\n"; - - OS << "// SelectRoot - Top level entry to DAG isel.\n"; - OS << "SDOperand SelectRoot(SDOperand Root) {\n"; - OS << " SelectRootInit();\n"; - OS << " unsigned NumBytes = (DAGSize + 7) / 8;\n"; - OS << " ISelQueued = new unsigned char[NumBytes];\n"; - OS << " ISelSelected = new unsigned char[NumBytes];\n"; - OS << " memset(ISelQueued, 0, NumBytes);\n"; - OS << " memset(ISelSelected, 0, NumBytes);\n"; - OS << "\n"; - OS << " SDOperand ResNode;\n"; - OS << " Select(ResNode, Root);\n"; - OS << " while (!ISelQueue.empty()) {\n"; - OS << " SDOperand Tmp;\n"; - OS << " SDNode *Node = ISelQueue.front();\n"; - OS << " std::pop_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; - OS << " ISelQueue.pop_back();\n"; - OS << " if (!isSelected(Node->getNodeId())) {\n"; - OS << " SDNode *ResNode = Select(Tmp, SDOperand(Node, 0));\n"; - OS << " if (ResNode && ResNode != Node) ReplaceUses(Node, ResNode);\n"; - OS << " }\n"; - OS << " }\n"; - OS << "\n"; - OS << " delete[] ISelQueued;\n"; - OS << " ISelQueued = NULL;\n"; - OS << " delete[] ISelSelected;\n"; - OS << " ISelSelected = NULL;\n"; - OS << " return ResNode;\n"; - OS << "}\n"; - - Intrinsics = LoadIntrinsics(Records); - ParseNodeInfo(); - ParseNodeTransforms(OS); - ParseComplexPatterns(); - ParsePatternFragments(OS); - ParseInstructions(); - ParsePatterns(); - - // Generate variants. For example, commutative patterns can match - // multiple ways. Add them to PatternsToMatch as well. - GenerateVariants(); + OS << "// Include standard, target-independent definitions and methods used\n" + << "// by the instruction selector.\n"; + OS << "#include \"llvm/CodeGen/DAGISelHeader.h\"\n\n"; + + EmitNodeTransforms(OS); + EmitPredicateFunctions(OS); - DEBUG(std::cerr << "\n\nALL PATTERNS TO MATCH:\n\n"; - for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { - std::cerr << "PATTERN: "; PatternsToMatch[i].getSrcPattern()->dump(); - std::cerr << "\nRESULT: ";PatternsToMatch[i].getDstPattern()->dump(); - std::cerr << "\n"; - }); + DEBUG(errs() << "\n\nALL PATTERNS TO MATCH:\n\n"); + for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end(); + I != E; ++I) { + DEBUG(errs() << "PATTERN: "; I->getSrcPattern()->dump()); + DEBUG(errs() << "\nRESULT: "; I->getDstPattern()->dump()); + DEBUG(errs() << "\n"); + } // At this point, we have full information about the 'Patterns' we need to // parse, both implicitly from instructions as well as from explicit pattern // definitions. Emit the resultant instruction selector. EmitInstructionSelector(OS); - for (std::map::iterator I = PatternFragments.begin(), - E = PatternFragments.end(); I != E; ++I) - delete I->second; - PatternFragments.clear(); - - Instructions.clear(); }