X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FVMCore%2FConstants.cpp;h=7de823b1ba5f37f3f0bc36acc68e76c9cee9a587;hb=c84c16be9b29b4f805b92bfc2d93e2dfaa952f8f;hp=71615b2c4a98ec4b9af7be02118149be0d6782fe;hpb=728b6db6fbd3caee7fa25b377f4592160476bb9c;p=oota-llvm.git diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp index 71615b2c4a9..7de823b1ba5 100644 --- a/lib/VMCore/Constants.cpp +++ b/lib/VMCore/Constants.cpp @@ -12,18 +12,20 @@ //===----------------------------------------------------------------------===// #include "llvm/Constants.h" -#include "ConstantFolding.h" +#include "ConstantFold.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalValue.h" #include "llvm/Instructions.h" -#include "llvm/SymbolTable.h" #include "llvm/Module.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MathExtras.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" #include +#include using namespace llvm; //===----------------------------------------------------------------------===// @@ -88,62 +90,37 @@ bool Constant::canTrap() const { } } +/// ContaintsRelocations - Return true if the constant value contains +/// relocations which cannot be resolved at compile time. +bool Constant::ContainsRelocations() const { + if (isa(this)) + return true; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (getOperand(i)->ContainsRelocations()) + return true; + return false; +} // Static constructor to create a '0' constant of arbitrary type... Constant *Constant::getNullValue(const Type *Ty) { + static uint64_t zero[2] = {0, 0}; switch (Ty->getTypeID()) { - case Type::BoolTyID: { - static Constant *NullBool = ConstantBool::get(false); - return NullBool; - } - case Type::SByteTyID: { - static Constant *NullSByte = ConstantInt::get(Type::SByteTy, 0); - return NullSByte; - } - case Type::UByteTyID: { - static Constant *NullUByte = ConstantInt::get(Type::UByteTy, 0); - return NullUByte; - } - case Type::ShortTyID: { - static Constant *NullShort = ConstantInt::get(Type::ShortTy, 0); - return NullShort; - } - case Type::UShortTyID: { - static Constant *NullUShort = ConstantInt::get(Type::UShortTy, 0); - return NullUShort; - } - case Type::IntTyID: { - static Constant *NullInt = ConstantInt::get(Type::IntTy, 0); - return NullInt; - } - case Type::UIntTyID: { - static Constant *NullUInt = ConstantInt::get(Type::UIntTy, 0); - return NullUInt; - } - case Type::LongTyID: { - static Constant *NullLong = ConstantInt::get(Type::LongTy, 0); - return NullLong; - } - case Type::ULongTyID: { - static Constant *NullULong = ConstantInt::get(Type::ULongTy, 0); - return NullULong; - } - - case Type::FloatTyID: { - static Constant *NullFloat = ConstantFP::get(Type::FloatTy, 0); - return NullFloat; - } - case Type::DoubleTyID: { - static Constant *NullDouble = ConstantFP::get(Type::DoubleTy, 0); - return NullDouble; - } - + case Type::IntegerTyID: + return ConstantInt::get(Ty, 0); + case Type::FloatTyID: + return ConstantFP::get(Ty, APFloat(APInt(32, 0))); + case Type::DoubleTyID: + return ConstantFP::get(Ty, APFloat(APInt(64, 0))); + case Type::X86_FP80TyID: + return ConstantFP::get(Ty, APFloat(APInt(80, 2, zero))); + case Type::FP128TyID: + case Type::PPC_FP128TyID: + return ConstantFP::get(Ty, APFloat(APInt(128, 2, zero))); case Type::PointerTyID: return ConstantPointerNull::get(cast(Ty)); - case Type::StructTyID: case Type::ArrayTyID: - case Type::PackedTyID: + case Type::VectorTyID: return ConstantAggregateZero::get(Ty); default: // Function, Label, or Opaque type? @@ -152,102 +129,211 @@ Constant *Constant::getNullValue(const Type *Ty) { } } -// Static constructor to create the maximum constant of an integral type... -ConstantIntegral *ConstantIntegral::getMaxValue(const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::BoolTyID: return ConstantBool::getTrue(); - case Type::SByteTyID: - case Type::ShortTyID: - case Type::IntTyID: - case Type::LongTyID: { - // Calculate 011111111111111... - unsigned TypeBits = Ty->getPrimitiveSize()*8; - int64_t Val = INT64_MAX; // All ones - Val >>= 64-TypeBits; // Shift out unwanted 1 bits... - return ConstantInt::get(Ty, Val); - } +Constant *Constant::getAllOnesValue(const Type *Ty) { + if (const IntegerType* ITy = dyn_cast(Ty)) + return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth())); + return ConstantVector::getAllOnesValue(cast(Ty)); +} - case Type::UByteTyID: - case Type::UShortTyID: - case Type::UIntTyID: - case Type::ULongTyID: return getAllOnesValue(Ty); +// Static constructor to create an integral constant with all bits set +ConstantInt *ConstantInt::getAllOnesValue(const Type *Ty) { + if (const IntegerType* ITy = dyn_cast(Ty)) + return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth())); + return 0; +} - default: return 0; - } +/// @returns the value for a vector integer constant of the given type that +/// has all its bits set to true. +/// @brief Get the all ones value +ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) { + std::vector Elts; + Elts.resize(Ty->getNumElements(), + ConstantInt::getAllOnesValue(Ty->getElementType())); + assert(Elts[0] && "Not a vector integer type!"); + return cast(ConstantVector::get(Elts)); } -// Static constructor to create the minimum constant for an integral type... -ConstantIntegral *ConstantIntegral::getMinValue(const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::BoolTyID: return ConstantBool::getFalse(); - case Type::SByteTyID: - case Type::ShortTyID: - case Type::IntTyID: - case Type::LongTyID: { - // Calculate 1111111111000000000000 - unsigned TypeBits = Ty->getPrimitiveSize()*8; - int64_t Val = -1; // All ones - Val <<= TypeBits-1; // Shift over to the right spot - return ConstantInt::get(Ty, Val); - } - case Type::UByteTyID: - case Type::UShortTyID: - case Type::UIntTyID: - case Type::ULongTyID: return ConstantInt::get(Ty, 0); +//===----------------------------------------------------------------------===// +// ConstantInt +//===----------------------------------------------------------------------===// - default: return 0; - } +ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V) + : Constant(Ty, ConstantIntVal, 0, 0), Val(V) { + assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); } -// Static constructor to create an integral constant with all bits set -ConstantIntegral *ConstantIntegral::getAllOnesValue(const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::BoolTyID: return ConstantBool::getTrue(); - case Type::SByteTyID: - case Type::ShortTyID: - case Type::IntTyID: - case Type::LongTyID: return ConstantInt::get(Ty, -1); - - case Type::UByteTyID: - case Type::UShortTyID: - case Type::UIntTyID: - case Type::ULongTyID: { - // Calculate ~0 of the right type... - unsigned TypeBits = Ty->getPrimitiveSize()*8; - uint64_t Val = ~0ULL; // All ones - Val >>= 64-TypeBits; // Shift out unwanted 1 bits... - return ConstantInt::get(Ty, Val); - } - default: return 0; +ConstantInt *ConstantInt::TheTrueVal = 0; +ConstantInt *ConstantInt::TheFalseVal = 0; + +namespace llvm { + void CleanupTrueFalse(void *) { + ConstantInt::ResetTrueFalse(); } } +static ManagedCleanup TrueFalseCleanup; + +ConstantInt *ConstantInt::CreateTrueFalseVals(bool WhichOne) { + assert(TheTrueVal == 0 && TheFalseVal == 0); + TheTrueVal = get(Type::Int1Ty, 1); + TheFalseVal = get(Type::Int1Ty, 0); + + // Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal. + TrueFalseCleanup.Register(); + + return WhichOne ? TheTrueVal : TheFalseVal; +} + + +namespace { + struct DenseMapAPIntKeyInfo { + struct KeyTy { + APInt val; + const Type* type; + KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {} + KeyTy(const KeyTy& that) : val(that.val), type(that.type) {} + bool operator==(const KeyTy& that) const { + return type == that.type && this->val == that.val; + } + bool operator!=(const KeyTy& that) const { + return !this->operator==(that); + } + }; + static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); } + static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); } + static unsigned getHashValue(const KeyTy &Key) { + return DenseMapInfo::getHashValue(Key.type) ^ + Key.val.getHashValue(); + } + static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { + return LHS == RHS; + } + static bool isPod() { return false; } + }; +} + + +typedef DenseMap IntMapTy; +static ManagedStatic IntConstants; + +ConstantInt *ConstantInt::get(const Type *Ty, uint64_t V, bool isSigned) { + const IntegerType *ITy = cast(Ty); + return get(APInt(ITy->getBitWidth(), V, isSigned)); +} + +// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap +// as the key, is a DensMapAPIntKeyInfo::KeyTy which has provided the +// operator== and operator!= to ensure that the DenseMap doesn't attempt to +// compare APInt's of different widths, which would violate an APInt class +// invariant which generates an assertion. +ConstantInt *ConstantInt::get(const APInt& V) { + // Get the corresponding integer type for the bit width of the value. + const IntegerType *ITy = IntegerType::get(V.getBitWidth()); + // get an existing value or the insertion position + DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); + ConstantInt *&Slot = (*IntConstants)[Key]; + // if it exists, return it. + if (Slot) + return Slot; + // otherwise create a new one, insert it, and return it. + return Slot = new ConstantInt(ITy, V); +} + //===----------------------------------------------------------------------===// -// ConstantXXX Classes +// ConstantFP //===----------------------------------------------------------------------===// -//===----------------------------------------------------------------------===// -// Normal Constructors +ConstantFP::ConstantFP(const Type *Ty, const APFloat& V) + : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { + // temporary + if (Ty==Type::FloatTy) + assert(&V.getSemantics()==&APFloat::IEEEsingle); + else if (Ty==Type::DoubleTy) + assert(&V.getSemantics()==&APFloat::IEEEdouble); + else if (Ty==Type::X86_FP80Ty) + assert(&V.getSemantics()==&APFloat::x87DoubleExtended); + else if (Ty==Type::FP128Ty) + assert(&V.getSemantics()==&APFloat::IEEEquad); + else + assert(0); +} -ConstantIntegral::ConstantIntegral(const Type *Ty, ValueTy VT, uint64_t V) - : Constant(Ty, VT, 0, 0), Val(V) { +bool ConstantFP::isNullValue() const { + return Val.isZero() && !Val.isNegative(); } -ConstantBool::ConstantBool(bool V) - : ConstantIntegral(Type::BoolTy, ConstantBoolVal, uint64_t(V)) { +ConstantFP *ConstantFP::getNegativeZero(const Type *Ty) { + APFloat apf = cast (Constant::getNullValue(Ty))->getValueAPF(); + apf.changeSign(); + return ConstantFP::get(Ty, apf); } -ConstantInt::ConstantInt(const Type *Ty, uint64_t V) - : ConstantIntegral(Ty, ConstantIntVal, V) { +bool ConstantFP::isExactlyValue(const APFloat& V) const { + return Val.bitwiseIsEqual(V); } -ConstantFP::ConstantFP(const Type *Ty, double V) - : Constant(Ty, ConstantFPVal, 0, 0) { - assert(isValueValidForType(Ty, V) && "Value too large for type!"); - Val = V; +namespace { + struct DenseMapAPFloatKeyInfo { + struct KeyTy { + APFloat val; + KeyTy(const APFloat& V) : val(V){} + KeyTy(const KeyTy& that) : val(that.val) {} + bool operator==(const KeyTy& that) const { + return this->val.bitwiseIsEqual(that.val); + } + bool operator!=(const KeyTy& that) const { + return !this->operator==(that); + } + }; + static inline KeyTy getEmptyKey() { + return KeyTy(APFloat(APFloat::Bogus,1)); + } + static inline KeyTy getTombstoneKey() { + return KeyTy(APFloat(APFloat::Bogus,2)); + } + static unsigned getHashValue(const KeyTy &Key) { + return Key.val.getHashValue(); + } + static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { + return LHS == RHS; + } + static bool isPod() { return false; } + }; +} + +//---- ConstantFP::get() implementation... +// +typedef DenseMap FPMapTy; + +static ManagedStatic FPConstants; + +ConstantFP *ConstantFP::get(const Type *Ty, const APFloat& V) { + // temporary + if (Ty==Type::FloatTy) + assert(&V.getSemantics()==&APFloat::IEEEsingle); + else if (Ty==Type::DoubleTy) + assert(&V.getSemantics()==&APFloat::IEEEdouble); + else if (Ty==Type::X86_FP80Ty) + assert(&V.getSemantics()==&APFloat::x87DoubleExtended); + else if (Ty==Type::FP128Ty) + assert(&V.getSemantics()==&APFloat::IEEEquad); + else + assert(0); + + DenseMapAPFloatKeyInfo::KeyTy Key(V); + ConstantFP *&Slot = (*FPConstants)[Key]; + if (Slot) return Slot; + return Slot = new ConstantFP(Ty, V); } +//===----------------------------------------------------------------------===// +// ConstantXXX Classes +//===----------------------------------------------------------------------===// + + ConstantArray::ConstantArray(const ArrayType *T, const std::vector &V) : Constant(T, ConstantArrayVal, new Use[V.size()], V.size()) { @@ -293,9 +379,9 @@ ConstantStruct::~ConstantStruct() { } -ConstantPacked::ConstantPacked(const PackedType *T, +ConstantVector::ConstantVector(const VectorType *T, const std::vector &V) - : Constant(T, ConstantPackedVal, new Use[V.size()], V.size()) { + : Constant(T, ConstantVectorVal, new Use[V.size()], V.size()) { Use *OL = OperandList; for (std::vector::const_iterator I = V.begin(), E = V.end(); I != E; ++I, ++OL) { @@ -303,21 +389,15 @@ ConstantPacked::ConstantPacked(const PackedType *T, assert((C->getType() == T->getElementType() || (T->isAbstract() && C->getType()->getTypeID() == T->getElementType()->getTypeID())) && - "Initializer for packed element doesn't match packed element type!"); + "Initializer for vector element doesn't match vector element type!"); OL->init(C, this); } } -ConstantPacked::~ConstantPacked() { +ConstantVector::~ConstantVector() { delete [] OperandList; } -static bool isSetCC(unsigned Opcode) { - return Opcode == Instruction::SetEQ || Opcode == Instruction::SetNE || - Opcode == Instruction::SetLT || Opcode == Instruction::SetGT || - Opcode == Instruction::SetLE || Opcode == Instruction::SetGE; -} - // We declare several classes private to this file, so use an anonymous // namespace namespace { @@ -337,8 +417,7 @@ class VISIBILITY_HIDDEN BinaryConstantExpr : public ConstantExpr { Use Ops[2]; public: BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2) - : ConstantExpr(isSetCC(Opcode) ? Type::BoolTy : C1->getType(), - Opcode, Ops, 2) { + : ConstantExpr(C1->getType(), Opcode, Ops, 2) { Ops[0].init(C1, this); Ops[1].init(C2, this); } @@ -364,7 +443,7 @@ class VISIBILITY_HIDDEN ExtractElementConstantExpr : public ConstantExpr { Use Ops[2]; public: ExtractElementConstantExpr(Constant *C1, Constant *C2) - : ConstantExpr(cast(C1->getType())->getElementType(), + : ConstantExpr(cast(C1->getType())->getElementType(), Instruction::ExtractElement, Ops, 2) { Ops[0].init(C1, this); Ops[1].init(C2, this); @@ -425,8 +504,7 @@ struct VISIBILITY_HIDDEN CompareConstantExpr : public ConstantExpr { Use Ops[2]; CompareConstantExpr(Instruction::OtherOps opc, unsigned short pred, Constant* LHS, Constant* RHS) - : ConstantExpr(Type::BoolTy, Instruction::OtherOps(opc), Ops, 2), - predicate(pred) { + : ConstantExpr(Type::Int1Ty, opc, Ops, 2), predicate(pred) { OperandList[0].init(LHS, this); OperandList[1].init(RHS, this); } @@ -442,19 +520,22 @@ bool ConstantExpr::isCast() const { return Instruction::isCast(getOpcode()); } +bool ConstantExpr::isCompare() const { + return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; +} + /// ConstantExpr::get* - Return some common constants without having to /// specify the full Instruction::OPCODE identifier. /// Constant *ConstantExpr::getNeg(Constant *C) { - if (!C->getType()->isFloatingPoint()) - return get(Instruction::Sub, getNullValue(C->getType()), C); - else - return get(Instruction::Sub, ConstantFP::get(C->getType(), -0.0), C); + return get(Instruction::Sub, + ConstantExpr::getZeroValueForNegationExpr(C->getType()), + C); } Constant *ConstantExpr::getNot(Constant *C) { - assert(isa(C) && "Cannot NOT a nonintegral type!"); + assert(isa(C->getType()) && "Cannot NOT a nonintegral value!"); return get(Instruction::Xor, C, - ConstantIntegral::getAllOnesValue(C->getType())); + ConstantInt::getAllOnesValue(C->getType())); } Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) { return get(Instruction::Add, C1, C2); @@ -492,41 +573,6 @@ Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { return get(Instruction::Xor, C1, C2); } -Constant *ConstantExpr::getSetEQ(Constant *C1, Constant *C2) { - return get(Instruction::SetEQ, C1, C2); -} -Constant *ConstantExpr::getSetNE(Constant *C1, Constant *C2) { - return get(Instruction::SetNE, C1, C2); -} -Constant *ConstantExpr::getSetLT(Constant *C1, Constant *C2) { - return get(Instruction::SetLT, C1, C2); -} -Constant *ConstantExpr::getSetGT(Constant *C1, Constant *C2) { - return get(Instruction::SetGT, C1, C2); -} -Constant *ConstantExpr::getSetLE(Constant *C1, Constant *C2) { - return get(Instruction::SetLE, C1, C2); -} -Constant *ConstantExpr::getSetGE(Constant *C1, Constant *C2) { - return get(Instruction::SetGE, C1, C2); -} -Constant * -ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) { - assert(LHS->getType() == RHS->getType()); - assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && - pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); - CompareConstantExpr *Result = - new CompareConstantExpr(Instruction::ICmp, pred, LHS, RHS); - return Result; -} -Constant * -ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) { - assert(LHS->getType() == RHS->getType()); - assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid ICmp Predicate"); - CompareConstantExpr *Result = - new CompareConstantExpr(Instruction::FCmp, pred, LHS, RHS); - return Result; -} unsigned ConstantExpr::getPredicate() const { assert(getOpcode() == Instruction::FCmp || getOpcode() == Instruction::ICmp); return dynamic_cast(this)->predicate; @@ -586,13 +632,14 @@ ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { Op2 = (OpNo == 2) ? Op : getOperand(2); return ConstantExpr::getShuffleVector(Op0, Op1, Op2); case Instruction::GetElementPtr: { - std::vector Ops; + SmallVector Ops; + Ops.resize(getNumOperands()); for (unsigned i = 1, e = getNumOperands(); i != e; ++i) - Ops.push_back(getOperand(i)); + Ops[i] = getOperand(i); if (OpNo == 0) - return ConstantExpr::getGetElementPtr(Op, Ops); + return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size()); Ops[OpNo-1] = Op; - return ConstantExpr::getGetElementPtr(getOperand(0), Ops); + return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size()); } default: assert(getNumOperands() == 2 && "Must be binary operator?"); @@ -639,10 +686,11 @@ getWithOperands(const std::vector &Ops) const { return ConstantExpr::getExtractElement(Ops[0], Ops[1]); case Instruction::ShuffleVector: return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); - case Instruction::GetElementPtr: { - std::vector ActualOps(Ops.begin()+1, Ops.end()); - return ConstantExpr::getGetElementPtr(Ops[0], ActualOps); - } + case Instruction::GetElementPtr: + return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], Ops.size()-1); + case Instruction::ICmp: + case Instruction::FCmp: + return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); default: assert(getNumOperands() == 2 && "Must be binary operator?"); return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]); @@ -653,38 +701,52 @@ getWithOperands(const std::vector &Ops) const { //===----------------------------------------------------------------------===// // isValueValidForType implementations +bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) { + unsigned NumBits = cast(Ty)->getBitWidth(); // assert okay + if (Ty == Type::Int1Ty) + return Val == 0 || Val == 1; + if (NumBits >= 64) + return true; // always true, has to fit in largest type + uint64_t Max = (1ll << NumBits) - 1; + return Val <= Max; +} + bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) { - switch (Ty->getTypeID()) { - default: - return false; // These can't be represented as integers!!! - // Signed types... - case Type::SByteTyID: - return (Val <= INT8_MAX && Val >= INT8_MIN); - case Type::UByteTyID: - return (Val >= 0) && (Val <= UINT8_MAX); - case Type::ShortTyID: - return (Val <= INT16_MAX && Val >= INT16_MIN); - case Type::UShortTyID: - return (Val >= 0) && (Val <= UINT16_MAX); - case Type::IntTyID: - return (Val <= int(INT32_MAX) && Val >= int(INT32_MIN)); - case Type::UIntTyID: - return (Val >= 0) && (Val <= UINT32_MAX); - case Type::LongTyID: - case Type::ULongTyID: + unsigned NumBits = cast(Ty)->getBitWidth(); // assert okay + if (Ty == Type::Int1Ty) + return Val == 0 || Val == 1 || Val == -1; + if (NumBits >= 64) return true; // always true, has to fit in largest type - } + int64_t Min = -(1ll << (NumBits-1)); + int64_t Max = (1ll << (NumBits-1)) - 1; + return (Val >= Min && Val <= Max); } -bool ConstantFP::isValueValidForType(const Type *Ty, double Val) { +bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) { + // convert modifies in place, so make a copy. + APFloat Val2 = APFloat(Val); switch (Ty->getTypeID()) { default: return false; // These can't be represented as floating point! - // TODO: Figure out how to test if a double can be cast to a float! + // FIXME rounding mode needs to be more flexible case Type::FloatTyID: + return &Val2.getSemantics() == &APFloat::IEEEsingle || + Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) == + APFloat::opOK; case Type::DoubleTyID: - return true; // This is the largest type... + return &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble || + Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) == + APFloat::opOK; + case Type::X86_FP80TyID: + return &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble || + &Val2.getSemantics() == &APFloat::x87DoubleExtended; + case Type::FP128TyID: + return &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble || + &Val2.getSemantics() == &APFloat::IEEEquad; } } @@ -736,15 +798,6 @@ namespace llvm { /// AbstractTypeMapTy AbstractTypeMap; - private: - void clear(std::vector &Constants) { - for(typename MapTy::iterator I = Map.begin(); I != Map.end(); ++I) - Constants.push_back(I->second); - Map.clear(); - AbstractTypeMap.clear(); - InverseMap.clear(); - } - public: typename MapTy::iterator map_end() { return Map.end(); } @@ -934,77 +987,6 @@ public: } -//---- ConstantBool::get*() implementation. - -ConstantBool *ConstantBool::getTrue() { - static ConstantBool *T = 0; - if (T) return T; - return T = new ConstantBool(true); -} -ConstantBool *ConstantBool::getFalse() { - static ConstantBool *F = 0; - if (F) return F; - return F = new ConstantBool(false); -} - -//---- ConstantInt::get() implementations... -// -static ManagedStatic > IntConstants; - -// Get a ConstantInt from an int64_t. Note here that we canoncialize the value -// to a uint64_t value that has been zero extended down to the size of the -// integer type of the ConstantInt. This allows the getZExtValue method to -// just return the stored value while getSExtValue has to convert back to sign -// extended. getZExtValue is more common in LLVM than getSExtValue(). -ConstantInt *ConstantInt::get(const Type *Ty, int64_t V) { - return IntConstants->getOrCreate(Ty, V & Ty->getIntegralTypeMask()); -} - -ConstantIntegral *ConstantIntegral::get(const Type *Ty, int64_t V) { - if (Ty == Type::BoolTy) return ConstantBool::get(V&1); - return IntConstants->getOrCreate(Ty, V & Ty->getIntegralTypeMask()); -} - -//---- ConstantFP::get() implementation... -// -namespace llvm { - template<> - struct ConstantCreator { - static ConstantFP *create(const Type *Ty, uint64_t V) { - assert(Ty == Type::DoubleTy); - return new ConstantFP(Ty, BitsToDouble(V)); - } - }; - template<> - struct ConstantCreator { - static ConstantFP *create(const Type *Ty, uint32_t V) { - assert(Ty == Type::FloatTy); - return new ConstantFP(Ty, BitsToFloat(V)); - } - }; -} - -static ManagedStatic > DoubleConstants; -static ManagedStatic > FloatConstants; - -bool ConstantFP::isNullValue() const { - return DoubleToBits(Val) == 0; -} - -bool ConstantFP::isExactlyValue(double V) const { - return DoubleToBits(V) == DoubleToBits(Val); -} - - -ConstantFP *ConstantFP::get(const Type *Ty, double V) { - if (Ty == Type::FloatTy) { - // Force the value through memory to normalize it. - return FloatConstants->getOrCreate(Ty, FloatToBits(V)); - } else { - assert(Ty == Type::DoubleTy); - return DoubleConstants->getOrCreate(Ty, DoubleToBits(V)); - } -} //---- ConstantAggregateZero::get() implementation... // @@ -1035,7 +1017,7 @@ static ManagedStatic(Ty) || isa(Ty) || isa(Ty)) && + assert((isa(Ty) || isa(Ty) || isa(Ty)) && "Cannot create an aggregate zero of non-aggregate type!"); return AggZeroConstants->getOrCreate(Ty, 0); } @@ -1107,23 +1089,22 @@ void ConstantArray::destroyConstant() { Constant *ConstantArray::get(const std::string &Str, bool AddNull) { std::vector ElementVals; for (unsigned i = 0; i < Str.length(); ++i) - ElementVals.push_back(ConstantInt::get(Type::SByteTy, Str[i])); + ElementVals.push_back(ConstantInt::get(Type::Int8Ty, Str[i])); // Add a null terminator to the string... if (AddNull) { - ElementVals.push_back(ConstantInt::get(Type::SByteTy, 0)); + ElementVals.push_back(ConstantInt::get(Type::Int8Ty, 0)); } - ArrayType *ATy = ArrayType::get(Type::SByteTy, ElementVals.size()); + ArrayType *ATy = ArrayType::get(Type::Int8Ty, ElementVals.size()); return ConstantArray::get(ATy, ElementVals); } -/// isString - This method returns true if the array is an array of sbyte or -/// ubyte, and if the elements of the array are all ConstantInt's. +/// isString - This method returns true if the array is an array of i8, and +/// if the elements of the array are all ConstantInt's. bool ConstantArray::isString() const { - // Check the element type for sbyte or ubyte... - if (getType()->getElementType() != Type::UByteTy && - getType()->getElementType() != Type::SByteTy) + // Check the element type for i8... + if (getType()->getElementType() != Type::Int8Ty) return false; // Check the elements to make sure they are all integers, not constant // expressions. @@ -1137,9 +1118,8 @@ bool ConstantArray::isString() const { /// isString) and it ends in a null byte \0 and does not contains any other /// null bytes except its terminator. bool ConstantArray::isCString() const { - // Check the element type for sbyte or ubyte... - if (getType()->getElementType() != Type::UByteTy && - getType()->getElementType() != Type::SByteTy) + // Check the element type for i8... + if (getType()->getElementType() != Type::Int8Ty) return false; Constant *Zero = Constant::getNullValue(getOperand(0)->getType()); // Last element must be a null. @@ -1156,7 +1136,7 @@ bool ConstantArray::isCString() const { } -// getAsString - If the sub-element type of this array is either sbyte or ubyte, +// getAsString - If the sub-element type of this array is i8 // then this method converts the array to an std::string and returns it. // Otherwise, it asserts out. // @@ -1211,12 +1191,12 @@ Constant *ConstantStruct::get(const StructType *Ty, return ConstantAggregateZero::get(Ty); } -Constant *ConstantStruct::get(const std::vector &V) { +Constant *ConstantStruct::get(const std::vector &V, bool packed) { std::vector StructEls; StructEls.reserve(V.size()); for (unsigned i = 0, e = V.size(); i != e; ++i) StructEls.push_back(V[i]->getType()); - return get(StructType::get(StructEls), V); + return get(StructType::get(StructEls, packed), V); } // destroyConstant - Remove the constant from the constant table... @@ -1226,17 +1206,17 @@ void ConstantStruct::destroyConstant() { destroyConstantImpl(); } -//---- ConstantPacked::get() implementation... +//---- ConstantVector::get() implementation... // namespace llvm { template<> - struct ConvertConstantType { - static void convert(ConstantPacked *OldC, const PackedType *NewTy) { + struct ConvertConstantType { + static void convert(ConstantVector *OldC, const VectorType *NewTy) { // Make everyone now use a constant of the new type... std::vector C; for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) C.push_back(cast(OldC->getOperand(i))); - Constant *New = ConstantPacked::get(NewTy, C); + Constant *New = ConstantVector::get(NewTy, C); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. @@ -1244,7 +1224,7 @@ namespace llvm { }; } -static std::vector getValType(ConstantPacked *CP) { +static std::vector getValType(ConstantVector *CP) { std::vector Elements; Elements.reserve(CP->getNumOperands()); for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) @@ -1252,35 +1232,51 @@ static std::vector getValType(ConstantPacked *CP) { return Elements; } -static ManagedStatic, PackedType, - ConstantPacked> > PackedConstants; +static ManagedStatic, VectorType, + ConstantVector> > VectorConstants; -Constant *ConstantPacked::get(const PackedType *Ty, +Constant *ConstantVector::get(const VectorType *Ty, const std::vector &V) { - // If this is an all-zero packed, return a ConstantAggregateZero object + // If this is an all-zero vector, return a ConstantAggregateZero object if (!V.empty()) { Constant *C = V[0]; if (!C->isNullValue()) - return PackedConstants->getOrCreate(Ty, V); + return VectorConstants->getOrCreate(Ty, V); for (unsigned i = 1, e = V.size(); i != e; ++i) if (V[i] != C) - return PackedConstants->getOrCreate(Ty, V); + return VectorConstants->getOrCreate(Ty, V); } return ConstantAggregateZero::get(Ty); } -Constant *ConstantPacked::get(const std::vector &V) { +Constant *ConstantVector::get(const std::vector &V) { assert(!V.empty() && "Cannot infer type if V is empty"); - return get(PackedType::get(V.front()->getType(),V.size()), V); + return get(VectorType::get(V.front()->getType(),V.size()), V); } // destroyConstant - Remove the constant from the constant table... // -void ConstantPacked::destroyConstant() { - PackedConstants->remove(this); +void ConstantVector::destroyConstant() { + VectorConstants->remove(this); destroyConstantImpl(); } +/// This function will return true iff every element in this vector constant +/// is set to all ones. +/// @returns true iff this constant's emements are all set to all ones. +/// @brief Determine if the value is all ones. +bool ConstantVector::isAllOnesValue() const { + // Check out first element. + const Constant *Elt = getOperand(0); + const ConstantInt *CI = dyn_cast(Elt); + if (!CI || !CI->isAllOnesValue()) return false; + // Then make sure all remaining elements point to the same value. + for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { + if (getOperand(I) != Elt) return false; + } + return true; +} + //---- ConstantPointerNull::get() implementation... // @@ -1370,41 +1366,67 @@ void UndefValue::destroyConstant() { //---- ConstantExpr::get() implementations... // -typedef std::pair > ExprMapKeyType; + +struct ExprMapKeyType { + explicit ExprMapKeyType(unsigned opc, std::vector ops, + unsigned short pred = 0) : opcode(opc), predicate(pred), operands(ops) { } + uint16_t opcode; + uint16_t predicate; + std::vector operands; + bool operator==(const ExprMapKeyType& that) const { + return this->opcode == that.opcode && + this->predicate == that.predicate && + this->operands == that.operands; + } + bool operator<(const ExprMapKeyType & that) const { + return this->opcode < that.opcode || + (this->opcode == that.opcode && this->predicate < that.predicate) || + (this->opcode == that.opcode && this->predicate == that.predicate && + this->operands < that.operands); + } + + bool operator!=(const ExprMapKeyType& that) const { + return !(*this == that); + } +}; namespace llvm { template<> struct ConstantCreator { static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V, unsigned short pred = 0) { - if (Instruction::isCast(V.first)) - return new UnaryConstantExpr(V.first, V.second[0], Ty); - if ((V.first >= Instruction::BinaryOpsBegin && - V.first < Instruction::BinaryOpsEnd) || - V.first == Instruction::Shl || - V.first == Instruction::LShr || - V.first == Instruction::AShr) - return new BinaryConstantExpr(V.first, V.second[0], V.second[1]); - if (V.first == Instruction::Select) - return new SelectConstantExpr(V.second[0], V.second[1], V.second[2]); - if (V.first == Instruction::ExtractElement) - return new ExtractElementConstantExpr(V.second[0], V.second[1]); - if (V.first == Instruction::InsertElement) - return new InsertElementConstantExpr(V.second[0], V.second[1], - V.second[2]); - if (V.first == Instruction::ShuffleVector) - return new ShuffleVectorConstantExpr(V.second[0], V.second[1], - V.second[2]); - if (V.first == Instruction::ICmp) - return new CompareConstantExpr(Instruction::ICmp, pred, - V.second[0], V.second[1]); - if (V.first == Instruction::FCmp) - return new CompareConstantExpr(Instruction::FCmp, pred, - V.second[0], V.second[1]); - - assert(V.first == Instruction::GetElementPtr && "Invalid ConstantExpr!"); - std::vector IdxList(V.second.begin()+1, V.second.end()); - return new GetElementPtrConstantExpr(V.second[0], IdxList, Ty); + if (Instruction::isCast(V.opcode)) + return new UnaryConstantExpr(V.opcode, V.operands[0], Ty); + if ((V.opcode >= Instruction::BinaryOpsBegin && + V.opcode < Instruction::BinaryOpsEnd)) + return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]); + if (V.opcode == Instruction::Select) + return new SelectConstantExpr(V.operands[0], V.operands[1], + V.operands[2]); + if (V.opcode == Instruction::ExtractElement) + return new ExtractElementConstantExpr(V.operands[0], V.operands[1]); + if (V.opcode == Instruction::InsertElement) + return new InsertElementConstantExpr(V.operands[0], V.operands[1], + V.operands[2]); + if (V.opcode == Instruction::ShuffleVector) + return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1], + V.operands[2]); + if (V.opcode == Instruction::GetElementPtr) { + std::vector IdxList(V.operands.begin()+1, V.operands.end()); + return new GetElementPtrConstantExpr(V.operands[0], IdxList, Ty); + } + + // The compare instructions are weird. We have to encode the predicate + // value and it is combined with the instruction opcode by multiplying + // the opcode by one hundred. We must decode this to get the predicate. + if (V.opcode == Instruction::ICmp) + return new CompareConstantExpr(Instruction::ICmp, V.predicate, + V.operands[0], V.operands[1]); + if (V.opcode == Instruction::FCmp) + return new CompareConstantExpr(Instruction::FCmp, V.predicate, + V.operands[0], V.operands[1]); + assert(0 && "Invalid ConstantExpr!"); + return 0; } }; @@ -1425,20 +1447,14 @@ namespace llvm { case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: - New = ConstantExpr::getCast( - OldC->getOpcode(), OldC->getOperand(0), NewTy); + New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0), + NewTy); break; case Instruction::Select: New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0), OldC->getOperand(1), OldC->getOperand(2)); break; - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - New = ConstantExpr::getShiftTy(NewTy, OldC->getOpcode(), - OldC->getOperand(0), OldC->getOperand(1)); - break; default: assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin && OldC->getOpcode() < Instruction::BinaryOpsEnd); @@ -1448,7 +1464,8 @@ namespace llvm { case Instruction::GetElementPtr: // Make everyone now use a constant of the new type... std::vector Idx(OldC->op_begin()+1, OldC->op_end()); - New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), Idx); + New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), + &Idx[0], Idx.size()); break; } @@ -1465,7 +1482,8 @@ static ExprMapKeyType getValType(ConstantExpr *CE) { Operands.reserve(CE->getNumOperands()); for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) Operands.push_back(cast(CE->getOperand(i))); - return ExprMapKeyType(CE->getOpcode(), Operands); + return ExprMapKeyType(CE->getOpcode(), Operands, + CE->isCompare() ? CE->getPredicate() : 0); } static ManagedStatic argVec(1, C); - ExprMapKeyType Key = std::make_pair(opc, argVec); + ExprMapKeyType Key(opc, argVec); return ExprConstants->getOrCreate(Ty, Key); } - -Constant *ConstantExpr::getCast( Constant *C, const Type *Ty ) { - // Note: we can't inline this because it requires the Instructions.h header - return getCast(CastInst::getCastOpcode(C, Ty), C, Ty); -} - + Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) { Instruction::CastOps opc = Instruction::CastOps(oc); assert(Instruction::isCast(opc) && "opcode out of range"); @@ -1502,8 +1515,8 @@ Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) { assert(0 && "Invalid cast opcode"); break; case Instruction::Trunc: return getTrunc(C, Ty); - case Instruction::ZExt: return getZeroExtend(C, Ty); - case Instruction::SExt: return getSignExtend(C, Ty); + case Instruction::ZExt: return getZExt(C, Ty); + case Instruction::SExt: return getSExt(C, Ty); case Instruction::FPTrunc: return getFPTrunc(C, Ty); case Instruction::FPExt: return getFPExtend(C, Ty); case Instruction::UIToFP: return getUIToFP(C, Ty); @@ -1515,19 +1528,70 @@ Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) { case Instruction::BitCast: return getBitCast(C, Ty); } return 0; +} + +Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) { + if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) + return getCast(Instruction::BitCast, C, Ty); + return getCast(Instruction::ZExt, C, Ty); +} + +Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) { + if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) + return getCast(Instruction::BitCast, C, Ty); + return getCast(Instruction::SExt, C, Ty); +} + +Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) { + if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) + return getCast(Instruction::BitCast, C, Ty); + return getCast(Instruction::Trunc, C, Ty); +} + +Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) { + assert(isa(S->getType()) && "Invalid cast"); + assert((Ty->isInteger() || isa(Ty)) && "Invalid cast"); + + if (Ty->isInteger()) + return getCast(Instruction::PtrToInt, S, Ty); + return getCast(Instruction::BitCast, S, Ty); +} + +Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty, + bool isSigned) { + assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast"); + unsigned SrcBits = C->getType()->getPrimitiveSizeInBits(); + unsigned DstBits = Ty->getPrimitiveSizeInBits(); + Instruction::CastOps opcode = + (SrcBits == DstBits ? Instruction::BitCast : + (SrcBits > DstBits ? Instruction::Trunc : + (isSigned ? Instruction::SExt : Instruction::ZExt))); + return getCast(opcode, C, Ty); +} + +Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) { + assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() && + "Invalid cast"); + unsigned SrcBits = C->getType()->getPrimitiveSizeInBits(); + unsigned DstBits = Ty->getPrimitiveSizeInBits(); + if (SrcBits == DstBits) + return C; // Avoid a useless cast + Instruction::CastOps opcode = + (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); + return getCast(opcode, C, Ty); } Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) { assert(C->getType()->isInteger() && "Trunc operand must be integer"); - assert(Ty->isIntegral() && "Trunc produces only integral"); + assert(Ty->isInteger() && "Trunc produces only integral"); assert(C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&& "SrcTy must be larger than DestTy for Trunc!"); return getFoldedCast(Instruction::Trunc, C, Ty); } -Constant *ConstantExpr::getSignExtend(Constant *C, const Type *Ty) { - assert(C->getType()->isIntegral() && "SEXt operand must be integral"); +Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) { + assert(C->getType()->isInteger() && "SEXt operand must be integral"); assert(Ty->isInteger() && "SExt produces only integer"); assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&& "SrcTy must be smaller than DestTy for SExt!"); @@ -1535,8 +1599,8 @@ Constant *ConstantExpr::getSignExtend(Constant *C, const Type *Ty) { return getFoldedCast(Instruction::SExt, C, Ty); } -Constant *ConstantExpr::getZeroExtend(Constant *C, const Type *Ty) { - assert(C->getType()->isIntegral() && "ZEXt operand must be integral"); +Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) { + assert(C->getType()->isInteger() && "ZEXt operand must be integral"); assert(Ty->isInteger() && "ZExt produces only integer"); assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&& "SrcTy must be smaller than DestTy for ZExt!"); @@ -1559,37 +1623,37 @@ Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) { } Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) { - assert(C->getType()->isIntegral() && Ty->isFloatingPoint() && - "This is an illegal uint to floating point cast!"); + assert(C->getType()->isInteger() && Ty->isFloatingPoint() && + "This is an illegal i32 to floating point cast!"); return getFoldedCast(Instruction::UIToFP, C, Ty); } Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) { - assert(C->getType()->isIntegral() && Ty->isFloatingPoint() && + assert(C->getType()->isInteger() && Ty->isFloatingPoint() && "This is an illegal sint to floating point cast!"); return getFoldedCast(Instruction::SIToFP, C, Ty); } Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) { - assert(C->getType()->isFloatingPoint() && Ty->isIntegral() && - "This is an illegal floating point to uint cast!"); + assert(C->getType()->isFloatingPoint() && Ty->isInteger() && + "This is an illegal floating point to i32 cast!"); return getFoldedCast(Instruction::FPToUI, C, Ty); } Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) { - assert(C->getType()->isFloatingPoint() && Ty->isIntegral() && - "This is an illegal floating point to sint cast!"); + assert(C->getType()->isFloatingPoint() && Ty->isInteger() && + "This is an illegal floating point to i32 cast!"); return getFoldedCast(Instruction::FPToSI, C, Ty); } Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) { assert(isa(C->getType()) && "PtrToInt source must be pointer"); - assert(DstTy->isIntegral() && "PtrToInt destination must be integral"); + assert(DstTy->isInteger() && "PtrToInt destination must be integral"); return getFoldedCast(Instruction::PtrToInt, C, DstTy); } Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) { - assert(C->getType()->isIntegral() && "IntToPtr source must be integral"); + assert(C->getType()->isInteger() && "IntToPtr source must be integral"); assert(isa(DstTy) && "IntToPtr destination must be a pointer"); return getFoldedCast(Instruction::IntToPtr, C, DstTy); } @@ -1599,37 +1663,27 @@ Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) { // can't cast pointers to anything but pointers. const Type *SrcTy = C->getType(); assert((isa(SrcTy) == isa(DstTy)) && - "Bitcast cannot cast pointer to non-pointer and vice versa"); + "BitCast cannot cast pointer to non-pointer and vice versa"); // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr // or nonptr->ptr). For all the other types, the cast is okay if source and // destination bit widths are identical. unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); unsigned DstBitSize = DstTy->getPrimitiveSizeInBits(); - assert(SrcBitSize == DstBitSize && "Bitcast requies types of same width"); + assert(SrcBitSize == DstBitSize && "BitCast requies types of same width"); return getFoldedCast(Instruction::BitCast, C, DstTy); } Constant *ConstantExpr::getSizeOf(const Type *Ty) { - // sizeof is implemented as: (ulong) gep (Ty*)null, 1 - return getCast( - getGetElementPtr(getNullValue(PointerType::get(Ty)), - std::vector(1, ConstantInt::get(Type::UIntTy, 1))), - Type::ULongTy); -} - -Constant *ConstantExpr::getPtrPtrFromArrayPtr(Constant *C) { - // pointer from array is implemented as: getelementptr arr ptr, 0, 0 - static std::vector Indices(2, ConstantInt::get(Type::UIntTy, 0)); - - return ConstantExpr::getGetElementPtr(C, Indices); + // sizeof is implemented as: (i64) gep (Ty*)null, 1 + Constant *GEPIdx = ConstantInt::get(Type::Int32Ty, 1); + Constant *GEP = + getGetElementPtr(getNullValue(PointerType::get(Ty)), &GEPIdx, 1); + return getCast(Instruction::PtrToInt, GEP, Type::Int64Ty); } Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode, Constant *C1, Constant *C2) { - if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || - Opcode == Instruction::AShr) - return getShiftTy(ReqTy, Opcode, C1, C2); // Check the operands for consistency first assert(Opcode >= Instruction::BinaryOpsBegin && Opcode < Instruction::BinaryOpsEnd && @@ -1637,16 +1691,34 @@ Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode, assert(C1->getType() == C2->getType() && "Operand types in binary constant expression should match"); - if (ReqTy == C1->getType() || (Instruction::isComparison(Opcode) && - ReqTy == Type::BoolTy)) + if (ReqTy == C1->getType() || ReqTy == Type::Int1Ty) if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) return FC; // Fold a few common cases... std::vector argVec(1, C1); argVec.push_back(C2); - ExprMapKeyType Key = std::make_pair(Opcode, argVec); + ExprMapKeyType Key(Opcode, argVec); return ExprConstants->getOrCreate(ReqTy, Key); } +Constant *ConstantExpr::getCompareTy(unsigned short predicate, + Constant *C1, Constant *C2) { + switch (predicate) { + default: assert(0 && "Invalid CmpInst predicate"); + case FCmpInst::FCMP_FALSE: case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_OGT: + case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OLE: + case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_ORD: case FCmpInst::FCMP_UNO: + case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UGT: case FCmpInst::FCMP_UGE: + case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_ULE: case FCmpInst::FCMP_UNE: + case FCmpInst::FCMP_TRUE: + return getFCmp(predicate, C1, C2); + case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_UGE: case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: + case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: case ICmpInst::ICMP_SLT: + case ICmpInst::ICMP_SLE: + return getICmp(predicate, C1, C2); + } +} + Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) { #ifndef NDEBUG switch (Opcode) { @@ -1655,50 +1727,46 @@ Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) { case Instruction::Mul: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert((C1->getType()->isInteger() || C1->getType()->isFloatingPoint() || - isa(C1->getType())) && + isa(C1->getType())) && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::UDiv: case Instruction::SDiv: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert((C1->getType()->isInteger() || (isa(C1->getType()) && - cast(C1->getType())->getElementType()->isInteger())) && + assert((C1->getType()->isInteger() || (isa(C1->getType()) && + cast(C1->getType())->getElementType()->isInteger())) && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::FDiv: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert((C1->getType()->isFloatingPoint() || (isa(C1->getType()) - && cast(C1->getType())->getElementType()->isFloatingPoint())) + assert((C1->getType()->isFloatingPoint() || (isa(C1->getType()) + && cast(C1->getType())->getElementType()->isFloatingPoint())) && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::URem: case Instruction::SRem: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert((C1->getType()->isInteger() || (isa(C1->getType()) && - cast(C1->getType())->getElementType()->isInteger())) && + assert((C1->getType()->isInteger() || (isa(C1->getType()) && + cast(C1->getType())->getElementType()->isInteger())) && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::FRem: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert((C1->getType()->isFloatingPoint() || (isa(C1->getType()) - && cast(C1->getType())->getElementType()->isFloatingPoint())) + assert((C1->getType()->isFloatingPoint() || (isa(C1->getType()) + && cast(C1->getType())->getElementType()->isFloatingPoint())) && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::And: case Instruction::Or: case Instruction::Xor: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert((C1->getType()->isIntegral() || isa(C1->getType())) && + assert((C1->getType()->isInteger() || isa(C1->getType())) && "Tried to create a logical operation on a non-integral type!"); break; - case Instruction::SetLT: case Instruction::SetGT: case Instruction::SetLE: - case Instruction::SetGE: case Instruction::SetEQ: case Instruction::SetNE: - assert(C1->getType() == C2->getType() && "Op types should be identical!"); - break; case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: - assert(C2->getType() == Type::UByteTy && "Shift should be by ubyte!"); + assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isInteger() && "Tried to create a shift operation on a non-integer type!"); break; @@ -1707,15 +1775,18 @@ Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) { } #endif - if (Instruction::isComparison(Opcode)) - return getTy(Type::BoolTy, Opcode, C1, C2); - else - return getTy(C1->getType(), Opcode, C1, C2); + return getTy(C1->getType(), Opcode, C1, C2); +} + +Constant *ConstantExpr::getCompare(unsigned short pred, + Constant *C1, Constant *C2) { + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + return getCompareTy(pred, C1, C2); } Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C, Constant *V1, Constant *V2) { - assert(C->getType() == Type::BoolTy && "Select condition must be bool!"); + assert(C->getType() == Type::Int1Ty && "Select condition must be i1!"); assert(V1->getType() == V2->getType() && "Select value types must match!"); assert(V1->getType()->isFirstClassType() && "Cannot select aggregate type!"); @@ -1726,69 +1797,79 @@ Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C, std::vector argVec(3, C); argVec[1] = V1; argVec[2] = V2; - ExprMapKeyType Key = std::make_pair(Instruction::Select, argVec); - return ExprConstants->getOrCreate(ReqTy, Key); -} - -/// getShiftTy - Return a shift left or shift right constant expr -Constant *ConstantExpr::getShiftTy(const Type *ReqTy, unsigned Opcode, - Constant *C1, Constant *C2) { - // Check the operands for consistency first - assert((Opcode == Instruction::Shl || - Opcode == Instruction::LShr || - Opcode == Instruction::AShr) && - "Invalid opcode in binary constant expression"); - assert(C1->getType()->isIntegral() && C2->getType() == Type::UByteTy && - "Invalid operand types for Shift constant expr!"); - - if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) - return FC; // Fold a few common cases... - - // Look up the constant in the table first to ensure uniqueness - std::vector argVec(1, C1); argVec.push_back(C2); - ExprMapKeyType Key = std::make_pair(Opcode, argVec); + ExprMapKeyType Key(Instruction::Select, argVec); return ExprConstants->getOrCreate(ReqTy, Key); } - Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C, - const std::vector &IdxList) { - assert(GetElementPtrInst::getIndexedType(C->getType(), IdxList, true) && + Value* const *Idxs, + unsigned NumIdx) { + assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx, true) && "GEP indices invalid!"); - if (Constant *FC = ConstantFoldGetElementPtr(C, IdxList)) + if (Constant *FC = ConstantFoldGetElementPtr(C, (Constant**)Idxs, NumIdx)) return FC; // Fold a few common cases... assert(isa(C->getType()) && "Non-pointer type for constant GetElementPtr expression"); // Look up the constant in the table first to ensure uniqueness std::vector ArgVec; - ArgVec.reserve(IdxList.size()+1); + ArgVec.reserve(NumIdx+1); ArgVec.push_back(C); - for (unsigned i = 0, e = IdxList.size(); i != e; ++i) - ArgVec.push_back(cast(IdxList[i])); - const ExprMapKeyType &Key = std::make_pair(Instruction::GetElementPtr,ArgVec); + for (unsigned i = 0; i != NumIdx; ++i) + ArgVec.push_back(cast(Idxs[i])); + const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec); return ExprConstants->getOrCreate(ReqTy, Key); } -Constant *ConstantExpr::getGetElementPtr(Constant *C, - const std::vector &IdxList){ +Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs, + unsigned NumIdx) { // Get the result type of the getelementptr! - std::vector VIdxList(IdxList.begin(), IdxList.end()); - - const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), VIdxList, - true); + const Type *Ty = + GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx, true); assert(Ty && "GEP indices invalid!"); - return getGetElementPtrTy(PointerType::get(Ty), C, VIdxList); + return getGetElementPtrTy(PointerType::get(Ty), C, Idxs, NumIdx); } -Constant *ConstantExpr::getGetElementPtr(Constant *C, - const std::vector &IdxList) { - // Get the result type of the getelementptr! - const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList, - true); - assert(Ty && "GEP indices invalid!"); - return getGetElementPtrTy(PointerType::get(Ty), C, IdxList); +Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs, + unsigned NumIdx) { + return getGetElementPtr(C, (Value* const *)Idxs, NumIdx); +} + + +Constant * +ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) { + assert(LHS->getType() == RHS->getType()); + assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && + pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); + + if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) + return FC; // Fold a few common cases... + + // Look up the constant in the table first to ensure uniqueness + std::vector ArgVec; + ArgVec.push_back(LHS); + ArgVec.push_back(RHS); + // Get the key type with both the opcode and predicate + const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); + return ExprConstants->getOrCreate(Type::Int1Ty, Key); +} + +Constant * +ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) { + assert(LHS->getType() == RHS->getType()); + assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); + + if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) + return FC; // Fold a few common cases... + + // Look up the constant in the table first to ensure uniqueness + std::vector ArgVec; + ArgVec.push_back(LHS); + ArgVec.push_back(RHS); + // Get the key type with both the opcode and predicate + const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); + return ExprConstants->getOrCreate(Type::Int1Ty, Key); } Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val, @@ -1798,16 +1879,16 @@ Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val, // Look up the constant in the table first to ensure uniqueness std::vector ArgVec(1, Val); ArgVec.push_back(Idx); - const ExprMapKeyType &Key = std::make_pair(Instruction::ExtractElement,ArgVec); + const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec); return ExprConstants->getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { - assert(isa(Val->getType()) && - "Tried to create extractelement operation on non-packed type!"); - assert(Idx->getType() == Type::UIntTy && - "Extractelement index must be uint type!"); - return getExtractElementTy(cast(Val->getType())->getElementType(), + assert(isa(Val->getType()) && + "Tried to create extractelement operation on non-vector type!"); + assert(Idx->getType() == Type::Int32Ty && + "Extractelement index must be i32 type!"); + return getExtractElementTy(cast(Val->getType())->getElementType(), Val, Idx); } @@ -1819,19 +1900,19 @@ Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val, std::vector ArgVec(1, Val); ArgVec.push_back(Elt); ArgVec.push_back(Idx); - const ExprMapKeyType &Key = std::make_pair(Instruction::InsertElement,ArgVec); + const ExprMapKeyType Key(Instruction::InsertElement,ArgVec); return ExprConstants->getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, Constant *Idx) { - assert(isa(Val->getType()) && - "Tried to create insertelement operation on non-packed type!"); - assert(Elt->getType() == cast(Val->getType())->getElementType() + assert(isa(Val->getType()) && + "Tried to create insertelement operation on non-vector type!"); + assert(Elt->getType() == cast(Val->getType())->getElementType() && "Insertelement types must match!"); - assert(Idx->getType() == Type::UIntTy && - "Insertelement index must be uint type!"); - return getInsertElementTy(cast(Val->getType())->getElementType(), + assert(Idx->getType() == Type::Int32Ty && + "Insertelement index must be i32 type!"); + return getInsertElementTy(cast(Val->getType())->getElementType(), Val, Elt, Idx); } @@ -1843,7 +1924,7 @@ Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1, std::vector ArgVec(1, V1); ArgVec.push_back(V2); ArgVec.push_back(Mask); - const ExprMapKeyType &Key = std::make_pair(Instruction::ShuffleVector,ArgVec); + const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec); return ExprConstants->getOrCreate(ReqTy, Key); } @@ -1854,6 +1935,20 @@ Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, return getShuffleVectorTy(V1->getType(), V1, V2, Mask); } +Constant *ConstantExpr::getZeroValueForNegationExpr(const Type *Ty) { + if (const VectorType *PTy = dyn_cast(Ty)) + if (PTy->getElementType()->isFloatingPoint()) { + std::vector zeros(PTy->getNumElements(), + ConstantFP::getNegativeZero(PTy->getElementType())); + return ConstantVector::get(PTy, zeros); + } + + if (Ty->isFloatingPoint()) + return ConstantFP::getNegativeZero(Ty); + + return Constant::getNullValue(Ty); +} + // destroyConstant - Remove the constant from the constant table... // void ConstantExpr::destroyConstant() { @@ -1868,14 +1963,21 @@ const char *ConstantExpr::getOpcodeName() const { //===----------------------------------------------------------------------===// // replaceUsesOfWithOnConstant implementations +/// replaceUsesOfWithOnConstant - Update this constant array to change uses of +/// 'From' to be uses of 'To'. This must update the uniquing data structures +/// etc. +/// +/// Note that we intentionally replace all uses of From with To here. Consider +/// a large array that uses 'From' 1000 times. By handling this case all here, +/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that +/// single invocation handles all 1000 uses. Handling them one at a time would +/// work, but would be really slow because it would have to unique each updated +/// array instance. void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast(To); - unsigned OperandToUpdate = U-OperandList; - assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); - std::pair Lookup; Lookup.first.first = getType(); Lookup.second = this; @@ -1886,18 +1988,28 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, // Fill values with the modified operands of the constant array. Also, // compute whether this turns into an all-zeros array. bool isAllZeros = false; + unsigned NumUpdated = 0; if (!ToC->isNullValue()) { - for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) - Values.push_back(cast(O->get())); + for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { + Constant *Val = cast(O->get()); + if (Val == From) { + Val = ToC; + ++NumUpdated; + } + Values.push_back(Val); + } } else { isAllZeros = true; for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { Constant *Val = cast(O->get()); + if (Val == From) { + Val = ToC; + ++NumUpdated; + } Values.push_back(Val); if (isAllZeros) isAllZeros = Val->isNullValue(); } } - Values[OperandToUpdate] = ToC; Constant *Replacement = 0; if (isAllZeros) { @@ -1917,8 +2029,18 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, // in place! ArrayConstants->MoveConstantToNewSlot(this, I); - // Update to the new value. - setOperand(OperandToUpdate, ToC); + // Update to the new value. Optimize for the case when we have a single + // operand that we're changing, but handle bulk updates efficiently. + if (NumUpdated == 1) { + unsigned OperandToUpdate = U-OperandList; + assert(getOperand(OperandToUpdate) == From && + "ReplaceAllUsesWith broken!"); + setOperand(OperandToUpdate, ToC); + } else { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (getOperand(i) == From) + setOperand(i, ToC); + } return; } } @@ -1997,7 +2119,7 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, destroyConstant(); } -void ConstantPacked::replaceUsesOfWithOnConstant(Value *From, Value *To, +void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); @@ -2009,7 +2131,7 @@ void ConstantPacked::replaceUsesOfWithOnConstant(Value *From, Value *To, Values.push_back(Val); } - Constant *Replacement = ConstantPacked::get(getType(), Values); + Constant *Replacement = ConstantVector::get(getType(), Values); assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. @@ -2026,7 +2148,7 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, Constant *Replacement = 0; if (getOpcode() == Instruction::GetElementPtr) { - std::vector Indices; + SmallVector Indices; Constant *Pointer = getOperand(0); Indices.reserve(getNumOperands()-1); if (Pointer == From) Pointer = To; @@ -2036,7 +2158,8 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, if (Val == From) Val = To; Indices.push_back(Val); } - Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices); + Replacement = ConstantExpr::getGetElementPtr(Pointer, + &Indices[0], Indices.size()); } else if (isCast()) { assert(getOperand(0) == From && "Cast only has one use!"); Replacement = ConstantExpr::getCast(getOpcode(), To, getType()); @@ -2070,6 +2193,15 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, if (C2 == From) C2 = To; if (C3 == From) C3 = To; Replacement = ConstantExpr::getShuffleVector(C1, C2, C3); + } else if (isCompare()) { + Constant *C1 = getOperand(0); + Constant *C2 = getOperand(1); + if (C1 == From) C1 = To; + if (C2 == From) C2 = To; + if (getOpcode() == Instruction::ICmp) + Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2); + else + Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2); } else if (getNumOperands() == 2) { Constant *C1 = getOperand(0); Constant *C2 = getOperand(1); @@ -2133,4 +2265,3 @@ std::string Constant::getStringValue(bool Chop, unsigned Offset) { } return ""; } -