X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FVMCore%2FConstants.cpp;h=16eaca81048bbf9d2ce7310808fc2a9ac88817dc;hb=bb811a244567aa8a1522203f15588f4d001b7353;hp=71e98377738609a03d42ce939730811545cd4383;hpb=f2411744214dad8c71044aac2977ca77e9ebf028;p=oota-llvm.git diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp index 71e98377738..16eaca81048 100644 --- a/lib/VMCore/Constants.cpp +++ b/lib/VMCore/Constants.cpp @@ -7,16 +7,16 @@ // //===----------------------------------------------------------------------===// // -// This file implements the Constant* classes... +// This file implements the Constant* classes. // //===----------------------------------------------------------------------===// #include "llvm/Constants.h" +#include "LLVMContextImpl.h" #include "ConstantFold.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalValue.h" #include "llvm/Instructions.h" -#include "llvm/MDNode.h" #include "llvm/Module.h" #include "llvm/Operator.h" #include "llvm/ADT/FoldingSet.h" @@ -27,9 +27,8 @@ #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MathExtras.h" -#include "llvm/System/Mutex.h" -#include "llvm/System/RWMutex.h" -#include "llvm/System/Threading.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include @@ -40,8 +39,64 @@ using namespace llvm; // Constant Class //===----------------------------------------------------------------------===// -// Becomes a no-op when multithreading is disabled. -ManagedStatic > ConstantsLock; +// Constructor to create a '0' constant of arbitrary type... +static const uint64_t zero[2] = {0, 0}; +Constant *Constant::getNullValue(const Type *Ty) { + switch (Ty->getTypeID()) { + case Type::IntegerTyID: + return ConstantInt::get(Ty, 0); + case Type::FloatTyID: + return ConstantFP::get(Ty->getContext(), APFloat(APInt(32, 0))); + case Type::DoubleTyID: + return ConstantFP::get(Ty->getContext(), APFloat(APInt(64, 0))); + case Type::X86_FP80TyID: + return ConstantFP::get(Ty->getContext(), APFloat(APInt(80, 2, zero))); + case Type::FP128TyID: + return ConstantFP::get(Ty->getContext(), + APFloat(APInt(128, 2, zero), true)); + case Type::PPC_FP128TyID: + return ConstantFP::get(Ty->getContext(), APFloat(APInt(128, 2, zero))); + case Type::PointerTyID: + return ConstantPointerNull::get(cast(Ty)); + case Type::StructTyID: + case Type::ArrayTyID: + case Type::VectorTyID: + return ConstantAggregateZero::get(Ty); + default: + // Function, Label, or Opaque type? + assert(!"Cannot create a null constant of that type!"); + return 0; + } +} + +Constant* Constant::getIntegerValue(const Type *Ty, const APInt &V) { + const Type *ScalarTy = Ty->getScalarType(); + + // Create the base integer constant. + Constant *C = ConstantInt::get(Ty->getContext(), V); + + // Convert an integer to a pointer, if necessary. + if (const PointerType *PTy = dyn_cast(ScalarTy)) + C = ConstantExpr::getIntToPtr(C, PTy); + + // Broadcast a scalar to a vector, if necessary. + if (const VectorType *VTy = dyn_cast(Ty)) + C = ConstantVector::get(std::vector(VTy->getNumElements(), C)); + + return C; +} + +Constant* Constant::getAllOnesValue(const Type *Ty) { + if (const IntegerType *ITy = dyn_cast(Ty)) + return ConstantInt::get(Ty->getContext(), + APInt::getAllOnesValue(ITy->getBitWidth())); + + std::vector Elts; + const VectorType *VTy = cast(Ty); + Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType())); + assert(Elts[0] && "Not a vector integer type!"); + return cast(ConstantVector::get(Elts)); +} void Constant::destroyConstantImpl() { // When a Constant is destroyed, there may be lingering @@ -54,10 +109,11 @@ void Constant::destroyConstantImpl() { while (!use_empty()) { Value *V = use_back(); #ifndef NDEBUG // Only in -g mode... - if (!isa(V)) - DOUT << "While deleting: " << *this - << "\n\nUse still stuck around after Def is destroyed: " - << *V << "\n\n"; + if (!isa(V)) { + dbgs() << "While deleting: " << *this + << "\n\nUse still stuck around after Def is destroyed: " + << *V << "\n\n"; + } #endif assert(isa(V) && "References remain to Constant being destroyed"); Constant *CV = cast(V); @@ -81,7 +137,7 @@ bool Constant::canTrap() const { // ConstantExpr traps if any operands can trap. for (unsigned i = 0, e = getNumOperands(); i != e; ++i) - if (getOperand(i)->canTrap()) + if (CE->getOperand(i)->canTrap()) return true; // Otherwise, only specific operations can trap. @@ -95,47 +151,85 @@ bool Constant::canTrap() const { case Instruction::SRem: case Instruction::FRem: // Div and rem can trap if the RHS is not known to be non-zero. - if (!isa(getOperand(1)) || getOperand(1)->isNullValue()) + if (!isa(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) return true; return false; } } -/// ContainsRelocations - Return true if the constant value contains relocations -/// which cannot be resolved at compile time. Kind argument is used to filter -/// only 'interesting' sorts of relocations. -bool Constant::ContainsRelocations(unsigned Kind) const { - if (const GlobalValue* GV = dyn_cast(this)) { - bool isLocal = GV->hasLocalLinkage(); - if ((Kind & Reloc::Local) && isLocal) { - // Global has local linkage and 'local' kind of relocations are - // requested +/// isConstantUsed - Return true if the constant has users other than constant +/// exprs and other dangling things. +bool Constant::isConstantUsed() const { + for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { + const Constant *UC = dyn_cast(*UI); + if (UC == 0 || isa(UC)) return true; - } - - if ((Kind & Reloc::Global) && !isLocal) { - // Global has non-local linkage and 'global' kind of relocations are - // requested + + if (UC->isConstantUsed()) return true; - } - - return false; } + return false; +} - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) - if (getOperand(i)->ContainsRelocations(Kind)) - return true; - return false; + +/// getRelocationInfo - This method classifies the entry according to +/// whether or not it may generate a relocation entry. This must be +/// conservative, so if it might codegen to a relocatable entry, it should say +/// so. The return values are: +/// +/// NoRelocation: This constant pool entry is guaranteed to never have a +/// relocation applied to it (because it holds a simple constant like +/// '4'). +/// LocalRelocation: This entry has relocations, but the entries are +/// guaranteed to be resolvable by the static linker, so the dynamic +/// linker will never see them. +/// GlobalRelocations: This entry may have arbitrary relocations. +/// +/// FIXME: This really should not be in VMCore. +Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { + if (const GlobalValue *GV = dyn_cast(this)) { + if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) + return LocalRelocation; // Local to this file/library. + return GlobalRelocations; // Global reference. + } + + if (const BlockAddress *BA = dyn_cast(this)) + return BA->getFunction()->getRelocationInfo(); + + // While raw uses of blockaddress need to be relocated, differences between + // two of them don't when they are for labels in the same function. This is a + // common idiom when creating a table for the indirect goto extension, so we + // handle it efficiently here. + if (const ConstantExpr *CE = dyn_cast(this)) + if (CE->getOpcode() == Instruction::Sub) { + ConstantExpr *LHS = dyn_cast(CE->getOperand(0)); + ConstantExpr *RHS = dyn_cast(CE->getOperand(1)); + if (LHS && RHS && + LHS->getOpcode() == Instruction::PtrToInt && + RHS->getOpcode() == Instruction::PtrToInt && + isa(LHS->getOperand(0)) && + isa(RHS->getOperand(0)) && + cast(LHS->getOperand(0))->getFunction() == + cast(RHS->getOperand(0))->getFunction()) + return NoRelocation; + } + + PossibleRelocationsTy Result = NoRelocation; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + Result = std::max(Result, + cast(getOperand(i))->getRelocationInfo()); + + return Result; } + /// getVectorElements - This method, which is only valid on constant of vector /// type, returns the elements of the vector in the specified smallvector. /// This handles breaking down a vector undef into undef elements, etc. For /// constant exprs and other cases we can't handle, we return an empty vector. -void Constant::getVectorElements(LLVMContext &Context, - SmallVectorImpl &Elts) const { - assert(isa(getType()) && "Not a vector constant!"); +void Constant::getVectorElements(SmallVectorImpl &Elts) const { + assert(getType()->isVectorTy() && "Not a vector constant!"); if (const ConstantVector *CV = dyn_cast(this)) { for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) @@ -146,12 +240,12 @@ void Constant::getVectorElements(LLVMContext &Context, const VectorType *VT = cast(getType()); if (isa(this)) { Elts.assign(VT->getNumElements(), - Context.getNullValue(VT->getElementType())); + Constant::getNullValue(VT->getElementType())); return; } if (isa(this)) { - Elts.assign(VT->getNumElements(), Context.getUndef(VT->getElementType())); + Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType())); return; } @@ -169,47 +263,194 @@ ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V) assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); } -ConstantInt *ConstantInt::TheTrueVal = 0; -ConstantInt *ConstantInt::TheFalseVal = 0; +ConstantInt* ConstantInt::getTrue(LLVMContext &Context) { + LLVMContextImpl *pImpl = Context.pImpl; + if (pImpl->TheTrueVal) + return pImpl->TheTrueVal; + else + return (pImpl->TheTrueVal = + ConstantInt::get(IntegerType::get(Context, 1), 1)); +} -namespace llvm { - void CleanupTrueFalse(void *) { - ConstantInt::ResetTrueFalse(); - } +ConstantInt* ConstantInt::getFalse(LLVMContext &Context) { + LLVMContextImpl *pImpl = Context.pImpl; + if (pImpl->TheFalseVal) + return pImpl->TheFalseVal; + else + return (pImpl->TheFalseVal = + ConstantInt::get(IntegerType::get(Context, 1), 0)); } -static ManagedCleanup TrueFalseCleanup; -ConstantInt *ConstantInt::CreateTrueFalseVals(bool WhichOne) { - assert(TheTrueVal == 0 && TheFalseVal == 0); - TheTrueVal = getGlobalContext().getConstantInt(Type::Int1Ty, 1); - TheFalseVal = getGlobalContext().getConstantInt(Type::Int1Ty, 0); - - // Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal. - TrueFalseCleanup.Register(); - - return WhichOne ? TheTrueVal : TheFalseVal; +// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap +// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the +// operator== and operator!= to ensure that the DenseMap doesn't attempt to +// compare APInt's of different widths, which would violate an APInt class +// invariant which generates an assertion. +ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt& V) { + // Get the corresponding integer type for the bit width of the value. + const IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); + // get an existing value or the insertion position + DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); + ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; + if (!Slot) Slot = new ConstantInt(ITy, V); + return Slot; +} + +Constant* ConstantInt::get(const Type* Ty, uint64_t V, bool isSigned) { + Constant *C = get(cast(Ty->getScalarType()), + V, isSigned); + + // For vectors, broadcast the value. + if (const VectorType *VTy = dyn_cast(Ty)) + return ConstantVector::get( + std::vector(VTy->getNumElements(), C)); + + return C; +} + +ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V, + bool isSigned) { + return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); +} + +ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) { + return get(Ty, V, true); +} + +Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) { + return get(Ty, V, true); +} + +Constant* ConstantInt::get(const Type* Ty, const APInt& V) { + ConstantInt *C = get(Ty->getContext(), V); + assert(C->getType() == Ty->getScalarType() && + "ConstantInt type doesn't match the type implied by its value!"); + + // For vectors, broadcast the value. + if (const VectorType *VTy = dyn_cast(Ty)) + return ConstantVector::get( + std::vector(VTy->getNumElements(), C)); + + return C; +} + +ConstantInt* ConstantInt::get(const IntegerType* Ty, StringRef Str, + uint8_t radix) { + return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); } //===----------------------------------------------------------------------===// // ConstantFP //===----------------------------------------------------------------------===// -#ifndef NDEBUG static const fltSemantics *TypeToFloatSemantics(const Type *Ty) { - if (Ty == Type::FloatTy) + if (Ty->isFloatTy()) return &APFloat::IEEEsingle; - if (Ty == Type::DoubleTy) + if (Ty->isDoubleTy()) return &APFloat::IEEEdouble; - if (Ty == Type::X86_FP80Ty) + if (Ty->isX86_FP80Ty()) return &APFloat::x87DoubleExtended; - else if (Ty == Type::FP128Ty) + else if (Ty->isFP128Ty()) return &APFloat::IEEEquad; - assert(Ty == Type::PPC_FP128Ty && "Unknown FP format"); + assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); return &APFloat::PPCDoubleDouble; } -#endif + +/// get() - This returns a constant fp for the specified value in the +/// specified type. This should only be used for simple constant values like +/// 2.0/1.0 etc, that are known-valid both as double and as the target format. +Constant* ConstantFP::get(const Type* Ty, double V) { + LLVMContext &Context = Ty->getContext(); + + APFloat FV(V); + bool ignored; + FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), + APFloat::rmNearestTiesToEven, &ignored); + Constant *C = get(Context, FV); + + // For vectors, broadcast the value. + if (const VectorType *VTy = dyn_cast(Ty)) + return ConstantVector::get( + std::vector(VTy->getNumElements(), C)); + + return C; +} + + +Constant* ConstantFP::get(const Type* Ty, StringRef Str) { + LLVMContext &Context = Ty->getContext(); + + APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); + Constant *C = get(Context, FV); + + // For vectors, broadcast the value. + if (const VectorType *VTy = dyn_cast(Ty)) + return ConstantVector::get( + std::vector(VTy->getNumElements(), C)); + + return C; +} + + +ConstantFP* ConstantFP::getNegativeZero(const Type* Ty) { + LLVMContext &Context = Ty->getContext(); + APFloat apf = cast (Constant::getNullValue(Ty))->getValueAPF(); + apf.changeSign(); + return get(Context, apf); +} + + +Constant* ConstantFP::getZeroValueForNegation(const Type* Ty) { + if (const VectorType *PTy = dyn_cast(Ty)) + if (PTy->getElementType()->isFloatingPointTy()) { + std::vector zeros(PTy->getNumElements(), + getNegativeZero(PTy->getElementType())); + return ConstantVector::get(PTy, zeros); + } + + if (Ty->isFloatingPointTy()) + return getNegativeZero(Ty); + + return Constant::getNullValue(Ty); +} + + +// ConstantFP accessors. +ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { + DenseMapAPFloatKeyInfo::KeyTy Key(V); + + LLVMContextImpl* pImpl = Context.pImpl; + + ConstantFP *&Slot = pImpl->FPConstants[Key]; + + if (!Slot) { + const Type *Ty; + if (&V.getSemantics() == &APFloat::IEEEsingle) + Ty = Type::getFloatTy(Context); + else if (&V.getSemantics() == &APFloat::IEEEdouble) + Ty = Type::getDoubleTy(Context); + else if (&V.getSemantics() == &APFloat::x87DoubleExtended) + Ty = Type::getX86_FP80Ty(Context); + else if (&V.getSemantics() == &APFloat::IEEEquad) + Ty = Type::getFP128Ty(Context); + else { + assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && + "Unknown FP format"); + Ty = Type::getPPC_FP128Ty(Context); + } + Slot = new ConstantFP(Ty, V); + } + + return Slot; +} + +ConstantFP *ConstantFP::getInfinity(const Type *Ty, bool Negative) { + const fltSemantics &Semantics = *TypeToFloatSemantics(Ty); + return ConstantFP::get(Ty->getContext(), + APFloat::getInf(Semantics, Negative)); +} ConstantFP::ConstantFP(const Type *Ty, const APFloat& V) : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { @@ -241,14 +482,63 @@ ConstantArray::ConstantArray(const ArrayType *T, for (std::vector::const_iterator I = V.begin(), E = V.end(); I != E; ++I, ++OL) { Constant *C = *I; - assert((C->getType() == T->getElementType() || - (T->isAbstract() && - C->getType()->getTypeID() == T->getElementType()->getTypeID())) && + assert(C->getType() == T->getElementType() && "Initializer for array element doesn't match array element type!"); *OL = C; } } +Constant *ConstantArray::get(const ArrayType *Ty, + const std::vector &V) { + for (unsigned i = 0, e = V.size(); i != e; ++i) { + assert(V[i]->getType() == Ty->getElementType() && + "Wrong type in array element initializer"); + } + LLVMContextImpl *pImpl = Ty->getContext().pImpl; + // If this is an all-zero array, return a ConstantAggregateZero object + if (!V.empty()) { + Constant *C = V[0]; + if (!C->isNullValue()) + return pImpl->ArrayConstants.getOrCreate(Ty, V); + + for (unsigned i = 1, e = V.size(); i != e; ++i) + if (V[i] != C) + return pImpl->ArrayConstants.getOrCreate(Ty, V); + } + + return ConstantAggregateZero::get(Ty); +} + + +Constant* ConstantArray::get(const ArrayType* T, Constant* const* Vals, + unsigned NumVals) { + // FIXME: make this the primary ctor method. + return get(T, std::vector(Vals, Vals+NumVals)); +} + +/// ConstantArray::get(const string&) - Return an array that is initialized to +/// contain the specified string. If length is zero then a null terminator is +/// added to the specified string so that it may be used in a natural way. +/// Otherwise, the length parameter specifies how much of the string to use +/// and it won't be null terminated. +/// +Constant* ConstantArray::get(LLVMContext &Context, StringRef Str, + bool AddNull) { + std::vector ElementVals; + ElementVals.reserve(Str.size() + size_t(AddNull)); + for (unsigned i = 0; i < Str.size(); ++i) + ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i])); + + // Add a null terminator to the string... + if (AddNull) { + ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0)); + } + + ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size()); + return get(ATy, ElementVals); +} + + ConstantStruct::ConstantStruct(const StructType *T, const std::vector &V) @@ -261,16 +551,40 @@ ConstantStruct::ConstantStruct(const StructType *T, for (std::vector::const_iterator I = V.begin(), E = V.end(); I != E; ++I, ++OL) { Constant *C = *I; - assert((C->getType() == T->getElementType(I-V.begin()) || - ((T->getElementType(I-V.begin())->isAbstract() || - C->getType()->isAbstract()) && - T->getElementType(I-V.begin())->getTypeID() == - C->getType()->getTypeID())) && + assert(C->getType() == T->getElementType(I-V.begin()) && "Initializer for struct element doesn't match struct element type!"); *OL = C; } } +// ConstantStruct accessors. +Constant* ConstantStruct::get(const StructType* T, + const std::vector& V) { + LLVMContextImpl* pImpl = T->getContext().pImpl; + + // Create a ConstantAggregateZero value if all elements are zeros... + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (!V[i]->isNullValue()) + return pImpl->StructConstants.getOrCreate(T, V); + + return ConstantAggregateZero::get(T); +} + +Constant* ConstantStruct::get(LLVMContext &Context, + const std::vector& V, bool packed) { + std::vector StructEls; + StructEls.reserve(V.size()); + for (unsigned i = 0, e = V.size(); i != e; ++i) + StructEls.push_back(V[i]->getType()); + return get(StructType::get(Context, StructEls, packed), V); +} + +Constant* ConstantStruct::get(LLVMContext &Context, + Constant* const *Vals, unsigned NumVals, + bool Packed) { + // FIXME: make this the primary ctor method. + return get(Context, std::vector(Vals, Vals+NumVals), Packed); +} ConstantVector::ConstantVector(const VectorType *T, const std::vector &V) @@ -281,297 +595,97 @@ ConstantVector::ConstantVector(const VectorType *T, for (std::vector::const_iterator I = V.begin(), E = V.end(); I != E; ++I, ++OL) { Constant *C = *I; - assert((C->getType() == T->getElementType() || - (T->isAbstract() && - C->getType()->getTypeID() == T->getElementType()->getTypeID())) && + assert(C->getType() == T->getElementType() && "Initializer for vector element doesn't match vector element type!"); *OL = C; } } +// ConstantVector accessors. +Constant* ConstantVector::get(const VectorType* T, + const std::vector& V) { + assert(!V.empty() && "Vectors can't be empty"); + LLVMContext &Context = T->getContext(); + LLVMContextImpl *pImpl = Context.pImpl; + + // If this is an all-undef or alll-zero vector, return a + // ConstantAggregateZero or UndefValue. + Constant *C = V[0]; + bool isZero = C->isNullValue(); + bool isUndef = isa(C); -namespace llvm { -// We declare several classes private to this file, so use an anonymous -// namespace -namespace { - -/// UnaryConstantExpr - This class is private to Constants.cpp, and is used -/// behind the scenes to implement unary constant exprs. -class VISIBILITY_HIDDEN UnaryConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly one operand - void *operator new(size_t s) { - return User::operator new(s, 1); - } - UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty) - : ConstantExpr(Ty, Opcode, &Op<0>(), 1) { - Op<0>() = C; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// BinaryConstantExpr - This class is private to Constants.cpp, and is used -/// behind the scenes to implement binary constant exprs. -class VISIBILITY_HIDDEN BinaryConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly two operands - void *operator new(size_t s) { - return User::operator new(s, 2); - } - BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2) - : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) { - Op<0>() = C1; - Op<1>() = C2; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// SelectConstantExpr - This class is private to Constants.cpp, and is used -/// behind the scenes to implement select constant exprs. -class VISIBILITY_HIDDEN SelectConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly three operands - void *operator new(size_t s) { - return User::operator new(s, 3); - } - SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3) - : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) { - Op<0>() = C1; - Op<1>() = C2; - Op<2>() = C3; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// ExtractElementConstantExpr - This class is private to -/// Constants.cpp, and is used behind the scenes to implement -/// extractelement constant exprs. -class VISIBILITY_HIDDEN ExtractElementConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly two operands - void *operator new(size_t s) { - return User::operator new(s, 2); - } - ExtractElementConstantExpr(Constant *C1, Constant *C2) - : ConstantExpr(cast(C1->getType())->getElementType(), - Instruction::ExtractElement, &Op<0>(), 2) { - Op<0>() = C1; - Op<1>() = C2; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// InsertElementConstantExpr - This class is private to -/// Constants.cpp, and is used behind the scenes to implement -/// insertelement constant exprs. -class VISIBILITY_HIDDEN InsertElementConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly three operands - void *operator new(size_t s) { - return User::operator new(s, 3); - } - InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3) - : ConstantExpr(C1->getType(), Instruction::InsertElement, - &Op<0>(), 3) { - Op<0>() = C1; - Op<1>() = C2; - Op<2>() = C3; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// ShuffleVectorConstantExpr - This class is private to -/// Constants.cpp, and is used behind the scenes to implement -/// shufflevector constant exprs. -class VISIBILITY_HIDDEN ShuffleVectorConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly three operands - void *operator new(size_t s) { - return User::operator new(s, 3); - } - ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3) - : ConstantExpr(VectorType::get( - cast(C1->getType())->getElementType(), - cast(C3->getType())->getNumElements()), - Instruction::ShuffleVector, - &Op<0>(), 3) { - Op<0>() = C1; - Op<1>() = C2; - Op<2>() = C3; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// ExtractValueConstantExpr - This class is private to -/// Constants.cpp, and is used behind the scenes to implement -/// extractvalue constant exprs. -class VISIBILITY_HIDDEN ExtractValueConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly one operand - void *operator new(size_t s) { - return User::operator new(s, 1); - } - ExtractValueConstantExpr(Constant *Agg, - const SmallVector &IdxList, - const Type *DestTy) - : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1), - Indices(IdxList) { - Op<0>() = Agg; + if (isZero || isUndef) { + for (unsigned i = 1, e = V.size(); i != e; ++i) + if (V[i] != C) { + isZero = isUndef = false; + break; + } } + + if (isZero) + return ConstantAggregateZero::get(T); + if (isUndef) + return UndefValue::get(T); + + return pImpl->VectorConstants.getOrCreate(T, V); +} - /// Indices - These identify which value to extract. - const SmallVector Indices; - - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// InsertValueConstantExpr - This class is private to -/// Constants.cpp, and is used behind the scenes to implement -/// insertvalue constant exprs. -class VISIBILITY_HIDDEN InsertValueConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly one operand - void *operator new(size_t s) { - return User::operator new(s, 2); - } - InsertValueConstantExpr(Constant *Agg, Constant *Val, - const SmallVector &IdxList, - const Type *DestTy) - : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2), - Indices(IdxList) { - Op<0>() = Agg; - Op<1>() = Val; - } +Constant* ConstantVector::get(const std::vector& V) { + assert(!V.empty() && "Cannot infer type if V is empty"); + return get(VectorType::get(V.front()->getType(),V.size()), V); +} - /// Indices - These identify the position for the insertion. - const SmallVector Indices; - - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - - -/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is -/// used behind the scenes to implement getelementpr constant exprs. -class VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr { - GetElementPtrConstantExpr(Constant *C, const std::vector &IdxList, - const Type *DestTy); -public: - static GetElementPtrConstantExpr *Create(Constant *C, - const std::vector&IdxList, - const Type *DestTy) { - return - new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy); - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -// CompareConstantExpr - This class is private to Constants.cpp, and is used -// behind the scenes to implement ICmp and FCmp constant expressions. This is -// needed in order to store the predicate value for these instructions. -struct VISIBILITY_HIDDEN CompareConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT - // allocate space for exactly two operands - void *operator new(size_t s) { - return User::operator new(s, 2); - } - unsigned short predicate; - CompareConstantExpr(const Type *ty, Instruction::OtherOps opc, - unsigned short pred, Constant* LHS, Constant* RHS) - : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) { - Op<0>() = LHS; - Op<1>() = RHS; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -} // end anonymous namespace - -template <> -struct OperandTraits : FixedNumOperandTraits<1> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value) - -template <> -struct OperandTraits : FixedNumOperandTraits<2> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value) - -template <> -struct OperandTraits : FixedNumOperandTraits<3> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value) - -template <> -struct OperandTraits : FixedNumOperandTraits<2> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value) - -template <> -struct OperandTraits : FixedNumOperandTraits<3> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value) - -template <> -struct OperandTraits : FixedNumOperandTraits<3> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value) - -template <> -struct OperandTraits : FixedNumOperandTraits<1> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value) - -template <> -struct OperandTraits : FixedNumOperandTraits<2> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value) - -template <> -struct OperandTraits : VariadicOperandTraits<1> { -}; - -GetElementPtrConstantExpr::GetElementPtrConstantExpr - (Constant *C, - const std::vector &IdxList, - const Type *DestTy) - : ConstantExpr(DestTy, Instruction::GetElementPtr, - OperandTraits::op_end(this) - - (IdxList.size()+1), - IdxList.size()+1) { - OperandList[0] = C; - for (unsigned i = 0, E = IdxList.size(); i != E; ++i) - OperandList[i+1] = IdxList[i]; +Constant* ConstantVector::get(Constant* const* Vals, unsigned NumVals) { + // FIXME: make this the primary ctor method. + return get(std::vector(Vals, Vals+NumVals)); } -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value) +Constant* ConstantExpr::getNSWNeg(Constant* C) { + assert(C->getType()->isIntOrIntVectorTy() && + "Cannot NEG a nonintegral value!"); + return getNSWSub(ConstantFP::getZeroValueForNegation(C->getType()), C); +} + +Constant* ConstantExpr::getNUWNeg(Constant* C) { + assert(C->getType()->isIntOrIntVectorTy() && + "Cannot NEG a nonintegral value!"); + return getNUWSub(ConstantFP::getZeroValueForNegation(C->getType()), C); +} +Constant* ConstantExpr::getNSWAdd(Constant* C1, Constant* C2) { + return getTy(C1->getType(), Instruction::Add, C1, C2, + OverflowingBinaryOperator::NoSignedWrap); +} -template <> -struct OperandTraits : FixedNumOperandTraits<2> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value) +Constant* ConstantExpr::getNUWAdd(Constant* C1, Constant* C2) { + return getTy(C1->getType(), Instruction::Add, C1, C2, + OverflowingBinaryOperator::NoUnsignedWrap); +} +Constant* ConstantExpr::getNSWSub(Constant* C1, Constant* C2) { + return getTy(C1->getType(), Instruction::Sub, C1, C2, + OverflowingBinaryOperator::NoSignedWrap); +} -} // End llvm namespace +Constant* ConstantExpr::getNUWSub(Constant* C1, Constant* C2) { + return getTy(C1->getType(), Instruction::Sub, C1, C2, + OverflowingBinaryOperator::NoUnsignedWrap); +} +Constant* ConstantExpr::getNSWMul(Constant* C1, Constant* C2) { + return getTy(C1->getType(), Instruction::Mul, C1, C2, + OverflowingBinaryOperator::NoSignedWrap); +} + +Constant* ConstantExpr::getNUWMul(Constant* C1, Constant* C2) { + return getTy(C1->getType(), Instruction::Mul, C1, C2, + OverflowingBinaryOperator::NoUnsignedWrap); +} + +Constant* ConstantExpr::getExactSDiv(Constant* C1, Constant* C2) { + return getTy(C1->getType(), Instruction::SDiv, C1, C2, + SDivOperator::IsExact); +} // Utility function for determining if a ConstantExpr is a CastOp or not. This // can't be inline because we don't want to #include Instruction.h into @@ -584,6 +698,31 @@ bool ConstantExpr::isCompare() const { return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; } +bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { + if (getOpcode() != Instruction::GetElementPtr) return false; + + gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); + User::const_op_iterator OI = llvm::next(this->op_begin()); + + // Skip the first index, as it has no static limit. + ++GEPI; + ++OI; + + // The remaining indices must be compile-time known integers within the + // bounds of the corresponding notional static array types. + for (; GEPI != E; ++GEPI, ++OI) { + ConstantInt *CI = dyn_cast(*OI); + if (!CI) return false; + if (const ArrayType *ATy = dyn_cast(*GEPI)) + if (CI->getValue().getActiveBits() > 64 || + CI->getZExtValue() >= ATy->getNumElements()) + return false; + } + + // All the indices checked out. + return true; +} + bool ConstantExpr::hasIndices() const { return getOpcode() == Instruction::ExtractValue || getOpcode() == Instruction::InsertValue; @@ -653,15 +792,19 @@ ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { for (unsigned i = 1, e = getNumOperands(); i != e; ++i) Ops[i-1] = getOperand(i); if (OpNo == 0) - return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size()); + return cast(this)->isInBounds() ? + ConstantExpr::getInBoundsGetElementPtr(Op, &Ops[0], Ops.size()) : + ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size()); Ops[OpNo-1] = Op; - return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size()); + return cast(this)->isInBounds() ? + ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops[0],Ops.size()): + ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size()); } default: assert(getNumOperands() == 2 && "Must be binary operator?"); Op0 = (OpNo == 0) ? Op : getOperand(0); Op1 = (OpNo == 1) ? Op : getOperand(1); - return ConstantExpr::get(getOpcode(), Op0, Op1); + return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassOptionalData); } } @@ -703,13 +846,15 @@ getWithOperands(Constant* const *Ops, unsigned NumOps) const { case Instruction::ShuffleVector: return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); case Instruction::GetElementPtr: - return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1); + return cast(this)->isInBounds() ? + ConstantExpr::getInBoundsGetElementPtr(Ops[0], &Ops[1], NumOps-1) : + ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1); case Instruction::ICmp: case Instruction::FCmp: return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); default: assert(getNumOperands() == 2 && "Must be binary operator?"); - return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]); + return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData); } } @@ -719,7 +864,7 @@ getWithOperands(Constant* const *Ops, unsigned NumOps) const { bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) { unsigned NumBits = cast(Ty)->getBitWidth(); // assert okay - if (Ty == Type::Int1Ty) + if (Ty == Type::getInt1Ty(Ty->getContext())) return Val == 0 || Val == 1; if (NumBits >= 64) return true; // always true, has to fit in largest type @@ -729,7 +874,7 @@ bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) { bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) { unsigned NumBits = cast(Ty)->getBitWidth(); // assert okay - if (Ty == Type::Int1Ty) + if (Ty == Type::getInt1Ty(Ty->getContext())) return Val == 0 || Val == 1 || Val == -1; if (NumBits >= 64) return true; // always true, has to fit in largest type @@ -778,375 +923,25 @@ bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) { //===----------------------------------------------------------------------===// // Factory Function Implementation - -// The number of operands for each ConstantCreator::create method is -// determined by the ConstantTraits template. -// ConstantCreator - A class that is used to create constants by -// ValueMap*. This class should be partially specialized if there is -// something strange that needs to be done to interface to the ctor for the -// constant. -// -namespace llvm { - template - struct ConstantTraits; - - template - struct VISIBILITY_HIDDEN ConstantTraits< std::vector > { - static unsigned uses(const std::vector& v) { - return v.size(); - } - }; - - template - struct VISIBILITY_HIDDEN ConstantCreator { - static ConstantClass *create(const TypeClass *Ty, const ValType &V) { - return new(ConstantTraits::uses(V)) ConstantClass(Ty, V); - } - }; - - template - struct VISIBILITY_HIDDEN ConvertConstantType { - static void convert(ConstantClass *OldC, const TypeClass *NewTy) { - llvm_unreachable("This type cannot be converted!"); - } - }; - - template - class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser { - public: - typedef std::pair MapKey; - typedef std::map MapTy; - typedef std::map InverseMapTy; - typedef std::map AbstractTypeMapTy; - private: - /// Map - This is the main map from the element descriptor to the Constants. - /// This is the primary way we avoid creating two of the same shape - /// constant. - MapTy Map; - - /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping - /// from the constants to their element in Map. This is important for - /// removal of constants from the array, which would otherwise have to scan - /// through the map with very large keys. - InverseMapTy InverseMap; - - /// AbstractTypeMap - Map for abstract type constants. - /// - AbstractTypeMapTy AbstractTypeMap; - - /// ValueMapLock - Mutex for this map. - sys::SmartMutex ValueMapLock; - - public: - // NOTE: This function is not locked. It is the caller's responsibility - // to enforce proper synchronization. - typename MapTy::iterator map_end() { return Map.end(); } - - /// InsertOrGetItem - Return an iterator for the specified element. - /// If the element exists in the map, the returned iterator points to the - /// entry and Exists=true. If not, the iterator points to the newly - /// inserted entry and returns Exists=false. Newly inserted entries have - /// I->second == 0, and should be filled in. - /// NOTE: This function is not locked. It is the caller's responsibility - // to enforce proper synchronization. - typename MapTy::iterator InsertOrGetItem(std::pair - &InsertVal, - bool &Exists) { - std::pair IP = Map.insert(InsertVal); - Exists = !IP.second; - return IP.first; - } - -private: - typename MapTy::iterator FindExistingElement(ConstantClass *CP) { - if (HasLargeKey) { - typename InverseMapTy::iterator IMI = InverseMap.find(CP); - assert(IMI != InverseMap.end() && IMI->second != Map.end() && - IMI->second->second == CP && - "InverseMap corrupt!"); - return IMI->second; - } - - typename MapTy::iterator I = - Map.find(MapKey(static_cast(CP->getRawType()), - getValType(CP))); - if (I == Map.end() || I->second != CP) { - // FIXME: This should not use a linear scan. If this gets to be a - // performance problem, someone should look at this. - for (I = Map.begin(); I != Map.end() && I->second != CP; ++I) - /* empty */; - } - return I; - } - - ConstantClass* Create(const TypeClass *Ty, const ValType &V, - typename MapTy::iterator I) { - ConstantClass* Result = - ConstantCreator::create(Ty, V); - - assert(Result->getType() == Ty && "Type specified is not correct!"); - I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result)); - - if (HasLargeKey) // Remember the reverse mapping if needed. - InverseMap.insert(std::make_pair(Result, I)); - - // If the type of the constant is abstract, make sure that an entry - // exists for it in the AbstractTypeMap. - if (Ty->isAbstract()) { - typename AbstractTypeMapTy::iterator TI = - AbstractTypeMap.find(Ty); - - if (TI == AbstractTypeMap.end()) { - // Add ourselves to the ATU list of the type. - cast(Ty)->addAbstractTypeUser(this); - - AbstractTypeMap.insert(TI, std::make_pair(Ty, I)); - } - } - - return Result; - } -public: - - /// getOrCreate - Return the specified constant from the map, creating it if - /// necessary. - ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) { - sys::SmartScopedLock Lock(ValueMapLock); - MapKey Lookup(Ty, V); - ConstantClass* Result = 0; - - typename MapTy::iterator I = Map.find(Lookup); - // Is it in the map? - if (I != Map.end()) - Result = static_cast(I->second); - - if (!Result) { - // If no preexisting value, create one now... - Result = Create(Ty, V, I); - } - - return Result; - } - - void remove(ConstantClass *CP) { - sys::SmartScopedLock Lock(ValueMapLock); - typename MapTy::iterator I = FindExistingElement(CP); - assert(I != Map.end() && "Constant not found in constant table!"); - assert(I->second == CP && "Didn't find correct element?"); - - if (HasLargeKey) // Remember the reverse mapping if needed. - InverseMap.erase(CP); - - // Now that we found the entry, make sure this isn't the entry that - // the AbstractTypeMap points to. - const TypeClass *Ty = static_cast(I->first.first); - if (Ty->isAbstract()) { - assert(AbstractTypeMap.count(Ty) && - "Abstract type not in AbstractTypeMap?"); - typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty]; - if (ATMEntryIt == I) { - // Yes, we are removing the representative entry for this type. - // See if there are any other entries of the same type. - typename MapTy::iterator TmpIt = ATMEntryIt; - - // First check the entry before this one... - if (TmpIt != Map.begin()) { - --TmpIt; - if (TmpIt->first.first != Ty) // Not the same type, move back... - ++TmpIt; - } - - // If we didn't find the same type, try to move forward... - if (TmpIt == ATMEntryIt) { - ++TmpIt; - if (TmpIt == Map.end() || TmpIt->first.first != Ty) - --TmpIt; // No entry afterwards with the same type - } - - // If there is another entry in the map of the same abstract type, - // update the AbstractTypeMap entry now. - if (TmpIt != ATMEntryIt) { - ATMEntryIt = TmpIt; - } else { - // Otherwise, we are removing the last instance of this type - // from the table. Remove from the ATM, and from user list. - cast(Ty)->removeAbstractTypeUser(this); - AbstractTypeMap.erase(Ty); - } - } - } - - Map.erase(I); - } - - - /// MoveConstantToNewSlot - If we are about to change C to be the element - /// specified by I, update our internal data structures to reflect this - /// fact. - /// NOTE: This function is not locked. It is the responsibility of the - /// caller to enforce proper synchronization if using this method. - void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) { - // First, remove the old location of the specified constant in the map. - typename MapTy::iterator OldI = FindExistingElement(C); - assert(OldI != Map.end() && "Constant not found in constant table!"); - assert(OldI->second == C && "Didn't find correct element?"); - - // If this constant is the representative element for its abstract type, - // update the AbstractTypeMap so that the representative element is I. - if (C->getType()->isAbstract()) { - typename AbstractTypeMapTy::iterator ATI = - AbstractTypeMap.find(C->getType()); - assert(ATI != AbstractTypeMap.end() && - "Abstract type not in AbstractTypeMap?"); - if (ATI->second == OldI) - ATI->second = I; - } - - // Remove the old entry from the map. - Map.erase(OldI); - - // Update the inverse map so that we know that this constant is now - // located at descriptor I. - if (HasLargeKey) { - assert(I->second == C && "Bad inversemap entry!"); - InverseMap[C] = I; - } - } - - void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { - sys::SmartScopedLock Lock(ValueMapLock); - typename AbstractTypeMapTy::iterator I = - AbstractTypeMap.find(cast(OldTy)); - - assert(I != AbstractTypeMap.end() && - "Abstract type not in AbstractTypeMap?"); - - // Convert a constant at a time until the last one is gone. The last one - // leaving will remove() itself, causing the AbstractTypeMapEntry to be - // eliminated eventually. - do { - ConvertConstantType::convert( - static_cast(I->second->second), - cast(NewTy)); - - I = AbstractTypeMap.find(cast(OldTy)); - } while (I != AbstractTypeMap.end()); - } - - // If the type became concrete without being refined to any other existing - // type, we just remove ourselves from the ATU list. - void typeBecameConcrete(const DerivedType *AbsTy) { - AbsTy->removeAbstractTypeUser(this); - } - - void dump() const { - DOUT << "Constant.cpp: ValueMap\n"; - } - }; -} - - - -//---- ConstantAggregateZero::get() implementation... -// -namespace llvm { - // ConstantAggregateZero does not take extra "value" argument... - template - struct ConstantCreator { - static ConstantAggregateZero *create(const Type *Ty, const ValType &V){ - return new ConstantAggregateZero(Ty); - } - }; - - template<> - struct ConvertConstantType { - static void convert(ConstantAggregateZero *OldC, const Type *NewTy) { - // Make everyone now use a constant of the new type... - Constant *New = ConstantAggregateZero::get(NewTy); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } - }; -} - -static ManagedStatic > AggZeroConstants; - -static char getValType(ConstantAggregateZero *CPZ) { return 0; } - -ConstantAggregateZero *ConstantAggregateZero::get(const Type *Ty) { - assert((isa(Ty) || isa(Ty) || isa(Ty)) && +ConstantAggregateZero* ConstantAggregateZero::get(const Type* Ty) { + assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && "Cannot create an aggregate zero of non-aggregate type!"); - // Implicitly locked. - return AggZeroConstants->getOrCreate(Ty, 0); + LLVMContextImpl *pImpl = Ty->getContext().pImpl; + return pImpl->AggZeroConstants.getOrCreate(Ty, 0); } /// destroyConstant - Remove the constant from the constant table... /// void ConstantAggregateZero::destroyConstant() { - // Implicitly locked. - AggZeroConstants->remove(this); + getRawType()->getContext().pImpl->AggZeroConstants.remove(this); destroyConstantImpl(); } -//---- ConstantArray::get() implementation... -// -namespace llvm { - template<> - struct ConvertConstantType { - static void convert(ConstantArray *OldC, const ArrayType *NewTy) { - // Make everyone now use a constant of the new type... - std::vector C; - for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) - C.push_back(cast(OldC->getOperand(i))); - Constant *New = ConstantArray::get(NewTy, C); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } - }; -} - -static std::vector getValType(ConstantArray *CA) { - std::vector Elements; - Elements.reserve(CA->getNumOperands()); - for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) - Elements.push_back(cast(CA->getOperand(i))); - return Elements; -} - -typedef ValueMap, ArrayType, - ConstantArray, true /*largekey*/> ArrayConstantsTy; -static ManagedStatic ArrayConstants; - -Constant *ConstantArray::get(const ArrayType *Ty, - const std::vector &V) { - // If this is an all-zero array, return a ConstantAggregateZero object - if (!V.empty()) { - Constant *C = V[0]; - if (!C->isNullValue()) { - // Implicitly locked. - return ArrayConstants->getOrCreate(Ty, V); - } - for (unsigned i = 1, e = V.size(); i != e; ++i) - if (V[i] != C) { - // Implicitly locked. - return ArrayConstants->getOrCreate(Ty, V); - } - } - - return ConstantAggregateZero::get(Ty); -} - /// destroyConstant - Remove the constant from the constant table... /// void ConstantArray::destroyConstant() { - // Implicitly locked. - ArrayConstants->remove(this); + getRawType()->getContext().pImpl->ArrayConstants.remove(this); destroyConstantImpl(); } @@ -1154,7 +949,7 @@ void ConstantArray::destroyConstant() { /// if the elements of the array are all ConstantInt's. bool ConstantArray::isString() const { // Check the element type for i8... - if (getType()->getElementType() != Type::Int8Ty) + if (!getType()->getElementType()->isIntegerTy(8)) return false; // Check the elements to make sure they are all integers, not constant // expressions. @@ -1169,7 +964,7 @@ bool ConstantArray::isString() const { /// null bytes except its terminator. bool ConstantArray::isCString() const { // Check the element type for i8... - if (getType()->getElementType() != Type::Int8Ty) + if (!getType()->getElementType()->isIntegerTy(8)) return false; // Last element must be a null. @@ -1204,113 +999,20 @@ std::string ConstantArray::getAsString() const { // namespace llvm { - template<> - struct ConvertConstantType { - static void convert(ConstantStruct *OldC, const StructType *NewTy) { - // Make everyone now use a constant of the new type... - std::vector C; - for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) - C.push_back(cast(OldC->getOperand(i))); - Constant *New = ConstantStruct::get(NewTy, C); - assert(New != OldC && "Didn't replace constant??"); - - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } - }; -} -typedef ValueMap, StructType, - ConstantStruct, true /*largekey*/> StructConstantsTy; -static ManagedStatic StructConstants; - -static std::vector getValType(ConstantStruct *CS) { - std::vector Elements; - Elements.reserve(CS->getNumOperands()); - for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) - Elements.push_back(cast(CS->getOperand(i))); - return Elements; -} - -Constant *ConstantStruct::get(const StructType *Ty, - const std::vector &V) { - // Create a ConstantAggregateZero value if all elements are zeros... - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (!V[i]->isNullValue()) - // Implicitly locked. - return StructConstants->getOrCreate(Ty, V); - - return ConstantAggregateZero::get(Ty); } // destroyConstant - Remove the constant from the constant table... // void ConstantStruct::destroyConstant() { - // Implicitly locked. - StructConstants->remove(this); + getRawType()->getContext().pImpl->StructConstants.remove(this); destroyConstantImpl(); } -//---- ConstantVector::get() implementation... -// -namespace llvm { - template<> - struct ConvertConstantType { - static void convert(ConstantVector *OldC, const VectorType *NewTy) { - // Make everyone now use a constant of the new type... - std::vector C; - for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) - C.push_back(cast(OldC->getOperand(i))); - Constant *New = ConstantVector::get(NewTy, C); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } - }; -} - -static std::vector getValType(ConstantVector *CP) { - std::vector Elements; - Elements.reserve(CP->getNumOperands()); - for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) - Elements.push_back(CP->getOperand(i)); - return Elements; -} - -static ManagedStatic, VectorType, - ConstantVector> > VectorConstants; - -Constant *ConstantVector::get(const VectorType *Ty, - const std::vector &V) { - assert(!V.empty() && "Vectors can't be empty"); - // If this is an all-undef or alll-zero vector, return a - // ConstantAggregateZero or UndefValue. - Constant *C = V[0]; - bool isZero = C->isNullValue(); - bool isUndef = isa(C); - - if (isZero || isUndef) { - for (unsigned i = 1, e = V.size(); i != e; ++i) - if (V[i] != C) { - isZero = isUndef = false; - break; - } - } - - if (isZero) - return ConstantAggregateZero::get(Ty); - if (isUndef) - return UndefValue::get(Ty); - - // Implicitly locked. - return VectorConstants->getOrCreate(Ty, V); -} - // destroyConstant - Remove the constant from the constant table... // void ConstantVector::destroyConstant() { - // Implicitly locked. - VectorConstants->remove(this); + getRawType()->getContext().pImpl->VectorConstants.remove(this); destroyConstantImpl(); } @@ -1341,271 +1043,111 @@ Constant *ConstantVector::getSplatValue() { return Elt; } -//---- ConstantPointerNull::get() implementation... +//---- ConstantPointerNull::get() implementation. // -namespace llvm { - // ConstantPointerNull does not take extra "value" argument... - template - struct ConstantCreator { - static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){ - return new ConstantPointerNull(Ty); - } - }; - - template<> - struct ConvertConstantType { - static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) { - // Make everyone now use a constant of the new type... - Constant *New = ConstantPointerNull::get(NewTy); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } - }; -} - -static ManagedStatic > NullPtrConstants; - -static char getValType(ConstantPointerNull *) { - return 0; -} - - ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) { - // Implicitly locked. - return NullPtrConstants->getOrCreate(Ty, 0); + return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0); } // destroyConstant - Remove the constant from the constant table... // void ConstantPointerNull::destroyConstant() { - // Implicitly locked. - NullPtrConstants->remove(this); + getRawType()->getContext().pImpl->NullPtrConstants.remove(this); destroyConstantImpl(); } -//---- UndefValue::get() implementation... +//---- UndefValue::get() implementation. // -namespace llvm { - // UndefValue does not take extra "value" argument... - template - struct ConstantCreator { - static UndefValue *create(const Type *Ty, const ValType &V) { - return new UndefValue(Ty); - } - }; - - template<> - struct ConvertConstantType { - static void convert(UndefValue *OldC, const Type *NewTy) { - // Make everyone now use a constant of the new type. - Constant *New = UndefValue::get(NewTy); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } - }; -} - -static ManagedStatic > UndefValueConstants; - -static char getValType(UndefValue *) { - return 0; -} - - UndefValue *UndefValue::get(const Type *Ty) { - // Implicitly locked. - return UndefValueConstants->getOrCreate(Ty, 0); + return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0); } // destroyConstant - Remove the constant from the constant table. // void UndefValue::destroyConstant() { - // Implicitly locked. - UndefValueConstants->remove(this); + getRawType()->getContext().pImpl->UndefValueConstants.remove(this); destroyConstantImpl(); } -//---- MDString::get() implementation +//---- BlockAddress::get() implementation. // -MDString::MDString(const char *begin, const char *end) - : Constant(Type::MetadataTy, MDStringVal, 0, 0), - StrBegin(begin), StrEnd(end) {} - -void MDString::destroyConstant() { - getType()->getContext().erase(this); - destroyConstantImpl(); +BlockAddress *BlockAddress::get(BasicBlock *BB) { + assert(BB->getParent() != 0 && "Block must have a parent"); + return get(BB->getParent(), BB); } -//---- MDNode::get() implementation -// - -MDNode::MDNode(Value*const* Vals, unsigned NumVals) - : Constant(Type::MetadataTy, MDNodeVal, 0, 0) { - for (unsigned i = 0; i != NumVals; ++i) - Node.push_back(ElementVH(Vals[i], this)); +BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { + BlockAddress *&BA = + F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; + if (BA == 0) + BA = new BlockAddress(F, BB); + + assert(BA->getFunction() == F && "Basic block moved between functions"); + return BA; } -void MDNode::Profile(FoldingSetNodeID &ID) const { - for (const_elem_iterator I = elem_begin(), E = elem_end(); I != E; ++I) - ID.AddPointer(*I); +BlockAddress::BlockAddress(Function *F, BasicBlock *BB) +: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, + &Op<0>(), 2) { + setOperand(0, F); + setOperand(1, BB); + BB->AdjustBlockAddressRefCount(1); } -void MDNode::destroyConstant() { - getType()->getContext().erase(this); - destroyConstantImpl(); -} -//---- ConstantExpr::get() implementations... +// destroyConstant - Remove the constant from the constant table. // - -namespace { - -struct ExprMapKeyType { - typedef SmallVector IndexList; - - ExprMapKeyType(unsigned opc, - const std::vector &ops, - unsigned short pred = 0, - const IndexList &inds = IndexList()) - : opcode(opc), predicate(pred), operands(ops), indices(inds) {} - uint16_t opcode; - uint16_t predicate; - std::vector operands; - IndexList indices; - bool operator==(const ExprMapKeyType& that) const { - return this->opcode == that.opcode && - this->predicate == that.predicate && - this->operands == that.operands && - this->indices == that.indices; - } - bool operator<(const ExprMapKeyType & that) const { - return this->opcode < that.opcode || - (this->opcode == that.opcode && this->predicate < that.predicate) || - (this->opcode == that.opcode && this->predicate == that.predicate && - this->operands < that.operands) || - (this->opcode == that.opcode && this->predicate == that.predicate && - this->operands == that.operands && this->indices < that.indices); - } - - bool operator!=(const ExprMapKeyType& that) const { - return !(*this == that); - } -}; - +void BlockAddress::destroyConstant() { + getFunction()->getRawType()->getContext().pImpl + ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); + getBasicBlock()->AdjustBlockAddressRefCount(-1); + destroyConstantImpl(); } -namespace llvm { - template<> - struct ConstantCreator { - static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V, - unsigned short pred = 0) { - if (Instruction::isCast(V.opcode)) - return new UnaryConstantExpr(V.opcode, V.operands[0], Ty); - if ((V.opcode >= Instruction::BinaryOpsBegin && - V.opcode < Instruction::BinaryOpsEnd)) - return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]); - if (V.opcode == Instruction::Select) - return new SelectConstantExpr(V.operands[0], V.operands[1], - V.operands[2]); - if (V.opcode == Instruction::ExtractElement) - return new ExtractElementConstantExpr(V.operands[0], V.operands[1]); - if (V.opcode == Instruction::InsertElement) - return new InsertElementConstantExpr(V.operands[0], V.operands[1], - V.operands[2]); - if (V.opcode == Instruction::ShuffleVector) - return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1], - V.operands[2]); - if (V.opcode == Instruction::InsertValue) - return new InsertValueConstantExpr(V.operands[0], V.operands[1], - V.indices, Ty); - if (V.opcode == Instruction::ExtractValue) - return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty); - if (V.opcode == Instruction::GetElementPtr) { - std::vector IdxList(V.operands.begin()+1, V.operands.end()); - return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty); - } - - // The compare instructions are weird. We have to encode the predicate - // value and it is combined with the instruction opcode by multiplying - // the opcode by one hundred. We must decode this to get the predicate. - if (V.opcode == Instruction::ICmp) - return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate, - V.operands[0], V.operands[1]); - if (V.opcode == Instruction::FCmp) - return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate, - V.operands[0], V.operands[1]); - llvm_unreachable("Invalid ConstantExpr!"); - return 0; - } - }; - - template<> - struct ConvertConstantType { - static void convert(ConstantExpr *OldC, const Type *NewTy) { - Constant *New; - switch (OldC->getOpcode()) { - case Instruction::Trunc: - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::BitCast: - New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0), - NewTy); - break; - case Instruction::Select: - New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0), - OldC->getOperand(1), - OldC->getOperand(2)); - break; - default: - assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin && - OldC->getOpcode() < Instruction::BinaryOpsEnd); - New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0), - OldC->getOperand(1)); - break; - case Instruction::GetElementPtr: - // Make everyone now use a constant of the new type... - std::vector Idx(OldC->op_begin()+1, OldC->op_end()); - New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), - &Idx[0], Idx.size()); - break; - } - - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } - }; -} // end namespace llvm - +void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { + // This could be replacing either the Basic Block or the Function. In either + // case, we have to remove the map entry. + Function *NewF = getFunction(); + BasicBlock *NewBB = getBasicBlock(); + + if (U == &Op<0>()) + NewF = cast(To); + else + NewBB = cast(To); + + // See if the 'new' entry already exists, if not, just update this in place + // and return early. + BlockAddress *&NewBA = + getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; + if (NewBA == 0) { + getBasicBlock()->AdjustBlockAddressRefCount(-1); + + // Remove the old entry, this can't cause the map to rehash (just a + // tombstone will get added). + getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), + getBasicBlock())); + NewBA = this; + setOperand(0, NewF); + setOperand(1, NewBB); + getBasicBlock()->AdjustBlockAddressRefCount(1); + return; + } -static ExprMapKeyType getValType(ConstantExpr *CE) { - std::vector Operands; - Operands.reserve(CE->getNumOperands()); - for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) - Operands.push_back(cast(CE->getOperand(i))); - return ExprMapKeyType(CE->getOpcode(), Operands, - CE->isCompare() ? CE->getPredicate() : 0, - CE->hasIndices() ? - CE->getIndices() : SmallVector()); + // Otherwise, I do need to replace this with an existing value. + assert(NewBA != this && "I didn't contain From!"); + + // Everyone using this now uses the replacement. + uncheckedReplaceAllUsesWith(NewBA); + + destroyConstant(); } -static ManagedStatic > ExprConstants; +//---- ConstantExpr::get() implementations. +// /// This is a utility function to handle folding of casts and lookup of the /// cast in the ExprConstants map. It is used by the various get* methods below. @@ -1613,75 +1155,75 @@ static inline Constant *getFoldedCast( Instruction::CastOps opc, Constant *C, const Type *Ty) { assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); // Fold a few common cases - if (Constant *FC = - ConstantFoldCastInstruction(getGlobalContext(), opc, C, Ty)) + if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) return FC; + LLVMContextImpl *pImpl = Ty->getContext().pImpl; + // Look up the constant in the table first to ensure uniqueness std::vector argVec(1, C); ExprMapKeyType Key(opc, argVec); - // Implicitly locked. - return ExprConstants->getOrCreate(Ty, Key); + return pImpl->ExprConstants.getOrCreate(Ty, Key); } Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) { Instruction::CastOps opc = Instruction::CastOps(oc); assert(Instruction::isCast(opc) && "opcode out of range"); assert(C && Ty && "Null arguments to getCast"); - assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); + assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); switch (opc) { - default: - llvm_unreachable("Invalid cast opcode"); - break; - case Instruction::Trunc: return getTrunc(C, Ty); - case Instruction::ZExt: return getZExt(C, Ty); - case Instruction::SExt: return getSExt(C, Ty); - case Instruction::FPTrunc: return getFPTrunc(C, Ty); - case Instruction::FPExt: return getFPExtend(C, Ty); - case Instruction::UIToFP: return getUIToFP(C, Ty); - case Instruction::SIToFP: return getSIToFP(C, Ty); - case Instruction::FPToUI: return getFPToUI(C, Ty); - case Instruction::FPToSI: return getFPToSI(C, Ty); - case Instruction::PtrToInt: return getPtrToInt(C, Ty); - case Instruction::IntToPtr: return getIntToPtr(C, Ty); - case Instruction::BitCast: return getBitCast(C, Ty); + default: + llvm_unreachable("Invalid cast opcode"); + break; + case Instruction::Trunc: return getTrunc(C, Ty); + case Instruction::ZExt: return getZExt(C, Ty); + case Instruction::SExt: return getSExt(C, Ty); + case Instruction::FPTrunc: return getFPTrunc(C, Ty); + case Instruction::FPExt: return getFPExtend(C, Ty); + case Instruction::UIToFP: return getUIToFP(C, Ty); + case Instruction::SIToFP: return getSIToFP(C, Ty); + case Instruction::FPToUI: return getFPToUI(C, Ty); + case Instruction::FPToSI: return getFPToSI(C, Ty); + case Instruction::PtrToInt: return getPtrToInt(C, Ty); + case Instruction::IntToPtr: return getIntToPtr(C, Ty); + case Instruction::BitCast: return getBitCast(C, Ty); } return 0; } Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) { if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) - return getCast(Instruction::BitCast, C, Ty); - return getCast(Instruction::ZExt, C, Ty); + return getBitCast(C, Ty); + return getZExt(C, Ty); } Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) { if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) - return getCast(Instruction::BitCast, C, Ty); - return getCast(Instruction::SExt, C, Ty); + return getBitCast(C, Ty); + return getSExt(C, Ty); } Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) { if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) - return getCast(Instruction::BitCast, C, Ty); - return getCast(Instruction::Trunc, C, Ty); + return getBitCast(C, Ty); + return getTrunc(C, Ty); } Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) { - assert(isa(S->getType()) && "Invalid cast"); - assert((Ty->isInteger() || isa(Ty)) && "Invalid cast"); + assert(S->getType()->isPointerTy() && "Invalid cast"); + assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast"); - if (Ty->isInteger()) - return getCast(Instruction::PtrToInt, S, Ty); - return getCast(Instruction::BitCast, S, Ty); + if (Ty->isIntegerTy()) + return getPtrToInt(S, Ty); + return getBitCast(S, Ty); } Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty, bool isSigned) { - assert(C->getType()->isIntOrIntVector() && - Ty->isIntOrIntVector() && "Invalid cast"); + assert(C->getType()->isIntOrIntVectorTy() && + Ty->isIntOrIntVectorTy() && "Invalid cast"); unsigned SrcBits = C->getType()->getScalarSizeInBits(); unsigned DstBits = Ty->getScalarSizeInBits(); Instruction::CastOps opcode = @@ -1692,7 +1234,7 @@ Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty, } Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) { - assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() && + assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && "Invalid cast"); unsigned SrcBits = C->getType()->getScalarSizeInBits(); unsigned DstBits = Ty->getScalarSizeInBits(); @@ -1709,8 +1251,8 @@ Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) { bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isIntOrIntVector() && "Trunc operand must be integer"); - assert(Ty->isIntOrIntVector() && "Trunc produces only integral"); + assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); + assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& "SrcTy must be larger than DestTy for Trunc!"); @@ -1723,8 +1265,8 @@ Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) { bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isIntOrIntVector() && "SExt operand must be integral"); - assert(Ty->isIntOrIntVector() && "SExt produces only integer"); + assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); + assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& "SrcTy must be smaller than DestTy for SExt!"); @@ -1737,8 +1279,8 @@ Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) { bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isIntOrIntVector() && "ZEXt operand must be integral"); - assert(Ty->isIntOrIntVector() && "ZExt produces only integer"); + assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); + assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& "SrcTy must be smaller than DestTy for ZExt!"); @@ -1751,7 +1293,7 @@ Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) { bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() && + assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& "This is an illegal floating point truncation!"); return getFoldedCast(Instruction::FPTrunc, C, Ty); @@ -1763,7 +1305,7 @@ Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) { bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() && + assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& "This is an illegal floating point extension!"); return getFoldedCast(Instruction::FPExt, C, Ty); @@ -1775,7 +1317,7 @@ Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) { bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() && + assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && "This is an illegal uint to floating point cast!"); return getFoldedCast(Instruction::UIToFP, C, Ty); } @@ -1786,7 +1328,7 @@ Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) { bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() && + assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && "This is an illegal sint to floating point cast!"); return getFoldedCast(Instruction::SIToFP, C, Ty); } @@ -1797,7 +1339,7 @@ Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) { bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() && + assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && "This is an illegal floating point to uint cast!"); return getFoldedCast(Instruction::FPToUI, C, Ty); } @@ -1808,38 +1350,26 @@ Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) { bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() && + assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && "This is an illegal floating point to sint cast!"); return getFoldedCast(Instruction::FPToSI, C, Ty); } Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) { - assert(isa(C->getType()) && "PtrToInt source must be pointer"); - assert(DstTy->isInteger() && "PtrToInt destination must be integral"); + assert(C->getType()->isPointerTy() && "PtrToInt source must be pointer"); + assert(DstTy->isIntegerTy() && "PtrToInt destination must be integral"); return getFoldedCast(Instruction::PtrToInt, C, DstTy); } Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) { - assert(C->getType()->isInteger() && "IntToPtr source must be integral"); - assert(isa(DstTy) && "IntToPtr destination must be a pointer"); + assert(C->getType()->isIntegerTy() && "IntToPtr source must be integral"); + assert(DstTy->isPointerTy() && "IntToPtr destination must be a pointer"); return getFoldedCast(Instruction::IntToPtr, C, DstTy); } Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) { - // BitCast implies a no-op cast of type only. No bits change. However, you - // can't cast pointers to anything but pointers. -#ifndef NDEBUG - const Type *SrcTy = C->getType(); - assert((isa(SrcTy) == isa(DstTy)) && - "BitCast cannot cast pointer to non-pointer and vice versa"); - - // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr - // or nonptr->ptr). For all the other types, the cast is okay if source and - // destination bit widths are identical. - unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); - unsigned DstBitSize = DstTy->getPrimitiveSizeInBits(); -#endif - assert(SrcBitSize == DstBitSize && "BitCast requires types of same width"); + assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && + "Invalid constantexpr bitcast!"); // It is common to ask for a bitcast of a value to its own type, handle this // speedily. @@ -1849,7 +1379,8 @@ Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) { } Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode, - Constant *C1, Constant *C2) { + Constant *C1, Constant *C2, + unsigned Flags) { // Check the operands for consistency first assert(Opcode >= Instruction::BinaryOpsBegin && Opcode < Instruction::BinaryOpsEnd && @@ -1857,16 +1388,15 @@ Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode, assert(C1->getType() == C2->getType() && "Operand types in binary constant expression should match"); - if (ReqTy == C1->getType() || ReqTy == Type::Int1Ty) - if (Constant *FC = ConstantFoldBinaryInstruction( - getGlobalContext(), Opcode, C1, C2)) + if (ReqTy == C1->getType() || ReqTy == Type::getInt1Ty(ReqTy->getContext())) + if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) return FC; // Fold a few common cases... std::vector argVec(1, C1); argVec.push_back(C2); - ExprMapKeyType Key(Opcode, argVec); + ExprMapKeyType Key(Opcode, argVec, 0, Flags); - // Implicitly locked. - return ExprConstants->getOrCreate(ReqTy, Key); + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getCompareTy(unsigned short predicate, @@ -1889,64 +1419,59 @@ Constant *ConstantExpr::getCompareTy(unsigned short predicate, } } -Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) { - // API compatibility: Adjust integer opcodes to floating-point opcodes. - if (C1->getType()->isFPOrFPVector()) { - if (Opcode == Instruction::Add) Opcode = Instruction::FAdd; - else if (Opcode == Instruction::Sub) Opcode = Instruction::FSub; - else if (Opcode == Instruction::Mul) Opcode = Instruction::FMul; - } +Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, + unsigned Flags) { #ifndef NDEBUG switch (Opcode) { case Instruction::Add: case Instruction::Sub: case Instruction::Mul: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert(C1->getType()->isIntOrIntVector() && + assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create an integer operation on a non-integer type!"); break; case Instruction::FAdd: case Instruction::FSub: case Instruction::FMul: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert(C1->getType()->isFPOrFPVector() && + assert(C1->getType()->isFPOrFPVectorTy() && "Tried to create a floating-point operation on a " "non-floating-point type!"); break; case Instruction::UDiv: case Instruction::SDiv: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert(C1->getType()->isIntOrIntVector() && + assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::FDiv: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert(C1->getType()->isFPOrFPVector() && + assert(C1->getType()->isFPOrFPVectorTy() && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::URem: case Instruction::SRem: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert(C1->getType()->isIntOrIntVector() && + assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::FRem: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert(C1->getType()->isFPOrFPVector() && + assert(C1->getType()->isFPOrFPVectorTy() && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::And: case Instruction::Or: case Instruction::Xor: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert(C1->getType()->isIntOrIntVector() && + assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create a logical operation on a non-integral type!"); break; case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert(C1->getType()->isIntOrIntVector() && + assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create a shift operation on a non-integer type!"); break; default: @@ -1954,7 +1479,49 @@ Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) { } #endif - return getTy(C1->getType(), Opcode, C1, C2); + return getTy(C1->getType(), Opcode, C1, C2, Flags); +} + +Constant* ConstantExpr::getSizeOf(const Type* Ty) { + // sizeof is implemented as: (i64) gep (Ty*)null, 1 + // Note that a non-inbounds gep is used, as null isn't within any object. + Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); + Constant *GEP = getGetElementPtr( + Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1); + return getPtrToInt(GEP, + Type::getInt64Ty(Ty->getContext())); +} + +Constant* ConstantExpr::getAlignOf(const Type* Ty) { + // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 + // Note that a non-inbounds gep is used, as null isn't within any object. + const Type *AligningTy = StructType::get(Ty->getContext(), + Type::getInt1Ty(Ty->getContext()), Ty, NULL); + Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo()); + Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); + Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); + Constant *Indices[2] = { Zero, One }; + Constant *GEP = getGetElementPtr(NullPtr, Indices, 2); + return getPtrToInt(GEP, + Type::getInt64Ty(Ty->getContext())); +} + +Constant* ConstantExpr::getOffsetOf(const StructType* STy, unsigned FieldNo) { + return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), + FieldNo)); +} + +Constant* ConstantExpr::getOffsetOf(const Type* Ty, Constant *FieldNo) { + // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo + // Note that a non-inbounds gep is used, as null isn't within any object. + Constant *GEPIdx[] = { + ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), + FieldNo + }; + Constant *GEP = getGetElementPtr( + Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx, 2); + return getPtrToInt(GEP, + Type::getInt64Ty(Ty->getContext())); } Constant *ConstantExpr::getCompare(unsigned short pred, @@ -1968,8 +1535,7 @@ Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C, assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); if (ReqTy == V1->getType()) - if (Constant *SC = ConstantFoldSelectInstruction( - getGlobalContext(), C, V1, V2)) + if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) return SC; // Fold common cases std::vector argVec(3, C); @@ -1977,8 +1543,8 @@ Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C, argVec[2] = V2; ExprMapKeyType Key(Instruction::Select, argVec); - // Implicitly locked. - return ExprConstants->getOrCreate(ReqTy, Key); + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C, @@ -1989,11 +1555,11 @@ Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C, cast(ReqTy)->getElementType() && "GEP indices invalid!"); - if (Constant *FC = ConstantFoldGetElementPtr( - getGlobalContext(), C, (Constant**)Idxs, NumIdx)) + if (Constant *FC = ConstantFoldGetElementPtr(C, /*inBounds=*/false, + (Constant**)Idxs, NumIdx)) return FC; // Fold a few common cases... - assert(isa(C->getType()) && + assert(C->getType()->isPointerTy() && "Non-pointer type for constant GetElementPtr expression"); // Look up the constant in the table first to ensure uniqueness std::vector ArgVec; @@ -2003,8 +1569,36 @@ Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C, ArgVec.push_back(cast(Idxs[i])); const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec); - // Implicitly locked. - return ExprConstants->getOrCreate(ReqTy, Key); + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); +} + +Constant *ConstantExpr::getInBoundsGetElementPtrTy(const Type *ReqTy, + Constant *C, + Value *const *Idxs, + unsigned NumIdx) { + assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs, + Idxs+NumIdx) == + cast(ReqTy)->getElementType() && + "GEP indices invalid!"); + + if (Constant *FC = ConstantFoldGetElementPtr(C, /*inBounds=*/true, + (Constant**)Idxs, NumIdx)) + return FC; // Fold a few common cases... + + assert(C->getType()->isPointerTy() && + "Non-pointer type for constant GetElementPtr expression"); + // Look up the constant in the table first to ensure uniqueness + std::vector ArgVec; + ArgVec.reserve(NumIdx+1); + ArgVec.push_back(C); + for (unsigned i = 0; i != NumIdx; ++i) + ArgVec.push_back(cast(Idxs[i])); + const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0, + GEPOperator::IsInBounds); + + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs, @@ -2017,20 +1611,35 @@ Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs, return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx); } +Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C, + Value* const *Idxs, + unsigned NumIdx) { + // Get the result type of the getelementptr! + const Type *Ty = + GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx); + assert(Ty && "GEP indices invalid!"); + unsigned As = cast(C->getType())->getAddressSpace(); + return getInBoundsGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx); +} + Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs, unsigned NumIdx) { return getGetElementPtr(C, (Value* const *)Idxs, NumIdx); } +Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C, + Constant* const *Idxs, + unsigned NumIdx) { + return getInBoundsGetElementPtr(C, (Value* const *)Idxs, NumIdx); +} Constant * -ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) { +ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) { assert(LHS->getType() == RHS->getType()); assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); - if (Constant *FC = ConstantFoldCompareInstruction( - getGlobalContext(),pred, LHS, RHS)) + if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness @@ -2040,17 +1649,20 @@ ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) { // Get the key type with both the opcode and predicate const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); - // Implicitly locked. - return ExprConstants->getOrCreate(Type::Int1Ty, Key); + const Type *ResultTy = Type::getInt1Ty(LHS->getContext()); + if (const VectorType *VT = dyn_cast(LHS->getType())) + ResultTy = VectorType::get(ResultTy, VT->getNumElements()); + + LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ResultTy, Key); } Constant * -ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) { +ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) { assert(LHS->getType() == RHS->getType()); assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); - if (Constant *FC = ConstantFoldCompareInstruction( - getGlobalContext(), pred, LHS, RHS)) + if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness @@ -2059,29 +1671,32 @@ ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) { ArgVec.push_back(RHS); // Get the key type with both the opcode and predicate const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); - - // Implicitly locked. - return ExprConstants->getOrCreate(Type::Int1Ty, Key); + + const Type *ResultTy = Type::getInt1Ty(LHS->getContext()); + if (const VectorType *VT = dyn_cast(LHS->getType())) + ResultTy = VectorType::get(ResultTy, VT->getNumElements()); + + LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ResultTy, Key); } Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val, Constant *Idx) { - if (Constant *FC = ConstantFoldExtractElementInstruction( - getGlobalContext(), Val, Idx)) - return FC; // Fold a few common cases... + if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) + return FC; // Fold a few common cases. // Look up the constant in the table first to ensure uniqueness std::vector ArgVec(1, Val); ArgVec.push_back(Idx); const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec); - // Implicitly locked. - return ExprConstants->getOrCreate(ReqTy, Key); + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { - assert(isa(Val->getType()) && + assert(Val->getType()->isVectorTy() && "Tried to create extractelement operation on non-vector type!"); - assert(Idx->getType() == Type::Int32Ty && + assert(Idx->getType()->isIntegerTy(32) && "Extractelement index must be i32 type!"); return getExtractElementTy(cast(Val->getType())->getElementType(), Val, Idx); @@ -2089,34 +1704,32 @@ Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val, Constant *Elt, Constant *Idx) { - if (Constant *FC = ConstantFoldInsertElementInstruction( - getGlobalContext(), Val, Elt, Idx)) - return FC; // Fold a few common cases... + if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) + return FC; // Fold a few common cases. // Look up the constant in the table first to ensure uniqueness std::vector ArgVec(1, Val); ArgVec.push_back(Elt); ArgVec.push_back(Idx); const ExprMapKeyType Key(Instruction::InsertElement,ArgVec); - // Implicitly locked. - return ExprConstants->getOrCreate(ReqTy, Key); + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, Constant *Idx) { - assert(isa(Val->getType()) && + assert(Val->getType()->isVectorTy() && "Tried to create insertelement operation on non-vector type!"); assert(Elt->getType() == cast(Val->getType())->getElementType() && "Insertelement types must match!"); - assert(Idx->getType() == Type::Int32Ty && + assert(Idx->getType()->isIntegerTy(32) && "Insertelement index must be i32 type!"); return getInsertElementTy(Val->getType(), Val, Elt, Idx); } Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1, Constant *V2, Constant *Mask) { - if (Constant *FC = ConstantFoldShuffleVectorInstruction( - getGlobalContext(), V1, V2, Mask)) + if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness std::vector ArgVec(1, V1); @@ -2124,8 +1737,8 @@ Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1, ArgVec.push_back(Mask); const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec); - // Implicitly locked. - return ExprConstants->getOrCreate(ReqTy, Key); + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, @@ -2149,8 +1762,7 @@ Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg, "insertvalue type invalid!"); assert(Agg->getType()->isFirstClassType() && "Non-first-class type for constant InsertValue expression"); - Constant *FC = ConstantFoldInsertValueInstruction( - getGlobalContext(), Agg, Val, Idxs, NumIdx); + Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs, NumIdx); assert(FC && "InsertValue constant expr couldn't be folded!"); return FC; } @@ -2176,8 +1788,7 @@ Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg, "extractvalue indices invalid!"); assert(Agg->getType()->isFirstClassType() && "Non-first-class type for constant extractvalue expression"); - Constant *FC = ConstantFoldExtractValueInstruction( - getGlobalContext(), Agg, Idxs, NumIdx); + Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs, NumIdx); assert(FC && "ExtractValue constant expr couldn't be folded!"); return FC; } @@ -2193,11 +1804,104 @@ Constant *ConstantExpr::getExtractValue(Constant *Agg, return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx); } +Constant* ConstantExpr::getNeg(Constant* C) { + assert(C->getType()->isIntOrIntVectorTy() && + "Cannot NEG a nonintegral value!"); + return get(Instruction::Sub, + ConstantFP::getZeroValueForNegation(C->getType()), + C); +} + +Constant* ConstantExpr::getFNeg(Constant* C) { + assert(C->getType()->isFPOrFPVectorTy() && + "Cannot FNEG a non-floating-point value!"); + return get(Instruction::FSub, + ConstantFP::getZeroValueForNegation(C->getType()), + C); +} + +Constant* ConstantExpr::getNot(Constant* C) { + assert(C->getType()->isIntOrIntVectorTy() && + "Cannot NOT a nonintegral value!"); + return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); +} + +Constant* ConstantExpr::getAdd(Constant* C1, Constant* C2) { + return get(Instruction::Add, C1, C2); +} + +Constant* ConstantExpr::getFAdd(Constant* C1, Constant* C2) { + return get(Instruction::FAdd, C1, C2); +} + +Constant* ConstantExpr::getSub(Constant* C1, Constant* C2) { + return get(Instruction::Sub, C1, C2); +} + +Constant* ConstantExpr::getFSub(Constant* C1, Constant* C2) { + return get(Instruction::FSub, C1, C2); +} + +Constant* ConstantExpr::getMul(Constant* C1, Constant* C2) { + return get(Instruction::Mul, C1, C2); +} + +Constant* ConstantExpr::getFMul(Constant* C1, Constant* C2) { + return get(Instruction::FMul, C1, C2); +} + +Constant* ConstantExpr::getUDiv(Constant* C1, Constant* C2) { + return get(Instruction::UDiv, C1, C2); +} + +Constant* ConstantExpr::getSDiv(Constant* C1, Constant* C2) { + return get(Instruction::SDiv, C1, C2); +} + +Constant* ConstantExpr::getFDiv(Constant* C1, Constant* C2) { + return get(Instruction::FDiv, C1, C2); +} + +Constant* ConstantExpr::getURem(Constant* C1, Constant* C2) { + return get(Instruction::URem, C1, C2); +} + +Constant* ConstantExpr::getSRem(Constant* C1, Constant* C2) { + return get(Instruction::SRem, C1, C2); +} + +Constant* ConstantExpr::getFRem(Constant* C1, Constant* C2) { + return get(Instruction::FRem, C1, C2); +} + +Constant* ConstantExpr::getAnd(Constant* C1, Constant* C2) { + return get(Instruction::And, C1, C2); +} + +Constant* ConstantExpr::getOr(Constant* C1, Constant* C2) { + return get(Instruction::Or, C1, C2); +} + +Constant* ConstantExpr::getXor(Constant* C1, Constant* C2) { + return get(Instruction::Xor, C1, C2); +} + +Constant* ConstantExpr::getShl(Constant* C1, Constant* C2) { + return get(Instruction::Shl, C1, C2); +} + +Constant* ConstantExpr::getLShr(Constant* C1, Constant* C2) { + return get(Instruction::LShr, C1, C2); +} + +Constant* ConstantExpr::getAShr(Constant* C1, Constant* C2) { + return get(Instruction::AShr, C1, C2); +} + // destroyConstant - Remove the constant from the constant table... // void ConstantExpr::destroyConstant() { - // Implicitly locked. - ExprConstants->remove(this); + getRawType()->getContext().pImpl->ExprConstants.remove(this); destroyConstantImpl(); } @@ -2205,6 +1909,20 @@ const char *ConstantExpr::getOpcodeName() const { return Instruction::getOpcodeName(getOpcode()); } + + +GetElementPtrConstantExpr:: +GetElementPtrConstantExpr(Constant *C, const std::vector &IdxList, + const Type *DestTy) + : ConstantExpr(DestTy, Instruction::GetElementPtr, + OperandTraits::op_end(this) + - (IdxList.size()+1), IdxList.size()+1) { + OperandList[0] = C; + for (unsigned i = 0, E = IdxList.size(); i != E; ++i) + OperandList[i+1] = IdxList[i]; +} + + //===----------------------------------------------------------------------===// // replaceUsesOfWithOnConstant implementations @@ -2218,13 +1936,16 @@ const char *ConstantExpr::getOpcodeName() const { /// single invocation handles all 1000 uses. Handling them one at a time would /// work, but would be really slow because it would have to unique each updated /// array instance. +/// void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast(To); - std::pair Lookup; - Lookup.first.first = getType(); + LLVMContextImpl *pImpl = getRawType()->getContext().pImpl; + + std::pair Lookup; + Lookup.first.first = cast(getRawType()); Lookup.second = this; std::vector &Values = Lookup.first.second; @@ -2245,7 +1966,7 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, } } else { isAllZeros = true; - for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { + for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) { Constant *Val = cast(O->get()); if (Val == From) { Val = ToC; @@ -2258,13 +1979,12 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, Constant *Replacement = 0; if (isAllZeros) { - Replacement = ConstantAggregateZero::get(getType()); + Replacement = ConstantAggregateZero::get(getRawType()); } else { // Check to see if we have this array type already. - sys::SmartScopedWriter Writer(*ConstantsLock); bool Exists; - ArrayConstantsTy::MapTy::iterator I = - ArrayConstants->InsertOrGetItem(Lookup, Exists); + LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I = + pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists); if (Exists) { Replacement = I->second; @@ -2273,12 +1993,12 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, // creating a new constant array, inserting it, replaceallusesof'ing the // old with the new, then deleting the old... just update the current one // in place! - ArrayConstants->MoveConstantToNewSlot(this, I); + pImpl->ArrayConstants.MoveConstantToNewSlot(this, I); // Update to the new value. Optimize for the case when we have a single // operand that we're changing, but handle bulk updates efficiently. if (NumUpdated == 1) { - unsigned OperandToUpdate = U-OperandList; + unsigned OperandToUpdate = U - OperandList; assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); setOperand(OperandToUpdate, ToC); @@ -2309,8 +2029,8 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, unsigned OperandToUpdate = U-OperandList; assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); - std::pair Lookup; - Lookup.first.first = getType(); + std::pair Lookup; + Lookup.first.first = cast(getRawType()); Lookup.second = this; std::vector &Values = Lookup.first.second; Values.reserve(getNumOperands()); // Build replacement struct. @@ -2320,7 +2040,7 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, // compute whether this turns into an all-zeros struct. bool isAllZeros = false; if (!ToC->isNullValue()) { - for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) + for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) Values.push_back(cast(O->get())); } else { isAllZeros = true; @@ -2332,15 +2052,16 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, } Values[OperandToUpdate] = ToC; + LLVMContextImpl *pImpl = getRawType()->getContext().pImpl; + Constant *Replacement = 0; if (isAllZeros) { - Replacement = ConstantAggregateZero::get(getType()); + Replacement = ConstantAggregateZero::get(getRawType()); } else { - // Check to see if we have this array type already. - sys::SmartScopedWriter Writer(*ConstantsLock); + // Check to see if we have this struct type already. bool Exists; - StructConstantsTy::MapTy::iterator I = - StructConstants->InsertOrGetItem(Lookup, Exists); + LLVMContextImpl::StructConstantsTy::MapTy::iterator I = + pImpl->StructConstants.InsertOrGetItem(Lookup, Exists); if (Exists) { Replacement = I->second; @@ -2349,7 +2070,7 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, // creating a new constant struct, inserting it, replaceallusesof'ing the // old with the new, then deleting the old... just update the current one // in place! - StructConstants->MoveConstantToNewSlot(this, I); + pImpl->StructConstants.MoveConstantToNewSlot(this, I); // Update to the new value. setOperand(OperandToUpdate, ToC); @@ -2378,7 +2099,7 @@ void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, Values.push_back(Val); } - Constant *Replacement = ConstantVector::get(getType(), Values); + Constant *Replacement = get(cast(getRawType()), Values); assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. @@ -2425,7 +2146,7 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, &Indices[0], Indices.size()); } else if (isCast()) { assert(getOperand(0) == From && "Cast only has one use!"); - Replacement = ConstantExpr::getCast(getOpcode(), To, getType()); + Replacement = ConstantExpr::getCast(getOpcode(), To, getRawType()); } else if (getOpcode() == Instruction::Select) { Constant *C1 = getOperand(0); Constant *C2 = getOperand(1); @@ -2472,7 +2193,7 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, Constant *C2 = getOperand(1); if (C1 == From) C1 = To; if (C2 == From) C2 = To; - Replacement = ConstantExpr::get(getOpcode(), C1, C2); + Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassOptionalData); } else { llvm_unreachable("Unknown ConstantExpr type!"); return; @@ -2486,21 +2207,3 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, // Delete the old constant! destroyConstant(); } - -void MDNode::replaceElement(Value *From, Value *To) { - SmallVector Values; - Values.reserve(getNumElements()); // Build replacement array... - for (unsigned i = 0, e = getNumElements(); i != e; ++i) { - Value *Val = getElement(i); - if (Val == From) Val = To; - Values.push_back(Val); - } - - MDNode *Replacement = - getType()->getContext().getMDNode(&Values[0], Values.size()); - assert(Replacement != this && "I didn't contain From!"); - - uncheckedReplaceAllUsesWith(Replacement); - - destroyConstant(); -}