X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTransforms%2FInstCombine%2FInstCombineMulDivRem.cpp;h=df7390652f10d51a47d8ff2fd5469ccf6895b6e5;hb=03fceff6f69a0261a767aab8e62de8aa9301b86c;hp=230b80e27241bf7d4ce804b3bf52f75af056906b;hpb=7d6eb5a018ef4352730d63dc202cfaf013f489fe;p=oota-llvm.git diff --git a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp index 230b80e2724..df7390652f1 100644 --- a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp +++ b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp @@ -13,12 +13,65 @@ //===----------------------------------------------------------------------===// #include "InstCombine.h" -#include "llvm/IntrinsicInst.h" #include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/IR/IntrinsicInst.h" #include "llvm/Support/PatternMatch.h" using namespace llvm; using namespace PatternMatch; + +/// simplifyValueKnownNonZero - The specific integer value is used in a context +/// where it is known to be non-zero. If this allows us to simplify the +/// computation, do so and return the new operand, otherwise return null. +static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) { + // If V has multiple uses, then we would have to do more analysis to determine + // if this is safe. For example, the use could be in dynamically unreached + // code. + if (!V->hasOneUse()) return 0; + + bool MadeChange = false; + + // ((1 << A) >>u B) --> (1 << (A-B)) + // Because V cannot be zero, we know that B is less than A. + Value *A = 0, *B = 0, *PowerOf2 = 0; + if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))), + m_Value(B))) && + // The "1" can be any value known to be a power of 2. + isKnownToBeAPowerOfTwo(PowerOf2)) { + A = IC.Builder->CreateSub(A, B); + return IC.Builder->CreateShl(PowerOf2, A); + } + + // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it + // inexact. Similarly for <<. + if (BinaryOperator *I = dyn_cast(V)) + if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) { + // We know that this is an exact/nuw shift and that the input is a + // non-zero context as well. + if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) { + I->setOperand(0, V2); + MadeChange = true; + } + + if (I->getOpcode() == Instruction::LShr && !I->isExact()) { + I->setIsExact(); + MadeChange = true; + } + + if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) { + I->setHasNoUnsignedWrap(); + MadeChange = true; + } + } + + // TODO: Lots more we could do here: + // If V is a phi node, we can call this on each of its operands. + // "select cond, X, 0" can simplify to "X". + + return MadeChange ? V : 0; +} + + /// MultiplyOverflows - True if the multiply can not be expressed in an int /// this size. static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) { @@ -31,12 +84,12 @@ static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) { LHSExt = LHSExt.zext(W * 2); RHSExt = RHSExt.zext(W * 2); } - + APInt MulExt = LHSExt * RHSExt; - + if (!sign) return MulExt.ugt(APInt::getLowBitsSet(W * 2, W)); - + APInt Min = APInt::getSignedMinValue(W).sext(W * 2); APInt Max = APInt::getSignedMaxValue(W).sext(W * 2); return MulExt.slt(Min) || MulExt.sgt(Max); @@ -54,16 +107,16 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { if (match(Op1, m_AllOnes())) // X * -1 == 0 - X return BinaryOperator::CreateNeg(Op0, I.getName()); - + if (ConstantInt *CI = dyn_cast(Op1)) { - + // ((X << C1)*C2) == (X * (C2 << C1)) if (BinaryOperator *SI = dyn_cast(Op0)) if (SI->getOpcode() == Instruction::Shl) if (Constant *ShOp = dyn_cast(SI->getOperand(1))) return BinaryOperator::CreateMul(SI->getOperand(0), ConstantExpr::getShl(CI, ShOp)); - + const APInt &Val = CI->getValue(); if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2()); @@ -72,19 +125,42 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap(); return Shl; } - + // Canonicalize (X+C1)*CI -> X*CI+C1*CI. { Value *X; ConstantInt *C1; if (Op0->hasOneUse() && match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) { - Value *Add = Builder->CreateMul(X, CI, "tmp"); + Value *Add = Builder->CreateMul(X, CI); return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI)); } } + + // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n + // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n + // The "* (2**n)" thus becomes a potential shifting opportunity. + { + const APInt & Val = CI->getValue(); + const APInt &PosVal = Val.abs(); + if (Val.isNegative() && PosVal.isPowerOf2()) { + Value *X = 0, *Y = 0; + if (Op0->hasOneUse()) { + ConstantInt *C1; + Value *Sub = 0; + if (match(Op0, m_Sub(m_Value(Y), m_Value(X)))) + Sub = Builder->CreateSub(X, Y, "suba"); + else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1)))) + Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc"); + if (Sub) + return + BinaryOperator::CreateMul(Sub, + ConstantInt::get(Y->getType(), PosVal)); + } + } + } } - + // Simplify mul instructions with a constant RHS. - if (isa(Op1)) { + if (isa(Op1)) { // Try to fold constant mul into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI)) @@ -105,7 +181,7 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { Value *Op1C = Op1; BinaryOperator *BO = dyn_cast(Op0); if (!BO || - (BO->getOpcode() != Instruction::UDiv && + (BO->getOpcode() != Instruction::UDiv && BO->getOpcode() != Instruction::SDiv)) { Op1C = Op0; BO = dyn_cast(Op1); @@ -151,14 +227,14 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { if (match(Op1, m_Shl(m_One(), m_Value(Y)))) return BinaryOperator::CreateShl(Op0, Y); } - + // If one of the operands of the multiply is a cast from a boolean value, then // we know the bool is either zero or one, so this is a 'masking' multiply. // X * Y (where Y is 0 or 1) -> X & (0-Y) if (!I.getType()->isVectorTy()) { // -2 is "-1 << 1" so it is all bits set except the low one. APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true); - + Value *BoolCast = 0, *OtherOp = 0; if (MaskedValueIsZero(Op0, Negative2)) BoolCast = Op0, OtherOp = Op1; @@ -167,7 +243,7 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { if (BoolCast) { Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()), - BoolCast, "tmp"); + BoolCast); return BinaryOperator::CreateAnd(V, OtherOp); } } @@ -175,28 +251,136 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { return Changed ? &I : 0; } +// +// Detect pattern: +// +// log2(Y*0.5) +// +// And check for corresponding fast math flags +// + +static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) { + + if (!Op->hasOneUse()) + return; + + IntrinsicInst *II = dyn_cast(Op); + if (!II) + return; + if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra()) + return; + Log2 = II; + + Value *OpLog2Of = II->getArgOperand(0); + if (!OpLog2Of->hasOneUse()) + return; + + Instruction *I = dyn_cast(OpLog2Of); + if (!I) + return; + if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra()) + return; + + ConstantFP *CFP = dyn_cast(I->getOperand(0)); + if (CFP && CFP->isExactlyValue(0.5)) { + Y = I->getOperand(1); + return; + } + CFP = dyn_cast(I->getOperand(1)); + if (CFP && CFP->isExactlyValue(0.5)) + Y = I->getOperand(0); +} + +/// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns +/// true iff the given value is FMul or FDiv with one and only one operand +/// being a normal constant (i.e. not Zero/NaN/Infinity). +static bool isFMulOrFDivWithConstant(Value *V) { + Instruction *I = dyn_cast(V); + if (!I || (I->getOpcode() != Instruction::FMul && + I->getOpcode() != Instruction::FDiv)) + return false; + + ConstantFP *C0 = dyn_cast(I->getOperand(0)); + ConstantFP *C1 = dyn_cast(I->getOperand(1)); + + if (C0 && C1) + return false; + + return (C0 && C0->getValueAPF().isNormal()) || + (C1 && C1->getValueAPF().isNormal()); +} + +static bool isNormalFp(const ConstantFP *C) { + const APFloat &Flt = C->getValueAPF(); + return Flt.isNormal() && !Flt.isDenormal(); +} + +/// foldFMulConst() is a helper routine of InstCombiner::visitFMul(). +/// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand +/// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true). +/// This function is to simplify "FMulOrDiv * C" and returns the +/// resulting expression. Note that this function could return NULL in +/// case the constants cannot be folded into a normal floating-point. +/// +Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C, + Instruction *InsertBefore) { + assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid"); + + Value *Opnd0 = FMulOrDiv->getOperand(0); + Value *Opnd1 = FMulOrDiv->getOperand(1); + + ConstantFP *C0 = dyn_cast(Opnd0); + ConstantFP *C1 = dyn_cast(Opnd1); + + BinaryOperator *R = 0; + + // (X * C0) * C => X * (C0*C) + if (FMulOrDiv->getOpcode() == Instruction::FMul) { + Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C); + if (isNormalFp(cast(F))) + R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F); + } else { + if (C0) { + // (C0 / X) * C => (C0 * C) / X + ConstantFP *F = cast(ConstantExpr::getFMul(C0, C)); + if (isNormalFp(F)) + R = BinaryOperator::CreateFDiv(F, Opnd1); + } else { + // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal + ConstantFP *F = cast(ConstantExpr::getFDiv(C, C1)); + if (isNormalFp(F)) { + R = BinaryOperator::CreateFMul(Opnd0, F); + } else { + // (X / C1) * C => X / (C1/C) + Constant *F = ConstantExpr::getFDiv(C1, C); + if (isNormalFp(cast(F))) + R = BinaryOperator::CreateFDiv(Opnd0, F); + } + } + } + + if (R) { + R->setHasUnsafeAlgebra(true); + InsertNewInstWith(R, *InsertBefore); + } + + return R; +} + Instruction *InstCombiner::visitFMul(BinaryOperator &I) { bool Changed = SimplifyAssociativeOrCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - // Simplify mul instructions with a constant RHS... - if (Constant *Op1C = dyn_cast(Op1)) { - if (ConstantFP *Op1F = dyn_cast(Op1C)) { - // "In IEEE floating point, x*1 is not equivalent to x for nans. However, - // ANSI says we can drop signals, so we can do this anyway." (from GCC) - if (Op1F->isExactlyValue(1.0)) - return ReplaceInstUsesWith(I, Op0); // Eliminate 'fmul double %X, 1.0' - } else if (Op1C->getType()->isVectorTy()) { - if (ConstantVector *Op1V = dyn_cast(Op1C)) { - // As above, vector X*splat(1.0) -> X in all defined cases. - if (Constant *Splat = Op1V->getSplatValue()) { - if (ConstantFP *F = dyn_cast(Splat)) - if (F->isExactlyValue(1.0)) - return ReplaceInstUsesWith(I, Op0); - } - } - } + if (isa(Op0)) + std::swap(Op0, Op1); + + if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD)) + return ReplaceInstUsesWith(I, V); + bool AllowReassociate = I.hasUnsafeAlgebra(); + + // Simplify mul instructions with a constant RHS. + if (isa(Op1)) { // Try to fold constant mul into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI)) @@ -205,11 +389,146 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; + + ConstantFP *C = dyn_cast(Op1); + if (C && AllowReassociate && C->getValueAPF().isNormal()) { + // Let MDC denote an expression in one of these forms: + // X * C, C/X, X/C, where C is a constant. + // + // Try to simplify "MDC * Constant" + if (isFMulOrFDivWithConstant(Op0)) { + Value *V = foldFMulConst(cast(Op0), C, &I); + if (V) + return ReplaceInstUsesWith(I, V); + } + + // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C) + Instruction *FAddSub = dyn_cast(Op0); + if (FAddSub && + (FAddSub->getOpcode() == Instruction::FAdd || + FAddSub->getOpcode() == Instruction::FSub)) { + Value *Opnd0 = FAddSub->getOperand(0); + Value *Opnd1 = FAddSub->getOperand(1); + ConstantFP *C0 = dyn_cast(Opnd0); + ConstantFP *C1 = dyn_cast(Opnd1); + bool Swap = false; + if (C0) { + std::swap(C0, C1); + std::swap(Opnd0, Opnd1); + Swap = true; + } + + if (C1 && C1->getValueAPF().isNormal() && + isFMulOrFDivWithConstant(Opnd0)) { + Value *M1 = ConstantExpr::getFMul(C1, C); + Value *M0 = isNormalFp(cast(M1)) ? + foldFMulConst(cast(Opnd0), C, &I) : + 0; + if (M0 && M1) { + if (Swap && FAddSub->getOpcode() == Instruction::FSub) + std::swap(M0, M1); + + Value *R = (FAddSub->getOpcode() == Instruction::FAdd) ? + BinaryOperator::CreateFAdd(M0, M1) : + BinaryOperator::CreateFSub(M0, M1); + Instruction *RI = cast(R); + RI->copyFastMathFlags(&I); + return RI; + } + } + } + } + } + + + // Under unsafe algebra do: + // X * log2(0.5*Y) = X*log2(Y) - X + if (I.hasUnsafeAlgebra()) { + Value *OpX = NULL; + Value *OpY = NULL; + IntrinsicInst *Log2; + detectLog2OfHalf(Op0, OpY, Log2); + if (OpY) { + OpX = Op1; + } else { + detectLog2OfHalf(Op1, OpY, Log2); + if (OpY) { + OpX = Op0; + } + } + // if pattern detected emit alternate sequence + if (OpX && OpY) { + Log2->setArgOperand(0, OpY); + Value *FMulVal = Builder->CreateFMul(OpX, Log2); + Instruction *FMul = cast(FMulVal); + FMul->copyFastMathFlags(Log2); + Instruction *FSub = BinaryOperator::CreateFSub(FMulVal, OpX); + FSub->copyFastMathFlags(Log2); + return FSub; + } } - if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y - if (Value *Op1v = dyn_castFNegVal(Op1)) - return BinaryOperator::CreateFMul(Op0v, Op1v); + // Handle symmetric situation in a 2-iteration loop + Value *Opnd0 = Op0; + Value *Opnd1 = Op1; + for (int i = 0; i < 2; i++) { + bool IgnoreZeroSign = I.hasNoSignedZeros(); + if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) { + Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign); + Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign); + + // -X * -Y => X*Y + if (N1) + return BinaryOperator::CreateFMul(N0, N1); + + if (Opnd0->hasOneUse()) { + // -X * Y => -(X*Y) (Promote negation as high as possible) + Value *T = Builder->CreateFMul(N0, Opnd1); + cast(T)->setDebugLoc(I.getDebugLoc()); + Instruction *Neg = BinaryOperator::CreateFNeg(T); + if (I.getFastMathFlags().any()) { + cast(T)->copyFastMathFlags(&I); + Neg->copyFastMathFlags(&I); + } + return Neg; + } + } + + // (X*Y) * X => (X*X) * Y where Y != X + // The purpose is two-fold: + // 1) to form a power expression (of X). + // 2) potentially shorten the critical path: After transformation, the + // latency of the instruction Y is amortized by the expression of X*X, + // and therefore Y is in a "less critical" position compared to what it + // was before the transformation. + // + if (AllowReassociate) { + Value *Opnd0_0, *Opnd0_1; + if (Opnd0->hasOneUse() && + match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) { + Value *Y = 0; + if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1) + Y = Opnd0_1; + else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1) + Y = Opnd0_0; + + if (Y) { + Instruction *T = cast(Builder->CreateFMul(Opnd1, Opnd1)); + T->copyFastMathFlags(&I); + T->setDebugLoc(I.getDebugLoc()); + + Instruction *R = BinaryOperator::CreateFMul(T, Y); + R->copyFastMathFlags(&I); + return R; + } + } + } + + if (!isa(Op1)) + std::swap(Opnd0, Opnd1); + else + break; + } return Changed ? &I : 0; } @@ -218,7 +537,7 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { /// instruction. bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) { SelectInst *SI = cast(I.getOperand(1)); - + // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y int NonNullOperand = -1; if (Constant *ST = dyn_cast(SI->getOperand(1))) @@ -228,36 +547,36 @@ bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) { if (Constant *ST = dyn_cast(SI->getOperand(2))) if (ST->isNullValue()) NonNullOperand = 1; - + if (NonNullOperand == -1) return false; - + Value *SelectCond = SI->getOperand(0); - + // Change the div/rem to use 'Y' instead of the select. I.setOperand(1, SI->getOperand(NonNullOperand)); - + // Okay, we know we replace the operand of the div/rem with 'Y' with no // problem. However, the select, or the condition of the select may have // multiple uses. Based on our knowledge that the operand must be non-zero, // propagate the known value for the select into other uses of it, and // propagate a known value of the condition into its other users. - + // If the select and condition only have a single use, don't bother with this, // early exit. if (SI->use_empty() && SelectCond->hasOneUse()) return true; - + // Scan the current block backward, looking for other uses of SI. BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin(); - + while (BBI != BBFront) { --BBI; // If we found a call to a function, we can't assume it will return, so // information from below it cannot be propagated above it. if (isa(BBI) && !isa(BBI)) break; - + // Replace uses of the select or its condition with the known values. for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end(); I != E; ++I) { @@ -270,17 +589,17 @@ bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) { Worklist.Add(BBI); } } - + // If we past the instruction, quit looking for it. if (&*BBI == SI) SI = 0; if (&*BBI == SelectCond) SelectCond = 0; - + // If we ran out of things to eliminate, break out of the loop. if (SelectCond == 0 && SI == 0) break; - + } return true; } @@ -293,6 +612,12 @@ bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) { Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + // The RHS is known non-zero. + if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) { + I.setOperand(1, V); + return &I; + } + // Handle cases involving: [su]div X, (select Cond, Y, Z) // This does not apply for fdiv. if (isa(Op1) && SimplifyDivRemOfSelect(I)) @@ -338,7 +663,7 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { /// dyn_castZExtVal - Checks if V is a zext or constant that can /// be truncated to Ty without losing bits. -static Value *dyn_castZExtVal(Value *V, const Type *Ty) { +static Value *dyn_castZExtVal(Value *V, Type *Ty) { if (ZExtInst *Z = dyn_cast(V)) { if (Z->getSrcTy() == Ty) return Z->getOperand(0); @@ -359,18 +684,22 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { if (Instruction *Common = commonIDivTransforms(I)) return Common; - if (ConstantInt *C = dyn_cast(Op1)) { + { // X udiv 2^C -> X >> C // Check to see if this is an unsigned division with an exact power of 2, // if so, convert to a right shift. - if (C->getValue().isPowerOf2()) { // 0 not included in isPowerOf2 + const APInt *C; + if (match(Op1, m_Power2(C))) { BinaryOperator *LShr = - BinaryOperator::CreateLShr(Op0, - ConstantInt::get(Op0->getType(), C->getValue().logBase2())); + BinaryOperator::CreateLShr(Op0, + ConstantInt::get(Op0->getType(), + C->logBase2())); if (I.isExact()) LShr->setIsExact(); return LShr; } + } + if (ConstantInt *C = dyn_cast(Op1)) { // X udiv C, where C >= signbit if (C->getValue().isNegative()) { Value *IC = Builder->CreateICmpULT(Op0, C); @@ -379,18 +708,31 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { } } + // (x lshr C1) udiv C2 --> x udiv (C2 << C1) + if (ConstantInt *C2 = dyn_cast(Op1)) { + Value *X; + ConstantInt *C1; + if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) { + APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1)); + return BinaryOperator::CreateUDiv(X, Builder->getInt(NC)); + } + } + // X udiv (C1 << N), where C1 is "1< X >> (N+C2) { const APInt *CI; Value *N; - if (match(Op1, m_Shl(m_Power2(CI), m_Value(N)))) { + if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) || + match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) { if (*CI != 1) - N = Builder->CreateAdd(N, ConstantInt::get(I.getType(), CI->logBase2()), - "tmp"); + N = Builder->CreateAdd(N, + ConstantInt::get(N->getType(), CI->logBase2())); + if (ZExtInst *Z = dyn_cast(Op1)) + N = Builder->CreateZExt(N, Z->getDestTy()); if (I.isExact()) return BinaryOperator::CreateExactLShr(Op0, N); return BinaryOperator::CreateLShr(Op0, N); } } - + // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2) // where C1&C2 are powers of two. { Value *Cond; const APInt *C1, *C2; @@ -398,11 +740,11 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { // Construct the "on true" case of the select Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t", I.isExact()); - + // Construct the "on false" case of the select Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f", I.isExact()); - + // construct the select instruction and return it. return SelectInst::Create(Cond, TSI, FSI); } @@ -457,7 +799,7 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set return BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); } - + if (match(Op1, m_Shl(m_Power2(), m_Value()))) { // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y) // Safe because the only negative value (1 << Y) can take on is @@ -467,49 +809,146 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { } } } - + return 0; } +/// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special +/// FP value and: +/// 1) 1/C is exact, or +/// 2) reciprocal is allowed. +/// If the convertion was successful, the simplified expression "X * 1/C" is +/// returned; otherwise, NULL is returned. +/// +static Instruction *CvtFDivConstToReciprocal(Value *Dividend, + ConstantFP *Divisor, + bool AllowReciprocal) { + const APFloat &FpVal = Divisor->getValueAPF(); + APFloat Reciprocal(FpVal.getSemantics()); + bool Cvt = FpVal.getExactInverse(&Reciprocal); + + if (!Cvt && AllowReciprocal && FpVal.isNormal()) { + Reciprocal = APFloat(FpVal.getSemantics(), 1.0f); + (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven); + Cvt = !Reciprocal.isDenormal(); + } + + if (!Cvt) + return 0; + + ConstantFP *R; + R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal); + return BinaryOperator::CreateFMul(Dividend, R); +} + Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (Value *V = SimplifyFDivInst(Op0, Op1, TD)) return ReplaceInstUsesWith(I, V); + bool AllowReassociate = I.hasUnsafeAlgebra(); + bool AllowReciprocal = I.hasAllowReciprocal(); + if (ConstantFP *Op1C = dyn_cast(Op1)) { - const APFloat &Op1F = Op1C->getValueAPF(); + if (AllowReassociate) { + ConstantFP *C1 = 0; + ConstantFP *C2 = Op1C; + Value *X; + Instruction *Res = 0; + + if (match(Op0, m_FMul(m_Value(X), m_ConstantFP(C1)))) { + // (X*C1)/C2 => X * (C1/C2) + // + Constant *C = ConstantExpr::getFDiv(C1, C2); + const APFloat &F = cast(C)->getValueAPF(); + if (F.isNormal() && !F.isDenormal()) + Res = BinaryOperator::CreateFMul(X, C); + } else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) { + // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed] + // + Constant *C = ConstantExpr::getFMul(C1, C2); + const APFloat &F = cast(C)->getValueAPF(); + if (F.isNormal() && !F.isDenormal()) { + Res = CvtFDivConstToReciprocal(X, cast(C), + AllowReciprocal); + if (!Res) + Res = BinaryOperator::CreateFDiv(X, C); + } + } - // If the divisor has an exact multiplicative inverse we can turn the fdiv - // into a cheaper fmul. - APFloat Reciprocal(Op1F.getSemantics()); - if (Op1F.getExactInverse(&Reciprocal)) { - ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal); - return BinaryOperator::CreateFMul(Op0, RFP); + if (Res) { + Res->setFastMathFlags(I.getFastMathFlags()); + return Res; + } } - } - return 0; -} + // X / C => X * 1/C + if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) + return T; -/// This function implements the transforms on rem instructions that work -/// regardless of the kind of rem instruction it is (urem, srem, or frem). It -/// is used by the visitors to those instructions. -/// @brief Transforms common to all three rem instructions -Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) { - Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + return 0; + } - if (isa(Op0)) { // undef % X -> 0 - if (I.getType()->isFPOrFPVectorTy()) - return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN) - return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + if (AllowReassociate && isa(Op0)) { + ConstantFP *C1 = cast(Op0), *C2; + Constant *Fold = 0; + Value *X; + bool CreateDiv = true; + + // C1 / (X*C2) => (C1/C2) / X + if (match(Op1, m_FMul(m_Value(X), m_ConstantFP(C2)))) + Fold = ConstantExpr::getFDiv(C1, C2); + else if (match(Op1, m_FDiv(m_Value(X), m_ConstantFP(C2)))) { + // C1 / (X/C2) => (C1*C2) / X + Fold = ConstantExpr::getFMul(C1, C2); + } else if (match(Op1, m_FDiv(m_ConstantFP(C2), m_Value(X)))) { + // C1 / (C2/X) => (C1/C2) * X + Fold = ConstantExpr::getFDiv(C1, C2); + CreateDiv = false; + } + + if (Fold) { + const APFloat &FoldC = cast(Fold)->getValueAPF(); + if (FoldC.isNormal() && !FoldC.isDenormal()) { + Instruction *R = CreateDiv ? + BinaryOperator::CreateFDiv(Fold, X) : + BinaryOperator::CreateFMul(X, Fold); + R->setFastMathFlags(I.getFastMathFlags()); + return R; + } + } + return 0; } - if (isa(Op1)) - return ReplaceInstUsesWith(I, Op1); // X % undef -> undef - // Handle cases involving: rem X, (select Cond, Y, Z) - if (isa(Op1) && SimplifyDivRemOfSelect(I)) - return &I; + if (AllowReassociate) { + Value *X, *Y; + Value *NewInst = 0; + Instruction *SimpR = 0; + + if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) { + // (X/Y) / Z => X / (Y*Z) + // + if (!isa(Y) || !isa(Op1)) { + NewInst = Builder->CreateFMul(Y, Op1); + SimpR = BinaryOperator::CreateFDiv(X, NewInst); + } + } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) { + // Z / (X/Y) => Z*Y / X + // + if (!isa(Y) || !isa(Op0)) { + NewInst = Builder->CreateFMul(Op0, Y); + SimpR = BinaryOperator::CreateFDiv(NewInst, X); + } + } + + if (NewInst) { + if (Instruction *T = dyn_cast(NewInst)) + T->setDebugLoc(I.getDebugLoc()); + SimpR->setFastMathFlags(I.getFastMathFlags()); + return SimpR; + } + } return 0; } @@ -521,26 +960,17 @@ Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) { Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (Instruction *common = commonRemTransforms(I)) - return common; - - // X % X == 0 - if (Op0 == Op1) - return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); - - // 0 % X == 0 for integer, we don't need to preserve faults! - if (Constant *LHS = dyn_cast(Op0)) - if (LHS->isNullValue()) - return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + // The RHS is known non-zero. + if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) { + I.setOperand(1, V); + return &I; + } - if (ConstantInt *RHS = dyn_cast(Op1)) { - // X % 0 == undef, we don't need to preserve faults! - if (RHS->equalsInt(0)) - return ReplaceInstUsesWith(I, UndefValue::get(I.getType())); - - if (RHS->equalsInt(1)) // X % 1 == 0 - return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + // Handle cases involving: rem X, (select Cond, Y, Z) + if (isa(Op1) && SimplifyDivRemOfSelect(I)) + return &I; + if (isa(Op1)) { if (Instruction *Op0I = dyn_cast(Op0)) { if (SelectInst *SI = dyn_cast(Op0I)) { if (Instruction *R = FoldOpIntoSelect(I, SI)) @@ -562,9 +992,12 @@ Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { Instruction *InstCombiner::visitURem(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + if (Value *V = SimplifyURemInst(Op0, Op1, TD)) + return ReplaceInstUsesWith(I, V); + if (Instruction *common = commonIRemTransforms(I)) return common; - + // X urem C^2 -> X and C-1 { const APInt *C; if (match(Op1, m_Power2(C))) @@ -572,10 +1005,10 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) { ConstantInt::get(I.getType(), *C-1)); } - // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) + // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) if (match(Op1, m_Shl(m_Power2(), m_Value()))) { Constant *N1 = Constant::getAllOnesValue(I.getType()); - Value *Add = Builder->CreateAdd(Op1, N1, "tmp"); + Value *Add = Builder->CreateAdd(Op1, N1); return BinaryOperator::CreateAnd(Op0, Add); } @@ -602,10 +1035,13 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) { Instruction *InstCombiner::visitSRem(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + if (Value *V = SimplifySRemInst(Op0, Op1, TD)) + return ReplaceInstUsesWith(I, V); + // Handle the integer rem common cases if (Instruction *Common = commonIRemTransforms(I)) return Common; - + if (Value *RHSNeg = dyn_castNegVal(Op1)) if (!isa(RHSNeg) || (isa(RHSNeg) && @@ -627,28 +1063,36 @@ Instruction *InstCombiner::visitSRem(BinaryOperator &I) { } // If it's a constant vector, flip any negative values positive. - if (ConstantVector *RHSV = dyn_cast(Op1)) { - unsigned VWidth = RHSV->getNumOperands(); + if (isa(Op1) || isa(Op1)) { + Constant *C = cast(Op1); + unsigned VWidth = C->getType()->getVectorNumElements(); bool hasNegative = false; - for (unsigned i = 0; !hasNegative && i != VWidth; ++i) - if (ConstantInt *RHS = dyn_cast(RHSV->getOperand(i))) - if (RHS->getValue().isNegative()) + bool hasMissing = false; + for (unsigned i = 0; i != VWidth; ++i) { + Constant *Elt = C->getAggregateElement(i); + if (Elt == 0) { + hasMissing = true; + break; + } + + if (ConstantInt *RHS = dyn_cast(Elt)) + if (RHS->isNegative()) hasNegative = true; + } - if (hasNegative) { - std::vector Elts(VWidth); + if (hasNegative && !hasMissing) { + SmallVector Elts(VWidth); for (unsigned i = 0; i != VWidth; ++i) { - if (ConstantInt *RHS = dyn_cast(RHSV->getOperand(i))) { - if (RHS->getValue().isNegative()) + Elts[i] = C->getAggregateElement(i); // Handle undef, etc. + if (ConstantInt *RHS = dyn_cast(Elts[i])) { + if (RHS->isNegative()) Elts[i] = cast(ConstantExpr::getNeg(RHS)); - else - Elts[i] = RHS; } } Constant *NewRHSV = ConstantVector::get(Elts); - if (NewRHSV != RHSV) { + if (NewRHSV != C) { // Don't loop on -MININT Worklist.AddValue(I.getOperand(1)); I.setOperand(1, NewRHSV); return &I; @@ -660,6 +1104,14 @@ Instruction *InstCombiner::visitSRem(BinaryOperator &I) { } Instruction *InstCombiner::visitFRem(BinaryOperator &I) { - return commonRemTransforms(I); -} + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + if (Value *V = SimplifyFRemInst(Op0, Op1, TD)) + return ReplaceInstUsesWith(I, V); + + // Handle cases involving: rem X, (select Cond, Y, Z) + if (isa(Op1) && SimplifyDivRemOfSelect(I)) + return &I; + return 0; +}