X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTransforms%2FScalar%2FLoopRotation.cpp;h=aeb5b36b4b8cfb402119447cebd226b6aed59b3a;hb=9146833fa313fb0339355f9ca8b63122dd73ba88;hp=7a4bb3507b17d4a2467e8a49e916ffdb22ee9674;hpb=4c7279ac726e338400626fca5a09b5533426eb6a;p=oota-llvm.git diff --git a/lib/Transforms/Scalar/LoopRotation.cpp b/lib/Transforms/Scalar/LoopRotation.cpp index 7a4bb3507b1..aeb5b36b4b8 100644 --- a/lib/Transforms/Scalar/LoopRotation.cpp +++ b/lib/Transforms/Scalar/LoopRotation.cpp @@ -11,24 +11,38 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "loop-rotate" #include "llvm/Transforms/Scalar.h" -#include "llvm/Function.h" -#include "llvm/IntrinsicInst.h" -#include "llvm/Analysis/LoopInfo.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/CodeMetrics.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/LoopPass.h" -#include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/SSAUpdater.h" +#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/SmallVector.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/SSAUpdater.h" +#include "llvm/Transforms/Utils/ValueMapper.h" using namespace llvm; -#define MAX_HEADER_SIZE 16 +#define DEBUG_TYPE "loop-rotate" + +static cl::opt +DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden, + cl::desc("The default maximum header size for automatic loop rotation")); STATISTIC(NumRotated, "Number of loops rotated"); namespace { @@ -36,199 +50,134 @@ namespace { class LoopRotate : public LoopPass { public: static char ID; // Pass ID, replacement for typeid - LoopRotate() : LoopPass(&ID) {} - - // Rotate Loop L as many times as possible. Return true if - // loop is rotated at least once. - bool runOnLoop(Loop *L, LPPassManager &LPM); + LoopRotate(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) { + initializeLoopRotatePass(*PassRegistry::getPassRegistry()); + if (SpecifiedMaxHeaderSize == -1) + MaxHeaderSize = DefaultRotationThreshold; + else + MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize); + } // LCSSA form makes instruction renaming easier. - virtual void getAnalysisUsage(AnalysisUsage &AU) const { + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addPreserved(); + AU.addRequired(); + AU.addPreserved(); + AU.addRequired(); + AU.addPreserved(); AU.addRequiredID(LoopSimplifyID); AU.addPreservedID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addPreservedID(LCSSAID); - AU.addPreserved(); - AU.addPreserved(); - AU.addPreserved(); - AU.addPreserved(); + AU.addPreserved(); + AU.addPreserved(); + AU.addRequired(); + AU.addPreserved(); + AU.addPreserved(); } - // Helper functions - - /// Do actual work - bool rotateLoop(Loop *L, LPPassManager &LPM); - - /// Initialize local data - void initialize(); - - /// After loop rotation, loop pre-header has multiple sucessors. - /// Insert one forwarding basic block to ensure that loop pre-header - /// has only one successor. - void preserveCanonicalLoopForm(LPPassManager &LPM); + bool runOnLoop(Loop *L, LPPassManager &LPM) override; + bool simplifyLoopLatch(Loop *L); + bool rotateLoop(Loop *L, bool SimplifiedLatch); private: - Loop *L; - BasicBlock *OrigHeader; - BasicBlock *OrigPreHeader; - BasicBlock *OrigLatch; - BasicBlock *NewHeader; - BasicBlock *Exit; - LPPassManager *LPM_Ptr; + unsigned MaxHeaderSize; + LoopInfo *LI; + const TargetTransformInfo *TTI; + AssumptionCache *AC; + DominatorTree *DT; }; } - -char LoopRotate::ID = 0; -static RegisterPass X("loop-rotate", "Rotate Loops"); -Pass *llvm::createLoopRotatePass() { return new LoopRotate(); } +char LoopRotate::ID = 0; +INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopSimplify) +INITIALIZE_PASS_DEPENDENCY(LCSSA) +INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) +INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false) + +Pass *llvm::createLoopRotatePass(int MaxHeaderSize) { + return new LoopRotate(MaxHeaderSize); +} /// Rotate Loop L as many times as possible. Return true if /// the loop is rotated at least once. -bool LoopRotate::runOnLoop(Loop *Lp, LPPassManager &LPM) { - - bool RotatedOneLoop = false; - initialize(); - LPM_Ptr = &LPM; - - // One loop can be rotated multiple times. - while (rotateLoop(Lp,LPM)) { - RotatedOneLoop = true; - initialize(); - } - - return RotatedOneLoop; -} - -/// Rotate loop LP. Return true if the loop is rotated. -bool LoopRotate::rotateLoop(Loop *Lp, LPPassManager &LPM) { - L = Lp; - - OrigHeader = L->getHeader(); - OrigPreHeader = L->getLoopPreheader(); - OrigLatch = L->getLoopLatch(); - - // If the loop has only one block then there is not much to rotate. - if (L->getBlocks().size() == 1) - return false; - - assert(OrigHeader && OrigLatch && OrigPreHeader && - "Loop is not in canonical form"); - - // If the loop header is not one of the loop exiting blocks then - // either this loop is already rotated or it is not - // suitable for loop rotation transformations. - if (!L->isLoopExiting(OrigHeader)) - return false; - - BranchInst *BI = dyn_cast(OrigHeader->getTerminator()); - if (!BI) - return false; - assert(BI->isConditional() && "Branch Instruction is not conditional"); - - // Updating PHInodes in loops with multiple exits adds complexity. - // Keep it simple, and restrict loop rotation to loops with one exit only. - // In future, lift this restriction and support for multiple exits if - // required. - SmallVector ExitBlocks; - L->getExitBlocks(ExitBlocks); - if (ExitBlocks.size() > 1) - return false; - - // Check size of original header and reject - // loop if it is very big. - unsigned Size = 0; - - // FIXME: Use common api to estimate size. - for (BasicBlock::const_iterator OI = OrigHeader->begin(), - OE = OrigHeader->end(); OI != OE; ++OI) { - if (isa(OI)) - continue; // PHI nodes don't count. - if (isa(OI)) - continue; // Debug intrinsics don't count as size. - Size++; - } - - if (Size > MAX_HEADER_SIZE) +bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) { + if (skipOptnoneFunction(L)) return false; - // Now, this loop is suitable for rotation. + // Save the loop metadata. + MDNode *LoopMD = L->getLoopID(); - // Anything ScalarEvolution may know about this loop or the PHI nodes - // in its header will soon be invalidated. - if (ScalarEvolution *SE = getAnalysisIfAvailable()) - SE->forgetLoop(L); + Function &F = *L->getHeader()->getParent(); - // Find new Loop header. NewHeader is a Header's one and only successor - // that is inside loop. Header's other successor is outside the - // loop. Otherwise loop is not suitable for rotation. - Exit = BI->getSuccessor(0); - NewHeader = BI->getSuccessor(1); - if (L->contains(Exit)) - std::swap(Exit, NewHeader); - assert(NewHeader && "Unable to determine new loop header"); - assert(L->contains(NewHeader) && !L->contains(Exit) && - "Unable to determine loop header and exit blocks"); - - // This code assumes that the new header has exactly one predecessor. - // Remove any single-entry PHI nodes in it. - assert(NewHeader->getSinglePredecessor() && - "New header doesn't have one pred!"); - FoldSingleEntryPHINodes(NewHeader); + LI = &getAnalysis().getLoopInfo(); + TTI = &getAnalysis().getTTI(F); + AC = &getAnalysis().getAssumptionCache(F); + auto *DTWP = getAnalysisIfAvailable(); + DT = DTWP ? &DTWP->getDomTree() : nullptr; - // Begin by walking OrigHeader and populating ValueMap with an entry for - // each Instruction. - BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); - DenseMap ValueMap; + // Simplify the loop latch before attempting to rotate the header + // upward. Rotation may not be needed if the loop tail can be folded into the + // loop exit. + bool SimplifiedLatch = simplifyLoopLatch(L); - // For PHI nodes, the value available in OldPreHeader is just the - // incoming value from OldPreHeader. - for (; PHINode *PN = dyn_cast(I); ++I) - ValueMap[PN] = PN->getIncomingValue(PN->getBasicBlockIndex(OrigPreHeader)); - - // For the rest of the instructions, create a clone in the OldPreHeader. - TerminatorInst *LoopEntryBranch = OrigPreHeader->getTerminator(); - for (; I != E; ++I) { - Instruction *C = I->clone(); - C->setName(I->getName()); - C->insertBefore(LoopEntryBranch); - ValueMap[I] = C; + // One loop can be rotated multiple times. + bool MadeChange = false; + while (rotateLoop(L, SimplifiedLatch)) { + MadeChange = true; + SimplifiedLatch = false; } - // Along with all the other instructions, we just cloned OrigHeader's - // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's - // successors by duplicating their incoming values for OrigHeader. - TerminatorInst *TI = OrigHeader->getTerminator(); - for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) - for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin(); - PHINode *PN = dyn_cast(BI); ++BI) - PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreHeader); + // Restore the loop metadata. + // NB! We presume LoopRotation DOESN'T ADD its own metadata. + if ((MadeChange || SimplifiedLatch) && LoopMD) + L->setLoopID(LoopMD); - // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove - // OrigPreHeader's old terminator (the original branch into the loop), and - // remove the corresponding incoming values from the PHI nodes in OrigHeader. - LoopEntryBranch->eraseFromParent(); + return MadeChange; +} + +/// RewriteUsesOfClonedInstructions - We just cloned the instructions from the +/// old header into the preheader. If there were uses of the values produced by +/// these instruction that were outside of the loop, we have to insert PHI nodes +/// to merge the two values. Do this now. +static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, + BasicBlock *OrigPreheader, + ValueToValueMapTy &ValueMap) { + // Remove PHI node entries that are no longer live. + BasicBlock::iterator I, E = OrigHeader->end(); for (I = OrigHeader->begin(); PHINode *PN = dyn_cast(I); ++I) - PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreHeader)); + PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); // Now fix up users of the instructions in OrigHeader, inserting PHI nodes // as necessary. SSAUpdater SSA; for (I = OrigHeader->begin(); I != E; ++I) { Value *OrigHeaderVal = I; + + // If there are no uses of the value (e.g. because it returns void), there + // is nothing to rewrite. + if (OrigHeaderVal->use_empty()) + continue; + Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal]; // The value now exits in two versions: the initial value in the preheader // and the loop "next" value in the original header. - SSA.Initialize(OrigHeaderVal); + SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); - SSA.AddAvailableValue(OrigPreHeader, OrigPreHeaderVal); + SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); // Visit each use of the OrigHeader instruction. for (Value::use_iterator UI = OrigHeaderVal->use_begin(), UE = OrigHeaderVal->use_end(); UI != UE; ) { // Grab the use before incrementing the iterator. - Use &U = UI.getUse(); + Use &U = *UI; // Increment the iterator before removing the use from the list. ++UI; @@ -246,7 +195,7 @@ bool LoopRotate::rotateLoop(Loop *Lp, LPPassManager &LPM) { // Users in the OrigPreHeader need to use the value to which the // original definitions are mapped. - if (UserBB == OrigPreHeader) { + if (UserBB == OrigPreheader) { U = OrigPreHeaderVal; continue; } @@ -256,147 +205,416 @@ bool LoopRotate::rotateLoop(Loop *Lp, LPPassManager &LPM) { SSA.RewriteUse(U); } } +} - // NewHeader is now the header of the loop. - L->moveToHeader(NewHeader); - - preserveCanonicalLoopForm(LPM); +/// Determine whether the instructions in this range may be safely and cheaply +/// speculated. This is not an important enough situation to develop complex +/// heuristics. We handle a single arithmetic instruction along with any type +/// conversions. +static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, + BasicBlock::iterator End, Loop *L) { + bool seenIncrement = false; + bool MultiExitLoop = false; + + if (!L->getExitingBlock()) + MultiExitLoop = true; + + for (BasicBlock::iterator I = Begin; I != End; ++I) { + + if (!isSafeToSpeculativelyExecute(I)) + return false; + + if (isa(I)) + continue; + + switch (I->getOpcode()) { + default: + return false; + case Instruction::GetElementPtr: + // GEPs are cheap if all indices are constant. + if (!cast(I)->hasAllConstantIndices()) + return false; + // fall-thru to increment case + case Instruction::Add: + case Instruction::Sub: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: { + Value *IVOpnd = !isa(I->getOperand(0)) + ? I->getOperand(0) + : !isa(I->getOperand(1)) + ? I->getOperand(1) + : nullptr; + if (!IVOpnd) + return false; + + // If increment operand is used outside of the loop, this speculation + // could cause extra live range interference. + if (MultiExitLoop) { + for (User *UseI : IVOpnd->users()) { + auto *UserInst = cast(UseI); + if (!L->contains(UserInst)) + return false; + } + } - NumRotated++; + if (seenIncrement) + return false; + seenIncrement = true; + break; + } + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + // ignore type conversions + break; + } + } return true; } -/// Initialize local data -void LoopRotate::initialize() { - L = NULL; - OrigHeader = NULL; - OrigPreHeader = NULL; - NewHeader = NULL; - Exit = NULL; +/// Fold the loop tail into the loop exit by speculating the loop tail +/// instructions. Typically, this is a single post-increment. In the case of a +/// simple 2-block loop, hoisting the increment can be much better than +/// duplicating the entire loop header. In the case of loops with early exits, +/// rotation will not work anyway, but simplifyLoopLatch will put the loop in +/// canonical form so downstream passes can handle it. +/// +/// I don't believe this invalidates SCEV. +bool LoopRotate::simplifyLoopLatch(Loop *L) { + BasicBlock *Latch = L->getLoopLatch(); + if (!Latch || Latch->hasAddressTaken()) + return false; + + BranchInst *Jmp = dyn_cast(Latch->getTerminator()); + if (!Jmp || !Jmp->isUnconditional()) + return false; + + BasicBlock *LastExit = Latch->getSinglePredecessor(); + if (!LastExit || !L->isLoopExiting(LastExit)) + return false; + + BranchInst *BI = dyn_cast(LastExit->getTerminator()); + if (!BI) + return false; + + if (!shouldSpeculateInstrs(Latch->begin(), Jmp, L)) + return false; + + DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " + << LastExit->getName() << "\n"); + + // Hoist the instructions from Latch into LastExit. + LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp); + + unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; + BasicBlock *Header = Jmp->getSuccessor(0); + assert(Header == L->getHeader() && "expected a backward branch"); + + // Remove Latch from the CFG so that LastExit becomes the new Latch. + BI->setSuccessor(FallThruPath, Header); + Latch->replaceSuccessorsPhiUsesWith(LastExit); + Jmp->eraseFromParent(); + + // Nuke the Latch block. + assert(Latch->empty() && "unable to evacuate Latch"); + LI->removeBlock(Latch); + if (DT) + DT->eraseNode(Latch); + Latch->eraseFromParent(); + return true; } -/// After loop rotation, loop pre-header has multiple sucessors. -/// Insert one forwarding basic block to ensure that loop pre-header -/// has only one successor. -void LoopRotate::preserveCanonicalLoopForm(LPPassManager &LPM) { - - // Right now original pre-header has two successors, new header and - // exit block. Insert new block between original pre-header and - // new header such that loop's new pre-header has only one successor. - BasicBlock *NewPreHeader = BasicBlock::Create(OrigHeader->getContext(), - "bb.nph", - OrigHeader->getParent(), - NewHeader); - LoopInfo &LI = LPM.getAnalysis(); - if (Loop *PL = LI.getLoopFor(OrigPreHeader)) - PL->addBasicBlockToLoop(NewPreHeader, LI.getBase()); - BranchInst::Create(NewHeader, NewPreHeader); - - BranchInst *OrigPH_BI = cast(OrigPreHeader->getTerminator()); - if (OrigPH_BI->getSuccessor(0) == NewHeader) - OrigPH_BI->setSuccessor(0, NewPreHeader); - else { - assert(OrigPH_BI->getSuccessor(1) == NewHeader && - "Unexpected original pre-header terminator"); - OrigPH_BI->setSuccessor(1, NewPreHeader); - } +/// Rotate loop LP. Return true if the loop is rotated. +/// +/// \param SimplifiedLatch is true if the latch was just folded into the final +/// loop exit. In this case we may want to rotate even though the new latch is +/// now an exiting branch. This rotation would have happened had the latch not +/// been simplified. However, if SimplifiedLatch is false, then we avoid +/// rotating loops in which the latch exits to avoid excessive or endless +/// rotation. LoopRotate should be repeatable and converge to a canonical +/// form. This property is satisfied because simplifying the loop latch can only +/// happen once across multiple invocations of the LoopRotate pass. +bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { + // If the loop has only one block then there is not much to rotate. + if (L->getBlocks().size() == 1) + return false; - PHINode *PN; - for (BasicBlock::iterator I = NewHeader->begin(); - (PN = dyn_cast(I)); ++I) { - int index = PN->getBasicBlockIndex(OrigPreHeader); - assert(index != -1 && "Expected incoming value from Original PreHeader"); - PN->setIncomingBlock(index, NewPreHeader); - assert(PN->getBasicBlockIndex(OrigPreHeader) == -1 && - "Expected only one incoming value from Original PreHeader"); - } + BasicBlock *OrigHeader = L->getHeader(); + BasicBlock *OrigLatch = L->getLoopLatch(); - if (DominatorTree *DT = getAnalysisIfAvailable()) { - DT->addNewBlock(NewPreHeader, OrigPreHeader); - DT->changeImmediateDominator(L->getHeader(), NewPreHeader); - DT->changeImmediateDominator(Exit, OrigPreHeader); - for (Loop::block_iterator BI = L->block_begin(), BE = L->block_end(); - BI != BE; ++BI) { - BasicBlock *B = *BI; - if (L->getHeader() != B) { - DomTreeNode *Node = DT->getNode(B); - if (Node && Node->getBlock() == OrigHeader) - DT->changeImmediateDominator(*BI, L->getHeader()); - } + BranchInst *BI = dyn_cast(OrigHeader->getTerminator()); + if (!BI || BI->isUnconditional()) + return false; + + // If the loop header is not one of the loop exiting blocks then + // either this loop is already rotated or it is not + // suitable for loop rotation transformations. + if (!L->isLoopExiting(OrigHeader)) + return false; + + // If the loop latch already contains a branch that leaves the loop then the + // loop is already rotated. + if (!OrigLatch) + return false; + + // Rotate if either the loop latch does *not* exit the loop, or if the loop + // latch was just simplified. + if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch) + return false; + + // Check size of original header and reject loop if it is very big or we can't + // duplicate blocks inside it. + { + SmallPtrSet EphValues; + CodeMetrics::collectEphemeralValues(L, AC, EphValues); + + CodeMetrics Metrics; + Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); + if (Metrics.notDuplicatable) { + DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" + << " instructions: "; L->dump()); + return false; } - DT->changeImmediateDominator(OrigHeader, OrigLatch); + if (Metrics.NumInsts > MaxHeaderSize) + return false; } - if (DominanceFrontier *DF = getAnalysisIfAvailable()) { - // New Preheader's dominance frontier is Exit block. - DominanceFrontier::DomSetType NewPHSet; - NewPHSet.insert(Exit); - DF->addBasicBlock(NewPreHeader, NewPHSet); - - // New Header's dominance frontier now includes itself and Exit block - DominanceFrontier::iterator HeadI = DF->find(L->getHeader()); - if (HeadI != DF->end()) { - DominanceFrontier::DomSetType & HeaderSet = HeadI->second; - HeaderSet.clear(); - HeaderSet.insert(L->getHeader()); - HeaderSet.insert(Exit); - } else { - DominanceFrontier::DomSetType HeaderSet; - HeaderSet.insert(L->getHeader()); - HeaderSet.insert(Exit); - DF->addBasicBlock(L->getHeader(), HeaderSet); + // Now, this loop is suitable for rotation. + BasicBlock *OrigPreheader = L->getLoopPreheader(); + + // If the loop could not be converted to canonical form, it must have an + // indirectbr in it, just give up. + if (!OrigPreheader) + return false; + + // Anything ScalarEvolution may know about this loop or the PHI nodes + // in its header will soon be invalidated. + if (auto *SEWP = getAnalysisIfAvailable()) + SEWP->getSE().forgetLoop(L); + + DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); + + // Find new Loop header. NewHeader is a Header's one and only successor + // that is inside loop. Header's other successor is outside the + // loop. Otherwise loop is not suitable for rotation. + BasicBlock *Exit = BI->getSuccessor(0); + BasicBlock *NewHeader = BI->getSuccessor(1); + if (L->contains(Exit)) + std::swap(Exit, NewHeader); + assert(NewHeader && "Unable to determine new loop header"); + assert(L->contains(NewHeader) && !L->contains(Exit) && + "Unable to determine loop header and exit blocks"); + + // This code assumes that the new header has exactly one predecessor. + // Remove any single-entry PHI nodes in it. + assert(NewHeader->getSinglePredecessor() && + "New header doesn't have one pred!"); + FoldSingleEntryPHINodes(NewHeader); + + // Begin by walking OrigHeader and populating ValueMap with an entry for + // each Instruction. + BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); + ValueToValueMapTy ValueMap; + + // For PHI nodes, the value available in OldPreHeader is just the + // incoming value from OldPreHeader. + for (; PHINode *PN = dyn_cast(I); ++I) + ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); + + const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); + + // For the rest of the instructions, either hoist to the OrigPreheader if + // possible or create a clone in the OldPreHeader if not. + TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); + while (I != E) { + Instruction *Inst = I++; + + // If the instruction's operands are invariant and it doesn't read or write + // memory, then it is safe to hoist. Doing this doesn't change the order of + // execution in the preheader, but does prevent the instruction from + // executing in each iteration of the loop. This means it is safe to hoist + // something that might trap, but isn't safe to hoist something that reads + // memory (without proving that the loop doesn't write). + if (L->hasLoopInvariantOperands(Inst) && + !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() && + !isa(Inst) && !isa(Inst) && + !isa(Inst)) { + Inst->moveBefore(LoopEntryBranch); + continue; } - // Original header (new Loop Latch)'s dominance frontier is Exit. - DominanceFrontier::iterator LatchI = DF->find(L->getLoopLatch()); - if (LatchI != DF->end()) { - DominanceFrontier::DomSetType &LatchSet = LatchI->second; - LatchSet = LatchI->second; - LatchSet.clear(); - LatchSet.insert(Exit); + // Otherwise, create a duplicate of the instruction. + Instruction *C = Inst->clone(); + + // Eagerly remap the operands of the instruction. + RemapInstruction(C, ValueMap, + RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); + + // With the operands remapped, see if the instruction constant folds or is + // otherwise simplifyable. This commonly occurs because the entry from PHI + // nodes allows icmps and other instructions to fold. + // FIXME: Provide TLI, DT, AC to SimplifyInstruction. + Value *V = SimplifyInstruction(C, DL); + if (V && LI->replacementPreservesLCSSAForm(C, V)) { + // If so, then delete the temporary instruction and stick the folded value + // in the map. + delete C; + ValueMap[Inst] = V; } else { - DominanceFrontier::DomSetType LatchSet; - LatchSet.insert(Exit); - DF->addBasicBlock(L->getHeader(), LatchSet); + // Otherwise, stick the new instruction into the new block! + C->setName(Inst->getName()); + C->insertBefore(LoopEntryBranch); + ValueMap[Inst] = C; + } + } + + // Along with all the other instructions, we just cloned OrigHeader's + // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's + // successors by duplicating their incoming values for OrigHeader. + TerminatorInst *TI = OrigHeader->getTerminator(); + for (BasicBlock *SuccBB : TI->successors()) + for (BasicBlock::iterator BI = SuccBB->begin(); + PHINode *PN = dyn_cast(BI); ++BI) + PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); + + // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove + // OrigPreHeader's old terminator (the original branch into the loop), and + // remove the corresponding incoming values from the PHI nodes in OrigHeader. + LoopEntryBranch->eraseFromParent(); + + // If there were any uses of instructions in the duplicated block outside the + // loop, update them, inserting PHI nodes as required + RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap); + + // NewHeader is now the header of the loop. + L->moveToHeader(NewHeader); + assert(L->getHeader() == NewHeader && "Latch block is our new header"); + + + // At this point, we've finished our major CFG changes. As part of cloning + // the loop into the preheader we've simplified instructions and the + // duplicated conditional branch may now be branching on a constant. If it is + // branching on a constant and if that constant means that we enter the loop, + // then we fold away the cond branch to an uncond branch. This simplifies the + // loop in cases important for nested loops, and it also means we don't have + // to split as many edges. + BranchInst *PHBI = cast(OrigPreheader->getTerminator()); + assert(PHBI->isConditional() && "Should be clone of BI condbr!"); + if (!isa(PHBI->getCondition()) || + PHBI->getSuccessor(cast(PHBI->getCondition())->isZero()) + != NewHeader) { + // The conditional branch can't be folded, handle the general case. + // Update DominatorTree to reflect the CFG change we just made. Then split + // edges as necessary to preserve LoopSimplify form. + if (DT) { + // Everything that was dominated by the old loop header is now dominated + // by the original loop preheader. Conceptually the header was merged + // into the preheader, even though we reuse the actual block as a new + // loop latch. + DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); + SmallVector HeaderChildren(OrigHeaderNode->begin(), + OrigHeaderNode->end()); + DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader); + for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) + DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode); + + assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode); + assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode); + + // Update OrigHeader to be dominated by the new header block. + DT->changeImmediateDominator(OrigHeader, OrigLatch); } - // If a loop block dominates new loop latch then add to its frontiers - // new header and Exit and remove new latch (which is equal to original - // header). - BasicBlock *NewLatch = L->getLoopLatch(); - - assert(NewLatch == OrigHeader && "NewLatch is inequal to OrigHeader"); - - if (DominatorTree *DT = getAnalysisIfAvailable()) { - for (Loop::block_iterator BI = L->block_begin(), BE = L->block_end(); - BI != BE; ++BI) { - BasicBlock *B = *BI; - if (DT->dominates(B, NewLatch)) { - DominanceFrontier::iterator BDFI = DF->find(B); - if (BDFI != DF->end()) { - DominanceFrontier::DomSetType &BSet = BDFI->second; - BSet.erase(NewLatch); - BSet.insert(L->getHeader()); - BSet.insert(Exit); - } else { - DominanceFrontier::DomSetType BSet; - BSet.insert(L->getHeader()); - BSet.insert(Exit); - DF->addBasicBlock(B, BSet); + // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and + // thus is not a preheader anymore. + // Split the edge to form a real preheader. + BasicBlock *NewPH = SplitCriticalEdge( + OrigPreheader, NewHeader, + CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); + NewPH->setName(NewHeader->getName() + ".lr.ph"); + + // Preserve canonical loop form, which means that 'Exit' should have only + // one predecessor. Note that Exit could be an exit block for multiple + // nested loops, causing both of the edges to now be critical and need to + // be split. + SmallVector ExitPreds(pred_begin(Exit), pred_end(Exit)); + bool SplitLatchEdge = false; + for (SmallVectorImpl::iterator PI = ExitPreds.begin(), + PE = ExitPreds.end(); + PI != PE; ++PI) { + // We only need to split loop exit edges. + Loop *PredLoop = LI->getLoopFor(*PI); + if (!PredLoop || PredLoop->contains(Exit)) + continue; + if (isa((*PI)->getTerminator())) + continue; + SplitLatchEdge |= L->getLoopLatch() == *PI; + BasicBlock *ExitSplit = SplitCriticalEdge( + *PI, Exit, CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); + ExitSplit->moveBefore(Exit); + } + assert(SplitLatchEdge && + "Despite splitting all preds, failed to split latch exit?"); + } else { + // We can fold the conditional branch in the preheader, this makes things + // simpler. The first step is to remove the extra edge to the Exit block. + Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); + BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); + NewBI->setDebugLoc(PHBI->getDebugLoc()); + PHBI->eraseFromParent(); + + // With our CFG finalized, update DomTree if it is available. + if (DT) { + // Update OrigHeader to be dominated by the new header block. + DT->changeImmediateDominator(NewHeader, OrigPreheader); + DT->changeImmediateDominator(OrigHeader, OrigLatch); + + // Brute force incremental dominator tree update. Call + // findNearestCommonDominator on all CFG predecessors of each child of the + // original header. + DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); + SmallVector HeaderChildren(OrigHeaderNode->begin(), + OrigHeaderNode->end()); + bool Changed; + do { + Changed = false; + for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) { + DomTreeNode *Node = HeaderChildren[I]; + BasicBlock *BB = Node->getBlock(); + + pred_iterator PI = pred_begin(BB); + BasicBlock *NearestDom = *PI; + for (pred_iterator PE = pred_end(BB); PI != PE; ++PI) + NearestDom = DT->findNearestCommonDominator(NearestDom, *PI); + + // Remember if this changes the DomTree. + if (Node->getIDom()->getBlock() != NearestDom) { + DT->changeImmediateDominator(BB, NearestDom); + Changed = true; } } - } + + // If the dominator changed, this may have an effect on other + // predecessors, continue until we reach a fixpoint. + } while (Changed); } } - // Preserve canonical loop form, which means Exit block should - // have only one predecessor. - SplitEdge(L->getLoopLatch(), Exit, this); + assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); + assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); + + // Now that the CFG and DomTree are in a consistent state again, try to merge + // the OrigHeader block into OrigLatch. This will succeed if they are + // connected by an unconditional branch. This is just a cleanup so the + // emitted code isn't too gross in this common case. + MergeBlockIntoPredecessor(OrigHeader, DT, LI); - assert(NewHeader && L->getHeader() == NewHeader && - "Invalid loop header after loop rotation"); - assert(NewPreHeader && L->getLoopPreheader() == NewPreHeader && - "Invalid loop preheader after loop rotation"); - assert(L->getLoopLatch() && - "Invalid loop latch after loop rotation"); + DEBUG(dbgs() << "LoopRotation: into "; L->dump()); + + ++NumRotated; + return true; }