X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTransforms%2FScalar%2FReassociate.cpp;h=04e724077c12c07b251abebddff9e3e46596bbad;hb=14915fe52383c9141ab9aaea52109d86622c99f7;hp=d036c6654c78c279791703554aaea0831c974e7f;hpb=69938a85bdbeef1c5b60aa778e361586bec36fb7;p=oota-llvm.git diff --git a/lib/Transforms/Scalar/Reassociate.cpp b/lib/Transforms/Scalar/Reassociate.cpp index d036c6654c7..04e724077c1 100644 --- a/lib/Transforms/Scalar/Reassociate.cpp +++ b/lib/Transforms/Scalar/Reassociate.cpp @@ -20,29 +20,29 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "reassociate" #include "llvm/Transforms/Scalar.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Function.h" -#include "llvm/Instructions.h" -#include "llvm/IntrinsicInst.h" -#include "llvm/Pass.h" -#include "llvm/Assembly/Writer.h" -#include "llvm/Support/CFG.h" -#include "llvm/Support/IRBuilder.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ValueHandle.h" -#include "llvm/Support/raw_ostream.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PostOrderIterator.h" -#include "llvm/ADT/SmallMap.h" #include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Pass.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/Local.h" #include using namespace llvm; +#define DEBUG_TYPE "reassociate" + STATISTIC(NumChanged, "Number of insts reassociated"); STATISTIC(NumAnnihil, "Number of expr tree annihilated"); STATISTIC(NumFactor , "Number of multiplies factored"); @@ -67,7 +67,7 @@ static void PrintOps(Instruction *I, const SmallVectorImpl &Ops) { << *Ops[0].Op->getType() << '\t'; for (unsigned i = 0, e = Ops.size(); i != e; ++i) { dbgs() << "[ "; - WriteAsOperand(dbgs(), Ops[i].Op, false, M); + Ops[i].Op->printAsOperand(dbgs(), false, M); dbgs() << ", #" << Ops[i].Rank << "] "; } } @@ -110,14 +110,57 @@ namespace { } }; }; + + /// Utility class representing a non-constant Xor-operand. We classify + /// non-constant Xor-Operands into two categories: + /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 + /// C2) + /// C2.1) The operand is in the form of "X | C", where C is a non-zero + /// constant. + /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this + /// operand as "E | 0" + class XorOpnd { + public: + XorOpnd(Value *V); + + bool isInvalid() const { return SymbolicPart == nullptr; } + bool isOrExpr() const { return isOr; } + Value *getValue() const { return OrigVal; } + Value *getSymbolicPart() const { return SymbolicPart; } + unsigned getSymbolicRank() const { return SymbolicRank; } + const APInt &getConstPart() const { return ConstPart; } + + void Invalidate() { SymbolicPart = OrigVal = nullptr; } + void setSymbolicRank(unsigned R) { SymbolicRank = R; } + + // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank. + // The purpose is twofold: + // 1) Cluster together the operands sharing the same symbolic-value. + // 2) Operand having smaller symbolic-value-rank is permuted earlier, which + // could potentially shorten crital path, and expose more loop-invariants. + // Note that values' rank are basically defined in RPO order (FIXME). + // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier + // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", + // "z" in the order of X-Y-Z is better than any other orders. + struct PtrSortFunctor { + bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) { + return LHS->getSymbolicRank() < RHS->getSymbolicRank(); + } + }; + private: + Value *OrigVal; + Value *SymbolicPart; + APInt ConstPart; + unsigned SymbolicRank; + bool isOr; + }; } namespace { class Reassociate : public FunctionPass { DenseMap RankMap; DenseMap, unsigned> ValueRankMap; - SmallVector RedoInsts; - SmallVector DeadInsts; + SetVector > RedoInsts; bool MadeChange; public: static char ID; // Pass identification, replacement for typeid @@ -125,32 +168,64 @@ namespace { initializeReassociatePass(*PassRegistry::getPassRegistry()); } - bool runOnFunction(Function &F); + bool runOnFunction(Function &F) override; - virtual void getAnalysisUsage(AnalysisUsage &AU) const { + void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); } private: void BuildRankMap(Function &F); unsigned getRank(Value *V); - Value *ReassociateExpression(BinaryOperator *I); + void canonicalizeOperands(Instruction *I); + void ReassociateExpression(BinaryOperator *I); void RewriteExprTree(BinaryOperator *I, SmallVectorImpl &Ops); Value *OptimizeExpression(BinaryOperator *I, SmallVectorImpl &Ops); Value *OptimizeAdd(Instruction *I, SmallVectorImpl &Ops); + Value *OptimizeXor(Instruction *I, SmallVectorImpl &Ops); + bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd, + Value *&Res); + bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, + APInt &ConstOpnd, Value *&Res); bool collectMultiplyFactors(SmallVectorImpl &Ops, SmallVectorImpl &Factors); Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder, SmallVectorImpl &Factors); Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl &Ops); - void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl &Ops); Value *RemoveFactorFromExpression(Value *V, Value *Factor); - void ReassociateInst(BasicBlock::iterator &BBI); - - void RemoveDeadBinaryOp(Value *V); + void EraseInst(Instruction *I); + void OptimizeInst(Instruction *I); + Instruction *canonicalizeNegConstExpr(Instruction *I); }; } +XorOpnd::XorOpnd(Value *V) { + assert(!isa(V) && "No ConstantInt"); + OrigVal = V; + Instruction *I = dyn_cast(V); + SymbolicRank = 0; + + if (I && (I->getOpcode() == Instruction::Or || + I->getOpcode() == Instruction::And)) { + Value *V0 = I->getOperand(0); + Value *V1 = I->getOperand(1); + if (isa(V0)) + std::swap(V0, V1); + + if (ConstantInt *C = dyn_cast(V1)) { + ConstPart = C->getValue(); + SymbolicPart = V0; + isOr = (I->getOpcode() == Instruction::Or); + return; + } + } + + // view the operand as "V | 0" + SymbolicPart = V; + ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth()); + isOr = true; +} + char Reassociate::ID = 0; INITIALIZE_PASS(Reassociate, "reassociate", "Reassociate expressions", false, false) @@ -162,54 +237,53 @@ FunctionPass *llvm::createReassociatePass() { return new Reassociate(); } /// opcode and if it only has one use. static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { if (V->hasOneUse() && isa(V) && - cast(V)->getOpcode() == Opcode) + cast(V)->getOpcode() == Opcode && + (!isa(V) || + cast(V)->hasUnsafeAlgebra())) return cast(V); - return 0; + return nullptr; } -void Reassociate::RemoveDeadBinaryOp(Value *V) { - BinaryOperator *Op = dyn_cast(V); - if (!Op) - return; - - ValueRankMap.erase(Op); - DeadInsts.push_back(Op); - - BinaryOperator *LHS = isReassociableOp(Op->getOperand(0), Op->getOpcode()); - BinaryOperator *RHS = isReassociableOp(Op->getOperand(1), Op->getOpcode()); - Op->setOperand(0, UndefValue::get(Op->getType())); - Op->setOperand(1, UndefValue::get(Op->getType())); - - if (LHS) - RemoveDeadBinaryOp(LHS); - if (RHS) - RemoveDeadBinaryOp(RHS); +static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, + unsigned Opcode2) { + if (V->hasOneUse() && isa(V) && + (cast(V)->getOpcode() == Opcode1 || + cast(V)->getOpcode() == Opcode2) && + (!isa(V) || + cast(V)->hasUnsafeAlgebra())) + return cast(V); + return nullptr; } static bool isUnmovableInstruction(Instruction *I) { - if (I->getOpcode() == Instruction::PHI || - I->getOpcode() == Instruction::LandingPad || - I->getOpcode() == Instruction::Alloca || - I->getOpcode() == Instruction::Load || - I->getOpcode() == Instruction::Invoke || - (I->getOpcode() == Instruction::Call && - !isa(I)) || - I->getOpcode() == Instruction::UDiv || - I->getOpcode() == Instruction::SDiv || - I->getOpcode() == Instruction::FDiv || - I->getOpcode() == Instruction::URem || - I->getOpcode() == Instruction::SRem || - I->getOpcode() == Instruction::FRem) + switch (I->getOpcode()) { + case Instruction::PHI: + case Instruction::LandingPad: + case Instruction::Alloca: + case Instruction::Load: + case Instruction::Invoke: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: return true; - return false; + case Instruction::Call: + return !isa(I); + default: + return false; + } } void Reassociate::BuildRankMap(Function &F) { unsigned i = 2; - // Assign distinct ranks to function arguments - for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) + // Assign distinct ranks to function arguments. + for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { ValueRankMap[&*I] = ++i; + DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n"); + } ReversePostOrderTraversal RPOT(&F); for (ReversePostOrderTraversal::rpo_iterator I = RPOT.begin(), @@ -228,7 +302,7 @@ void Reassociate::BuildRankMap(Function &F) { unsigned Reassociate::getRank(Value *V) { Instruction *I = dyn_cast(V); - if (I == 0) { + if (!I) { if (isa(V)) return ValueRankMap[V]; // Function argument. return 0; // Otherwise it's a global or constant, rank 0. } @@ -247,36 +321,195 @@ unsigned Reassociate::getRank(Value *V) { // If this is a not or neg instruction, do not count it for rank. This // assures us that X and ~X will have the same rank. - if (!I->getType()->isIntegerTy() || - (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I))) + Type *Ty = V->getType(); + if ((!Ty->isIntegerTy() && !Ty->isFloatingPointTy()) || + (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) && + !BinaryOperator::isFNeg(I))) ++Rank; - //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " - // << Rank << "\n"); + DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n"); return ValueRankMap[I] = Rank; } +// Canonicalize constants to RHS. Otherwise, sort the operands by rank. +void Reassociate::canonicalizeOperands(Instruction *I) { + assert(isa(I) && "Expected binary operator."); + assert(I->isCommutative() && "Expected commutative operator."); + + Value *LHS = I->getOperand(0); + Value *RHS = I->getOperand(1); + unsigned LHSRank = getRank(LHS); + unsigned RHSRank = getRank(RHS); + + if (isa(RHS)) + return; + + if (isa(LHS) || RHSRank < LHSRank) + cast(I)->swapOperands(); +} + +static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, + Instruction *InsertBefore, Value *FlagsOp) { + if (S1->getType()->isIntegerTy()) + return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); + else { + BinaryOperator *Res = + BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); + Res->setFastMathFlags(cast(FlagsOp)->getFastMathFlags()); + return Res; + } +} + +static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, + Instruction *InsertBefore, Value *FlagsOp) { + if (S1->getType()->isIntegerTy()) + return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); + else { + BinaryOperator *Res = + BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); + Res->setFastMathFlags(cast(FlagsOp)->getFastMathFlags()); + return Res; + } +} + +static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, + Instruction *InsertBefore, Value *FlagsOp) { + if (S1->getType()->isIntegerTy()) + return BinaryOperator::CreateNeg(S1, Name, InsertBefore); + else { + BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); + Res->setFastMathFlags(cast(FlagsOp)->getFastMathFlags()); + return Res; + } +} + /// LowerNegateToMultiply - Replace 0-X with X*-1. /// -static BinaryOperator *LowerNegateToMultiply(Instruction *Neg, - DenseMap, unsigned> &ValueRankMap) { - Constant *Cst = Constant::getAllOnesValue(Neg->getType()); +static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { + Type *Ty = Neg->getType(); + Constant *NegOne = Ty->isIntegerTy() ? ConstantInt::getAllOnesValue(Ty) + : ConstantFP::get(Ty, -1.0); - BinaryOperator *Res = - BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg); - ValueRankMap.erase(Neg); + BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); + Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. Res->takeName(Neg); Neg->replaceAllUsesWith(Res); Res->setDebugLoc(Neg->getDebugLoc()); - Neg->eraseFromParent(); return Res; } +/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda +/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for +/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. +/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every +/// even x in Bitwidth-bit arithmetic. +static unsigned CarmichaelShift(unsigned Bitwidth) { + if (Bitwidth < 3) + return Bitwidth - 1; + return Bitwidth - 2; +} + +/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS', +/// reducing the combined weight using any special properties of the operation. +/// The existing weight LHS represents the computation X op X op ... op X where +/// X occurs LHS times. The combined weight represents X op X op ... op X with +/// X occurring LHS + RHS times. If op is "Xor" for example then the combined +/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; +/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. +static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { + // If we were working with infinite precision arithmetic then the combined + // weight would be LHS + RHS. But we are using finite precision arithmetic, + // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct + // for nilpotent operations and addition, but not for idempotent operations + // and multiplication), so it is important to correctly reduce the combined + // weight back into range if wrapping would be wrong. + + // If RHS is zero then the weight didn't change. + if (RHS.isMinValue()) + return; + // If LHS is zero then the combined weight is RHS. + if (LHS.isMinValue()) { + LHS = RHS; + return; + } + // From this point on we know that neither LHS nor RHS is zero. + + if (Instruction::isIdempotent(Opcode)) { + // Idempotent means X op X === X, so any non-zero weight is equivalent to a + // weight of 1. Keeping weights at zero or one also means that wrapping is + // not a problem. + assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); + return; // Return a weight of 1. + } + if (Instruction::isNilpotent(Opcode)) { + // Nilpotent means X op X === 0, so reduce weights modulo 2. + assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); + LHS = 0; // 1 + 1 === 0 modulo 2. + return; + } + if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { + // TODO: Reduce the weight by exploiting nsw/nuw? + LHS += RHS; + return; + } + + assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && + "Unknown associative operation!"); + unsigned Bitwidth = LHS.getBitWidth(); + // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth + // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth + // bit number x, since either x is odd in which case x^CM = 1, or x is even in + // which case both x^W and x^(W - CM) are zero. By subtracting off multiples + // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) + // which by a happy accident means that they can always be represented using + // Bitwidth bits. + // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than + // the Carmichael number). + if (Bitwidth > 3) { + /// CM - The value of Carmichael's lambda function. + APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); + // Any weight W >= Threshold can be replaced with W - CM. + APInt Threshold = CM + Bitwidth; + assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); + // For Bitwidth 4 or more the following sum does not overflow. + LHS += RHS; + while (LHS.uge(Threshold)) + LHS -= CM; + } else { + // To avoid problems with overflow do everything the same as above but using + // a larger type. + unsigned CM = 1U << CarmichaelShift(Bitwidth); + unsigned Threshold = CM + Bitwidth; + assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && + "Weights not reduced!"); + unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); + while (Total >= Threshold) + Total -= CM; + LHS = Total; + } +} + +typedef std::pair RepeatedValue; + /// LinearizeExprTree - Given an associative binary expression, return the leaf -/// nodes in Ops. The original expression is the same as Ops[0] op ... Ops[N]. -/// Note that a node may occur multiple times in Ops, but if so all occurrences -/// are consecutive in the vector. +/// nodes in Ops along with their weights (how many times the leaf occurs). The +/// original expression is the same as +/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times +/// op +/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times +/// op +/// ... +/// op +/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times +/// +/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. +/// +/// This routine may modify the function, in which case it returns 'true'. The +/// changes it makes may well be destructive, changing the value computed by 'I' +/// to something completely different. Thus if the routine returns 'true' then +/// you MUST either replace I with a new expression computed from the Ops array, +/// or use RewriteExprTree to put the values back in. /// /// A leaf node is either not a binary operation of the same kind as the root /// node 'I' (i.e. is not a binary operator at all, or is, but with a different @@ -298,7 +531,7 @@ static BinaryOperator *LowerNegateToMultiply(Instruction *Neg, /// + * | F, G /// /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in -/// that order) C, E, F, F, G, G. +/// that order) (C, 1), (E, 1), (F, 2), (G, 2). /// /// The expression is maximal: if some instruction is a binary operator of the /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, @@ -309,7 +542,8 @@ static BinaryOperator *LowerNegateToMultiply(Instruction *Neg, /// order to ensure that every non-root node in the expression has *exactly one* /// use by a non-leaf node of the expression. This destruction means that the /// caller MUST either replace 'I' with a new expression or use something like -/// RewriteExprTree to put the values back in. +/// RewriteExprTree to put the values back in if the routine indicates that it +/// made a change by returning 'true'. /// /// In the above example either the right operand of A or the left operand of B /// will be replaced by undef. If it is B's operand then this gives: @@ -332,9 +566,13 @@ static BinaryOperator *LowerNegateToMultiply(Instruction *Neg, /// of the expression) if it can turn them into binary operators of the right /// type and thus make the expression bigger. -void Reassociate::LinearizeExprTree(BinaryOperator *I, - SmallVectorImpl &Ops) { +static bool LinearizeExprTree(BinaryOperator *I, + SmallVectorImpl &Ops) { DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); + unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); + unsigned Opcode = I->getOpcode(); + assert(I->isAssociative() && I->isCommutative() && + "Expected an associative and commutative operation!"); // Visit all operands of the expression, keeping track of their weight (the // number of paths from the expression root to the operand, or if you like @@ -346,9 +584,9 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I, // with their weights, representing a certain number of paths to the operator. // If an operator occurs in the worklist multiple times then we found multiple // ways to get to it. - SmallVector, 8> Worklist; // (Op, Weight) - Worklist.push_back(std::make_pair(I, 1)); - unsigned Opcode = I->getOpcode(); + SmallVector, 8> Worklist; // (Op, Weight) + Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); + bool MadeChange = false; // Leaves of the expression are values that either aren't the right kind of // operation (eg: a constant, or a multiply in an add tree), or are, but have @@ -365,7 +603,7 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I, // Leaves - Keeps track of the set of putative leaves as well as the number of // paths to each leaf seen so far. - typedef SmallMap LeafMap; + typedef DenseMap LeafMap; LeafMap Leaves; // Leaf -> Total weight so far. SmallVector LeafOrder; // Ensure deterministic leaf output order. @@ -373,13 +611,12 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I, SmallPtrSet Visited; // For sanity checking the iteration scheme. #endif while (!Worklist.empty()) { - std::pair P = Worklist.pop_back_val(); + std::pair P = Worklist.pop_back_val(); I = P.first; // We examine the operands of this binary operator. - assert(P.second >= 1 && "No paths to here, so how did we get here?!"); for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. Value *Op = I->getOperand(OpIdx); - unsigned Weight = P.second; // Number of paths to this operand. + APInt Weight = P.second; // Number of paths to this operand. DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); assert(!Op->use_empty() && "No uses, so how did we get to it?!"); @@ -411,8 +648,9 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I, assert(Visited.count(Op) && "In leaf map but not visited!"); // Update the number of paths to the leaf. - It->second += Weight; + IncorporateWeight(It->second, Weight, Opcode); +#if 0 // TODO: Re-enable once PR13021 is fixed. // The leaf already has one use from inside the expression. As we want // exactly one such use, drop this new use of the leaf. assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); @@ -429,6 +667,7 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I, Leaves.erase(It); continue; } +#endif // If we still have uses that are not accounted for by the expression // then it is not safe to modify the value. @@ -445,21 +684,24 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I, // expression. This means that it can safely be modified. See if we // can usefully morph it into an expression of the right kind. assert((!isa(Op) || - cast(Op)->getOpcode() != Opcode) && + cast(Op)->getOpcode() != Opcode + || (isa(Op) && + !cast(Op)->hasUnsafeAlgebra())) && "Should have been handled above!"); assert(Op->hasOneUse() && "Has uses outside the expression tree!"); // If this is a multiply expression, turn any internal negations into // multiplies by -1 so they can be reassociated. - BinaryOperator *BO = dyn_cast(Op); - if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) { - DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); - BO = LowerNegateToMultiply(BO, ValueRankMap); - DEBUG(dbgs() << *BO << 'n'); - Worklist.push_back(std::make_pair(BO, Weight)); - MadeChange = true; - continue; - } + if (BinaryOperator *BO = dyn_cast(Op)) + if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) || + (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) { + DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); + BO = LowerNegateToMultiply(BO); + DEBUG(dbgs() << *BO << '\n'); + Worklist.push_back(std::make_pair(BO, Weight)); + MadeChange = true; + continue; + } // Failed to morph into an expression of the right type. This really is // a leaf. @@ -476,17 +718,28 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I, Value *V = LeafOrder[i]; LeafMap::iterator It = Leaves.find(V); if (It == Leaves.end()) - // Leaf already output, or node initially thought to be a leaf wasn't. + // Node initially thought to be a leaf wasn't. continue; assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); - unsigned Weight = It->second; - assert(Weight > 0 && "No paths to this value!"); - // FIXME: Rather than repeating values Weight times, use a vector of - // (ValueEntry, multiplicity) pairs. - Ops.append(Weight, ValueEntry(getRank(V), V)); + APInt Weight = It->second; + if (Weight.isMinValue()) + // Leaf already output or weight reduction eliminated it. + continue; // Ensure the leaf is only output once. - Leaves.erase(It); + It->second = 0; + Ops.push_back(std::make_pair(V, Weight)); } + + // For nilpotent operations or addition there may be no operands, for example + // because the expression was "X xor X" or consisted of 2^Bitwidth additions: + // in both cases the weight reduces to 0 causing the value to be skipped. + if (Ops.empty()) { + Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); + assert(Identity && "Associative operation without identity!"); + Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1))); + } + + return MadeChange; } // RewriteExprTree - Now that the operands for this expression tree are @@ -495,8 +748,8 @@ void Reassociate::RewriteExprTree(BinaryOperator *I, SmallVectorImpl &Ops) { assert(Ops.size() > 1 && "Single values should be used directly!"); - // Since our optimizations never increase the number of operations, the new - // expression can always be written by reusing the existing binary operators + // Since our optimizations should never increase the number of operations, the + // new expression can usually be written reusing the existing binary operators // from the original expression tree, without creating any new instructions, // though the rewritten expression may have a completely different topology. // We take care to not change anything if the new expression will be the same @@ -508,23 +761,27 @@ void Reassociate::RewriteExprTree(BinaryOperator *I, /// the new expression into. SmallVector NodesToRewrite; unsigned Opcode = I->getOpcode(); - NodesToRewrite.push_back(I); + BinaryOperator *Op = I; + + /// NotRewritable - The operands being written will be the leaves of the new + /// expression and must not be used as inner nodes (via NodesToRewrite) by + /// mistake. Inner nodes are always reassociable, and usually leaves are not + /// (if they were they would have been incorporated into the expression and so + /// would not be leaves), so most of the time there is no danger of this. But + /// in rare cases a leaf may become reassociable if an optimization kills uses + /// of it, or it may momentarily become reassociable during rewriting (below) + /// due it being removed as an operand of one of its uses. Ensure that misuse + /// of leaf nodes as inner nodes cannot occur by remembering all of the future + /// leaves and refusing to reuse any of them as inner nodes. + SmallPtrSet NotRewritable; + for (unsigned i = 0, e = Ops.size(); i != e; ++i) + NotRewritable.insert(Ops[i].Op); // ExpressionChanged - Non-null if the rewritten expression differs from the // original in some non-trivial way, requiring the clearing of optional flags. // Flags are cleared from the operator in ExpressionChanged up to I inclusive. - BinaryOperator *ExpressionChanged = 0; - BinaryOperator *Previous; - BinaryOperator *Op = 0; - for (unsigned i = 0, e = Ops.size(); i != e; ++i) { - assert(!NodesToRewrite.empty() && - "Optimized expressions has more nodes than original!"); - Previous = Op; Op = NodesToRewrite.pop_back_val(); - if (ExpressionChanged) - // Compactify the tree instructions together with each other to guarantee - // that the expression tree is dominated by all of Ops. - Op->moveBefore(Previous); - + BinaryOperator *ExpressionChanged = nullptr; + for (unsigned i = 0; ; ++i) { // The last operation (which comes earliest in the IR) is special as both // operands will come from Ops, rather than just one with the other being // a subexpression. @@ -534,14 +791,11 @@ void Reassociate::RewriteExprTree(BinaryOperator *I, Value *OldLHS = Op->getOperand(0); Value *OldRHS = Op->getOperand(1); - if (NewLHS == OldLHS && NewRHS == OldRHS) - // Nothing changed, leave it alone. - break; - - if (NewLHS == OldRHS && NewRHS == OldLHS) { - // The order of the operands was reversed. Swap them. + // The new operation differs trivially from the original. + if ((NewLHS == OldLHS && NewRHS == OldRHS) || + (NewLHS == OldRHS && NewRHS == OldLHS)) { DEBUG(dbgs() << "RA: " << *Op << '\n'); - Op->swapOperands(); + canonicalizeOperands(Op); DEBUG(dbgs() << "TO: " << *Op << '\n'); MadeChange = true; ++NumChanged; @@ -552,15 +806,19 @@ void Reassociate::RewriteExprTree(BinaryOperator *I, // the old operands with the new ones. DEBUG(dbgs() << "RA: " << *Op << '\n'); if (NewLHS != OldLHS) { - if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode)) + BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); + if (BO && !NotRewritable.count(BO)) NodesToRewrite.push_back(BO); Op->setOperand(0, NewLHS); } if (NewRHS != OldRHS) { - if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode)) + BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); + if (BO && !NotRewritable.count(BO)) NodesToRewrite.push_back(BO); Op->setOperand(1, NewRHS); } + // Put the operands in canonical form. + canonicalizeOperands(Op); DEBUG(dbgs() << "TO: " << *Op << '\n'); ExpressionChanged = Op; @@ -581,7 +839,8 @@ void Reassociate::RewriteExprTree(BinaryOperator *I, Op->swapOperands(); } else { // Overwrite with the new right-hand side. - if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode)) + BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); + if (BO && !NotRewritable.count(BO)) NodesToRewrite.push_back(BO); Op->setOperand(1, NewRHS); ExpressionChanged = Op; @@ -594,37 +853,64 @@ void Reassociate::RewriteExprTree(BinaryOperator *I, // Now deal with the left-hand side. If this is already an operation node // from the original expression then just rewrite the rest of the expression // into it. - if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) { - NodesToRewrite.push_back(BO); + BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); + if (BO && !NotRewritable.count(BO)) { + canonicalizeOperands(Op); + Op = BO; continue; } // Otherwise, grab a spare node from the original expression and use that as - // the left-hand side. - assert(!NodesToRewrite.empty() && - "Optimized expressions has more nodes than original!"); + // the left-hand side. If there are no nodes left then the optimizers made + // an expression with more nodes than the original! This usually means that + // they did something stupid but it might mean that the problem was just too + // hard (finding the mimimal number of multiplications needed to realize a + // multiplication expression is NP-complete). Whatever the reason, smart or + // stupid, create a new node if there are none left. + BinaryOperator *NewOp; + if (NodesToRewrite.empty()) { + Constant *Undef = UndefValue::get(I->getType()); + NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), + Undef, Undef, "", I); + if (NewOp->getType()->isFloatingPointTy()) + NewOp->setFastMathFlags(I->getFastMathFlags()); + } else { + NewOp = NodesToRewrite.pop_back_val(); + } + DEBUG(dbgs() << "RA: " << *Op << '\n'); - Op->setOperand(0, NodesToRewrite.back()); + Op->setOperand(0, NewOp); + canonicalizeOperands(Op); DEBUG(dbgs() << "TO: " << *Op << '\n'); ExpressionChanged = Op; MadeChange = true; ++NumChanged; + Op = NewOp; } // If the expression changed non-trivially then clear out all subclass data - // starting from the operator specified in ExpressionChanged. - if (ExpressionChanged) { + // starting from the operator specified in ExpressionChanged, and compactify + // the operators to just before the expression root to guarantee that the + // expression tree is dominated by all of Ops. + if (ExpressionChanged) do { - ExpressionChanged->clearSubclassOptionalData(); + // Preserve FastMathFlags. + if (isa(I)) { + FastMathFlags Flags = I->getFastMathFlags(); + ExpressionChanged->clearSubclassOptionalData(); + ExpressionChanged->setFastMathFlags(Flags); + } else + ExpressionChanged->clearSubclassOptionalData(); + if (ExpressionChanged == I) break; - ExpressionChanged = cast(*ExpressionChanged->use_begin()); + ExpressionChanged->moveBefore(I); + ExpressionChanged = cast(*ExpressionChanged->user_begin()); } while (1); - } // Throw away any left over nodes from the original expression. for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) - RemoveDeadBinaryOp(NodesToRewrite[i]); + RedoInsts.insert(NodesToRewrite[i]); } /// NegateValue - Insert instructions before the instruction pointed to by BI, @@ -632,6 +918,8 @@ void Reassociate::RewriteExprTree(BinaryOperator *I, /// version of the value is returned, and BI is left pointing at the instruction /// that should be processed next by the reassociation pass. static Value *NegateValue(Value *V, Instruction *BI) { + if (ConstantFP *C = dyn_cast(V)) + return ConstantExpr::getFNeg(C); if (Constant *C = dyn_cast(V)) return ConstantExpr::getNeg(C); @@ -644,7 +932,8 @@ static Value *NegateValue(Value *V, Instruction *BI) { // the constants. We assume that instcombine will clean up the mess later if // we introduce tons of unnecessary negation instructions. // - if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) { + if (BinaryOperator *I = + isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { // Push the negates through the add. I->setOperand(0, NegateValue(I->getOperand(0), BI)); I->setOperand(1, NegateValue(I->getOperand(1), BI)); @@ -661,9 +950,9 @@ static Value *NegateValue(Value *V, Instruction *BI) { // Okay, we need to materialize a negated version of V with an instruction. // Scan the use lists of V to see if we have one already. - for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ - User *U = *UI; - if (!BinaryOperator::isNeg(U)) continue; + for (User *U : V->users()) { + if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U)) + continue; // We found one! Now we have to make sure that the definition dominates // this use. We do this by moving it to the entry block (if it is a @@ -693,27 +982,34 @@ static Value *NegateValue(Value *V, Instruction *BI) { // Insert a 'neg' instruction that subtracts the value from zero to get the // negation. - return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI); + return CreateNeg(V, V->getName() + ".neg", BI, BI); } /// ShouldBreakUpSubtract - Return true if we should break up this subtract of /// X-Y into (X + -Y). static bool ShouldBreakUpSubtract(Instruction *Sub) { // If this is a negation, we can't split it up! - if (BinaryOperator::isNeg(Sub)) + if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub)) + return false; + + // Don't breakup X - undef. + if (isa(Sub->getOperand(1))) return false; // Don't bother to break this up unless either the LHS is an associable add or // subtract or if this is only used by one. - if (isReassociableOp(Sub->getOperand(0), Instruction::Add) || - isReassociableOp(Sub->getOperand(0), Instruction::Sub)) + Value *V0 = Sub->getOperand(0); + if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || + isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) return true; - if (isReassociableOp(Sub->getOperand(1), Instruction::Add) || - isReassociableOp(Sub->getOperand(1), Instruction::Sub)) + Value *V1 = Sub->getOperand(1); + if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || + isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) return true; + Value *VB = Sub->user_back(); if (Sub->hasOneUse() && - (isReassociableOp(Sub->use_back(), Instruction::Add) || - isReassociableOp(Sub->use_back(), Instruction::Sub))) + (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || + isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) return true; return false; @@ -722,8 +1018,7 @@ static bool ShouldBreakUpSubtract(Instruction *Sub) { /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is /// only used by an add, transform this into (X+(0-Y)) to promote better /// reassociation. -static Instruction *BreakUpSubtract(Instruction *Sub, - DenseMap, unsigned> &ValueRankMap) { +static BinaryOperator *BreakUpSubtract(Instruction *Sub) { // Convert a subtract into an add and a neg instruction. This allows sub // instructions to be commuted with other add instructions. // @@ -731,15 +1026,14 @@ static Instruction *BreakUpSubtract(Instruction *Sub, // and set it as the RHS of the add instruction we just made. // Value *NegVal = NegateValue(Sub->getOperand(1), Sub); - Instruction *New = - BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub); + BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); + Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. + Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. New->takeName(Sub); // Everyone now refers to the add instruction. - ValueRankMap.erase(Sub); Sub->replaceAllUsesWith(New); New->setDebugLoc(Sub->getDebugLoc()); - Sub->eraseFromParent(); DEBUG(dbgs() << "Negated: " << *New << '\n'); return New; @@ -748,27 +1042,28 @@ static Instruction *BreakUpSubtract(Instruction *Sub, /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used /// by one, change this into a multiply by a constant to assist with further /// reassociation. -static Instruction *ConvertShiftToMul(Instruction *Shl, - DenseMap, unsigned> &ValueRankMap) { - // If an operand of this shift is a reassociable multiply, or if the shift - // is used by a reassociable multiply or add, turn into a multiply. - if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) || - (Shl->hasOneUse() && - (isReassociableOp(Shl->use_back(), Instruction::Mul) || - isReassociableOp(Shl->use_back(), Instruction::Add)))) { - Constant *MulCst = ConstantInt::get(Shl->getType(), 1); - MulCst = ConstantExpr::getShl(MulCst, cast(Shl->getOperand(1))); - - Instruction *Mul = - BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); - ValueRankMap.erase(Shl); - Mul->takeName(Shl); - Shl->replaceAllUsesWith(Mul); - Mul->setDebugLoc(Shl->getDebugLoc()); - Shl->eraseFromParent(); - return Mul; - } - return 0; +static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { + Constant *MulCst = ConstantInt::get(Shl->getType(), 1); + MulCst = ConstantExpr::getShl(MulCst, cast(Shl->getOperand(1))); + + BinaryOperator *Mul = + BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); + Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. + Mul->takeName(Shl); + + // Everyone now refers to the mul instruction. + Shl->replaceAllUsesWith(Mul); + Mul->setDebugLoc(Shl->getDebugLoc()); + + // We can safely preserve the nuw flag in all cases. It's also safe to turn a + // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special + // handling. + bool NSW = cast(Shl)->hasNoSignedWrap(); + bool NUW = cast(Shl)->hasNoUnsignedWrap(); + if (NSW && NUW) + Mul->setHasNoSignedWrap(true); + Mul->setHasNoUnsignedWrap(NUW); + return Mul; } /// FindInOperandList - Scan backwards and forwards among values with the same @@ -779,13 +1074,23 @@ static unsigned FindInOperandList(SmallVectorImpl &Ops, unsigned i, Value *X) { unsigned XRank = Ops[i].Rank; unsigned e = Ops.size(); - for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) + for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { if (Ops[j].Op == X) return j; + if (Instruction *I1 = dyn_cast(Ops[j].Op)) + if (Instruction *I2 = dyn_cast(X)) + if (I1->isIdenticalTo(I2)) + return j; + } // Scan backwards. - for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) + for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { if (Ops[j].Op == X) return j; + if (Instruction *I1 = dyn_cast(Ops[j].Op)) + if (Instruction *I2 = dyn_cast(X)) + if (I1->isIdenticalTo(I2)) + return j; + } return i; } @@ -798,18 +1103,26 @@ static Value *EmitAddTreeOfValues(Instruction *I, Value *V1 = Ops.back(); Ops.pop_back(); Value *V2 = EmitAddTreeOfValues(I, Ops); - return BinaryOperator::CreateAdd(V2, V1, "tmp", I); + return CreateAdd(V2, V1, "tmp", I, I); } /// RemoveFactorFromExpression - If V is an expression tree that is a /// multiplication sequence, and if this sequence contains a multiply by Factor, /// remove Factor from the tree and return the new tree. Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { - BinaryOperator *BO = isReassociableOp(V, Instruction::Mul); - if (!BO) return 0; + BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); + if (!BO) + return nullptr; + SmallVector Tree; + MadeChange |= LinearizeExprTree(BO, Tree); SmallVector Factors; - LinearizeExprTree(BO, Factors); + Factors.reserve(Tree.size()); + for (unsigned i = 0, e = Tree.size(); i != e; ++i) { + RepeatedValue E = Tree[i]; + Factors.append(E.second.getZExtValue(), + ValueEntry(getRank(E.first), E.first)); + } bool FoundFactor = false; bool NeedsNegate = false; @@ -821,19 +1134,31 @@ Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { } // If this is a negative version of this factor, remove it. - if (ConstantInt *FC1 = dyn_cast(Factor)) + if (ConstantInt *FC1 = dyn_cast(Factor)) { if (ConstantInt *FC2 = dyn_cast(Factors[i].Op)) if (FC1->getValue() == -FC2->getValue()) { FoundFactor = NeedsNegate = true; Factors.erase(Factors.begin()+i); break; } + } else if (ConstantFP *FC1 = dyn_cast(Factor)) { + if (ConstantFP *FC2 = dyn_cast(Factors[i].Op)) { + APFloat F1(FC1->getValueAPF()); + APFloat F2(FC2->getValueAPF()); + F2.changeSign(); + if (F1.compare(F2) == APFloat::cmpEqual) { + FoundFactor = NeedsNegate = true; + Factors.erase(Factors.begin() + i); + break; + } + } + } } if (!FoundFactor) { // Make sure to restore the operands to the expression tree. RewriteExprTree(BO, Factors); - return 0; + return nullptr; } BasicBlock::iterator InsertPt = BO; ++InsertPt; @@ -841,7 +1166,7 @@ Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { // If this was just a single multiply, remove the multiply and return the only // remaining operand. if (Factors.size() == 1) { - RemoveDeadBinaryOp(BO); + RedoInsts.insert(BO); V = Factors[0].Op; } else { RewriteExprTree(BO, Factors); @@ -849,7 +1174,7 @@ Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { } if (NeedsNegate) - V = BinaryOperator::CreateNeg(V, "neg", InsertPt); + V = CreateNeg(V, "neg", InsertPt, BO); return V; } @@ -861,7 +1186,7 @@ Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { static void FindSingleUseMultiplyFactors(Value *V, SmallVectorImpl &Factors, const SmallVectorImpl &Ops) { - BinaryOperator *BO = isReassociableOp(V, Instruction::Mul); + BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); if (!BO) { Factors.push_back(V); return; @@ -918,7 +1243,251 @@ static Value *OptimizeAndOrXor(unsigned Opcode, ++NumAnnihil; } } - return 0; + return nullptr; +} + +/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and +/// instruction with the given two operands, and return the resulting +/// instruction. There are two special cases: 1) if the constant operand is 0, +/// it will return NULL. 2) if the constant is ~0, the symbolic operand will +/// be returned. +static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, + const APInt &ConstOpnd) { + if (ConstOpnd != 0) { + if (!ConstOpnd.isAllOnesValue()) { + LLVMContext &Ctx = Opnd->getType()->getContext(); + Instruction *I; + I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd), + "and.ra", InsertBefore); + I->setDebugLoc(InsertBefore->getDebugLoc()); + return I; + } + return Opnd; + } + return nullptr; +} + +// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" +// into "R ^ C", where C would be 0, and R is a symbolic value. +// +// If it was successful, true is returned, and the "R" and "C" is returned +// via "Res" and "ConstOpnd", respectively; otherwise, false is returned, +// and both "Res" and "ConstOpnd" remain unchanged. +// +bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, + APInt &ConstOpnd, Value *&Res) { + // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 + // = ((x | c1) ^ c1) ^ (c1 ^ c2) + // = (x & ~c1) ^ (c1 ^ c2) + // It is useful only when c1 == c2. + if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) { + if (!Opnd1->getValue()->hasOneUse()) + return false; + + const APInt &C1 = Opnd1->getConstPart(); + if (C1 != ConstOpnd) + return false; + + Value *X = Opnd1->getSymbolicPart(); + Res = createAndInstr(I, X, ~C1); + // ConstOpnd was C2, now C1 ^ C2. + ConstOpnd ^= C1; + + if (Instruction *T = dyn_cast(Opnd1->getValue())) + RedoInsts.insert(T); + return true; + } + return false; +} + + +// Helper function of OptimizeXor(). It tries to simplify +// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a +// symbolic value. +// +// If it was successful, true is returned, and the "R" and "C" is returned +// via "Res" and "ConstOpnd", respectively (If the entire expression is +// evaluated to a constant, the Res is set to NULL); otherwise, false is +// returned, and both "Res" and "ConstOpnd" remain unchanged. +bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, + APInt &ConstOpnd, Value *&Res) { + Value *X = Opnd1->getSymbolicPart(); + if (X != Opnd2->getSymbolicPart()) + return false; + + // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) + int DeadInstNum = 1; + if (Opnd1->getValue()->hasOneUse()) + DeadInstNum++; + if (Opnd2->getValue()->hasOneUse()) + DeadInstNum++; + + // Xor-Rule 2: + // (x | c1) ^ (x & c2) + // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 + // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 + // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 + // + if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { + if (Opnd2->isOrExpr()) + std::swap(Opnd1, Opnd2); + + const APInt &C1 = Opnd1->getConstPart(); + const APInt &C2 = Opnd2->getConstPart(); + APInt C3((~C1) ^ C2); + + // Do not increase code size! + if (C3 != 0 && !C3.isAllOnesValue()) { + int NewInstNum = ConstOpnd != 0 ? 1 : 2; + if (NewInstNum > DeadInstNum) + return false; + } + + Res = createAndInstr(I, X, C3); + ConstOpnd ^= C1; + + } else if (Opnd1->isOrExpr()) { + // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 + // + const APInt &C1 = Opnd1->getConstPart(); + const APInt &C2 = Opnd2->getConstPart(); + APInt C3 = C1 ^ C2; + + // Do not increase code size + if (C3 != 0 && !C3.isAllOnesValue()) { + int NewInstNum = ConstOpnd != 0 ? 1 : 2; + if (NewInstNum > DeadInstNum) + return false; + } + + Res = createAndInstr(I, X, C3); + ConstOpnd ^= C3; + } else { + // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) + // + const APInt &C1 = Opnd1->getConstPart(); + const APInt &C2 = Opnd2->getConstPart(); + APInt C3 = C1 ^ C2; + Res = createAndInstr(I, X, C3); + } + + // Put the original operands in the Redo list; hope they will be deleted + // as dead code. + if (Instruction *T = dyn_cast(Opnd1->getValue())) + RedoInsts.insert(T); + if (Instruction *T = dyn_cast(Opnd2->getValue())) + RedoInsts.insert(T); + + return true; +} + +/// Optimize a series of operands to an 'xor' instruction. If it can be reduced +/// to a single Value, it is returned, otherwise the Ops list is mutated as +/// necessary. +Value *Reassociate::OptimizeXor(Instruction *I, + SmallVectorImpl &Ops) { + if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) + return V; + + if (Ops.size() == 1) + return nullptr; + + SmallVector Opnds; + SmallVector OpndPtrs; + Type *Ty = Ops[0].Op->getType(); + APInt ConstOpnd(Ty->getIntegerBitWidth(), 0); + + // Step 1: Convert ValueEntry to XorOpnd + for (unsigned i = 0, e = Ops.size(); i != e; ++i) { + Value *V = Ops[i].Op; + if (!isa(V)) { + XorOpnd O(V); + O.setSymbolicRank(getRank(O.getSymbolicPart())); + Opnds.push_back(O); + } else + ConstOpnd ^= cast(V)->getValue(); + } + + // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". + // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate + // the "OpndPtrs" as well. For the similar reason, do not fuse this loop + // with the previous loop --- the iterator of the "Opnds" may be invalidated + // when new elements are added to the vector. + for (unsigned i = 0, e = Opnds.size(); i != e; ++i) + OpndPtrs.push_back(&Opnds[i]); + + // Step 2: Sort the Xor-Operands in a way such that the operands containing + // the same symbolic value cluster together. For instance, the input operand + // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: + // ("x | 123", "x & 789", "y & 456"). + std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor()); + + // Step 3: Combine adjacent operands + XorOpnd *PrevOpnd = nullptr; + bool Changed = false; + for (unsigned i = 0, e = Opnds.size(); i < e; i++) { + XorOpnd *CurrOpnd = OpndPtrs[i]; + // The combined value + Value *CV; + + // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" + if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { + Changed = true; + if (CV) + *CurrOpnd = XorOpnd(CV); + else { + CurrOpnd->Invalidate(); + continue; + } + } + + if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { + PrevOpnd = CurrOpnd; + continue; + } + + // step 3.2: When previous and current operands share the same symbolic + // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" + // + if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { + // Remove previous operand + PrevOpnd->Invalidate(); + if (CV) { + *CurrOpnd = XorOpnd(CV); + PrevOpnd = CurrOpnd; + } else { + CurrOpnd->Invalidate(); + PrevOpnd = nullptr; + } + Changed = true; + } + } + + // Step 4: Reassemble the Ops + if (Changed) { + Ops.clear(); + for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { + XorOpnd &O = Opnds[i]; + if (O.isInvalid()) + continue; + ValueEntry VE(getRank(O.getValue()), O.getValue()); + Ops.push_back(VE); + } + if (ConstOpnd != 0) { + Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd); + ValueEntry VE(getRank(C), C); + Ops.push_back(VE); + } + int Sz = Ops.size(); + if (Sz == 1) + return Ops.back().Op; + else if (Sz == 0) { + assert(ConstOpnd == 0); + return ConstantInt::get(Ty->getContext(), ConstOpnd); + } + } + + return nullptr; } /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This @@ -927,11 +1496,10 @@ static Value *OptimizeAndOrXor(unsigned Opcode, Value *Reassociate::OptimizeAdd(Instruction *I, SmallVectorImpl &Ops) { // Scan the operand lists looking for X and -X pairs. If we find any, we - // can simplify the expression. X+-X == 0. While we're at it, scan for any + // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, + // scan for any // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. - // - // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1". - // + for (unsigned i = 0, e = Ops.size(); i != e; ++i) { Value *TheOp = Ops[i].Op; // Check to see if we've seen this operand before. If so, we factor all @@ -949,13 +1517,15 @@ Value *Reassociate::OptimizeAdd(Instruction *I, ++NumFactor; // Insert a new multiply. - Value *Mul = ConstantInt::get(cast(I->getType()), NumFound); - Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I); + Type *Ty = TheOp->getType(); + Constant *C = Ty->isIntegerTy() ? ConstantInt::get(Ty, NumFound) + : ConstantFP::get(Ty, NumFound); + Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); // Now that we have inserted a multiply, optimize it. This allows us to // handle cases that require multiple factoring steps, such as this: // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 - RedoInsts.push_back(Mul); + RedoInsts.insert(Mul); // If every add operand was a duplicate, return the multiply. if (Ops.empty()) @@ -971,19 +1541,30 @@ Value *Reassociate::OptimizeAdd(Instruction *I, continue; } - // Check for X and -X in the operand list. - if (!BinaryOperator::isNeg(TheOp)) + // Check for X and -X or X and ~X in the operand list. + if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) && + !BinaryOperator::isNot(TheOp)) continue; - Value *X = BinaryOperator::getNegArgument(TheOp); + Value *X = nullptr; + if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)) + X = BinaryOperator::getNegArgument(TheOp); + else if (BinaryOperator::isNot(TheOp)) + X = BinaryOperator::getNotArgument(TheOp); + unsigned FoundX = FindInOperandList(Ops, i, X); if (FoundX == i) continue; // Remove X and -X from the operand list. - if (Ops.size() == 2) + if (Ops.size() == 2 && + (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))) return Constant::getNullValue(X->getType()); + // Remove X and ~X from the operand list. + if (Ops.size() == 2 && BinaryOperator::isNot(TheOp)) + return Constant::getAllOnesValue(X->getType()); + Ops.erase(Ops.begin()+i); if (i < FoundX) --FoundX; @@ -993,6 +1574,13 @@ Value *Reassociate::OptimizeAdd(Instruction *I, ++NumAnnihil; --i; // Revisit element. e -= 2; // Removed two elements. + + // if X and ~X we append -1 to the operand list. + if (BinaryOperator::isNot(TheOp)) { + Value *V = Constant::getAllOnesValue(X->getType()); + Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); + e += 1; + } } // Scan the operand list, checking to see if there are any common factors @@ -1005,9 +1593,10 @@ Value *Reassociate::OptimizeAdd(Instruction *I, // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) // where they are actually the same multiply. unsigned MaxOcc = 0; - Value *MaxOccVal = 0; + Value *MaxOccVal = nullptr; for (unsigned i = 0, e = Ops.size(); i != e; ++i) { - BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul); + BinaryOperator *BOp = + isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); if (!BOp) continue; @@ -1020,23 +1609,43 @@ Value *Reassociate::OptimizeAdd(Instruction *I, SmallPtrSet Duplicates; for (unsigned i = 0, e = Factors.size(); i != e; ++i) { Value *Factor = Factors[i]; - if (!Duplicates.insert(Factor)) continue; + if (!Duplicates.insert(Factor)) + continue; unsigned Occ = ++FactorOccurrences[Factor]; - if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; } + if (Occ > MaxOcc) { + MaxOcc = Occ; + MaxOccVal = Factor; + } // If Factor is a negative constant, add the negated value as a factor // because we can percolate the negate out. Watch for minint, which // cannot be positivified. - if (ConstantInt *CI = dyn_cast(Factor)) + if (ConstantInt *CI = dyn_cast(Factor)) { if (CI->isNegative() && !CI->isMinValue(true)) { Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); assert(!Duplicates.count(Factor) && "Shouldn't have two constant factors, missed a canonicalize"); - unsigned Occ = ++FactorOccurrences[Factor]; - if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; } + if (Occ > MaxOcc) { + MaxOcc = Occ; + MaxOccVal = Factor; + } } + } else if (ConstantFP *CF = dyn_cast(Factor)) { + if (CF->isNegative()) { + APFloat F(CF->getValueAPF()); + F.changeSign(); + Factor = ConstantFP::get(CF->getContext(), F); + assert(!Duplicates.count(Factor) && + "Shouldn't have two constant factors, missed a canonicalize"); + unsigned Occ = ++FactorOccurrences[Factor]; + if (Occ > MaxOcc) { + MaxOcc = Occ; + MaxOccVal = Factor; + } + } + } } } @@ -1049,11 +1658,16 @@ Value *Reassociate::OptimizeAdd(Instruction *I, // this, we could otherwise run into situations where removing a factor // from an expression will drop a use of maxocc, and this can cause // RemoveFactorFromExpression on successive values to behave differently. - Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal); + Instruction *DummyInst = + I->getType()->isIntegerTy() + ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) + : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); + SmallVector NewMulOps; for (unsigned i = 0; i != Ops.size(); ++i) { // Only try to remove factors from expressions we're allowed to. - BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul); + BinaryOperator *BOp = + isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); if (!BOp) continue; @@ -1082,14 +1696,15 @@ Value *Reassociate::OptimizeAdd(Instruction *I, // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); (void)NumAddedValues; - RedoInsts.push_back(V); + if (Instruction *VI = dyn_cast(V)) + RedoInsts.insert(VI); // Create the multiply. - Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I); + Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I); // Rerun associate on the multiply in case the inner expression turned into // a multiply. We want to make sure that we keep things in canonical form. - RedoInsts.push_back(V2); + RedoInsts.insert(V2); // If every add operand included the factor (e.g. "A*B + A*C"), then the // entire result expression is just the multiply "A*(B+C)". @@ -1102,20 +1717,7 @@ Value *Reassociate::OptimizeAdd(Instruction *I, Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); } - return 0; -} - -namespace { - /// \brief Predicate tests whether a ValueEntry's op is in a map. - struct IsValueInMap { - const DenseMap ⤅ - - IsValueInMap(const DenseMap &Map) : Map(Map) {} - - bool operator()(const ValueEntry &Entry) { - return Map.find(Entry.Op) != Map.end(); - } - }; + return nullptr; } /// \brief Build up a vector of value/power pairs factoring a product. @@ -1176,7 +1778,7 @@ bool Reassociate::collectMultiplyFactors(SmallVectorImpl &Ops, // below our mininum of '4'. assert(FactorPowerSum >= 4); - std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter()); + std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter()); return true; } @@ -1188,7 +1790,10 @@ static Value *buildMultiplyTree(IRBuilder<> &Builder, Value *LHS = Ops.pop_back_val(); do { - LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); + if (LHS->getType()->isIntegerTy()) + LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); + else + LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); } while (!Ops.empty()); return LHS; @@ -1223,8 +1828,9 @@ Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder, // Reset the base value of the first factor to the new expression tree. // We'll remove all the factors with the same power in a second pass. - Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); - RedoInsts.push_back(Factors[LastIdx].Base); + Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); + if (Instruction *MI = dyn_cast(M)) + RedoInsts.insert(MI); LastIdx = Idx; } @@ -1259,14 +1865,14 @@ Value *Reassociate::OptimizeMul(BinaryOperator *I, // We can only optimize the multiplies when there is a chain of more than // three, such that a balanced tree might require fewer total multiplies. if (Ops.size() < 4) - return 0; + return nullptr; // Try to turn linear trees of multiplies without other uses of the // intermediate stages into minimal multiply DAGs with perfect sub-expression // re-use. SmallVector Factors; if (!collectMultiplyFactors(Ops, Factors)) - return 0; // All distinct factors, so nothing left for us to do. + return nullptr; // All distinct factors, so nothing left for us to do. IRBuilder<> Builder(I); Value *V = buildMinimalMultiplyDAG(Builder, Factors); @@ -1275,54 +1881,32 @@ Value *Reassociate::OptimizeMul(BinaryOperator *I, ValueEntry NewEntry = ValueEntry(getRank(V), V); Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); - return 0; + return nullptr; } Value *Reassociate::OptimizeExpression(BinaryOperator *I, SmallVectorImpl &Ops) { // Now that we have the linearized expression tree, try to optimize it. // Start by folding any constants that we found. - bool IterateOptimization = false; - if (Ops.size() == 1) return Ops[0].Op; - + Constant *Cst = nullptr; unsigned Opcode = I->getOpcode(); + while (!Ops.empty() && isa(Ops.back().Op)) { + Constant *C = cast(Ops.pop_back_val().Op); + Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; + } + // If there was nothing but constants then we are done. + if (Ops.empty()) + return Cst; + + // Put the combined constant back at the end of the operand list, except if + // there is no point. For example, an add of 0 gets dropped here, while a + // multiplication by zero turns the whole expression into zero. + if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { + if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) + return Cst; + Ops.push_back(ValueEntry(0, Cst)); + } - if (Constant *V1 = dyn_cast(Ops[Ops.size()-2].Op)) - if (Constant *V2 = dyn_cast(Ops.back().Op)) { - Ops.pop_back(); - Ops.back().Op = ConstantExpr::get(Opcode, V1, V2); - return OptimizeExpression(I, Ops); - } - - // Check for destructive annihilation due to a constant being used. - if (ConstantInt *CstVal = dyn_cast(Ops.back().Op)) - switch (Opcode) { - default: break; - case Instruction::And: - if (CstVal->isZero()) // X & 0 -> 0 - return CstVal; - if (CstVal->isAllOnesValue()) // X & -1 -> X - Ops.pop_back(); - break; - case Instruction::Mul: - if (CstVal->isZero()) { // X * 0 -> 0 - ++NumAnnihil; - return CstVal; - } - - if (cast(CstVal)->isOne()) - Ops.pop_back(); // X * 1 -> X - break; - case Instruction::Or: - if (CstVal->isAllOnesValue()) // X | -1 -> -1 - return CstVal; - // FALLTHROUGH! - case Instruction::Add: - case Instruction::Xor: - if (CstVal->isZero()) // X [|^+] 0 -> X - Ops.pop_back(); - break; - } if (Ops.size() == 1) return Ops[0].Op; // Handle destructive annihilation due to identities between elements in the @@ -1332,65 +1916,184 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I, default: break; case Instruction::And: case Instruction::Or: - case Instruction::Xor: if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) return Result; break; + case Instruction::Xor: + if (Value *Result = OptimizeXor(I, Ops)) + return Result; + break; + case Instruction::Add: + case Instruction::FAdd: if (Value *Result = OptimizeAdd(I, Ops)) return Result; break; case Instruction::Mul: + case Instruction::FMul: if (Value *Result = OptimizeMul(I, Ops)) return Result; break; } - if (IterateOptimization || Ops.size() != NumOps) + if (Ops.size() != NumOps) return OptimizeExpression(I, Ops); - return 0; + return nullptr; } -/// ReassociateInst - Inspect and reassociate the instruction at the -/// given position, post-incrementing the position. -void Reassociate::ReassociateInst(BasicBlock::iterator &BBI) { - Instruction *BI = BBI++; - if (BI->getOpcode() == Instruction::Shl && - isa(BI->getOperand(1))) - if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) { - MadeChange = true; - BI = NI; +/// EraseInst - Zap the given instruction, adding interesting operands to the +/// work list. +void Reassociate::EraseInst(Instruction *I) { + assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); + SmallVector Ops(I->op_begin(), I->op_end()); + // Erase the dead instruction. + ValueRankMap.erase(I); + RedoInsts.remove(I); + I->eraseFromParent(); + // Optimize its operands. + SmallPtrSet Visited; // Detect self-referential nodes. + for (unsigned i = 0, e = Ops.size(); i != e; ++i) + if (Instruction *Op = dyn_cast(Ops[i])) { + // If this is a node in an expression tree, climb to the expression root + // and add that since that's where optimization actually happens. + unsigned Opcode = Op->getOpcode(); + while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && + Visited.insert(Op)) + Op = Op->user_back(); + RedoInsts.insert(Op); } +} - // Floating point binary operators are not associative, but we can still - // commute (some) of them, to canonicalize the order of their operands. - // This can potentially expose more CSE opportunities, and makes writing - // other transformations simpler. - if (isa(BI) && - (BI->getType()->isFloatingPointTy() || BI->getType()->isVectorTy())) { - // FAdd and FMul can be commuted. - if (BI->getOpcode() != Instruction::FMul && - BI->getOpcode() != Instruction::FAdd) - return; +// Canonicalize expressions of the following form: +// x + (-Constant * y) -> x - (Constant * y) +// x - (-Constant * y) -> x + (Constant * y) +Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) { + if (!I->hasOneUse() || I->getType()->isVectorTy()) + return nullptr; - Value *LHS = BI->getOperand(0); - Value *RHS = BI->getOperand(1); - unsigned LHSRank = getRank(LHS); - unsigned RHSRank = getRank(RHS); + // Must be a mul, fmul, or fdiv instruction. + unsigned Opcode = I->getOpcode(); + if (Opcode != Instruction::Mul && Opcode != Instruction::FMul && + Opcode != Instruction::FDiv) + return nullptr; + + // Must have at least one constant operand. + Constant *C0 = dyn_cast(I->getOperand(0)); + Constant *C1 = dyn_cast(I->getOperand(1)); + if (!C0 && !C1) + return nullptr; + + // Must be a negative ConstantInt or ConstantFP. + Constant *C = C0 ? C0 : C1; + unsigned ConstIdx = C0 ? 0 : 1; + if (auto *CI = dyn_cast(C)) { + if (!CI->isNegative()) + return nullptr; + } else if (auto *CF = dyn_cast(C)) { + if (!CF->isNegative()) + return nullptr; + } else + return nullptr; + + // User must be a binary operator with one or more uses. + Instruction *User = I->user_back(); + if (!isa(User) || !User->getNumUses()) + return nullptr; + + unsigned UserOpcode = User->getOpcode(); + if (UserOpcode != Instruction::Add && UserOpcode != Instruction::FAdd && + UserOpcode != Instruction::Sub && UserOpcode != Instruction::FSub) + return nullptr; + + // Subtraction is not commutative. Explicitly, the following transform is + // not valid: (-Constant * y) - x -> x + (Constant * y) + if (!User->isCommutative() && User->getOperand(1) != I) + return nullptr; + + // Change the sign of the constant. + if (ConstantInt *CI = dyn_cast(C)) + I->setOperand(ConstIdx, ConstantInt::get(CI->getContext(), -CI->getValue())); + else { + ConstantFP *CF = cast(C); + APFloat Val = CF->getValueAPF(); + Val.changeSign(); + I->setOperand(ConstIdx, ConstantFP::get(CF->getContext(), Val)); + } + + // Canonicalize I to RHS to simplify the next bit of logic. E.g., + // ((-Const*y) + x) -> (x + (-Const*y)). + if (User->getOperand(0) == I && User->isCommutative()) + cast(User)->swapOperands(); + + Value *Op0 = User->getOperand(0); + Value *Op1 = User->getOperand(1); + BinaryOperator *NI; + switch(UserOpcode) { + default: + llvm_unreachable("Unexpected Opcode!"); + case Instruction::Add: + NI = BinaryOperator::CreateSub(Op0, Op1); + break; + case Instruction::Sub: + NI = BinaryOperator::CreateAdd(Op0, Op1); + break; + case Instruction::FAdd: + NI = BinaryOperator::CreateFSub(Op0, Op1); + NI->setFastMathFlags(cast(User)->getFastMathFlags()); + break; + case Instruction::FSub: + NI = BinaryOperator::CreateFAdd(Op0, Op1); + NI->setFastMathFlags(cast(User)->getFastMathFlags()); + break; + } - // Sort the operands by rank. - if (RHSRank < LHSRank) { - BI->setOperand(0, RHS); - BI->setOperand(1, LHS); + NI->insertBefore(User); + NI->setName(User->getName()); + User->replaceAllUsesWith(NI); + NI->setDebugLoc(I->getDebugLoc()); + RedoInsts.insert(I); + MadeChange = true; + return NI; +} + +/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing +/// instructions is not allowed. +void Reassociate::OptimizeInst(Instruction *I) { + // Only consider operations that we understand. + if (!isa(I)) + return; + + if (I->getOpcode() == Instruction::Shl && isa(I->getOperand(1))) + // If an operand of this shift is a reassociable multiply, or if the shift + // is used by a reassociable multiply or add, turn into a multiply. + if (isReassociableOp(I->getOperand(0), Instruction::Mul) || + (I->hasOneUse() && + (isReassociableOp(I->user_back(), Instruction::Mul) || + isReassociableOp(I->user_back(), Instruction::Add)))) { + Instruction *NI = ConvertShiftToMul(I); + RedoInsts.insert(I); + MadeChange = true; + I = NI; } + // Canonicalize negative constants out of expressions. + if (Instruction *Res = canonicalizeNegConstExpr(I)) + I = Res; + + // Commute binary operators, to canonicalize the order of their operands. + // This can potentially expose more CSE opportunities, and makes writing other + // transformations simpler. + if (I->isCommutative()) + canonicalizeOperands(I); + + // Don't optimize vector instructions. + if (I->getType()->isVectorTy()) return; - } - // Do not reassociate operations that we do not understand. - if (!isa(BI)) + // Don't optimize floating point instructions that don't have unsafe algebra. + if (I->getType()->isFloatingPointTy() && !I->hasUnsafeAlgebra()) return; // Do not reassociate boolean (i1) expressions. We want to preserve the @@ -1399,55 +2102,86 @@ void Reassociate::ReassociateInst(BasicBlock::iterator &BBI) { // is not further optimized, it is likely to be transformed back to a // short-circuited form for code gen, and the source order may have been // optimized for the most likely conditions. - if (BI->getType()->isIntegerTy(1)) + if (I->getType()->isIntegerTy(1)) return; // If this is a subtract instruction which is not already in negate form, // see if we can convert it to X+-Y. - if (BI->getOpcode() == Instruction::Sub) { - if (ShouldBreakUpSubtract(BI)) { - BI = BreakUpSubtract(BI, ValueRankMap); - // Reset the BBI iterator in case BreakUpSubtract changed the - // instruction it points to. - BBI = BI; - ++BBI; + if (I->getOpcode() == Instruction::Sub) { + if (ShouldBreakUpSubtract(I)) { + Instruction *NI = BreakUpSubtract(I); + RedoInsts.insert(I); MadeChange = true; - } else if (BinaryOperator::isNeg(BI)) { + I = NI; + } else if (BinaryOperator::isNeg(I)) { // Otherwise, this is a negation. See if the operand is a multiply tree // and if this is not an inner node of a multiply tree. - if (isReassociableOp(BI->getOperand(1), Instruction::Mul) && - (!BI->hasOneUse() || - !isReassociableOp(BI->use_back(), Instruction::Mul))) { - BI = LowerNegateToMultiply(BI, ValueRankMap); + if (isReassociableOp(I->getOperand(1), Instruction::Mul) && + (!I->hasOneUse() || + !isReassociableOp(I->user_back(), Instruction::Mul))) { + Instruction *NI = LowerNegateToMultiply(I); + RedoInsts.insert(I); MadeChange = true; + I = NI; + } + } + } else if (I->getOpcode() == Instruction::FSub) { + if (ShouldBreakUpSubtract(I)) { + Instruction *NI = BreakUpSubtract(I); + RedoInsts.insert(I); + MadeChange = true; + I = NI; + } else if (BinaryOperator::isFNeg(I)) { + // Otherwise, this is a negation. See if the operand is a multiply tree + // and if this is not an inner node of a multiply tree. + if (isReassociableOp(I->getOperand(1), Instruction::FMul) && + (!I->hasOneUse() || + !isReassociableOp(I->user_back(), Instruction::FMul))) { + Instruction *NI = LowerNegateToMultiply(I); + RedoInsts.insert(I); + MadeChange = true; + I = NI; } } } - // If this instruction is a commutative binary operator, process it. - if (!BI->isAssociative()) return; - BinaryOperator *I = cast(BI); + // If this instruction is an associative binary operator, process it. + if (!I->isAssociative()) return; + BinaryOperator *BO = cast(I); // If this is an interior node of a reassociable tree, ignore it until we // get to the root of the tree, to avoid N^2 analysis. - if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode())) + unsigned Opcode = BO->getOpcode(); + if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) return; // If this is an add tree that is used by a sub instruction, ignore it // until we process the subtract. - if (I->hasOneUse() && I->getOpcode() == Instruction::Add && - cast(I->use_back())->getOpcode() == Instruction::Sub) + if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && + cast(BO->user_back())->getOpcode() == Instruction::Sub) + return; + if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && + cast(BO->user_back())->getOpcode() == Instruction::FSub) return; - ReassociateExpression(I); + ReassociateExpression(BO); } -Value *Reassociate::ReassociateExpression(BinaryOperator *I) { +void Reassociate::ReassociateExpression(BinaryOperator *I) { + assert(!I->getType()->isVectorTy() && + "Reassociation of vector instructions is not supported."); // First, walk the expression tree, linearizing the tree, collecting the // operand information. + SmallVector Tree; + MadeChange |= LinearizeExprTree(I, Tree); SmallVector Ops; - LinearizeExprTree(I, Ops); + Ops.reserve(Tree.size()); + for (unsigned i = 0, e = Tree.size(); i != e; ++i) { + RepeatedValue E = Tree[i]; + Ops.append(E.second.getZExtValue(), + ValueEntry(getRank(E.first), E.first)); + } DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); @@ -1462,72 +2196,94 @@ Value *Reassociate::ReassociateExpression(BinaryOperator *I) { // OptimizeExpression - Now that we have the expression tree in a convenient // sorted form, optimize it globally if possible. if (Value *V = OptimizeExpression(I, Ops)) { + if (V == I) + // Self-referential expression in unreachable code. + return; // This expression tree simplified to something that isn't a tree, // eliminate it. DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); I->replaceAllUsesWith(V); if (Instruction *VI = dyn_cast(V)) VI->setDebugLoc(I->getDebugLoc()); - RemoveDeadBinaryOp(I); + RedoInsts.insert(I); ++NumAnnihil; - return V; + return; } // We want to sink immediates as deeply as possible except in the case where // this is a multiply tree used only by an add, and the immediate is a -1. // In this case we reassociate to put the negation on the outside so that we // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y - if (I->getOpcode() == Instruction::Mul && I->hasOneUse() && - cast(I->use_back())->getOpcode() == Instruction::Add && - isa(Ops.back().Op) && - cast(Ops.back().Op)->isAllOnesValue()) { - ValueEntry Tmp = Ops.pop_back_val(); - Ops.insert(Ops.begin(), Tmp); + if (I->hasOneUse()) { + if (I->getOpcode() == Instruction::Mul && + cast(I->user_back())->getOpcode() == Instruction::Add && + isa(Ops.back().Op) && + cast(Ops.back().Op)->isAllOnesValue()) { + ValueEntry Tmp = Ops.pop_back_val(); + Ops.insert(Ops.begin(), Tmp); + } else if (I->getOpcode() == Instruction::FMul && + cast(I->user_back())->getOpcode() == + Instruction::FAdd && + isa(Ops.back().Op) && + cast(Ops.back().Op)->isExactlyValue(-1.0)) { + ValueEntry Tmp = Ops.pop_back_val(); + Ops.insert(Ops.begin(), Tmp); + } } DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); if (Ops.size() == 1) { + if (Ops[0].Op == I) + // Self-referential expression in unreachable code. + return; + // This expression tree simplified to something that isn't a tree, // eliminate it. I->replaceAllUsesWith(Ops[0].Op); if (Instruction *OI = dyn_cast(Ops[0].Op)) OI->setDebugLoc(I->getDebugLoc()); - RemoveDeadBinaryOp(I); - return Ops[0].Op; + RedoInsts.insert(I); + return; } // Now that we ordered and optimized the expressions, splat them back into // the expression tree, removing any unneeded nodes. RewriteExprTree(I, Ops); - return I; } bool Reassociate::runOnFunction(Function &F) { - // Recalculate the rank map for F + if (skipOptnoneFunction(F)) + return false; + + // Calculate the rank map for F BuildRankMap(F); MadeChange = false; - for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) - for (BasicBlock::iterator BBI = FI->begin(); BBI != FI->end(); ) - ReassociateInst(BBI); - - // Now that we're done, revisit any instructions which are likely to - // have secondary reassociation opportunities. - while (!RedoInsts.empty()) - if (Value *V = RedoInsts.pop_back_val()) { - BasicBlock::iterator BBI = cast(V); - ReassociateInst(BBI); + for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { + // Optimize every instruction in the basic block. + for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; ) + if (isInstructionTriviallyDead(II)) { + EraseInst(II++); + } else { + OptimizeInst(II); + assert(II->getParent() == BI && "Moved to a different block!"); + ++II; + } + + // If this produced extra instructions to optimize, handle them now. + while (!RedoInsts.empty()) { + Instruction *I = RedoInsts.pop_back_val(); + if (isInstructionTriviallyDead(I)) + EraseInst(I); + else + OptimizeInst(I); } + } // We are done with the rank map. RankMap.clear(); ValueRankMap.clear(); - // Now that we're done, delete any instructions which are no longer used. - while (!DeadInsts.empty()) - if (Value *V = DeadInsts.pop_back_val()) - RecursivelyDeleteTriviallyDeadInstructions(V); - return MadeChange; }