X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTransforms%2FScalar%2FSROA.cpp;h=2ed4c3716181e31295f4343e608b16f5721108ee;hb=d4748bbd497b550a4e5db246c6708fcd6de542da;hp=279382513763d28860ddd2526136f411ed06acc2;hpb=3c7a446059133de68c912242cb3b0cc934b8e6b1;p=oota-llvm.git diff --git a/lib/Transforms/Scalar/SROA.cpp b/lib/Transforms/Scalar/SROA.cpp index 27938251376..2ed4c371618 100644 --- a/lib/Transforms/Scalar/SROA.cpp +++ b/lib/Transforms/Scalar/SROA.cpp @@ -23,40 +23,48 @@ /// //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "sroa" #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/PtrUseVisitor.h" #include "llvm/Analysis/ValueTracking.h" -#include "llvm/DIBuilder.h" -#include "llvm/DebugInfo.h" #include "llvm/IR/Constants.h" +#include "llvm/IR/DIBuilder.h" #include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" #include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstVisitor.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Operator.h" -#include "llvm/InstVisitor.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" +#include "llvm/Support/TimeValue.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include "llvm/Transforms/Utils/SSAUpdater.h" + +#if __cplusplus >= 201103L && !defined(NDEBUG) +// We only use this for a debug check in C++11 +#include +#endif + using namespace llvm; +#define DEBUG_TYPE "sroa" + STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); @@ -73,6 +81,16 @@ STATISTIC(NumVectorized, "Number of vectorized aggregates"); static cl::opt ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden); +/// Hidden option to enable randomly shuffling the slices to help uncover +/// instability in their order. +static cl::opt SROARandomShuffleSlices("sroa-random-shuffle-slices", + cl::init(false), cl::Hidden); + +/// Hidden option to experiment with completely strict handling of inbounds +/// GEPs. +static cl::opt SROAStrictInbounds("sroa-strict-inbounds", + cl::init(false), cl::Hidden); + namespace { /// \brief A custom IRBuilder inserter which prefixes all names if they are /// preserved. @@ -142,8 +160,8 @@ public: Use *getUse() const { return UseAndIsSplittable.getPointer(); } - bool isDead() const { return getUse() == 0; } - void kill() { UseAndIsSplittable.setPointer(0); } + bool isDead() const { return getUse() == nullptr; } + void kill() { UseAndIsSplittable.setPointer(nullptr); } /// \brief Support for ordering ranges. /// @@ -244,8 +262,8 @@ public: void printUse(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; void print(raw_ostream &OS) const; - void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const; - void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const; + void dump(const_iterator I) const; + void dump() const; #endif private: @@ -303,7 +321,7 @@ static Value *foldSelectInst(SelectInst &SI) { if (SI.getOperand(1) == SI.getOperand(2)) return SI.getOperand(1); - return 0; + return nullptr; } /// \brief Builder for the alloca slices. @@ -339,7 +357,7 @@ private: bool IsSplittable = false) { // Completely skip uses which have a zero size or start either before or // past the end of the allocation. - if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) { + if (Size == 0 || Offset.uge(AllocSize)) { DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset << " which has zero size or starts outside of the " << AllocSize << " byte alloca:\n" @@ -380,6 +398,43 @@ private: if (GEPI.use_empty()) return markAsDead(GEPI); + if (SROAStrictInbounds && GEPI.isInBounds()) { + // FIXME: This is a manually un-factored variant of the basic code inside + // of GEPs with checking of the inbounds invariant specified in the + // langref in a very strict sense. If we ever want to enable + // SROAStrictInbounds, this code should be factored cleanly into + // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds + // by writing out the code here where we have tho underlying allocation + // size readily available. + APInt GEPOffset = Offset; + for (gep_type_iterator GTI = gep_type_begin(GEPI), + GTE = gep_type_end(GEPI); + GTI != GTE; ++GTI) { + ConstantInt *OpC = dyn_cast(GTI.getOperand()); + if (!OpC) + break; + + // Handle a struct index, which adds its field offset to the pointer. + if (StructType *STy = dyn_cast(*GTI)) { + unsigned ElementIdx = OpC->getZExtValue(); + const StructLayout *SL = DL.getStructLayout(STy); + GEPOffset += + APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); + } else { + // For array or vector indices, scale the index by the size of the type. + APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); + GEPOffset += Index * APInt(Offset.getBitWidth(), + DL.getTypeAllocSize(GTI.getIndexedType())); + } + + // If this index has computed an intermediate pointer which is not + // inbounds, then the result of the GEP is a poison value and we can + // delete it and all uses. + if (GEPOffset.ugt(AllocSize)) + return markAsDead(GEPI); + } + } + return Base::visitGetElementPtrInst(GEPI); } @@ -426,8 +481,7 @@ private: // risk of overflow. // FIXME: We should instead consider the pointer to have escaped if this // function is being instrumented for addressing bugs or race conditions. - if (Offset.isNegative() || Size > AllocSize || - Offset.ugt(AllocSize - Size)) { + if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset << " which extends past the end of the " << AllocSize << " byte alloca:\n" @@ -446,7 +500,7 @@ private: assert(II.getRawDest() == *U && "Pointer use is not the destination?"); ConstantInt *Length = dyn_cast(II.getLength()); if ((Length && Length->getValue() == 0) || - (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize))) + (IsOffsetKnown && Offset.uge(AllocSize))) // Zero-length mem transfer intrinsics can be ignored entirely. return markAsDead(II); @@ -461,14 +515,30 @@ private: void visitMemTransferInst(MemTransferInst &II) { ConstantInt *Length = dyn_cast(II.getLength()); - if ((Length && Length->getValue() == 0) || - (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize))) + if (Length && Length->getValue() == 0) // Zero-length mem transfer intrinsics can be ignored entirely. return markAsDead(II); + // Because we can visit these intrinsics twice, also check to see if the + // first time marked this instruction as dead. If so, skip it. + if (VisitedDeadInsts.count(&II)) + return; + if (!IsOffsetKnown) return PI.setAborted(&II); + // This side of the transfer is completely out-of-bounds, and so we can + // nuke the entire transfer. However, we also need to nuke the other side + // if already added to our partitions. + // FIXME: Yet another place we really should bypass this when + // instrumenting for ASan. + if (Offset.uge(AllocSize)) { + SmallDenseMap::iterator MTPI = MemTransferSliceMap.find(&II); + if (MTPI != MemTransferSliceMap.end()) + S.Slices[MTPI->second].kill(); + return markAsDead(II); + } + uint64_t RawOffset = Offset.getLimitedValue(); uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; @@ -487,7 +557,7 @@ private: // they both point to the same alloca. bool Inserted; SmallDenseMap::iterator MTPI; - llvm::tie(MTPI, Inserted) = + std::tie(MTPI, Inserted) = MemTransferSliceMap.insert(std::make_pair(&II, S.Slices.size())); unsigned PrevIdx = MTPI->second; if (!Inserted) { @@ -546,7 +616,7 @@ private: Size = 0; do { Instruction *I, *UsedI; - llvm::tie(UsedI, I) = Uses.pop_back_val(); + std::tie(UsedI, I) = Uses.pop_back_val(); if (LoadInst *LI = dyn_cast(I)) { Size = std::max(Size, DL.getTypeStoreSize(LI->getType())); @@ -568,13 +638,12 @@ private: return I; } - for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; - ++UI) - if (Visited.insert(cast(*UI))) - Uses.push_back(std::make_pair(I, cast(*UI))); + for (User *U : I->users()) + if (Visited.insert(cast(U))) + Uses.push_back(std::make_pair(I, cast(U))); } while (!Uses.empty()); - return 0; + return nullptr; } void visitPHINode(PHINode &PN) { @@ -597,8 +666,7 @@ private: // themselves which should be replaced with undef. // FIXME: This should instead be escaped in the event we're instrumenting // for address sanitization. - if ((Offset.isNegative() && (-Offset).uge(PHISize)) || - (!Offset.isNegative() && Offset.uge(AllocSize))) { + if (Offset.uge(AllocSize)) { S.DeadOperands.push_back(U); return; } @@ -638,8 +706,7 @@ private: // themselves which should be replaced with undef. // FIXME: This should instead be escaped in the event we're instrumenting // for address sanitization. - if ((Offset.isNegative() && Offset.uge(SelectSize)) || - (!Offset.isNegative() && Offset.uge(AllocSize))) { + if (Offset.uge(AllocSize)) { S.DeadOperands.push_back(U); return; } @@ -658,7 +725,7 @@ AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) AI(AI), #endif - PointerEscapingInstr(0) { + PointerEscapingInstr(nullptr) { SliceBuilder PB(DL, AI, *this); SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); if (PtrI.isEscaped() || PtrI.isAborted()) { @@ -674,6 +741,13 @@ AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) std::mem_fun_ref(&Slice::isDead)), Slices.end()); +#if __cplusplus >= 201103L && !defined(NDEBUG) + if (SROARandomShuffleSlices) { + std::mt19937 MT(static_cast(sys::TimeValue::now().msec())); + std::shuffle(Slices.begin(), Slices.end(), MT); + } +#endif + // Sort the uses. This arranges for the offsets to be in ascending order, // and the sizes to be in descending order. std::sort(Slices.begin(), Slices.end()); @@ -712,8 +786,10 @@ void AllocaSlices::print(raw_ostream &OS) const { print(OS, I); } -void AllocaSlices::dump(const_iterator I) const { print(dbgs(), I); } -void AllocaSlices::dump() const { print(dbgs()); } +LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { + print(dbgs(), I); +} +LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) @@ -741,12 +817,10 @@ public: // Retain the debug information attached to the alloca for use when // rewriting loads and stores. if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) { - for (Value::use_iterator UI = DebugNode->use_begin(), - UE = DebugNode->use_end(); - UI != UE; ++UI) - if (DbgDeclareInst *DDI = dyn_cast(*UI)) + for (User *U : DebugNode->users()) + if (DbgDeclareInst *DDI = dyn_cast(U)) DDIs.push_back(DDI); - else if (DbgValueInst *DVI = dyn_cast(*UI)) + else if (DbgValueInst *DVI = dyn_cast(U)) DVIs.push_back(DVI); } @@ -760,14 +834,35 @@ public: DVIs.pop_back_val()->eraseFromParent(); } - virtual bool isInstInList(Instruction *I, - const SmallVectorImpl &Insts) const { + bool isInstInList(Instruction *I, + const SmallVectorImpl &Insts) const override { + Value *Ptr; if (LoadInst *LI = dyn_cast(I)) - return LI->getOperand(0) == &AI; - return cast(I)->getPointerOperand() == &AI; + Ptr = LI->getOperand(0); + else + Ptr = cast(I)->getPointerOperand(); + + // Only used to detect cycles, which will be rare and quickly found as + // we're walking up a chain of defs rather than down through uses. + SmallPtrSet Visited; + + do { + if (Ptr == &AI) + return true; + + if (BitCastInst *BCI = dyn_cast(Ptr)) + Ptr = BCI->getOperand(0); + else if (GetElementPtrInst *GEPI = dyn_cast(Ptr)) + Ptr = GEPI->getPointerOperand(); + else + return false; + + } while (Visited.insert(Ptr)); + + return false; } - virtual void updateDebugInfo(Instruction *Inst) const { + void updateDebugInfo(Instruction *Inst) const override { for (SmallVectorImpl::const_iterator I = DDIs.begin(), E = DDIs.end(); I != E; ++I) { DbgDeclareInst *DDI = *I; @@ -779,7 +874,7 @@ public: for (SmallVectorImpl::const_iterator I = DVIs.begin(), E = DVIs.end(); I != E; ++I) { DbgValueInst *DVI = *I; - Value *Arg = 0; + Value *Arg = nullptr; if (StoreInst *SI = dyn_cast(Inst)) { // If an argument is zero extended then use argument directly. The ZExt // may be zapped by an optimization pass in future. @@ -875,13 +970,13 @@ class SROA : public FunctionPass { public: SROA(bool RequiresDomTree = true) : FunctionPass(ID), RequiresDomTree(RequiresDomTree), - C(0), DL(0), DT(0) { + C(nullptr), DL(nullptr), DT(nullptr) { initializeSROAPass(*PassRegistry::getPassRegistry()); } - bool runOnFunction(Function &F); - void getAnalysisUsage(AnalysisUsage &AU) const; + bool runOnFunction(Function &F) override; + void getAnalysisUsage(AnalysisUsage &AU) const override; - const char *getPassName() const { return "SROA"; } + const char *getPassName() const override { return "SROA"; } static char ID; private: @@ -894,6 +989,7 @@ private: ArrayRef SplitUses); bool splitAlloca(AllocaInst &AI, AllocaSlices &S); bool runOnAlloca(AllocaInst &AI); + void clobberUse(Use &U); void deleteDeadInstructions(SmallPtrSet &DeletedAllocas); bool promoteAllocas(Function &F); }; @@ -907,7 +1003,7 @@ FunctionPass *llvm::createSROAPass(bool RequiresDomTree) { INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates", false, false) -INITIALIZE_PASS_DEPENDENCY(DominatorTree) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates", false, false) @@ -916,7 +1012,12 @@ INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates", static Type *findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E, uint64_t EndOffset) { - Type *Ty = 0; + Type *Ty = nullptr; + bool TyIsCommon = true; + IntegerType *ITy = nullptr; + + // Note that we need to look at *every* alloca slice's Use to ensure we + // always get consistent results regardless of the order of slices. for (AllocaSlices::const_iterator I = B; I != E; ++I) { Use *U = I->getUse(); if (isa(*U->getUser())) @@ -924,34 +1025,37 @@ static Type *findCommonType(AllocaSlices::const_iterator B, if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) continue; - Type *UserTy = 0; - if (LoadInst *LI = dyn_cast(U->getUser())) + Type *UserTy = nullptr; + if (LoadInst *LI = dyn_cast(U->getUser())) { UserTy = LI->getType(); - else if (StoreInst *SI = dyn_cast(U->getUser())) + } else if (StoreInst *SI = dyn_cast(U->getUser())) { UserTy = SI->getValueOperand()->getType(); - else - return 0; // Bail if we have weird uses. + } - if (IntegerType *ITy = dyn_cast(UserTy)) { + if (IntegerType *UserITy = dyn_cast_or_null(UserTy)) { // If the type is larger than the partition, skip it. We only encounter // this for split integer operations where we want to use the type of the - // entity causing the split. - if (ITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) + // entity causing the split. Also skip if the type is not a byte width + // multiple. + if (UserITy->getBitWidth() % 8 != 0 || + UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) continue; - // If we have found an integer type use covering the alloca, use that - // regardless of the other types, as integers are often used for a - // "bucket - // of bits" type. - return ITy; + // Track the largest bitwidth integer type used in this way in case there + // is no common type. + if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) + ITy = UserITy; } - if (Ty && Ty != UserTy) - return 0; - - Ty = UserTy; + // To avoid depending on the order of slices, Ty and TyIsCommon must not + // depend on types skipped above. + if (!UserTy || (Ty && Ty != UserTy)) + TyIsCommon = false; // Give up on anything but an iN type. + else + Ty = UserTy; } - return Ty; + + return TyIsCommon ? Ty : ITy; } /// PHI instructions that use an alloca and are subsequently loaded can be @@ -973,7 +1077,7 @@ static Type *findCommonType(AllocaSlices::const_iterator B, /// FIXME: This should be hoisted into a generic utility, likely in /// Transforms/Util/Local.h static bool isSafePHIToSpeculate(PHINode &PN, - const DataLayout *DL = 0) { + const DataLayout *DL = nullptr) { // For now, we can only do this promotion if the load is in the same block // as the PHI, and if there are no stores between the phi and load. // TODO: Allow recursive phi users. @@ -981,10 +1085,9 @@ static bool isSafePHIToSpeculate(PHINode &PN, BasicBlock *BB = PN.getParent(); unsigned MaxAlign = 0; bool HaveLoad = false; - for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); UI != UE; - ++UI) { - LoadInst *LI = dyn_cast(*UI); - if (LI == 0 || !LI->isSimple()) + for (User *U : PN.users()) { + LoadInst *LI = dyn_cast(U); + if (!LI || !LI->isSimple()) return false; // For now we only allow loads in the same block as the PHI. This is @@ -1027,7 +1130,7 @@ static bool isSafePHIToSpeculate(PHINode &PN, // If this pointer is always safe to load, or if we can prove that there // is already a load in the block, then we can move the load to the pred // block. - if (InVal->isDereferenceablePointer() || + if (InVal->isDereferenceablePointer(DL) || isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL)) continue; @@ -1045,15 +1148,17 @@ static void speculatePHINodeLoads(PHINode &PN) { PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), PN.getName() + ".sroa.speculated"); - // Get the TBAA tag and alignment to use from one of the loads. It doesn't + // Get the AA tags and alignment to use from one of the loads. It doesn't // matter which one we get and if any differ. - LoadInst *SomeLoad = cast(*PN.use_begin()); - MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa); + LoadInst *SomeLoad = cast(PN.user_back()); + + AAMDNodes AATags; + SomeLoad->getAAMetadata(AATags); unsigned Align = SomeLoad->getAlignment(); // Rewrite all loads of the PN to use the new PHI. while (!PN.use_empty()) { - LoadInst *LI = cast(*PN.use_begin()); + LoadInst *LI = cast(PN.user_back()); LI->replaceAllUsesWith(NewPN); LI->eraseFromParent(); } @@ -1069,8 +1174,8 @@ static void speculatePHINodeLoads(PHINode &PN) { InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName())); ++NumLoadsSpeculated; Load->setAlignment(Align); - if (TBAATag) - Load->setMetadata(LLVMContext::MD_tbaa, TBAATag); + if (AATags) + Load->setAAMetadata(AATags); NewPN->addIncoming(Load, Pred); } @@ -1091,16 +1196,16 @@ static void speculatePHINodeLoads(PHINode &PN) { /// /// We can do this to a select if its only uses are loads and if the operand /// to the select can be loaded unconditionally. -static bool isSafeSelectToSpeculate(SelectInst &SI, const DataLayout *DL = 0) { +static bool isSafeSelectToSpeculate(SelectInst &SI, + const DataLayout *DL = nullptr) { Value *TValue = SI.getTrueValue(); Value *FValue = SI.getFalseValue(); - bool TDerefable = TValue->isDereferenceablePointer(); - bool FDerefable = FValue->isDereferenceablePointer(); + bool TDerefable = TValue->isDereferenceablePointer(DL); + bool FDerefable = FValue->isDereferenceablePointer(DL); - for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); UI != UE; - ++UI) { - LoadInst *LI = dyn_cast(*UI); - if (LI == 0 || !LI->isSimple()) + for (User *U : SI.users()) { + LoadInst *LI = dyn_cast(U); + if (!LI || !LI->isSimple()) return false; // Both operands to the select need to be dereferencable, either @@ -1125,7 +1230,7 @@ static void speculateSelectInstLoads(SelectInst &SI) { Value *FV = SI.getFalseValue(); // Replace the loads of the select with a select of two loads. while (!SI.use_empty()) { - LoadInst *LI = cast(*SI.use_begin()); + LoadInst *LI = cast(SI.user_back()); assert(LI->isSimple() && "We only speculate simple loads"); IRB.SetInsertPoint(LI); @@ -1135,12 +1240,15 @@ static void speculateSelectInstLoads(SelectInst &SI) { IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false"); NumLoadsSpeculated += 2; - // Transfer alignment and TBAA info if present. + // Transfer alignment and AA info if present. TL->setAlignment(LI->getAlignment()); FL->setAlignment(LI->getAlignment()); - if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) { - TL->setMetadata(LLVMContext::MD_tbaa, Tag); - FL->setMetadata(LLVMContext::MD_tbaa, Tag); + + AAMDNodes Tags; + LI->getAAMetadata(Tags); + if (Tags) { + TL->setAAMetadata(Tags); + FL->setAAMetadata(Tags); } Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, @@ -1158,7 +1266,7 @@ static void speculateSelectInstLoads(SelectInst &SI) { /// This will return the BasePtr if that is valid, or build a new GEP /// instruction using the IRBuilder if GEP-ing is needed. static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, - SmallVectorImpl &Indices) { + SmallVectorImpl &Indices, Twine NamePrefix) { if (Indices.empty()) return BasePtr; @@ -1167,7 +1275,7 @@ static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, if (Indices.size() == 1 && cast(Indices.back())->isZero()) return BasePtr; - return IRB.CreateInBoundsGEP(BasePtr, Indices, "idx"); + return IRB.CreateInBoundsGEP(BasePtr, Indices, NamePrefix + "sroa_idx"); } /// \brief Get a natural GEP off of the BasePtr walking through Ty toward @@ -1181,9 +1289,13 @@ static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, /// indicated by Indices to have the correct offset. static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, Value *BasePtr, Type *Ty, Type *TargetTy, - SmallVectorImpl &Indices) { + SmallVectorImpl &Indices, + Twine NamePrefix) { if (Ty == TargetTy) - return buildGEP(IRB, BasePtr, Indices); + return buildGEP(IRB, BasePtr, Indices, NamePrefix); + + // Pointer size to use for the indices. + unsigned PtrSize = DL.getPointerTypeSizeInBits(BasePtr->getType()); // See if we can descend into a struct and locate a field with the correct // type. @@ -1192,11 +1304,13 @@ static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, do { if (ElementTy->isPointerTy()) break; - if (SequentialType *SeqTy = dyn_cast(ElementTy)) { - ElementTy = SeqTy->getElementType(); - // Note that we use the default address space as this index is over an - // array or a vector, not a pointer. - Indices.push_back(IRB.getInt(APInt(DL.getPointerSizeInBits(0), 0))); + + if (ArrayType *ArrayTy = dyn_cast(ElementTy)) { + ElementTy = ArrayTy->getElementType(); + Indices.push_back(IRB.getIntN(PtrSize, 0)); + } else if (VectorType *VectorTy = dyn_cast(ElementTy)) { + ElementTy = VectorTy->getElementType(); + Indices.push_back(IRB.getInt32(0)); } else if (StructType *STy = dyn_cast(ElementTy)) { if (STy->element_begin() == STy->element_end()) break; // Nothing left to descend into. @@ -1210,7 +1324,7 @@ static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, if (ElementTy != TargetTy) Indices.erase(Indices.end() - NumLayers, Indices.end()); - return buildGEP(IRB, BasePtr, Indices); + return buildGEP(IRB, BasePtr, Indices, NamePrefix); } /// \brief Recursively compute indices for a natural GEP. @@ -1220,29 +1334,32 @@ static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, Type *Ty, APInt &Offset, Type *TargetTy, - SmallVectorImpl &Indices) { + SmallVectorImpl &Indices, + Twine NamePrefix) { if (Offset == 0) - return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices); + return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices, NamePrefix); // We can't recurse through pointer types. if (Ty->isPointerTy()) - return 0; + return nullptr; // We try to analyze GEPs over vectors here, but note that these GEPs are // extremely poorly defined currently. The long-term goal is to remove GEPing // over a vector from the IR completely. if (VectorType *VecTy = dyn_cast(Ty)) { unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType()); - if (ElementSizeInBits % 8) - return 0; // GEPs over non-multiple of 8 size vector elements are invalid. + if (ElementSizeInBits % 8 != 0) { + // GEPs over non-multiple of 8 size vector elements are invalid. + return nullptr; + } APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); APInt NumSkippedElements = Offset.sdiv(ElementSize); if (NumSkippedElements.ugt(VecTy->getNumElements())) - return 0; + return nullptr; Offset -= NumSkippedElements * ElementSize; Indices.push_back(IRB.getInt(NumSkippedElements)); return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(), - Offset, TargetTy, Indices); + Offset, TargetTy, Indices, NamePrefix); } if (ArrayType *ArrTy = dyn_cast(Ty)) { @@ -1250,31 +1367,31 @@ static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL, APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); APInt NumSkippedElements = Offset.sdiv(ElementSize); if (NumSkippedElements.ugt(ArrTy->getNumElements())) - return 0; + return nullptr; Offset -= NumSkippedElements * ElementSize; Indices.push_back(IRB.getInt(NumSkippedElements)); return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, - Indices); + Indices, NamePrefix); } StructType *STy = dyn_cast(Ty); if (!STy) - return 0; + return nullptr; const StructLayout *SL = DL.getStructLayout(STy); uint64_t StructOffset = Offset.getZExtValue(); if (StructOffset >= SL->getSizeInBytes()) - return 0; + return nullptr; unsigned Index = SL->getElementContainingOffset(StructOffset); Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); Type *ElementTy = STy->getElementType(Index); if (Offset.uge(DL.getTypeAllocSize(ElementTy))) - return 0; // The offset points into alignment padding. + return nullptr; // The offset points into alignment padding. Indices.push_back(IRB.getInt32(Index)); return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, - Indices); + Indices, NamePrefix); } /// \brief Get a natural GEP from a base pointer to a particular offset and @@ -1289,26 +1406,27 @@ static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL, /// If no natural GEP can be constructed, this function returns null. static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, APInt Offset, Type *TargetTy, - SmallVectorImpl &Indices) { + SmallVectorImpl &Indices, + Twine NamePrefix) { PointerType *Ty = cast(Ptr->getType()); // Don't consider any GEPs through an i8* as natural unless the TargetTy is // an i8. - if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8)) - return 0; + if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8)) + return nullptr; Type *ElementTy = Ty->getElementType(); if (!ElementTy->isSized()) - return 0; // We can't GEP through an unsized element. + return nullptr; // We can't GEP through an unsized element. APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); if (ElementSize == 0) - return 0; // Zero-length arrays can't help us build a natural GEP. + return nullptr; // Zero-length arrays can't help us build a natural GEP. APInt NumSkippedElements = Offset.sdiv(ElementSize); Offset -= NumSkippedElements * ElementSize; Indices.push_back(IRB.getInt(NumSkippedElements)); return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, - Indices); + Indices, NamePrefix); } /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the @@ -1326,8 +1444,9 @@ static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, /// properties. The algorithm tries to fold as many constant indices into /// a single GEP as possible, thus making each GEP more independent of the /// surrounding code. -static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, - Value *Ptr, APInt Offset, Type *PointerTy) { +static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, + APInt Offset, Type *PointerTy, + Twine NamePrefix) { // Even though we don't look through PHI nodes, we could be called on an // instruction in an unreachable block, which may be on a cycle. SmallPtrSet Visited; @@ -1337,11 +1456,11 @@ static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, // We may end up computing an offset pointer that has the wrong type. If we // never are able to compute one directly that has the correct type, we'll // fall back to it, so keep it around here. - Value *OffsetPtr = 0; + Value *OffsetPtr = nullptr; // Remember any i8 pointer we come across to re-use if we need to do a raw // byte offset. - Value *Int8Ptr = 0; + Value *Int8Ptr = nullptr; APInt Int8PtrOffset(Offset.getBitWidth(), 0); Type *TargetTy = PointerTy->getPointerElementType(); @@ -1361,7 +1480,7 @@ static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, // See if we can perform a natural GEP here. Indices.clear(); if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, - Indices)) { + Indices, NamePrefix)) { if (P->getType() == PointerTy) { // Zap any offset pointer that we ended up computing in previous rounds. if (OffsetPtr && OffsetPtr->use_empty()) @@ -1395,20 +1514,21 @@ static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, if (!OffsetPtr) { if (!Int8Ptr) { - Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(), - "raw_cast"); + Int8Ptr = IRB.CreateBitCast( + Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()), + NamePrefix + "sroa_raw_cast"); Int8PtrOffset = Offset; } OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr : IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset), - "raw_idx"); + NamePrefix + "sroa_raw_idx"); } Ptr = OffsetPtr; // On the off chance we were targeting i8*, guard the bitcast here. if (Ptr->getType() != PointerTy) - Ptr = IRB.CreateBitCast(Ptr, PointerTy, "cast"); + Ptr = IRB.CreateBitCast(Ptr, PointerTy, NamePrefix + "sroa_cast"); return Ptr; } @@ -1431,6 +1551,10 @@ static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) return false; + // We can convert pointers to integers and vice-versa. Same for vectors + // of pointers and integers. + OldTy = OldTy->getScalarType(); + NewTy = NewTy->getScalarType(); if (NewTy->isPointerTy() || OldTy->isPointerTy()) { if (NewTy->isPointerTy() && OldTy->isPointerTy()) return true; @@ -1449,21 +1573,53 @@ static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test /// two types for viability with this routine. static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, - Type *Ty) { - assert(canConvertValue(DL, V->getType(), Ty) && - "Value not convertable to type"); - if (V->getType() == Ty) + Type *NewTy) { + Type *OldTy = V->getType(); + assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); + + if (OldTy == NewTy) return V; - if (IntegerType *OldITy = dyn_cast(V->getType())) - if (IntegerType *NewITy = dyn_cast(Ty)) + + if (IntegerType *OldITy = dyn_cast(OldTy)) + if (IntegerType *NewITy = dyn_cast(NewTy)) if (NewITy->getBitWidth() > OldITy->getBitWidth()) return IRB.CreateZExt(V, NewITy); - if (V->getType()->isIntegerTy() && Ty->isPointerTy()) - return IRB.CreateIntToPtr(V, Ty); - if (V->getType()->isPointerTy() && Ty->isIntegerTy()) - return IRB.CreatePtrToInt(V, Ty); - return IRB.CreateBitCast(V, Ty); + // See if we need inttoptr for this type pair. A cast involving both scalars + // and vectors requires and additional bitcast. + if (OldTy->getScalarType()->isIntegerTy() && + NewTy->getScalarType()->isPointerTy()) { + // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* + if (OldTy->isVectorTy() && !NewTy->isVectorTy()) + return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), + NewTy); + + // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> + if (!OldTy->isVectorTy() && NewTy->isVectorTy()) + return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), + NewTy); + + return IRB.CreateIntToPtr(V, NewTy); + } + + // See if we need ptrtoint for this type pair. A cast involving both scalars + // and vectors requires and additional bitcast. + if (OldTy->getScalarType()->isPointerTy() && + NewTy->getScalarType()->isIntegerTy()) { + // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 + if (OldTy->isVectorTy() && !NewTy->isVectorTy()) + return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), + NewTy); + + // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> + if (!OldTy->isVectorTy() && NewTy->isVectorTy()) + return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), + NewTy); + + return IRB.CreatePtrToInt(V, NewTy); + } + + return IRB.CreateBitCast(V, NewTy); } /// \brief Test whether the given slice use can be promoted to a vector. @@ -1503,6 +1659,10 @@ static bool isVectorPromotionViableForSlice( return false; if (!I->isSplittable()) return false; // Skip any unsplittable intrinsics. + } else if (IntrinsicInst *II = dyn_cast(U->getUser())) { + if (II->getIntrinsicID() != Intrinsic::lifetime_start && + II->getIntrinsicID() != Intrinsic::lifetime_end) + return false; } else if (U->get()->getType()->getPointerElementType()->isStructTy()) { // Disable vector promotion when there are loads or stores of an FCA. return false; @@ -1865,16 +2025,22 @@ class AllocaSliceRewriter : public InstVisitor { // integer type will be stored here for easy access during rewriting. IntegerType *IntTy; - // The offset of the slice currently being rewritten. + // The original offset of the slice currently being rewritten relative to + // the original alloca. uint64_t BeginOffset, EndOffset; + // The new offsets of the slice currently being rewritten relative to the + // original alloca. + uint64_t NewBeginOffset, NewEndOffset; + + uint64_t SliceSize; bool IsSplittable; bool IsSplit; Use *OldUse; Instruction *OldPtr; - // Output members carrying state about the result of visiting and rewriting - // the slice of the alloca. - bool IsUsedByRewrittenSpeculatableInstructions; + // Track post-rewrite users which are PHI nodes and Selects. + SmallPtrSetImpl &PHIUsers; + SmallPtrSetImpl &SelectUsers; // Utility IR builder, whose name prefix is setup for each visited use, and // the insertion point is set to point to the user. @@ -1883,22 +2049,25 @@ class AllocaSliceRewriter : public InstVisitor { public: AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &S, SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI, - uint64_t NewBeginOffset, uint64_t NewEndOffset, - bool IsVectorPromotable = false, - bool IsIntegerPromotable = false) + uint64_t NewAllocaBeginOffset, + uint64_t NewAllocaEndOffset, bool IsVectorPromotable, + bool IsIntegerPromotable, + SmallPtrSetImpl &PHIUsers, + SmallPtrSetImpl &SelectUsers) : DL(DL), S(S), Pass(Pass), OldAI(OldAI), NewAI(NewAI), - NewAllocaBeginOffset(NewBeginOffset), NewAllocaEndOffset(NewEndOffset), + NewAllocaBeginOffset(NewAllocaBeginOffset), + NewAllocaEndOffset(NewAllocaEndOffset), NewAllocaTy(NewAI.getAllocatedType()), - VecTy(IsVectorPromotable ? cast(NewAllocaTy) : 0), - ElementTy(VecTy ? VecTy->getElementType() : 0), + VecTy(IsVectorPromotable ? cast(NewAllocaTy) : nullptr), + ElementTy(VecTy ? VecTy->getElementType() : nullptr), ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0), IntTy(IsIntegerPromotable ? Type::getIntNTy( NewAI.getContext(), DL.getTypeSizeInBits(NewAI.getAllocatedType())) - : 0), + : nullptr), BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(), - OldPtr(), IsUsedByRewrittenSpeculatableInstructions(false), + OldPtr(), PHIUsers(PHIUsers), SelectUsers(SelectUsers), IRB(NewAI.getContext(), ConstantFolder()) { if (VecTy) { assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 && @@ -1917,6 +2086,14 @@ public: IsSplit = BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; + // Compute the intersecting offset range. + assert(BeginOffset < NewAllocaEndOffset); + assert(EndOffset > NewAllocaBeginOffset); + NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); + NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); + + SliceSize = NewEndOffset - NewBeginOffset; + OldUse = I->getUse(); OldPtr = cast(OldUse->get()); @@ -1931,20 +2108,6 @@ public: return CanSROA; } - /// \brief Query whether this slice is used by speculatable instructions after - /// rewriting. - /// - /// These instructions (PHIs and Selects currently) require the alloca slice - /// to run back through the rewriter. Thus, they are promotable, but not on - /// this iteration. This is distinct from a slice which is unpromotable for - /// some other reason, in which case we don't even want to perform the - /// speculation. This can be querried at any time and reflects whether (at - /// that point) a visit call has rewritten a speculatable instruction on the - /// current slice. - bool isUsedByRewrittenSpeculatableInstructions() const { - return IsUsedByRewrittenSpeculatableInstructions; - } - private: // Make sure the other visit overloads are visible. using Base::visit; @@ -1955,30 +2118,53 @@ private: llvm_unreachable("No rewrite rule for this instruction!"); } - Value *getAdjustedAllocaPtr(IRBuilderTy &IRB, uint64_t Offset, - Type *PointerTy) { - assert(Offset >= NewAllocaBeginOffset); - return getAdjustedPtr(IRB, DL, &NewAI, APInt(DL.getPointerSizeInBits(), - Offset - NewAllocaBeginOffset), - PointerTy); + Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { + // Note that the offset computation can use BeginOffset or NewBeginOffset + // interchangeably for unsplit slices. + assert(IsSplit || BeginOffset == NewBeginOffset); + uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; + +#ifndef NDEBUG + StringRef OldName = OldPtr->getName(); + // Skip through the last '.sroa.' component of the name. + size_t LastSROAPrefix = OldName.rfind(".sroa."); + if (LastSROAPrefix != StringRef::npos) { + OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); + // Look for an SROA slice index. + size_t IndexEnd = OldName.find_first_not_of("0123456789"); + if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { + // Strip the index and look for the offset. + OldName = OldName.substr(IndexEnd + 1); + size_t OffsetEnd = OldName.find_first_not_of("0123456789"); + if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') + // Strip the offset. + OldName = OldName.substr(OffsetEnd + 1); + } + } + // Strip any SROA suffixes as well. + OldName = OldName.substr(0, OldName.find(".sroa_")); +#endif + + return getAdjustedPtr(IRB, DL, &NewAI, + APInt(DL.getPointerSizeInBits(), Offset), PointerTy, +#ifndef NDEBUG + Twine(OldName) + "." +#else + Twine() +#endif + ); } - /// \brief Compute suitable alignment to access an offset into the new alloca. - unsigned getOffsetAlign(uint64_t Offset) { + /// \brief Compute suitable alignment to access this slice of the *new* alloca. + /// + /// You can optionally pass a type to this routine and if that type's ABI + /// alignment is itself suitable, this will return zero. + unsigned getSliceAlign(Type *Ty = nullptr) { unsigned NewAIAlign = NewAI.getAlignment(); if (!NewAIAlign) NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType()); - return MinAlign(NewAIAlign, Offset); - } - - /// \brief Compute suitable alignment to access a type at an offset of the - /// new alloca. - /// - /// \returns zero if the type's ABI alignment is a suitable alignment, - /// otherwise returns the maximal suitable alignment. - unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) { - unsigned Align = getOffsetAlign(Offset); - return Align == DL.getABITypeAlignment(Ty) ? 0 : Align; + unsigned Align = MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset); + return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align; } unsigned getIndex(uint64_t Offset) { @@ -1996,8 +2182,7 @@ private: Pass.DeadInsts.insert(I); } - Value *rewriteVectorizedLoadInst(uint64_t NewBeginOffset, - uint64_t NewEndOffset) { + Value *rewriteVectorizedLoadInst() { unsigned BeginIndex = getIndex(NewBeginOffset); unsigned EndIndex = getIndex(NewEndOffset); assert(EndIndex > BeginIndex && "Empty vector!"); @@ -2007,8 +2192,7 @@ private: return extractVector(IRB, V, BeginIndex, EndIndex, "vec"); } - Value *rewriteIntegerLoad(LoadInst &LI, uint64_t NewBeginOffset, - uint64_t NewEndOffset) { + Value *rewriteIntegerLoad(LoadInst &LI) { assert(IntTy && "We cannot insert an integer to the alloca"); assert(!LI.isVolatile()); Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), @@ -2027,32 +2211,23 @@ private: Value *OldOp = LI.getOperand(0); assert(OldOp == OldPtr); - // Compute the intersecting offset range. - assert(BeginOffset < NewAllocaEndOffset); - assert(EndOffset > NewAllocaBeginOffset); - uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); - uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); - - uint64_t Size = NewEndOffset - NewBeginOffset; - - Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), Size * 8) + Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) : LI.getType(); bool IsPtrAdjusted = false; Value *V; if (VecTy) { - V = rewriteVectorizedLoadInst(NewBeginOffset, NewEndOffset); + V = rewriteVectorizedLoadInst(); } else if (IntTy && LI.getType()->isIntegerTy()) { - V = rewriteIntegerLoad(LI, NewBeginOffset, NewEndOffset); + V = rewriteIntegerLoad(LI); } else if (NewBeginOffset == NewAllocaBeginOffset && canConvertValue(DL, NewAllocaTy, LI.getType())) { V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), - LI.isVolatile(), "load"); + LI.isVolatile(), LI.getName()); } else { Type *LTy = TargetTy->getPointerTo(); - V = IRB.CreateAlignedLoad( - getAdjustedAllocaPtr(IRB, NewBeginOffset, LTy), - getOffsetTypeAlign(TargetTy, NewBeginOffset - NewAllocaBeginOffset), - LI.isVolatile(), "load"); + V = IRB.CreateAlignedLoad(getNewAllocaSlicePtr(IRB, LTy), + getSliceAlign(TargetTy), LI.isVolatile(), + LI.getName()); IsPtrAdjusted = true; } V = convertValue(DL, IRB, V, TargetTy); @@ -2061,13 +2236,13 @@ private: assert(!LI.isVolatile()); assert(LI.getType()->isIntegerTy() && "Only integer type loads and stores are split"); - assert(Size < DL.getTypeStoreSize(LI.getType()) && + assert(SliceSize < DL.getTypeStoreSize(LI.getType()) && "Split load isn't smaller than original load"); assert(LI.getType()->getIntegerBitWidth() == DL.getTypeStoreSizeInBits(LI.getType()) && "Non-byte-multiple bit width"); // Move the insertion point just past the load so that we can refer to it. - IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI))); + IRB.SetInsertPoint(std::next(BasicBlock::iterator(&LI))); // Create a placeholder value with the same type as LI to use as the // basis for the new value. This allows us to replace the uses of LI with // the computed value, and then replace the placeholder with LI, leaving @@ -2089,9 +2264,7 @@ private: return !LI.isVolatile() && !IsPtrAdjusted; } - bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, - uint64_t NewBeginOffset, - uint64_t NewEndOffset) { + bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp) { if (V->getType() != VecTy) { unsigned BeginIndex = getIndex(NewBeginOffset); unsigned EndIndex = getIndex(NewEndOffset); @@ -2117,8 +2290,7 @@ private: return true; } - bool rewriteIntegerStore(Value *V, StoreInst &SI, - uint64_t NewBeginOffset, uint64_t NewEndOffset) { + bool rewriteIntegerStore(Value *V, StoreInst &SI) { assert(IntTy && "We cannot extract an integer from the alloca"); assert(!SI.isVolatile()); if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) { @@ -2151,30 +2323,22 @@ private: if (AllocaInst *AI = dyn_cast(V->stripInBoundsOffsets())) Pass.PostPromotionWorklist.insert(AI); - // Compute the intersecting offset range. - assert(BeginOffset < NewAllocaEndOffset); - assert(EndOffset > NewAllocaBeginOffset); - uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); - uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); - - uint64_t Size = NewEndOffset - NewBeginOffset; - if (Size < DL.getTypeStoreSize(V->getType())) { + if (SliceSize < DL.getTypeStoreSize(V->getType())) { assert(!SI.isVolatile()); assert(V->getType()->isIntegerTy() && "Only integer type loads and stores are split"); assert(V->getType()->getIntegerBitWidth() == DL.getTypeStoreSizeInBits(V->getType()) && "Non-byte-multiple bit width"); - IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8); + IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset, "extract"); } if (VecTy) - return rewriteVectorizedStoreInst(V, SI, OldOp, NewBeginOffset, - NewEndOffset); + return rewriteVectorizedStoreInst(V, SI, OldOp); if (IntTy && V->getType()->isIntegerTy()) - return rewriteIntegerStore(V, SI, NewBeginOffset, NewEndOffset); + return rewriteIntegerStore(V, SI); StoreInst *NewSI; if (NewBeginOffset == NewAllocaBeginOffset && @@ -2184,12 +2348,9 @@ private: NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), SI.isVolatile()); } else { - Value *NewPtr = getAdjustedAllocaPtr(IRB, NewBeginOffset, - V->getType()->getPointerTo()); - NewSI = IRB.CreateAlignedStore( - V, NewPtr, getOffsetTypeAlign( - V->getType(), NewBeginOffset - NewAllocaBeginOffset), - SI.isVolatile()); + Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo()); + NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()), + SI.isVolatile()); } (void)NewSI; Pass.DeadInsts.insert(&SI); @@ -2241,11 +2402,10 @@ private: // pointer to the new alloca. if (!isa(II.getLength())) { assert(!IsSplit); - assert(BeginOffset >= NewAllocaBeginOffset); - II.setDest( - getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType())); + assert(NewBeginOffset == BeginOffset); + II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); Type *CstTy = II.getAlignmentCst()->getType(); - II.setAlignment(ConstantInt::get(CstTy, getOffsetAlign(BeginOffset))); + II.setAlignment(ConstantInt::get(CstTy, getSliceAlign())); deleteIfTriviallyDead(OldPtr); return false; @@ -2257,13 +2417,6 @@ private: Type *AllocaTy = NewAI.getAllocatedType(); Type *ScalarTy = AllocaTy->getScalarType(); - // Compute the intersecting offset range. - assert(BeginOffset < NewAllocaEndOffset); - assert(EndOffset > NewAllocaBeginOffset); - uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); - uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); - uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset; - // If this doesn't map cleanly onto the alloca type, and that type isn't // a single value type, just emit a memset. if (!VecTy && !IntTy && @@ -2275,8 +2428,8 @@ private: Type *SizeTy = II.getLength()->getType(); Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); CallInst *New = IRB.CreateMemSet( - getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getRawDest()->getType()), - II.getValue(), Size, getOffsetAlign(SliceOffset), II.isVolatile()); + getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, + getSliceAlign(), II.isVolatile()); (void)New; DEBUG(dbgs() << " to: " << *New << "\n"); return false; @@ -2353,25 +2506,11 @@ private: DEBUG(dbgs() << " original: " << II << "\n"); - // Compute the intersecting offset range. - assert(BeginOffset < NewAllocaEndOffset); - assert(EndOffset > NewAllocaBeginOffset); - uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); - uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); - - assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr); - bool IsDest = II.getRawDest() == OldPtr; + bool IsDest = &II.getRawDestUse() == OldUse; + assert((IsDest && II.getRawDest() == OldPtr) || + (!IsDest && II.getRawSource() == OldPtr)); - // Compute the relative offset within the transfer. - unsigned IntPtrWidth = DL.getPointerSizeInBits(); - APInt RelOffset(IntPtrWidth, NewBeginOffset - BeginOffset); - - unsigned Align = II.getAlignment(); - uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset; - if (Align > 1) - Align = - MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(), - MinAlign(II.getAlignment(), getOffsetAlign(SliceOffset))); + unsigned SliceAlign = getSliceAlign(); // For unsplit intrinsics, we simply modify the source and destination // pointers in place. This isn't just an optimization, it is a matter of @@ -2381,19 +2520,20 @@ private: // memcpy, and so simply updating the pointers is the necessary for us to // update both source and dest of a single call. if (!IsSplittable) { - Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource(); + Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); if (IsDest) - II.setDest( - getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType())); + II.setDest(AdjustedPtr); else - II.setSource(getAdjustedAllocaPtr(IRB, BeginOffset, - II.getRawSource()->getType())); + II.setSource(AdjustedPtr); - Type *CstTy = II.getAlignmentCst()->getType(); - II.setAlignment(ConstantInt::get(CstTy, Align)); + if (II.getAlignment() > SliceAlign) { + Type *CstTy = II.getAlignmentCst()->getType(); + II.setAlignment( + ConstantInt::get(CstTy, MinAlign(II.getAlignment(), SliceAlign))); + } DEBUG(dbgs() << " to: " << II << "\n"); - deleteIfTriviallyDead(OldOp); + deleteIfTriviallyDead(OldPtr); return false; } // For split transfer intrinsics we have an incredibly useful assurance: @@ -2429,37 +2569,39 @@ private: // alloca that should be re-examined after rewriting this instruction. Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); if (AllocaInst *AI - = dyn_cast(OtherPtr->stripInBoundsOffsets())) + = dyn_cast(OtherPtr->stripInBoundsOffsets())) { + assert(AI != &OldAI && AI != &NewAI && + "Splittable transfers cannot reach the same alloca on both ends."); Pass.Worklist.insert(AI); + } - if (EmitMemCpy) { - Type *OtherPtrTy = IsDest ? II.getRawSource()->getType() - : II.getRawDest()->getType(); + Type *OtherPtrTy = OtherPtr->getType(); + unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); + // Compute the relative offset for the other pointer within the transfer. + unsigned IntPtrWidth = DL.getPointerSizeInBits(OtherAS); + APInt OtherOffset(IntPtrWidth, NewBeginOffset - BeginOffset); + unsigned OtherAlign = MinAlign(II.getAlignment() ? II.getAlignment() : 1, + OtherOffset.zextOrTrunc(64).getZExtValue()); + + if (EmitMemCpy) { // Compute the other pointer, folding as much as possible to produce // a single, simple GEP in most cases. - OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy); + OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, + OtherPtr->getName() + "."); - Value *OurPtr = getAdjustedAllocaPtr( - IRB, NewBeginOffset, - IsDest ? II.getRawDest()->getType() : II.getRawSource()->getType()); + Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); Type *SizeTy = II.getLength()->getType(); Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); - CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr, - IsDest ? OtherPtr : OurPtr, - Size, Align, II.isVolatile()); + CallInst *New = IRB.CreateMemCpy( + IsDest ? OurPtr : OtherPtr, IsDest ? OtherPtr : OurPtr, Size, + MinAlign(SliceAlign, OtherAlign), II.isVolatile()); (void)New; DEBUG(dbgs() << " to: " << *New << "\n"); return false; } - // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy - // is equivalent to 1, but that isn't true if we end up rewriting this as - // a load or store. - if (!Align) - Align = 1; - bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && NewEndOffset == NewAllocaEndOffset; uint64_t Size = NewEndOffset - NewBeginOffset; @@ -2467,24 +2609,32 @@ private: unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; unsigned NumElements = EndIndex - BeginIndex; IntegerType *SubIntTy - = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0; + = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : nullptr; - Type *OtherPtrTy = NewAI.getType(); + // Reset the other pointer type to match the register type we're going to + // use, but using the address space of the original other pointer. if (VecTy && !IsWholeAlloca) { if (NumElements == 1) OtherPtrTy = VecTy->getElementType(); else OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements); - OtherPtrTy = OtherPtrTy->getPointerTo(); + OtherPtrTy = OtherPtrTy->getPointerTo(OtherAS); } else if (IntTy && !IsWholeAlloca) { - OtherPtrTy = SubIntTy->getPointerTo(); + OtherPtrTy = SubIntTy->getPointerTo(OtherAS); + } else { + OtherPtrTy = NewAllocaTy->getPointerTo(OtherAS); } - Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy); + Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, + OtherPtr->getName() + "."); + unsigned SrcAlign = OtherAlign; Value *DstPtr = &NewAI; - if (!IsDest) + unsigned DstAlign = SliceAlign; + if (!IsDest) { std::swap(SrcPtr, DstPtr); + std::swap(SrcAlign, DstAlign); + } Value *Src; if (VecTy && !IsWholeAlloca && !IsDest) { @@ -2498,7 +2648,7 @@ private: uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); } else { - Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(), + Src = IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(), "copyload"); } @@ -2516,7 +2666,7 @@ private: } StoreInst *Store = cast( - IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile())); + IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); (void)Store; DEBUG(dbgs() << " to: " << *Store << "\n"); return !II.isVolatile(); @@ -2528,20 +2678,13 @@ private: DEBUG(dbgs() << " original: " << II << "\n"); assert(II.getArgOperand(1) == OldPtr); - // Compute the intersecting offset range. - assert(BeginOffset < NewAllocaEndOffset); - assert(EndOffset > NewAllocaBeginOffset); - uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); - uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); - // Record this instruction for deletion. Pass.DeadInsts.insert(&II); ConstantInt *Size = ConstantInt::get(cast(II.getArgOperand(0)->getType()), NewEndOffset - NewBeginOffset); - Value *Ptr = - getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getArgOperand(1)->getType()); + Value *Ptr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); Value *New; if (II.getIntrinsicID() == Intrinsic::lifetime_start) New = IRB.CreateLifetimeStart(Ptr, Size); @@ -2562,28 +2705,22 @@ private: // as local as possible to the PHI. To do that, we re-use the location of // the old pointer, which necessarily must be in the right position to // dominate the PHI. - IRBuilderTy PtrBuilder(OldPtr); - PtrBuilder.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + - "."); + IRBuilderTy PtrBuilder(IRB); + PtrBuilder.SetInsertPoint(OldPtr); + PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc()); - Value *NewPtr = - getAdjustedAllocaPtr(PtrBuilder, BeginOffset, OldPtr->getType()); + Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType()); // Replace the operands which were using the old pointer. std::replace(PN.op_begin(), PN.op_end(), cast(OldPtr), NewPtr); DEBUG(dbgs() << " to: " << PN << "\n"); deleteIfTriviallyDead(OldPtr); - // Check whether we can speculate this PHI node, and if so remember that - // fact and queue it up for another iteration after the speculation - // occurs. - if (isSafePHIToSpeculate(PN, &DL)) { - Pass.SpeculatablePHIs.insert(&PN); - IsUsedByRewrittenSpeculatableInstructions = true; - return true; - } - - return false; // PHIs can't be promoted on their own. + // PHIs can't be promoted on their own, but often can be speculated. We + // check the speculation outside of the rewriter so that we see the + // fully-rewritten alloca. + PHIUsers.insert(&PN); + return true; } bool visitSelectInst(SelectInst &SI) { @@ -2593,7 +2730,7 @@ private: assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); - Value *NewPtr = getAdjustedAllocaPtr(IRB, BeginOffset, OldPtr->getType()); + Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); // Replace the operands which were using the old pointer. if (SI.getOperand(1) == OldPtr) SI.setOperand(1, NewPtr); @@ -2603,16 +2740,11 @@ private: DEBUG(dbgs() << " to: " << SI << "\n"); deleteIfTriviallyDead(OldPtr); - // Check whether we can speculate this select instruction, and if so - // remember that fact and queue it up for another iteration after the - // speculation occurs. - if (isSafeSelectToSpeculate(SI, &DL)) { - Pass.SpeculatableSelects.insert(&SI); - IsUsedByRewrittenSpeculatableInstructions = true; - return true; - } - - return false; // Selects can't be promoted on their own. + // Selects can't be promoted on their own, but often can be speculated. We + // check the speculation outside of the rewriter so that we see the + // fully-rewritten alloca. + SelectUsers.insert(&SI); + return true; } }; @@ -2660,10 +2792,9 @@ private: /// Enqueue all the users of the given instruction for further processing. /// This uses a set to de-duplicate users. void enqueueUsers(Instruction &I) { - for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; - ++UI) - if (Visited.insert(*UI)) - Queue.push_back(&UI.getUse()); + for (Use &U : I.uses()) + if (Visited.insert(U.getUser())) + Queue.push_back(&U); } // Conservative default is to not rewrite anything. @@ -2876,22 +3007,22 @@ static Type *getTypePartition(const DataLayout &DL, Type *Ty, return stripAggregateTypeWrapping(DL, Ty); if (Offset > DL.getTypeAllocSize(Ty) || (DL.getTypeAllocSize(Ty) - Offset) < Size) - return 0; + return nullptr; if (SequentialType *SeqTy = dyn_cast(Ty)) { // We can't partition pointers... if (SeqTy->isPointerTy()) - return 0; + return nullptr; Type *ElementTy = SeqTy->getElementType(); uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); uint64_t NumSkippedElements = Offset / ElementSize; if (ArrayType *ArrTy = dyn_cast(SeqTy)) { if (NumSkippedElements >= ArrTy->getNumElements()) - return 0; + return nullptr; } else if (VectorType *VecTy = dyn_cast(SeqTy)) { if (NumSkippedElements >= VecTy->getNumElements()) - return 0; + return nullptr; } Offset -= NumSkippedElements * ElementSize; @@ -2899,7 +3030,7 @@ static Type *getTypePartition(const DataLayout &DL, Type *Ty, if (Offset > 0 || Size < ElementSize) { // Bail if the partition ends in a different array element. if ((Offset + Size) > ElementSize) - return 0; + return nullptr; // Recurse through the element type trying to peel off offset bytes. return getTypePartition(DL, ElementTy, Offset, Size); } @@ -2910,20 +3041,20 @@ static Type *getTypePartition(const DataLayout &DL, Type *Ty, assert(Size > ElementSize); uint64_t NumElements = Size / ElementSize; if (NumElements * ElementSize != Size) - return 0; + return nullptr; return ArrayType::get(ElementTy, NumElements); } StructType *STy = dyn_cast(Ty); if (!STy) - return 0; + return nullptr; const StructLayout *SL = DL.getStructLayout(STy); if (Offset >= SL->getSizeInBytes()) - return 0; + return nullptr; uint64_t EndOffset = Offset + Size; if (EndOffset > SL->getSizeInBytes()) - return 0; + return nullptr; unsigned Index = SL->getElementContainingOffset(Offset); Offset -= SL->getElementOffset(Index); @@ -2931,12 +3062,12 @@ static Type *getTypePartition(const DataLayout &DL, Type *Ty, Type *ElementTy = STy->getElementType(Index); uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); if (Offset >= ElementSize) - return 0; // The offset points into alignment padding. + return nullptr; // The offset points into alignment padding. // See if any partition must be contained by the element. if (Offset > 0 || Size < ElementSize) { if ((Offset + Size) > ElementSize) - return 0; + return nullptr; return getTypePartition(DL, ElementTy, Offset, Size); } assert(Offset == 0); @@ -2949,14 +3080,14 @@ static Type *getTypePartition(const DataLayout &DL, Type *Ty, if (EndOffset < SL->getSizeInBytes()) { unsigned EndIndex = SL->getElementContainingOffset(EndOffset); if (Index == EndIndex) - return 0; // Within a single element and its padding. + return nullptr; // Within a single element and its padding. // Don't try to form "natural" types if the elements don't line up with the // expected size. // FIXME: We could potentially recurse down through the last element in the // sub-struct to find a natural end point. if (SL->getElementOffset(EndIndex) != EndOffset) - return 0; + return nullptr; assert(Index < EndIndex); EE = STy->element_begin() + EndIndex; @@ -2967,7 +3098,7 @@ static Type *getTypePartition(const DataLayout &DL, Type *Ty, STy->isPacked()); const StructLayout *SubSL = DL.getStructLayout(SubTy); if (Size != SubSL->getSizeInBytes()) - return 0; // The sub-struct doesn't have quite the size needed. + return nullptr; // The sub-struct doesn't have quite the size needed. return SubTy; } @@ -2992,7 +3123,7 @@ bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S, // Try to compute a friendly type for this partition of the alloca. This // won't always succeed, in which case we fall back to a legal integer type // or an i8 array of an appropriate size. - Type *SliceTy = 0; + Type *SliceTy = nullptr; if (Type *CommonUseTy = findCommonType(B, E, EndOffset)) if (DL->getTypeAllocSize(CommonUseTy) >= SliceSize) SliceTy = CommonUseTy; @@ -3039,7 +3170,7 @@ bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S, // the alloca's alignment unconstrained. if (Alignment <= DL->getABITypeAlignment(SliceTy)) Alignment = 0; - NewAI = new AllocaInst(SliceTy, 0, Alignment, + NewAI = new AllocaInst(SliceTy, nullptr, Alignment, AI.getName() + ".sroa." + Twine(B - S.begin()), &AI); ++NumNewAllocas; } @@ -3048,17 +3179,17 @@ bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S, << "[" << BeginOffset << "," << EndOffset << ") to: " << *NewAI << "\n"); - // Track the high watermark on several worklists that are only relevant for + // Track the high watermark on the worklist as it is only relevant for // promoted allocas. We will reset it to this point if the alloca is not in // fact scheduled for promotion. unsigned PPWOldSize = PostPromotionWorklist.size(); - unsigned SPOldSize = SpeculatablePHIs.size(); - unsigned SSOldSize = SpeculatableSelects.size(); unsigned NumUses = 0; + SmallPtrSet PHIUsers; + SmallPtrSet SelectUsers; AllocaSliceRewriter Rewriter(*DL, S, *this, AI, *NewAI, BeginOffset, EndOffset, IsVectorPromotable, - IsIntegerPromotable); + IsIntegerPromotable, PHIUsers, SelectUsers); bool Promotable = true; for (ArrayRef::const_iterator SUI = SplitUses.begin(), SUE = SplitUses.end(); @@ -3079,50 +3210,60 @@ bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S, MaxUsesPerAllocaPartition = std::max(NumUses, MaxUsesPerAllocaPartition); - if (Promotable && !Rewriter.isUsedByRewrittenSpeculatableInstructions()) { - DEBUG(dbgs() << " and queuing for promotion\n"); - PromotableAllocas.push_back(NewAI); - } else if (NewAI != &AI || - (Promotable && - Rewriter.isUsedByRewrittenSpeculatableInstructions())) { + // Now that we've processed all the slices in the new partition, check if any + // PHIs or Selects would block promotion. + for (SmallPtrSetImpl::iterator I = PHIUsers.begin(), + E = PHIUsers.end(); + I != E; ++I) + if (!isSafePHIToSpeculate(**I, DL)) { + Promotable = false; + PHIUsers.clear(); + SelectUsers.clear(); + break; + } + for (SmallPtrSetImpl::iterator I = SelectUsers.begin(), + E = SelectUsers.end(); + I != E; ++I) + if (!isSafeSelectToSpeculate(**I, DL)) { + Promotable = false; + PHIUsers.clear(); + SelectUsers.clear(); + break; + } + + if (Promotable) { + if (PHIUsers.empty() && SelectUsers.empty()) { + // Promote the alloca. + PromotableAllocas.push_back(NewAI); + } else { + // If we have either PHIs or Selects to speculate, add them to those + // worklists and re-queue the new alloca so that we promote in on the + // next iteration. + for (SmallPtrSetImpl::iterator I = PHIUsers.begin(), + E = PHIUsers.end(); + I != E; ++I) + SpeculatablePHIs.insert(*I); + for (SmallPtrSetImpl::iterator I = SelectUsers.begin(), + E = SelectUsers.end(); + I != E; ++I) + SpeculatableSelects.insert(*I); + Worklist.insert(NewAI); + } + } else { // If we can't promote the alloca, iterate on it to check for new // refinements exposed by splitting the current alloca. Don't iterate on an // alloca which didn't actually change and didn't get promoted. - // - // Alternatively, if we could promote the alloca but have speculatable - // instructions then we will speculate them after finishing our processing - // of the original alloca. Mark the new one for re-visiting in the next - // iteration so the speculated operations can be rewritten. - // - // FIXME: We should actually track whether the rewriter changed anything. - Worklist.insert(NewAI); - } - - // Drop any post-promotion work items if promotion didn't happen. - if (!Promotable) { + if (NewAI != &AI) + Worklist.insert(NewAI); + + // Drop any post-promotion work items if promotion didn't happen. while (PostPromotionWorklist.size() > PPWOldSize) PostPromotionWorklist.pop_back(); - while (SpeculatablePHIs.size() > SPOldSize) - SpeculatablePHIs.pop_back(); - while (SpeculatableSelects.size() > SSOldSize) - SpeculatableSelects.pop_back(); } return true; } -namespace { -struct IsSliceEndLessOrEqualTo { - uint64_t UpperBound; - - IsSliceEndLessOrEqualTo(uint64_t UpperBound) : UpperBound(UpperBound) {} - - bool operator()(const AllocaSlices::iterator &I) { - return I->endOffset() <= UpperBound; - } -}; -} - static void removeFinishedSplitUses(SmallVectorImpl &SplitUses, uint64_t &MaxSplitUseEndOffset, uint64_t Offset) { @@ -3134,7 +3275,9 @@ removeFinishedSplitUses(SmallVectorImpl &SplitUses, size_t SplitUsesOldSize = SplitUses.size(); SplitUses.erase(std::remove_if(SplitUses.begin(), SplitUses.end(), - IsSliceEndLessOrEqualTo(Offset)), + [Offset](const AllocaSlices::iterator &I) { + return I->endOffset() <= Offset; + }), SplitUses.end()); if (SplitUsesOldSize == SplitUses.size()) return; @@ -3161,7 +3304,7 @@ bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &S) { uint64_t BeginOffset = S.begin()->beginOffset(); - for (AllocaSlices::iterator SI = S.begin(), SJ = llvm::next(SI), SE = S.end(); + for (AllocaSlices::iterator SI = S.begin(), SJ = std::next(SI), SE = S.end(); SI != SE; SI = SJ) { uint64_t MaxEndOffset = SI->endOffset(); @@ -3260,6 +3403,21 @@ bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &S) { return Changed; } +/// \brief Clobber a use with undef, deleting the used value if it becomes dead. +void SROA::clobberUse(Use &U) { + Value *OldV = U; + // Replace the use with an undef value. + U = UndefValue::get(OldV->getType()); + + // Check for this making an instruction dead. We have to garbage collect + // all the dead instructions to ensure the uses of any alloca end up being + // minimal. + if (Instruction *OldI = dyn_cast(OldV)) + if (isInstructionTriviallyDead(OldI)) { + DeadInsts.insert(OldI); + } +} + /// \brief Analyze an alloca for SROA. /// /// This analyzes the alloca to ensure we can reason about it, builds @@ -3297,21 +3455,22 @@ bool SROA::runOnAlloca(AllocaInst &AI) { for (AllocaSlices::dead_user_iterator DI = S.dead_user_begin(), DE = S.dead_user_end(); DI != DE; ++DI) { - Changed = true; + // Free up everything used by this instruction. + for (Use &DeadOp : (*DI)->operands()) + clobberUse(DeadOp); + + // Now replace the uses of this instruction. (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType())); + + // And mark it for deletion. DeadInsts.insert(*DI); + Changed = true; } for (AllocaSlices::dead_op_iterator DO = S.dead_op_begin(), DE = S.dead_op_end(); DO != DE; ++DO) { - Value *OldV = **DO; - // Clobber the use with an undef value. - **DO = UndefValue::get(OldV->getType()); - if (Instruction *OldI = dyn_cast(OldV)) - if (isInstructionTriviallyDead(OldI)) { - Changed = true; - DeadInsts.insert(OldI); - } + clobberUse(**DO); + Changed = true; } // No slices to split. Leave the dead alloca for a later pass to clean up. @@ -3347,10 +3506,10 @@ void SROA::deleteDeadInstructions(SmallPtrSet &DeletedAllocas) { I->replaceAllUsesWith(UndefValue::get(I->getType())); - for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) - if (Instruction *U = dyn_cast(*OI)) { + for (Use &Operand : I->operands()) + if (Instruction *U = dyn_cast(Operand)) { // Zero out the operand and see if it becomes trivially dead. - *OI = 0; + Operand = nullptr; if (isInstructionTriviallyDead(U)) DeadInsts.insert(U); } @@ -3366,10 +3525,9 @@ void SROA::deleteDeadInstructions(SmallPtrSet &DeletedAllocas) { static void enqueueUsersInWorklist(Instruction &I, SmallVectorImpl &Worklist, SmallPtrSet &Visited) { - for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; - ++UI) - if (Visited.insert(cast(*UI))) - Worklist.push_back(cast(*UI)); + for (User *U : I.users()) + if (Visited.insert(cast(U))) + Worklist.push_back(cast(U)); } /// \brief Promote the allocas, using the best available technique. @@ -3388,7 +3546,7 @@ bool SROA::promoteAllocas(Function &F) { if (DT && !ForceSSAUpdater) { DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); - PromoteMemToReg(PromotableAllocas, *DT, DL); + PromoteMemToReg(PromotableAllocas, *DT); PromotableAllocas.clear(); return true; } @@ -3455,32 +3613,24 @@ bool SROA::promoteAllocas(Function &F) { return true; } -namespace { - /// \brief A predicate to test whether an alloca belongs to a set. - class IsAllocaInSet { - typedef SmallPtrSet SetType; - const SetType &Set; - - public: - typedef AllocaInst *argument_type; - - IsAllocaInSet(const SetType &Set) : Set(Set) {} - bool operator()(AllocaInst *AI) const { return Set.count(AI); } - }; -} - bool SROA::runOnFunction(Function &F) { + if (skipOptnoneFunction(F)) + return false; + DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); C = &F.getContext(); - DL = getAnalysisIfAvailable(); - if (!DL) { + DataLayoutPass *DLP = getAnalysisIfAvailable(); + if (!DLP) { DEBUG(dbgs() << " Skipping SROA -- no target data!\n"); return false; } - DT = getAnalysisIfAvailable(); + DL = &DLP->getDataLayout(); + DominatorTreeWrapperPass *DTWP = + getAnalysisIfAvailable(); + DT = DTWP ? &DTWP->getDomTree() : nullptr; BasicBlock &EntryBB = F.getEntryBlock(); - for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end()); + for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end()); I != E; ++I) if (AllocaInst *AI = dyn_cast(I)) Worklist.insert(AI); @@ -3498,11 +3648,14 @@ bool SROA::runOnFunction(Function &F) { // Remove the deleted allocas from various lists so that we don't try to // continue processing them. if (!DeletedAllocas.empty()) { - Worklist.remove_if(IsAllocaInSet(DeletedAllocas)); - PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas)); + auto IsInSet = [&](AllocaInst *AI) { + return DeletedAllocas.count(AI); + }; + Worklist.remove_if(IsInSet); + PostPromotionWorklist.remove_if(IsInSet); PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(), PromotableAllocas.end(), - IsAllocaInSet(DeletedAllocas)), + IsInSet), PromotableAllocas.end()); DeletedAllocas.clear(); } @@ -3519,6 +3672,6 @@ bool SROA::runOnFunction(Function &F) { void SROA::getAnalysisUsage(AnalysisUsage &AU) const { if (RequiresDomTree) - AU.addRequired(); + AU.addRequired(); AU.setPreservesCFG(); }