X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTransforms%2FUtils%2FLoopUnroll.cpp;h=ab1c25a75e262be4e42839f30944dbb406c23172;hb=9853f945205a0e1193afc3e84c10be96b4932d1b;hp=3c58abe37e08d6d0f5f23047d1355a7728dabf96;hpb=692ad8dd0630f80babeb631ec8ae5bf6b54456cd;p=oota-llvm.git diff --git a/lib/Transforms/Utils/LoopUnroll.cpp b/lib/Transforms/Utils/LoopUnroll.cpp index 3c58abe37e0..ab1c25a75e2 100644 --- a/lib/Transforms/Utils/LoopUnroll.cpp +++ b/lib/Transforms/Utils/LoopUnroll.cpp @@ -11,59 +11,79 @@ // actual pass or policy, but provides a single function to perform loop // unrolling. // -// It works best when loops have been canonicalized by the -indvars pass, -// allowing it to determine the trip counts of loops easily. -// // The process of unrolling can produce extraneous basic blocks linked with // unconditional branches. This will be corrected in the future. +// //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "loop-unroll" #include "llvm/Transforms/Utils/UnrollLoop.h" -#include "llvm/BasicBlock.h" +#include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/LLVMContext.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" -#include - +#include "llvm/Transforms/Utils/LoopUtils.h" +#include "llvm/Transforms/Utils/SimplifyIndVar.h" using namespace llvm; +#define DEBUG_TYPE "loop-unroll" + // TODO: Should these be here or in LoopUnroll? STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); -STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); +STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); /// RemapInstruction - Convert the instruction operands from referencing the -/// current values into those specified by ValueMap. +/// current values into those specified by VMap. static inline void RemapInstruction(Instruction *I, - DenseMap &ValueMap) { + ValueToValueMapTy &VMap) { for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { Value *Op = I->getOperand(op); - DenseMap::iterator It = ValueMap.find(Op); - if (It != ValueMap.end()) + ValueToValueMapTy::iterator It = VMap.find(Op); + if (It != VMap.end()) I->setOperand(op, It->second); } + + if (PHINode *PN = dyn_cast(I)) { + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); + if (It != VMap.end()) + PN->setIncomingBlock(i, cast(It->second)); + } + } } /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it /// only has one predecessor, and that predecessor only has one successor. -/// The LoopInfo Analysis that is passed will be kept consistent. -/// Returns the new combined block. -static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) { +/// The LoopInfo Analysis that is passed will be kept consistent. If folding is +/// successful references to the containing loop must be removed from +/// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have +/// references to the eliminated BB. The argument ForgottenLoops contains a set +/// of loops that have already been forgotten to prevent redundant, expensive +/// calls to ScalarEvolution::forgetLoop. Returns the new combined block. +static BasicBlock * +FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM, + SmallPtrSetImpl &ForgottenLoops) { // Merge basic blocks into their predecessor if there is only one distinct // pred, and if there is only one distinct successor of the predecessor, and // if there are no PHI nodes. BasicBlock *OnlyPred = BB->getSinglePredecessor(); - if (!OnlyPred) return 0; + if (!OnlyPred) return nullptr; if (OnlyPred->getTerminator()->getNumSuccessors() != 1) - return 0; + return nullptr; - DEBUG(errs() << "Merging: " << *BB << "into: " << *OnlyPred); + DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); // Resolve any PHI nodes at the start of the block. They are all // guaranteed to have exactly one entry if they exist, unless there are @@ -75,78 +95,116 @@ static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) { // Delete the unconditional branch from the predecessor... OnlyPred->getInstList().pop_back(); - // Move all definitions in the successor to the predecessor... - OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); - // Make all PHI nodes that referred to BB now refer to Pred as their // source... BB->replaceAllUsesWith(OnlyPred); - std::string OldName = BB->getName(); + // Move all definitions in the successor to the predecessor... + OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); + + // OldName will be valid until erased. + StringRef OldName = BB->getName(); // Erase basic block from the function... + + // ScalarEvolution holds references to loop exit blocks. + if (LPM) { + if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable()) { + if (Loop *L = LI->getLoopFor(BB)) { + if (ForgottenLoops.insert(L)) + SE->forgetLoop(L); + } + } + } LI->removeBlock(BB); - BB->eraseFromParent(); // Inherit predecessor's name if it exists... if (!OldName.empty() && !OnlyPred->hasName()) OnlyPred->setName(OldName); + BB->eraseFromParent(); + return OnlyPred; } /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true -/// if unrolling was succesful, or false if the loop was unmodified. Unrolling +/// if unrolling was successful, or false if the loop was unmodified. Unrolling /// can only fail when the loop's latch block is not terminated by a conditional /// branch instruction. However, if the trip count (and multiple) are not known, /// loop unrolling will mostly produce more code that is no faster. /// +/// TripCount is generally defined as the number of times the loop header +/// executes. UnrollLoop relaxes the definition to permit early exits: here +/// TripCount is the iteration on which control exits LatchBlock if no early +/// exits were taken. Note that UnrollLoop assumes that the loop counter test +/// terminates LatchBlock in order to remove unnecesssary instances of the +/// test. In other words, control may exit the loop prior to TripCount +/// iterations via an early branch, but control may not exit the loop from the +/// LatchBlock's terminator prior to TripCount iterations. +/// +/// Similarly, TripMultiple divides the number of times that the LatchBlock may +/// execute without exiting the loop. +/// /// The LoopInfo Analysis that is passed will be kept consistent. /// /// If a LoopPassManager is passed in, and the loop is fully removed, it will be /// removed from the LoopPassManager as well. LPM can also be NULL. -bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) { - assert(L->isLCSSAForm()); - +/// +/// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are +/// available from the Pass it must also preserve those analyses. +bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, + bool AllowRuntime, unsigned TripMultiple, + LoopInfo *LI, Pass *PP, LPPassManager *LPM) { BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader) { - DEBUG(errs() << " Can't unroll; loop preheader-insertion failed.\n"); + DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); return false; } BasicBlock *LatchBlock = L->getLoopLatch(); if (!LatchBlock) { - DEBUG(errs() << " Can't unroll; loop exit-block-insertion failed.\n"); + DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); + return false; + } + + // Loops with indirectbr cannot be cloned. + if (!L->isSafeToClone()) { + DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); return false; } BasicBlock *Header = L->getHeader(); BranchInst *BI = dyn_cast(LatchBlock->getTerminator()); - + if (!BI || BI->isUnconditional()) { // The loop-rotate pass can be helpful to avoid this in many cases. - DEBUG(errs() << + DEBUG(dbgs() << " Can't unroll; loop not terminated by a conditional branch.\n"); return false; } - // Find trip count - unsigned TripCount = L->getSmallConstantTripCount(); - // Find trip multiple if count is not available - unsigned TripMultiple = 1; - if (TripCount == 0) - TripMultiple = L->getSmallConstantTripMultiple(); + if (Header->hasAddressTaken()) { + // The loop-rotate pass can be helpful to avoid this in many cases. + DEBUG(dbgs() << + " Won't unroll loop: address of header block is taken.\n"); + return false; + } if (TripCount != 0) - DEBUG(errs() << " Trip Count = " << TripCount << "\n"); + DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); if (TripMultiple != 1) - DEBUG(errs() << " Trip Multiple = " << TripMultiple << "\n"); + DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); // Effectively "DCE" unrolled iterations that are beyond the tripcount // and will never be executed. if (TripCount != 0 && Count > TripCount) Count = TripCount; + // Don't enter the unroll code if there is nothing to do. This way we don't + // need to support "partial unrolling by 1". + if (TripCount == 0 && Count < 2) + return false; + assert(Count > 0); assert(TripMultiple > 0); assert(TripCount == 0 || TripCount % TripMultiple == 0); @@ -154,6 +212,22 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) // Are we eliminating the loop control altogether? bool CompletelyUnroll = Count == TripCount; + // We assume a run-time trip count if the compiler cannot + // figure out the loop trip count and the unroll-runtime + // flag is specified. + bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); + + if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM)) + return false; + + // Notify ScalarEvolution that the loop will be substantially changed, + // if not outright eliminated. + if (PP) { + ScalarEvolution *SE = PP->getAnalysisIfAvailable(); + if (SE) + SE->forgetLoop(L); + } + // If we know the trip count, we know the multiple... unsigned BreakoutTrip = 0; if (TripCount != 0) { @@ -165,37 +239,48 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) (unsigned)GreatestCommonDivisor64(Count, TripMultiple); } + // Report the unrolling decision. + DebugLoc LoopLoc = L->getStartLoc(); + Function *F = Header->getParent(); + LLVMContext &Ctx = F->getContext(); + if (CompletelyUnroll) { - DEBUG(errs() << "COMPLETELY UNROLLING loop %" << Header->getName() + DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() << " with trip count " << TripCount << "!\n"); + emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, + Twine("completely unrolled loop with ") + + Twine(TripCount) + " iterations"); } else { - DEBUG(errs() << "UNROLLING loop %" << Header->getName() + auto EmitDiag = [&](const Twine &T) { + emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, + "unrolled loop by a factor of " + Twine(Count) + + T); + }; + + DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " << Count); if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { - DEBUG(errs() << " with a breakout at trip " << BreakoutTrip); + DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); + EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip)); } else if (TripMultiple != 1) { - DEBUG(errs() << " with " << TripMultiple << " trips per branch"); + DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); + EmitDiag(" with " + Twine(TripMultiple) + " trips per branch"); + } else if (RuntimeTripCount) { + DEBUG(dbgs() << " with run-time trip count"); + EmitDiag(" with run-time trip count"); } - DEBUG(errs() << "!\n"); + DEBUG(dbgs() << "!\n"); } - std::vector LoopBlocks = L->getBlocks(); - bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); // For the first iteration of the loop, we should use the precloned values for // PHI nodes. Insert associations now. - typedef DenseMap ValueMapTy; - ValueMapTy LastValueMap; + ValueToValueMapTy LastValueMap; std::vector OrigPHINode; for (BasicBlock::iterator I = Header->begin(); isa(I); ++I) { - PHINode *PN = cast(I); - OrigPHINode.push_back(PN); - if (Instruction *I = - dyn_cast(PN->getIncomingValueForBlock(LatchBlock))) - if (L->contains(I->getParent())) - LastValueMap[I] = I; + OrigPHINode.push_back(cast(I)); } std::vector Headers; @@ -203,113 +288,93 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) Headers.push_back(Header); Latches.push_back(LatchBlock); + // The current on-the-fly SSA update requires blocks to be processed in + // reverse postorder so that LastValueMap contains the correct value at each + // exit. + LoopBlocksDFS DFS(L); + DFS.perform(LI); + + // Stash the DFS iterators before adding blocks to the loop. + LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); + LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); + for (unsigned It = 1; It != Count; ++It) { - char SuffixBuffer[100]; - sprintf(SuffixBuffer, ".%d", It); - std::vector NewBlocks; - - for (std::vector::iterator BB = LoopBlocks.begin(), - E = LoopBlocks.end(); BB != E; ++BB) { - ValueMapTy ValueMap; - BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer); + + for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { + ValueToValueMapTy VMap; + BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); Header->getParent()->getBasicBlockList().push_back(New); // Loop over all of the PHI nodes in the block, changing them to use the // incoming values from the previous block. if (*BB == Header) for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { - PHINode *NewPHI = cast(ValueMap[OrigPHINode[i]]); + PHINode *NewPHI = cast(VMap[OrigPHINode[i]]); Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); if (Instruction *InValI = dyn_cast(InVal)) - if (It > 1 && L->contains(InValI->getParent())) + if (It > 1 && L->contains(InValI)) InVal = LastValueMap[InValI]; - ValueMap[OrigPHINode[i]] = InVal; + VMap[OrigPHINode[i]] = InVal; New->getInstList().erase(NewPHI); } // Update our running map of newest clones LastValueMap[*BB] = New; - for (ValueMapTy::iterator VI = ValueMap.begin(), VE = ValueMap.end(); + for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); VI != VE; ++VI) LastValueMap[VI->first] = VI->second; L->addBasicBlockToLoop(New, LI->getBase()); - // Add phi entries for newly created values to all exit blocks except - // the successor of the latch block. The successor of the exit block will - // be updated specially after unrolling all the way. - if (*BB != LatchBlock) - for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end(); - UI != UE;) { - Instruction *UseInst = cast(*UI); - ++UI; - if (isa(UseInst) && !L->contains(UseInst->getParent())) { - PHINode *phi = cast(UseInst); - Value *Incoming = phi->getIncomingValueForBlock(*BB); - phi->addIncoming(Incoming, New); - } + // Add phi entries for newly created values to all exit blocks. + for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); + SI != SE; ++SI) { + if (L->contains(*SI)) + continue; + for (BasicBlock::iterator BBI = (*SI)->begin(); + PHINode *phi = dyn_cast(BBI); ++BBI) { + Value *Incoming = phi->getIncomingValueForBlock(*BB); + ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); + if (It != LastValueMap.end()) + Incoming = It->second; + phi->addIncoming(Incoming, New); } - + } // Keep track of new headers and latches as we create them, so that // we can insert the proper branches later. if (*BB == Header) Headers.push_back(New); - if (*BB == LatchBlock) { + if (*BB == LatchBlock) Latches.push_back(New); - // Also, clear out the new latch's back edge so that it doesn't look - // like a new loop, so that it's amenable to being merged with adjacent - // blocks later on. - TerminatorInst *Term = New->getTerminator(); - assert(L->contains(Term->getSuccessor(!ContinueOnTrue))); - assert(Term->getSuccessor(ContinueOnTrue) == LoopExit); - Term->setSuccessor(!ContinueOnTrue, NULL); - } - NewBlocks.push_back(New); } - + // Remap all instructions in the most recent iteration for (unsigned i = 0; i < NewBlocks.size(); ++i) for (BasicBlock::iterator I = NewBlocks[i]->begin(), E = NewBlocks[i]->end(); I != E; ++I) - RemapInstruction(I, LastValueMap); + ::RemapInstruction(I, LastValueMap); } - - // The latch block exits the loop. If there are any PHI nodes in the - // successor blocks, update them to use the appropriate values computed as the - // last iteration of the loop. - if (Count != 1) { - SmallPtrSet Users; - for (Value::use_iterator UI = LatchBlock->use_begin(), - UE = LatchBlock->use_end(); UI != UE; ++UI) - if (PHINode *phi = dyn_cast(*UI)) - Users.insert(phi); - - BasicBlock *LastIterationBB = cast(LastValueMap[LatchBlock]); - for (SmallPtrSet::iterator SI = Users.begin(), SE = Users.end(); - SI != SE; ++SI) { - PHINode *PN = *SI; + + // Loop over the PHI nodes in the original block, setting incoming values. + for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { + PHINode *PN = OrigPHINode[i]; + if (CompletelyUnroll) { + PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); + Header->getInstList().erase(PN); + } + else if (Count > 1) { Value *InVal = PN->removeIncomingValue(LatchBlock, false); // If this value was defined in the loop, take the value defined by the // last iteration of the loop. if (Instruction *InValI = dyn_cast(InVal)) { - if (L->contains(InValI->getParent())) + if (L->contains(InValI)) InVal = LastValueMap[InVal]; } - PN->addIncoming(InVal, LastIterationBB); - } - } - - // Now, if we're doing complete unrolling, loop over the PHI nodes in the - // original block, setting them to their incoming values. - if (CompletelyUnroll) { - BasicBlock *Preheader = L->getLoopPreheader(); - for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { - PHINode *PN = OrigPHINode[i]; - PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); - Header->getInstList().erase(PN); + assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); + PN->addIncoming(InVal, Latches.back()); } } @@ -324,6 +389,10 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) BasicBlock *Dest = Headers[j]; bool NeedConditional = true; + if (RuntimeTripCount && j != 0) { + NeedConditional = false; + } + // For a complete unroll, make the last iteration end with a branch // to the exit block. if (CompletelyUnroll && j == 0) { @@ -342,15 +411,61 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) // iteration. Term->setSuccessor(!ContinueOnTrue, Dest); } else { - Term->setUnconditionalDest(Dest); - // Merge adjacent basic blocks, if possible. - if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI)) { - std::replace(Latches.begin(), Latches.end(), Dest, Fold); - std::replace(Headers.begin(), Headers.end(), Dest, Fold); + // Remove phi operands at this loop exit + if (Dest != LoopExit) { + BasicBlock *BB = Latches[i]; + for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); + SI != SE; ++SI) { + if (*SI == Headers[i]) + continue; + for (BasicBlock::iterator BBI = (*SI)->begin(); + PHINode *Phi = dyn_cast(BBI); ++BBI) { + Phi->removeIncomingValue(BB, false); + } + } } + // Replace the conditional branch with an unconditional one. + BranchInst::Create(Dest, Term); + Term->eraseFromParent(); + } + } + + // Merge adjacent basic blocks, if possible. + SmallPtrSet ForgottenLoops; + for (unsigned i = 0, e = Latches.size(); i != e; ++i) { + BranchInst *Term = cast(Latches[i]->getTerminator()); + if (Term->isUnconditional()) { + BasicBlock *Dest = Term->getSuccessor(0); + if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM, + ForgottenLoops)) + std::replace(Latches.begin(), Latches.end(), Dest, Fold); + } + } + + DominatorTree *DT = nullptr; + if (PP) { + // FIXME: Reconstruct dom info, because it is not preserved properly. + // Incrementally updating domtree after loop unrolling would be easy. + if (DominatorTreeWrapperPass *DTWP = + PP->getAnalysisIfAvailable()) { + DT = &DTWP->getDomTree(); + DT->recalculate(*L->getHeader()->getParent()); + } + + // Simplify any new induction variables in the partially unrolled loop. + ScalarEvolution *SE = PP->getAnalysisIfAvailable(); + if (SE && !CompletelyUnroll) { + SmallVector DeadInsts; + simplifyLoopIVs(L, SE, LPM, DeadInsts); + + // Aggressively clean up dead instructions that simplifyLoopIVs already + // identified. Any remaining should be cleaned up below. + while (!DeadInsts.empty()) + if (Instruction *Inst = + dyn_cast_or_null(&*DeadInsts.pop_back_val())) + RecursivelyDeleteTriviallyDeadInstructions(Inst); } } - // At this point, the code is well formed. We now do a quick sweep over the // inserted code, doing constant propagation and dead code elimination as we // go. @@ -362,22 +477,45 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) if (isInstructionTriviallyDead(Inst)) (*BB)->getInstList().erase(Inst); - else if (Constant *C = ConstantFoldInstruction(Inst, - Header->getContext())) { - Inst->replaceAllUsesWith(C); - (*BB)->getInstList().erase(Inst); - } + else if (Value *V = SimplifyInstruction(Inst)) + if (LI->replacementPreservesLCSSAForm(Inst, V)) { + Inst->replaceAllUsesWith(V); + (*BB)->getInstList().erase(Inst); + } } NumCompletelyUnrolled += CompletelyUnroll; ++NumUnrolled; + + Loop *OuterL = L->getParentLoop(); // Remove the loop from the LoopPassManager if it's completely removed. - if (CompletelyUnroll && LPM != NULL) + if (CompletelyUnroll && LPM != nullptr) LPM->deleteLoopFromQueue(L); - // If we didn't completely unroll the loop, it should still be in LCSSA form. - if (!CompletelyUnroll) - assert(L->isLCSSAForm()); + // If we have a pass and a DominatorTree we should re-simplify impacted loops + // to ensure subsequent analyses can rely on this form. We want to simplify + // at least one layer outside of the loop that was unrolled so that any + // changes to the parent loop exposed by the unrolling are considered. + if (PP && DT) { + if (!OuterL && !CompletelyUnroll) + OuterL = L; + if (OuterL) { + DataLayoutPass *DLP = PP->getAnalysisIfAvailable(); + const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr; + ScalarEvolution *SE = PP->getAnalysisIfAvailable(); + simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE, DL); + + // LCSSA must be performed on the outermost affected loop. The unrolled + // loop's last loop latch is guaranteed to be in the outermost loop after + // deleteLoopFromQueue updates LoopInfo. + Loop *LatchLoop = LI->getLoopFor(Latches.back()); + if (!OuterL->contains(LatchLoop)) + while (OuterL->getParentLoop() != LatchLoop) + OuterL = OuterL->getParentLoop(); + + formLCSSARecursively(*OuterL, *DT, SE); + } + } return true; }