X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTransforms%2FIPO%2FSimplifyLibCalls.cpp;h=b4e840641b576d43f2e17ddf36216da04ff790d2;hb=e4d87aa2de6e52952dca73716386db09aad5a8fd;hp=95faac2071327edfc50f87823b72fd1c4e296819;hpb=9f56b1feeb9f2d50fdf5bb9e9a71a0973ae33ef7;p=oota-llvm.git diff --git a/lib/Transforms/IPO/SimplifyLibCalls.cpp b/lib/Transforms/IPO/SimplifyLibCalls.cpp index 95faac20713..b4e840641b5 100644 --- a/lib/Transforms/IPO/SimplifyLibCalls.cpp +++ b/lib/Transforms/IPO/SimplifyLibCalls.cpp @@ -2,17 +2,18 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by Reid Spencer and is distributed under the +// This file was developed by Reid Spencer and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // -// This file implements a variety of small optimizations for calls to specific -// well-known (e.g. runtime library) function calls. For example, a call to the -// function "exit(3)" that occurs within the main() function can be transformed -// into a simple "return 3" instruction. Any optimization that takes this form -// (replace call to library function with simpler code that provides same -// result) belongs in this file. +// This file implements a module pass that applies a variety of small +// optimizations for calls to specific well-known function calls (e.g. runtime +// library functions). For example, a call to the function "exit(3)" that +// occurs within the main() function can be transformed into a simple "return 3" +// instruction. Any optimization that takes this form (replace call to library +// function with simpler code that provides the same result) belongs in this +// file. // //===----------------------------------------------------------------------===// @@ -24,69 +25,83 @@ #include "llvm/Pass.h" #include "llvm/ADT/hash_map" #include "llvm/ADT/Statistic.h" +#include "llvm/Config/config.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/IPO.h" -#include using namespace llvm; -namespace { - /// This statistic keeps track of the total number of library calls that have /// been simplified regardless of which call it is. -Statistic<> SimplifiedLibCalls("simplify-libcalls", - "Number of well-known library calls simplified"); - -// Forward declarations -class LibCallOptimization; -class SimplifyLibCalls; +STATISTIC(SimplifiedLibCalls, "Number of library calls simplified"); +namespace { + // Forward declarations + class LibCallOptimization; + class SimplifyLibCalls; + +/// This list is populated by the constructor for LibCallOptimization class. +/// Therefore all subclasses are registered here at static initialization time +/// and this list is what the SimplifyLibCalls pass uses to apply the individual +/// optimizations to the call sites. /// @brief The list of optimizations deriving from LibCallOptimization -hash_map optlist; +static LibCallOptimization *OptList = 0; /// This class is the abstract base class for the set of optimizations that /// corresponds to one library call. The SimplifyLibCalls pass will call the /// ValidateCalledFunction method to ask the optimization if a given Function /// is the kind that the optimization can handle. If the subclass returns true, -/// then SImplifyLibCalls will also call the OptimizeCall method to perform, +/// then SImplifyLibCalls will also call the OptimizeCall method to perform, /// or attempt to perform, the optimization(s) for the library call. Otherwise, /// OptimizeCall won't be called. Subclasses are responsible for providing the /// name of the library call (strlen, strcpy, etc.) to the LibCallOptimization /// constructor. This is used to efficiently select which call instructions to -/// optimize. The criteria for a "lib call" is "anything with well known +/// optimize. The criteria for a "lib call" is "anything with well known /// semantics", typically a library function that is defined by an international -/// standard. Because the semantics are well known, the optimizations can +/// standard. Because the semantics are well known, the optimizations can /// generally short-circuit actually calling the function if there's a simpler /// way (e.g. strlen(X) can be reduced to a constant if X is a constant global). /// @brief Base class for library call optimizations -class LibCallOptimization -{ +class LibCallOptimization { + LibCallOptimization **Prev, *Next; + const char *FunctionName; ///< Name of the library call we optimize +#ifndef NDEBUG + Statistic occurrences; ///< debug statistic (-debug-only=simplify-libcalls) +#endif public: - /// The \p fname argument must be the name of the library function being + /// The \p fname argument must be the name of the library function being /// optimized by the subclass. /// @brief Constructor that registers the optimization. - LibCallOptimization(const char * fname ) - : func_name(fname) + LibCallOptimization(const char *FName, const char *Description) + : FunctionName(FName) { + #ifndef NDEBUG - , stat_name(std::string("simplify-libcalls:")+fname) - , stat_desc(std::string("Number of ")+fname+"(...) calls simplified") - , occurrences(stat_name.c_str(),stat_desc.c_str()) + occurrences.construct("simplify-libcalls", Description); #endif - { - // Register this call optimizer in the optlist (a hash_map) - optlist[func_name] = this; + // Register this optimizer in the list of optimizations. + Next = OptList; + OptList = this; + Prev = &OptList; + if (Next) Next->Prev = &Next; } + + /// getNext - All libcall optimizations are chained together into a list, + /// return the next one in the list. + LibCallOptimization *getNext() { return Next; } /// @brief Deregister from the optlist - virtual ~LibCallOptimization() { optlist.erase(func_name); } + virtual ~LibCallOptimization() { + *Prev = Next; + if (Next) Next->Prev = Prev; + } /// The implementation of this function in subclasses should determine if - /// \p F is suitable for the optimization. This method is called by - /// SimplifyLibCalls::runOnModule to short circuit visiting all the call - /// sites of such a function if that function is not suitable in the first + /// \p F is suitable for the optimization. This method is called by + /// SimplifyLibCalls::runOnModule to short circuit visiting all the call + /// sites of such a function if that function is not suitable in the first /// place. If the called function is suitabe, this method should return true; - /// false, otherwise. This function should also perform any lazy - /// initialization that the LibCallOptimization needs to do, if its to return + /// false, otherwise. This function should also perform any lazy + /// initialization that the LibCallOptimization needs to do, if its to return /// true. This avoids doing initialization until the optimizer is actually /// going to be called upon to do some optimization. /// @brief Determine if the function is suitable for optimization @@ -95,10 +110,10 @@ public: SimplifyLibCalls& SLC ///< The pass object invoking us ) = 0; - /// The implementations of this function in subclasses is the heart of the - /// SimplifyLibCalls algorithm. Sublcasses of this class implement + /// The implementations of this function in subclasses is the heart of the + /// SimplifyLibCalls algorithm. Sublcasses of this class implement /// OptimizeCall to determine if (a) the conditions are right for optimizing - /// the call and (b) to perform the optimization. If an action is taken + /// the call and (b) to perform the optimization. If an action is taken /// against ci, the subclass is responsible for returning true and ensuring /// that ci is erased from its parent. /// @brief Optimize a call, if possible. @@ -108,38 +123,31 @@ public: ) = 0; /// @brief Get the name of the library call being optimized - const char * getFunctionName() const { return func_name; } + const char *getFunctionName() const { return FunctionName; } -#ifndef NDEBUG /// @brief Called by SimplifyLibCalls to update the occurrences statistic. - void succeeded() { ++occurrences; } -#endif - -private: - const char* func_name; ///< Name of the library call we optimize + void succeeded() { #ifndef NDEBUG - std::string stat_name; ///< Holder for debug statistic name - std::string stat_desc; ///< Holder for debug statistic description - Statistic<> occurrences; ///< debug statistic (-debug-only=simplify-libcalls) + DEBUG(++occurrences); #endif + } }; -/// This class is an LLVM Pass that applies each of the LibCallOptimization +/// This class is an LLVM Pass that applies each of the LibCallOptimization /// instances to all the call sites in a module, relatively efficiently. The -/// purpose of this pass is to provide optimizations for calls to well-known +/// purpose of this pass is to provide optimizations for calls to well-known /// functions with well-known semantics, such as those in the c library. The -/// class provides the basic infrastructure for handling runOnModule. Whenever /// this pass finds a function call, it asks the appropriate optimizer to +/// class provides the basic infrastructure for handling runOnModule. Whenever +/// this pass finds a function call, it asks the appropriate optimizer to /// validate the call (ValidateLibraryCall). If it is validated, then /// the OptimizeCall method is also called. /// @brief A ModulePass for optimizing well-known function calls. -class SimplifyLibCalls : public ModulePass -{ +class SimplifyLibCalls : public ModulePass { public: /// We need some target data for accurate signature details that are /// target dependent. So we require target data in our AnalysisUsage. /// @brief Require TargetData from AnalysisUsage. - virtual void getAnalysisUsage(AnalysisUsage& Info) const - { + virtual void getAnalysisUsage(AnalysisUsage& Info) const { // Ask that the TargetData analysis be performed before us so we can use // the target data. Info.addRequired(); @@ -148,59 +156,59 @@ public: /// For this pass, process all of the function calls in the module, calling /// ValidateLibraryCall and OptimizeCall as appropriate. /// @brief Run all the lib call optimizations on a Module. - virtual bool runOnModule(Module &M) - { + virtual bool runOnModule(Module &M) { reset(M); bool result = false; + hash_map OptznMap; + for (LibCallOptimization *Optzn = OptList; Optzn; Optzn = Optzn->getNext()) + OptznMap[Optzn->getFunctionName()] = Optzn; // The call optimizations can be recursive. That is, the optimization might // generate a call to another function which can also be optimized. This way - // we make the LibCallOptimization instances very specific to the case they - // handle. It also means we need to keep running over the function calls in + // we make the LibCallOptimization instances very specific to the case they + // handle. It also means we need to keep running over the function calls in // the module until we don't get any more optimizations possible. bool found_optimization = false; - do - { + do { found_optimization = false; - for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) - { + for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) { // All the "well-known" functions are external and have external linkage - // because they live in a runtime library somewhere and were (probably) - // not compiled by LLVM. So, we only act on external functions that have - // external linkage and non-empty uses. - if (!FI->isExternal() || !FI->hasExternalLinkage() || FI->use_empty()) + // because they live in a runtime library somewhere and were (probably) + // not compiled by LLVM. So, we only act on external functions that + // have external or dllimport linkage and non-empty uses. + if (!FI->isExternal() || + !(FI->hasExternalLinkage() || FI->hasDLLImportLinkage()) || + FI->use_empty()) continue; // Get the optimization class that pertains to this function - LibCallOptimization* CO = optlist[FI->getName().c_str()]; - if (!CO) - continue; + hash_map::iterator OMI = + OptznMap.find(FI->getName()); + if (OMI == OptznMap.end()) continue; + + LibCallOptimization *CO = OMI->second; // Make sure the called function is suitable for the optimization - if (!CO->ValidateCalledFunction(FI,*this)) + if (!CO->ValidateCalledFunction(FI, *this)) continue; // Loop over each of the uses of the function - for (Value::use_iterator UI = FI->use_begin(), UE = FI->use_end(); - UI != UE ; ) - { + for (Value::use_iterator UI = FI->use_begin(), UE = FI->use_end(); + UI != UE ; ) { // If the use of the function is a call instruction - if (CallInst* CI = dyn_cast(*UI++)) - { + if (CallInst* CI = dyn_cast(*UI++)) { // Do the optimization on the LibCallOptimization. - if (CO->OptimizeCall(CI,*this)) - { + if (CO->OptimizeCall(CI, *this)) { ++SimplifiedLibCalls; found_optimization = result = true; -#ifndef NDEBUG CO->succeeded(); -#endif } } } } } while (found_optimization); + return result; } @@ -213,165 +221,202 @@ public: /// @brief Return the size_t type -- syntactic shortcut const Type* getIntPtrType() const { return TD->getIntPtrType(); } + /// @brief Return a Function* for the putchar libcall + Function* get_putchar() { + if (!putchar_func) + putchar_func = M->getOrInsertFunction("putchar", Type::IntTy, Type::IntTy, + NULL); + return putchar_func; + } + + /// @brief Return a Function* for the puts libcall + Function* get_puts() { + if (!puts_func) + puts_func = M->getOrInsertFunction("puts", Type::IntTy, + PointerType::get(Type::SByteTy), + NULL); + return puts_func; + } + /// @brief Return a Function* for the fputc libcall - Function* get_fputc(const Type* FILEptr_type) - { + Function* get_fputc(const Type* FILEptr_type) { if (!fputc_func) - { - std::vector args; - args.push_back(Type::IntTy); - args.push_back(FILEptr_type); - FunctionType* fputc_type = - FunctionType::get(Type::IntTy, args, false); - fputc_func = M->getOrInsertFunction("fputc",fputc_type); - } + fputc_func = M->getOrInsertFunction("fputc", Type::IntTy, Type::IntTy, + FILEptr_type, NULL); return fputc_func; } + /// @brief Return a Function* for the fputs libcall + Function* get_fputs(const Type* FILEptr_type) { + if (!fputs_func) + fputs_func = M->getOrInsertFunction("fputs", Type::IntTy, + PointerType::get(Type::SByteTy), + FILEptr_type, NULL); + return fputs_func; + } + /// @brief Return a Function* for the fwrite libcall - Function* get_fwrite(const Type* FILEptr_type) - { + Function* get_fwrite(const Type* FILEptr_type) { if (!fwrite_func) - { - std::vector args; - args.push_back(PointerType::get(Type::SByteTy)); - args.push_back(TD->getIntPtrType()); - args.push_back(TD->getIntPtrType()); - args.push_back(FILEptr_type); - FunctionType* fwrite_type = - FunctionType::get(TD->getIntPtrType(), args, false); - fwrite_func = M->getOrInsertFunction("fwrite",fwrite_type); - } + fwrite_func = M->getOrInsertFunction("fwrite", TD->getIntPtrType(), + PointerType::get(Type::SByteTy), + TD->getIntPtrType(), + TD->getIntPtrType(), + FILEptr_type, NULL); return fwrite_func; } /// @brief Return a Function* for the sqrt libcall - Function* get_sqrt() - { + Function* get_sqrt() { if (!sqrt_func) - { - std::vector args; - args.push_back(Type::DoubleTy); - FunctionType* sqrt_type = - FunctionType::get(Type::DoubleTy, args, false); - sqrt_func = M->getOrInsertFunction("sqrt",sqrt_type); - } + sqrt_func = M->getOrInsertFunction("sqrt", Type::DoubleTy, + Type::DoubleTy, NULL); return sqrt_func; } /// @brief Return a Function* for the strlen libcall - Function* get_strlen() - { + Function* get_strcpy() { + if (!strcpy_func) + strcpy_func = M->getOrInsertFunction("strcpy", + PointerType::get(Type::SByteTy), + PointerType::get(Type::SByteTy), + PointerType::get(Type::SByteTy), + NULL); + return strcpy_func; + } + + /// @brief Return a Function* for the strlen libcall + Function* get_strlen() { if (!strlen_func) - { - std::vector args; - args.push_back(PointerType::get(Type::SByteTy)); - FunctionType* strlen_type = - FunctionType::get(TD->getIntPtrType(), args, false); - strlen_func = M->getOrInsertFunction("strlen",strlen_type); - } + strlen_func = M->getOrInsertFunction("strlen", TD->getIntPtrType(), + PointerType::get(Type::SByteTy), + NULL); return strlen_func; } + /// @brief Return a Function* for the memchr libcall + Function* get_memchr() { + if (!memchr_func) + memchr_func = M->getOrInsertFunction("memchr", + PointerType::get(Type::SByteTy), + PointerType::get(Type::SByteTy), + Type::IntTy, TD->getIntPtrType(), + NULL); + return memchr_func; + } + /// @brief Return a Function* for the memcpy libcall - Function* get_memcpy() - { - if (!memcpy_func) - { - // Note: this is for llvm.memcpy intrinsic - std::vector args; - args.push_back(PointerType::get(Type::SByteTy)); - args.push_back(PointerType::get(Type::SByteTy)); - args.push_back(Type::IntTy); - args.push_back(Type::IntTy); - FunctionType* memcpy_type = FunctionType::get(Type::VoidTy, args, false); - memcpy_func = M->getOrInsertFunction("llvm.memcpy",memcpy_type); + Function* get_memcpy() { + if (!memcpy_func) { + const Type *SBP = PointerType::get(Type::SByteTy); + const char *N = TD->getIntPtrType() == Type::UIntTy ? + "llvm.memcpy.i32" : "llvm.memcpy.i64"; + memcpy_func = M->getOrInsertFunction(N, Type::VoidTy, SBP, SBP, + TD->getIntPtrType(), Type::UIntTy, + NULL); } return memcpy_func; } + Function *getUnaryFloatFunction(const char *Name, Function *&Cache) { + if (!Cache) + Cache = M->getOrInsertFunction(Name, Type::FloatTy, Type::FloatTy, NULL); + return Cache; + } + + Function *get_floorf() { return getUnaryFloatFunction("floorf", floorf_func);} + Function *get_ceilf() { return getUnaryFloatFunction( "ceilf", ceilf_func);} + Function *get_roundf() { return getUnaryFloatFunction("roundf", roundf_func);} + Function *get_rintf() { return getUnaryFloatFunction( "rintf", rintf_func);} + Function *get_nearbyintf() { return getUnaryFloatFunction("nearbyintf", + nearbyintf_func); } private: /// @brief Reset our cached data for a new Module - void reset(Module& mod) - { + void reset(Module& mod) { M = &mod; TD = &getAnalysis(); + putchar_func = 0; + puts_func = 0; fputc_func = 0; + fputs_func = 0; fwrite_func = 0; memcpy_func = 0; + memchr_func = 0; sqrt_func = 0; + strcpy_func = 0; strlen_func = 0; + floorf_func = 0; + ceilf_func = 0; + roundf_func = 0; + rintf_func = 0; + nearbyintf_func = 0; } private: - Function* fputc_func; ///< Cached fputc function - Function* fwrite_func; ///< Cached fwrite function - Function* memcpy_func; ///< Cached llvm.memcpy function - Function* sqrt_func; ///< Cached sqrt function - Function* strlen_func; ///< Cached strlen function - Module* M; ///< Cached Module - TargetData* TD; ///< Cached TargetData + /// Caches for function pointers. + Function *putchar_func, *puts_func; + Function *fputc_func, *fputs_func, *fwrite_func; + Function *memcpy_func, *memchr_func; + Function* sqrt_func; + Function *strcpy_func, *strlen_func; + Function *floorf_func, *ceilf_func, *roundf_func; + Function *rintf_func, *nearbyintf_func; + Module *M; ///< Cached Module + TargetData *TD; ///< Cached TargetData }; // Register the pass -RegisterOpt -X("simplify-libcalls","Simplify well-known library calls"); +RegisterPass +X("simplify-libcalls", "Simplify well-known library calls"); } // anonymous namespace // The only public symbol in this file which just instantiates the pass object -ModulePass *llvm::createSimplifyLibCallsPass() -{ - return new SimplifyLibCalls(); +ModulePass *llvm::createSimplifyLibCallsPass() { + return new SimplifyLibCalls(); } // Classes below here, in the anonymous namespace, are all subclasses of the // LibCallOptimization class, each implementing all optimizations possible for a // single well-known library call. Each has a static singleton instance that -// auto registers it into the "optlist" global above. +// auto registers it into the "optlist" global above. namespace { -// Forward declare a utility function. +// Forward declare utility functions. bool getConstantStringLength(Value* V, uint64_t& len, ConstantArray** A = 0 ); +Value *CastToCStr(Value *V, Instruction &IP); /// This LibCallOptimization will find instances of a call to "exit" that occurs /// within the "main" function and change it to a simple "ret" instruction with /// the same value passed to the exit function. When this is done, it splits the /// basic block at the exit(3) call and deletes the call instruction. /// @brief Replace calls to exit in main with a simple return -struct ExitInMainOptimization : public LibCallOptimization -{ - ExitInMainOptimization() : LibCallOptimization("exit") {} - virtual ~ExitInMainOptimization() {} +struct ExitInMainOptimization : public LibCallOptimization { + ExitInMainOptimization() : LibCallOptimization("exit", + "Number of 'exit' calls simplified") {} // Make sure the called function looks like exit (int argument, int return - // type, external linkage, not varargs). - virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) - { - if (f->arg_size() >= 1) - if (f->arg_begin()->getType()->isInteger()) - return true; - return false; + // type, external linkage, not varargs). + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + return F->arg_size() >= 1 && F->arg_begin()->getType()->isInteger(); } - virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) - { + virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { // To be careful, we check that the call to exit is coming from "main", that // main has external linkage, and the return type of main and the argument - // to exit have the same type. + // to exit have the same type. Function *from = ci->getParent()->getParent(); if (from->hasExternalLinkage()) if (from->getReturnType() == ci->getOperand(1)->getType()) - if (from->getName() == "main") - { - // Okay, time to actually do the optimization. First, get the basic + if (from->getName() == "main") { + // Okay, time to actually do the optimization. First, get the basic // block of the call instruction BasicBlock* bb = ci->getParent(); - // Create a return instruction that we'll replace the call with. - // Note that the argument of the return is the argument of the call + // Create a return instruction that we'll replace the call with. + // Note that the argument of the return is the argument of the call // instruction. - ReturnInst* ri = new ReturnInst(ci->getOperand(1), ci); + new ReturnInst(ci->getOperand(1), ci); // Split the block at the call instruction which places it in a new // basic block. @@ -395,28 +440,25 @@ struct ExitInMainOptimization : public LibCallOptimization } } ExitInMainOptimizer; -/// This LibCallOptimization will simplify a call to the strcat library -/// function. The simplification is possible only if the string being -/// concatenated is a constant array or a constant expression that results in -/// a constant string. In this case we can replace it with strlen + llvm.memcpy +/// This LibCallOptimization will simplify a call to the strcat library +/// function. The simplification is possible only if the string being +/// concatenated is a constant array or a constant expression that results in +/// a constant string. In this case we can replace it with strlen + llvm.memcpy /// of the constant string. Both of these calls are further reduced, if possible /// on subsequent passes. /// @brief Simplify the strcat library function. -struct StrCatOptimization : public LibCallOptimization -{ +struct StrCatOptimization : public LibCallOptimization { public: /// @brief Default constructor - StrCatOptimization() : LibCallOptimization("strcat") {} + StrCatOptimization() : LibCallOptimization("strcat", + "Number of 'strcat' calls simplified") {} public: - /// @breif Destructor - virtual ~StrCatOptimization() {} /// @brief Make sure that the "strcat" function has the right prototype - virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) - { + virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){ if (f->getReturnType() == PointerType::get(Type::SByteTy)) - if (f->arg_size() == 2) + if (f->arg_size() == 2) { Function::const_arg_iterator AI = f->arg_begin(); if (AI++->getType() == PointerType::get(Type::SByteTy)) @@ -430,14 +472,12 @@ public: } /// @brief Optimize the strcat library function - virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) - { + virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { // Extract some information from the instruction - Module* M = ci->getParent()->getParent()->getParent(); Value* dest = ci->getOperand(1); Value* src = ci->getOperand(2); - // Extract the initializer (while making numerous checks) from the + // Extract the initializer (while making numerous checks) from the // source operand of the call to strcat. If we get null back, one of // a variety of checks in get_GVInitializer failed uint64_t len = 0; @@ -445,8 +485,7 @@ public: return false; // Handle the simple, do-nothing case - if (len == 0) - { + if (len == 0) { ci->replaceAllUsesWith(dest); ci->eraseFromParent(); return true; @@ -456,19 +495,19 @@ public: // terminator as well. len++; - // We need to find the end of the destination string. That's where the - // memory is to be moved to. We just generate a call to strlen (further - // optimized in another pass). Note that the SLC.get_strlen() call + // We need to find the end of the destination string. That's where the + // memory is to be moved to. We just generate a call to strlen (further + // optimized in another pass). Note that the SLC.get_strlen() call // caches the Function* for us. - CallInst* strlen_inst = + CallInst* strlen_inst = new CallInst(SLC.get_strlen(), dest, dest->getName()+".len",ci); - // Now that we have the destination's length, we must index into the + // Now that we have the destination's length, we must index into the // destination's pointer to get the actual memcpy destination (end of // the string .. we're concatenating). std::vector idx; idx.push_back(strlen_inst); - GetElementPtrInst* gep = + GetElementPtrInst* gep = new GetElementPtrInst(dest,idx,dest->getName()+".indexed",ci); // We have enough information to now generate the memcpy call to @@ -476,12 +515,12 @@ public: std::vector vals; vals.push_back(gep); // destination vals.push_back(ci->getOperand(2)); // source - vals.push_back(ConstantSInt::get(Type::IntTy,len)); // length - vals.push_back(ConstantSInt::get(Type::IntTy,1)); // alignment + vals.push_back(ConstantInt::get(SLC.getIntPtrType(),len)); // length + vals.push_back(ConstantInt::get(Type::UIntTy,1)); // alignment new CallInst(SLC.get_memcpy(), vals, "", ci); - // Finally, substitute the first operand of the strcat call for the - // strcat call itself since strcat returns its first operand; and, + // Finally, substitute the first operand of the strcat call for the + // strcat call itself since strcat returns its first operand; and, // kill the strcat CallInst. ci->replaceAllUsesWith(dest); ci->eraseFromParent(); @@ -489,37 +528,110 @@ public: } } StrCatOptimizer; -/// This LibCallOptimization will simplify a call to the strcmp library -/// function. It optimizes out cases where one or both arguments are constant +/// This LibCallOptimization will simplify a call to the strchr library +/// function. It optimizes out cases where the arguments are both constant /// and the result can be determined statically. /// @brief Simplify the strcmp library function. -struct StrCmpOptimization : public LibCallOptimization -{ +struct StrChrOptimization : public LibCallOptimization { public: - StrCmpOptimization() : LibCallOptimization("strcmp") {} - virtual ~StrCmpOptimization() {} + StrChrOptimization() : LibCallOptimization("strchr", + "Number of 'strchr' calls simplified") {} - /// @brief Make sure that the "strcpy" function has the right prototype - virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) - { - if (f->getReturnType() == Type::IntTy && f->arg_size() == 2) + /// @brief Make sure that the "strchr" function has the right prototype + virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){ + if (f->getReturnType() == PointerType::get(Type::SByteTy) && + f->arg_size() == 2) return true; return false; } - /// @brief Perform the strcpy optimization - virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) - { + /// @brief Perform the strchr optimizations + virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) { + // If there aren't three operands, bail + if (ci->getNumOperands() != 3) + return false; + + // Check that the first argument to strchr is a constant array of sbyte. + // If it is, get the length and data, otherwise return false. + uint64_t len = 0; + ConstantArray* CA = 0; + if (!getConstantStringLength(ci->getOperand(1),len,&CA)) + return false; + + // Check that the second argument to strchr is a constant int. If it isn't + // a constant signed integer, we can try an alternate optimization + ConstantInt* CSI = dyn_cast(ci->getOperand(2)); + if (!CSI || CSI->getType()->isUnsigned() ) { + // The second operand is not constant, or not signed. Just lower this to + // memchr since we know the length of the string since it is constant. + Function* f = SLC.get_memchr(); + std::vector args; + args.push_back(ci->getOperand(1)); + args.push_back(ci->getOperand(2)); + args.push_back(ConstantInt::get(SLC.getIntPtrType(),len)); + ci->replaceAllUsesWith( new CallInst(f,args,ci->getName(),ci)); + ci->eraseFromParent(); + return true; + } + + // Get the character we're looking for + int64_t chr = CSI->getSExtValue(); + + // Compute the offset + uint64_t offset = 0; + bool char_found = false; + for (uint64_t i = 0; i < len; ++i) { + if (ConstantInt* CI = dyn_cast(CA->getOperand(i))) { + // Check for the null terminator + if (CI->isNullValue()) + break; // we found end of string + else if (CI->getSExtValue() == chr) { + char_found = true; + offset = i; + break; + } + } + } + + // strchr(s,c) -> offset_of_in(c,s) + // (if c is a constant integer and s is a constant string) + if (char_found) { + std::vector indices; + indices.push_back(ConstantInt::get(Type::ULongTy,offset)); + GetElementPtrInst* GEP = new GetElementPtrInst(ci->getOperand(1),indices, + ci->getOperand(1)->getName()+".strchr",ci); + ci->replaceAllUsesWith(GEP); + } else { + ci->replaceAllUsesWith( + ConstantPointerNull::get(PointerType::get(Type::SByteTy))); + } + ci->eraseFromParent(); + return true; + } +} StrChrOptimizer; + +/// This LibCallOptimization will simplify a call to the strcmp library +/// function. It optimizes out cases where one or both arguments are constant +/// and the result can be determined statically. +/// @brief Simplify the strcmp library function. +struct StrCmpOptimization : public LibCallOptimization { +public: + StrCmpOptimization() : LibCallOptimization("strcmp", + "Number of 'strcmp' calls simplified") {} + + /// @brief Make sure that the "strcmp" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + return F->getReturnType() == Type::IntTy && F->arg_size() == 2; + } + + /// @brief Perform the strcmp optimization + virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { // First, check to see if src and destination are the same. If they are, - // then the optimization is to replace the CallInst with the destination - // because the call is a no-op. Note that this corresponds to the - // degenerate strcpy(X,X) case which should have "undefined" results - // according to the C specification. However, it occurs sometimes and - // we optimize it as a no-op. + // then the optimization is to replace the CallInst with a constant 0 + // because the call is a no-op. Value* s1 = ci->getOperand(1); Value* s2 = ci->getOperand(2); - if (s1 == s2) - { + if (s1 == s2) { // strcmp(x,x) -> 0 ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,0)); ci->eraseFromParent(); @@ -529,15 +641,15 @@ public: bool isstr_1 = false; uint64_t len_1 = 0; ConstantArray* A1; - if (getConstantStringLength(s1,len_1,&A1)) - { + if (getConstantStringLength(s1,len_1,&A1)) { isstr_1 = true; - if (len_1 == 0) - { + if (len_1 == 0) { // strcmp("",x) -> *x - LoadInst* load = new LoadInst(s1,ci->getName()+".load",ci); - CastInst* cast = - new CastInst(load,Type::IntTy,ci->getName()+".int",ci); + LoadInst* load = + new LoadInst(CastToCStr(s2,*ci), ci->getName()+".load",ci); + CastInst* cast = + CastInst::create(Instruction::SExt, load, Type::IntTy, + ci->getName()+".int", ci); ci->replaceAllUsesWith(cast); ci->eraseFromParent(); return true; @@ -547,28 +659,27 @@ public: bool isstr_2 = false; uint64_t len_2 = 0; ConstantArray* A2; - if (getConstantStringLength(s2,len_2,&A2)) - { + if (getConstantStringLength(s2, len_2, &A2)) { isstr_2 = true; - if (len_2 == 0) - { + if (len_2 == 0) { // strcmp(x,"") -> *x - LoadInst* load = new LoadInst(s2,ci->getName()+".val",ci); - CastInst* cast = - new CastInst(load,Type::IntTy,ci->getName()+".int",ci); + LoadInst* load = + new LoadInst(CastToCStr(s1,*ci),ci->getName()+".val",ci); + CastInst* cast = + CastInst::create(Instruction::SExt, load, Type::IntTy, + ci->getName()+".int", ci); ci->replaceAllUsesWith(cast); ci->eraseFromParent(); return true; } } - if (isstr_1 && isstr_2) - { + if (isstr_1 && isstr_2) { // strcmp(x,y) -> cnst (if both x and y are constant strings) std::string str1 = A1->getAsString(); std::string str2 = A2->getAsString(); int result = strcmp(str1.c_str(), str2.c_str()); - ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,result)); + ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,result)); ci->eraseFromParent(); return true; } @@ -576,27 +687,115 @@ public: } } StrCmpOptimizer; -/// This LibCallOptimization will simplify a call to the strcpy library -/// function. Two optimizations are possible: +/// This LibCallOptimization will simplify a call to the strncmp library +/// function. It optimizes out cases where one or both arguments are constant +/// and the result can be determined statically. +/// @brief Simplify the strncmp library function. +struct StrNCmpOptimization : public LibCallOptimization { +public: + StrNCmpOptimization() : LibCallOptimization("strncmp", + "Number of 'strncmp' calls simplified") {} + + /// @brief Make sure that the "strncmp" function has the right prototype + virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){ + if (f->getReturnType() == Type::IntTy && f->arg_size() == 3) + return true; + return false; + } + + /// @brief Perform the strncpy optimization + virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) { + // First, check to see if src and destination are the same. If they are, + // then the optimization is to replace the CallInst with a constant 0 + // because the call is a no-op. + Value* s1 = ci->getOperand(1); + Value* s2 = ci->getOperand(2); + if (s1 == s2) { + // strncmp(x,x,l) -> 0 + ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,0)); + ci->eraseFromParent(); + return true; + } + + // Check the length argument, if it is Constant zero then the strings are + // considered equal. + uint64_t len_arg = 0; + bool len_arg_is_const = false; + if (ConstantInt* len_CI = dyn_cast(ci->getOperand(3))) { + len_arg_is_const = true; + len_arg = len_CI->getZExtValue(); + if (len_arg == 0) { + // strncmp(x,y,0) -> 0 + ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,0)); + ci->eraseFromParent(); + return true; + } + } + + bool isstr_1 = false; + uint64_t len_1 = 0; + ConstantArray* A1; + if (getConstantStringLength(s1, len_1, &A1)) { + isstr_1 = true; + if (len_1 == 0) { + // strncmp("",x) -> *x + LoadInst* load = new LoadInst(s1,ci->getName()+".load",ci); + CastInst* cast = + CastInst::create(Instruction::SExt, load, Type::IntTy, + ci->getName()+".int", ci); + ci->replaceAllUsesWith(cast); + ci->eraseFromParent(); + return true; + } + } + + bool isstr_2 = false; + uint64_t len_2 = 0; + ConstantArray* A2; + if (getConstantStringLength(s2,len_2,&A2)) { + isstr_2 = true; + if (len_2 == 0) { + // strncmp(x,"") -> *x + LoadInst* load = new LoadInst(s2,ci->getName()+".val",ci); + CastInst* cast = + CastInst::create(Instruction::SExt, load, Type::IntTy, + ci->getName()+".int", ci); + ci->replaceAllUsesWith(cast); + ci->eraseFromParent(); + return true; + } + } + + if (isstr_1 && isstr_2 && len_arg_is_const) { + // strncmp(x,y,const) -> constant + std::string str1 = A1->getAsString(); + std::string str2 = A2->getAsString(); + int result = strncmp(str1.c_str(), str2.c_str(), len_arg); + ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,result)); + ci->eraseFromParent(); + return true; + } + return false; + } +} StrNCmpOptimizer; + +/// This LibCallOptimization will simplify a call to the strcpy library +/// function. Two optimizations are possible: /// (1) If src and dest are the same and not volatile, just return dest /// (2) If the src is a constant then we can convert to llvm.memmove /// @brief Simplify the strcpy library function. -struct StrCpyOptimization : public LibCallOptimization -{ +struct StrCpyOptimization : public LibCallOptimization { public: - StrCpyOptimization() : LibCallOptimization("strcpy") {} - virtual ~StrCpyOptimization() {} + StrCpyOptimization() : LibCallOptimization("strcpy", + "Number of 'strcpy' calls simplified") {} /// @brief Make sure that the "strcpy" function has the right prototype - virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) - { + virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){ if (f->getReturnType() == PointerType::get(Type::SByteTy)) - if (f->arg_size() == 2) - { + if (f->arg_size() == 2) { Function::const_arg_iterator AI = f->arg_begin(); if (AI++->getType() == PointerType::get(Type::SByteTy)) - if (AI->getType() == PointerType::get(Type::SByteTy)) - { + if (AI->getType() == PointerType::get(Type::SByteTy)) { // Indicate this is a suitable call type. return true; } @@ -605,23 +804,21 @@ public: } /// @brief Perform the strcpy optimization - virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) - { + virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { // First, check to see if src and destination are the same. If they are, // then the optimization is to replace the CallInst with the destination - // because the call is a no-op. Note that this corresponds to the + // because the call is a no-op. Note that this corresponds to the // degenerate strcpy(X,X) case which should have "undefined" results // according to the C specification. However, it occurs sometimes and // we optimize it as a no-op. Value* dest = ci->getOperand(1); Value* src = ci->getOperand(2); - if (dest == src) - { + if (dest == src) { ci->replaceAllUsesWith(dest); ci->eraseFromParent(); return true; } - + // Get the length of the constant string referenced by the second operand, // the "src" parameter. Fail the optimization if we can't get the length // (note that getConstantStringLength does lots of checks to make sure this @@ -632,8 +829,7 @@ public: // If the constant string's length is zero we can optimize this by just // doing a store of 0 at the first byte of the destination - if (len == 0) - { + if (len == 0) { new StoreInst(ConstantInt::get(Type::SByteTy,0),ci->getOperand(1),ci); ci->replaceAllUsesWith(dest); ci->eraseFromParent(); @@ -644,20 +840,17 @@ public: // terminator as well. len++; - // Extract some information from the instruction - Module* M = ci->getParent()->getParent()->getParent(); - // We have enough information to now generate the memcpy call to // do the concatenation for us. std::vector vals; vals.push_back(dest); // destination vals.push_back(src); // source - vals.push_back(ConstantSInt::get(Type::IntTy,len)); // length - vals.push_back(ConstantSInt::get(Type::IntTy,1)); // alignment + vals.push_back(ConstantInt::get(SLC.getIntPtrType(),len)); // length + vals.push_back(ConstantInt::get(Type::UIntTy,1)); // alignment new CallInst(SLC.get_memcpy(), vals, "", ci); - // Finally, substitute the first operand of the strcat call for the - // strcat call itself since strcat returns its first operand; and, + // Finally, substitute the first operand of the strcat call for the + // strcat call itself since strcat returns its first operand; and, // kill the strcat CallInst. ci->replaceAllUsesWith(dest); ci->eraseFromParent(); @@ -665,20 +858,19 @@ public: } } StrCpyOptimizer; -/// This LibCallOptimization will simplify a call to the strlen library -/// function by replacing it with a constant value if the string provided to +/// This LibCallOptimization will simplify a call to the strlen library +/// function by replacing it with a constant value if the string provided to /// it is a constant array. /// @brief Simplify the strlen library function. -struct StrLenOptimization : public LibCallOptimization -{ - StrLenOptimization() : LibCallOptimization("strlen") {} - virtual ~StrLenOptimization() {} +struct StrLenOptimization : public LibCallOptimization { + StrLenOptimization() : LibCallOptimization("strlen", + "Number of 'strlen' calls simplified") {} /// @brief Make sure that the "strlen" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) { if (f->getReturnType() == SLC.getTargetData()->getIntPtrType()) - if (f->arg_size() == 1) + if (f->arg_size() == 1) if (Function::const_arg_iterator AI = f->arg_begin()) if (AI->getType() == PointerType::get(Type::SByteTy)) return true; @@ -688,37 +880,187 @@ struct StrLenOptimization : public LibCallOptimization /// @brief Perform the strlen optimization virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { - // Get the length of the string + // Make sure we're dealing with an sbyte* here. + Value* str = ci->getOperand(1); + if (str->getType() != PointerType::get(Type::SByteTy)) + return false; + + // Does the call to strlen have exactly one use? + if (ci->hasOneUse()) + // Is that single use a icmp operator? + if (ICmpInst* bop = dyn_cast(ci->use_back())) + // Is it compared against a constant integer? + if (ConstantInt* CI = dyn_cast(bop->getOperand(1))) + { + // Get the value the strlen result is compared to + uint64_t val = CI->getZExtValue(); + + // If its compared against length 0 with == or != + if (val == 0 && + (bop->getPredicate() == ICmpInst::ICMP_EQ || + bop->getPredicate() == ICmpInst::ICMP_NE)) + { + // strlen(x) != 0 -> *x != 0 + // strlen(x) == 0 -> *x == 0 + LoadInst* load = new LoadInst(str,str->getName()+".first",ci); + ICmpInst* rbop = new ICmpInst(bop->getPredicate(), load, + ConstantInt::get(Type::SByteTy,0), + bop->getName()+".strlen", ci); + bop->replaceAllUsesWith(rbop); + bop->eraseFromParent(); + ci->eraseFromParent(); + return true; + } + } + + // Get the length of the constant string operand uint64_t len = 0; if (!getConstantStringLength(ci->getOperand(1),len)) return false; - ci->replaceAllUsesWith( - ConstantInt::get(SLC.getTargetData()->getIntPtrType(),len)); + // strlen("xyz") -> 3 (for example) + const Type *Ty = SLC.getTargetData()->getIntPtrType(); + ci->replaceAllUsesWith(ConstantInt::get(Ty, len)); + ci->eraseFromParent(); return true; } } StrLenOptimizer; -/// This LibCallOptimization will simplify a call to the memcpy library -/// function by expanding it out to a single store of size 0, 1, 2, 4, or 8 +/// IsOnlyUsedInEqualsComparison - Return true if it only matters that the value +/// is equal or not-equal to zero. +static bool IsOnlyUsedInEqualsZeroComparison(Instruction *I) { + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); + UI != E; ++UI) { + Instruction *User = cast(*UI); + if (ICmpInst *IC = dyn_cast(User)) { + if ((IC->getPredicate() == ICmpInst::ICMP_NE || + IC->getPredicate() == ICmpInst::ICMP_EQ) && + isa(IC->getOperand(1)) && + cast(IC->getOperand(1))->isNullValue()) + continue; + } else if (CastInst *CI = dyn_cast(User)) + if (CI->getType() == Type::BoolTy) + continue; + // Unknown instruction. + return false; + } + return true; +} + +/// This memcmpOptimization will simplify a call to the memcmp library +/// function. +struct memcmpOptimization : public LibCallOptimization { + /// @brief Default Constructor + memcmpOptimization() + : LibCallOptimization("memcmp", "Number of 'memcmp' calls simplified") {} + + /// @brief Make sure that the "memcmp" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &TD) { + Function::const_arg_iterator AI = F->arg_begin(); + if (F->arg_size() != 3 || !isa(AI->getType())) return false; + if (!isa((++AI)->getType())) return false; + if (!(++AI)->getType()->isInteger()) return false; + if (!F->getReturnType()->isInteger()) return false; + return true; + } + + /// Because of alignment and instruction information that we don't have, we + /// leave the bulk of this to the code generators. + /// + /// Note that we could do much more if we could force alignment on otherwise + /// small aligned allocas, or if we could indicate that loads have a small + /// alignment. + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &TD) { + Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2); + + // If the two operands are the same, return zero. + if (LHS == RHS) { + // memcmp(s,s,x) -> 0 + CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); + CI->eraseFromParent(); + return true; + } + + // Make sure we have a constant length. + ConstantInt *LenC = dyn_cast(CI->getOperand(3)); + if (!LenC) return false; + uint64_t Len = LenC->getZExtValue(); + + // If the length is zero, this returns 0. + switch (Len) { + case 0: + // memcmp(s1,s2,0) -> 0 + CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); + CI->eraseFromParent(); + return true; + case 1: { + // memcmp(S1,S2,1) -> *(ubyte*)S1 - *(ubyte*)S2 + const Type *UCharPtr = PointerType::get(Type::UByteTy); + CastInst *Op1Cast = CastInst::create( + Instruction::BitCast, LHS, UCharPtr, LHS->getName(), CI); + CastInst *Op2Cast = CastInst::create( + Instruction::BitCast, RHS, UCharPtr, RHS->getName(), CI); + Value *S1V = new LoadInst(Op1Cast, LHS->getName()+".val", CI); + Value *S2V = new LoadInst(Op2Cast, RHS->getName()+".val", CI); + Value *RV = BinaryOperator::createSub(S1V, S2V, CI->getName()+".diff",CI); + if (RV->getType() != CI->getType()) + RV = CastInst::createIntegerCast(RV, CI->getType(), false, + RV->getName(), CI); + CI->replaceAllUsesWith(RV); + CI->eraseFromParent(); + return true; + } + case 2: + if (IsOnlyUsedInEqualsZeroComparison(CI)) { + // TODO: IF both are aligned, use a short load/compare. + + // memcmp(S1,S2,2) -> S1[0]-S2[0] | S1[1]-S2[1] iff only ==/!= 0 matters + const Type *UCharPtr = PointerType::get(Type::UByteTy); + CastInst *Op1Cast = CastInst::create( + Instruction::BitCast, LHS, UCharPtr, LHS->getName(), CI); + CastInst *Op2Cast = CastInst::create( + Instruction::BitCast, RHS, UCharPtr, RHS->getName(), CI); + Value *S1V1 = new LoadInst(Op1Cast, LHS->getName()+".val1", CI); + Value *S2V1 = new LoadInst(Op2Cast, RHS->getName()+".val1", CI); + Value *D1 = BinaryOperator::createSub(S1V1, S2V1, + CI->getName()+".d1", CI); + Constant *One = ConstantInt::get(Type::IntTy, 1); + Value *G1 = new GetElementPtrInst(Op1Cast, One, "next1v", CI); + Value *G2 = new GetElementPtrInst(Op2Cast, One, "next2v", CI); + Value *S1V2 = new LoadInst(G1, LHS->getName()+".val2", CI); + Value *S2V2 = new LoadInst(G2, RHS->getName()+".val2", CI); + Value *D2 = BinaryOperator::createSub(S1V2, S2V2, + CI->getName()+".d1", CI); + Value *Or = BinaryOperator::createOr(D1, D2, CI->getName()+".res", CI); + if (Or->getType() != CI->getType()) + Or = CastInst::createIntegerCast(Or, CI->getType(), false /*ZExt*/, + Or->getName(), CI); + CI->replaceAllUsesWith(Or); + CI->eraseFromParent(); + return true; + } + break; + default: + break; + } + + return false; + } +} memcmpOptimizer; + + +/// This LibCallOptimization will simplify a call to the memcpy library +/// function by expanding it out to a single store of size 0, 1, 2, 4, or 8 /// bytes depending on the length of the string and the alignment. Additional /// optimizations are possible in code generation (sequence of immediate store) /// @brief Simplify the memcpy library function. -struct MemCpyOptimization : public LibCallOptimization -{ - /// @brief Default Constructor - MemCpyOptimization() : LibCallOptimization("llvm.memcpy") {} -protected: - /// @brief Subclass Constructor - MemCpyOptimization(const char* fname) : LibCallOptimization(fname) {} -public: - /// @brief Destructor - virtual ~MemCpyOptimization() {} +struct LLVMMemCpyMoveOptzn : public LibCallOptimization { + LLVMMemCpyMoveOptzn(const char* fname, const char* desc) + : LibCallOptimization(fname, desc) {} /// @brief Make sure that the "memcpy" function has the right prototype - virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& TD) - { + virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& TD) { // Just make sure this has 4 arguments per LLVM spec. return (f->arg_size() == 4); } @@ -729,8 +1071,7 @@ public: /// alignment match the sizes of our intrinsic types so we can do a load and /// store instead of the memcpy call. /// @brief Perform the memcpy optimization. - virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& TD) - { + virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& TD) { // Make sure we have constant int values to work with ConstantInt* LEN = dyn_cast(ci->getOperand(3)); if (!LEN) @@ -740,8 +1081,10 @@ public: return false; // If the length is larger than the alignment, we can't optimize - uint64_t len = LEN->getRawValue(); - uint64_t alignment = ALIGN->getRawValue(); + uint64_t len = LEN->getZExtValue(); + uint64_t alignment = ALIGN->getZExtValue(); + if (alignment == 0) + alignment = 1; // Alignment 0 is identity for alignment 1 if (len > alignment) return false; @@ -764,93 +1107,181 @@ public: } // Cast source and dest to the right sized primitive and then load/store - CastInst* SrcCast = - new CastInst(src,PointerType::get(castType),src->getName()+".cast",ci); - CastInst* DestCast = - new CastInst(dest,PointerType::get(castType),dest->getName()+".cast",ci); + CastInst* SrcCast = CastInst::create(Instruction::BitCast, + src, PointerType::get(castType), src->getName()+".cast", ci); + CastInst* DestCast = CastInst::create(Instruction::BitCast, + dest, PointerType::get(castType),dest->getName()+".cast", ci); LoadInst* LI = new LoadInst(SrcCast,SrcCast->getName()+".val",ci); - StoreInst* SI = new StoreInst(LI, DestCast, ci); + new StoreInst(LI, DestCast, ci); ci->eraseFromParent(); return true; } -} MemCpyOptimizer; +}; -/// This LibCallOptimization will simplify a call to the memmove library -/// function. It is identical to MemCopyOptimization except for the name of -/// the intrinsic. -/// @brief Simplify the memmove library function. -struct MemMoveOptimization : public MemCpyOptimization -{ +/// This LibCallOptimization will simplify a call to the memcpy/memmove library +/// functions. +LLVMMemCpyMoveOptzn LLVMMemCpyOptimizer32("llvm.memcpy.i32", + "Number of 'llvm.memcpy' calls simplified"); +LLVMMemCpyMoveOptzn LLVMMemCpyOptimizer64("llvm.memcpy.i64", + "Number of 'llvm.memcpy' calls simplified"); +LLVMMemCpyMoveOptzn LLVMMemMoveOptimizer32("llvm.memmove.i32", + "Number of 'llvm.memmove' calls simplified"); +LLVMMemCpyMoveOptzn LLVMMemMoveOptimizer64("llvm.memmove.i64", + "Number of 'llvm.memmove' calls simplified"); + +/// This LibCallOptimization will simplify a call to the memset library +/// function by expanding it out to a single store of size 0, 1, 2, 4, or 8 +/// bytes depending on the length argument. +struct LLVMMemSetOptimization : public LibCallOptimization { /// @brief Default Constructor - MemMoveOptimization() : MemCpyOptimization("llvm.memmove") {} + LLVMMemSetOptimization(const char *Name) : LibCallOptimization(Name, + "Number of 'llvm.memset' calls simplified") {} + + /// @brief Make sure that the "memset" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &TD) { + // Just make sure this has 3 arguments per LLVM spec. + return F->arg_size() == 4; + } + + /// Because of alignment and instruction information that we don't have, we + /// leave the bulk of this to the code generators. The optimization here just + /// deals with a few degenerate cases where the length parameter is constant + /// and the alignment matches the sizes of our intrinsic types so we can do + /// store instead of the memcpy call. Other calls are transformed into the + /// llvm.memset intrinsic. + /// @brief Perform the memset optimization. + virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &TD) { + // Make sure we have constant int values to work with + ConstantInt* LEN = dyn_cast(ci->getOperand(3)); + if (!LEN) + return false; + ConstantInt* ALIGN = dyn_cast(ci->getOperand(4)); + if (!ALIGN) + return false; + + // Extract the length and alignment + uint64_t len = LEN->getZExtValue(); + uint64_t alignment = ALIGN->getZExtValue(); + + // Alignment 0 is identity for alignment 1 + if (alignment == 0) + alignment = 1; -} MemMoveOptimizer; + // If the length is zero, this is a no-op + if (len == 0) { + // memset(d,c,0,a) -> noop + ci->eraseFromParent(); + return true; + } + + // If the length is larger than the alignment, we can't optimize + if (len > alignment) + return false; + + // Make sure we have a constant ubyte to work with so we can extract + // the value to be filled. + ConstantInt* FILL = dyn_cast(ci->getOperand(2)); + if (!FILL) + return false; + if (FILL->getType() != Type::UByteTy) + return false; + + // memset(s,c,n) -> store s, c (for n=1,2,4,8) + + // Extract the fill character + uint64_t fill_char = FILL->getZExtValue(); + uint64_t fill_value = fill_char; -/// This LibCallOptimization will simplify calls to the "pow" library -/// function. It looks for cases where the result of pow is well known and + // Get the type we will cast to, based on size of memory area to fill, and + // and the value we will store there. + Value* dest = ci->getOperand(1); + Type* castType = 0; + switch (len) { + case 1: + castType = Type::UByteTy; + break; + case 2: + castType = Type::UShortTy; + fill_value |= fill_char << 8; + break; + case 4: + castType = Type::UIntTy; + fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24; + break; + case 8: + castType = Type::ULongTy; + fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24; + fill_value |= fill_char << 32 | fill_char << 40 | fill_char << 48; + fill_value |= fill_char << 56; + break; + default: + return false; + } + + // Cast dest to the right sized primitive and then load/store + CastInst* DestCast = new BitCastInst(dest, PointerType::get(castType), + dest->getName()+".cast", ci); + new StoreInst(ConstantInt::get(castType,fill_value),DestCast, ci); + ci->eraseFromParent(); + return true; + } +}; + +LLVMMemSetOptimization MemSet32Optimizer("llvm.memset.i32"); +LLVMMemSetOptimization MemSet64Optimizer("llvm.memset.i64"); + + +/// This LibCallOptimization will simplify calls to the "pow" library +/// function. It looks for cases where the result of pow is well known and /// substitutes the appropriate value. /// @brief Simplify the pow library function. -struct PowOptimization : public LibCallOptimization -{ +struct PowOptimization : public LibCallOptimization { public: /// @brief Default Constructor - PowOptimization() : LibCallOptimization("pow") {} - /// @brief Destructor - virtual ~PowOptimization() {} + PowOptimization() : LibCallOptimization("pow", + "Number of 'pow' calls simplified") {} /// @brief Make sure that the "pow" function has the right prototype - virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) - { + virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){ // Just make sure this has 2 arguments return (f->arg_size() == 2); } /// @brief Perform the pow optimization. - virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) - { + virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) { const Type *Ty = cast(ci->getOperand(0))->getReturnType(); Value* base = ci->getOperand(1); Value* expn = ci->getOperand(2); if (ConstantFP *Op1 = dyn_cast(base)) { double Op1V = Op1->getValue(); - if (Op1V == 1.0) - { + if (Op1V == 1.0) { // pow(1.0,x) -> 1.0 ci->replaceAllUsesWith(ConstantFP::get(Ty,1.0)); ci->eraseFromParent(); return true; } - } - else if (ConstantFP* Op2 = dyn_cast(expn)) - { + } else if (ConstantFP* Op2 = dyn_cast(expn)) { double Op2V = Op2->getValue(); - if (Op2V == 0.0) - { + if (Op2V == 0.0) { // pow(x,0.0) -> 1.0 ci->replaceAllUsesWith(ConstantFP::get(Ty,1.0)); ci->eraseFromParent(); return true; - } - else if (Op2V == 0.5) - { + } else if (Op2V == 0.5) { // pow(x,0.5) -> sqrt(x) CallInst* sqrt_inst = new CallInst(SLC.get_sqrt(), base, ci->getName()+".pow",ci); ci->replaceAllUsesWith(sqrt_inst); ci->eraseFromParent(); return true; - } - else if (Op2V == 1.0) - { + } else if (Op2V == 1.0) { // pow(x,1.0) -> x ci->replaceAllUsesWith(base); ci->eraseFromParent(); return true; - } - else if (Op2V == -1.0) - { + } else if (Op2V == -1.0) { // pow(x,-1.0) -> 1.0/x - BinaryOperator* div_inst= BinaryOperator::create(Instruction::Div, + BinaryOperator* div_inst= BinaryOperator::createFDiv( ConstantFP::get(Ty,1.0), base, ci->getName()+".pow", ci); ci->replaceAllUsesWith(div_inst); ci->eraseFromParent(); @@ -861,41 +1292,383 @@ public: } } PowOptimizer; -/// This LibCallOptimization will simplify calls to the "fputs" library -/// function. It looks for cases where the result of fputs is not used and the +/// This LibCallOptimization will simplify calls to the "printf" library +/// function. It looks for cases where the result of printf is not used and the /// operation can be reduced to something simpler. -/// @brief Simplify the pow library function. -struct PutsOptimization : public LibCallOptimization -{ +/// @brief Simplify the printf library function. +struct PrintfOptimization : public LibCallOptimization { public: /// @brief Default Constructor - PutsOptimization() : LibCallOptimization("fputs") {} + PrintfOptimization() : LibCallOptimization("printf", + "Number of 'printf' calls simplified") {} + + /// @brief Make sure that the "printf" function has the right prototype + virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){ + // Just make sure this has at least 1 arguments + return (f->arg_size() >= 1); + } - /// @brief Destructor - virtual ~PutsOptimization() {} + /// @brief Perform the printf optimization. + virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { + // If the call has more than 2 operands, we can't optimize it + if (ci->getNumOperands() > 3 || ci->getNumOperands() <= 2) + return false; + + // If the result of the printf call is used, none of these optimizations + // can be made. + if (!ci->use_empty()) + return false; + + // All the optimizations depend on the length of the first argument and the + // fact that it is a constant string array. Check that now + uint64_t len = 0; + ConstantArray* CA = 0; + if (!getConstantStringLength(ci->getOperand(1), len, &CA)) + return false; + + if (len != 2 && len != 3) + return false; + + // The first character has to be a % + if (ConstantInt* CI = dyn_cast(CA->getOperand(0))) + if (CI->getZExtValue() != '%') + return false; + + // Get the second character and switch on its value + ConstantInt* CI = dyn_cast(CA->getOperand(1)); + switch (CI->getZExtValue()) { + case 's': + { + if (len != 3 || + dyn_cast(CA->getOperand(2))->getZExtValue() != '\n') + return false; + + // printf("%s\n",str) -> puts(str) + Function* puts_func = SLC.get_puts(); + if (!puts_func) + return false; + std::vector args; + args.push_back(CastToCStr(ci->getOperand(2), *ci)); + new CallInst(puts_func,args,ci->getName(),ci); + ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,len)); + break; + } + case 'c': + { + // printf("%c",c) -> putchar(c) + if (len != 2) + return false; + + Function* putchar_func = SLC.get_putchar(); + if (!putchar_func) + return false; + CastInst* cast = CastInst::createSExtOrBitCast( + ci->getOperand(2), Type::IntTy, CI->getName()+".int", ci); + new CallInst(putchar_func, cast, "", ci); + ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy, 1)); + break; + } + default: + return false; + } + ci->eraseFromParent(); + return true; + } +} PrintfOptimizer; + +/// This LibCallOptimization will simplify calls to the "fprintf" library +/// function. It looks for cases where the result of fprintf is not used and the +/// operation can be reduced to something simpler. +/// @brief Simplify the fprintf library function. +struct FPrintFOptimization : public LibCallOptimization { +public: + /// @brief Default Constructor + FPrintFOptimization() : LibCallOptimization("fprintf", + "Number of 'fprintf' calls simplified") {} + + /// @brief Make sure that the "fprintf" function has the right prototype + virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){ + // Just make sure this has at least 2 arguments + return (f->arg_size() >= 2); + } + + /// @brief Perform the fprintf optimization. + virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { + // If the call has more than 3 operands, we can't optimize it + if (ci->getNumOperands() > 4 || ci->getNumOperands() <= 2) + return false; + + // If the result of the fprintf call is used, none of these optimizations + // can be made. + if (!ci->use_empty()) + return false; + + // All the optimizations depend on the length of the second argument and the + // fact that it is a constant string array. Check that now + uint64_t len = 0; + ConstantArray* CA = 0; + if (!getConstantStringLength(ci->getOperand(2), len, &CA)) + return false; + + if (ci->getNumOperands() == 3) { + // Make sure there's no % in the constant array + for (unsigned i = 0; i < len; ++i) { + if (ConstantInt* CI = dyn_cast(CA->getOperand(i))) { + // Check for the null terminator + if (CI->getZExtValue() == '%') + return false; // we found end of string + } else { + return false; + } + } + + // fprintf(file,fmt) -> fwrite(fmt,strlen(fmt),file) + const Type* FILEptr_type = ci->getOperand(1)->getType(); + Function* fwrite_func = SLC.get_fwrite(FILEptr_type); + if (!fwrite_func) + return false; + + // Make sure that the fprintf() and fwrite() functions both take the + // same type of char pointer. + if (ci->getOperand(2)->getType() != + fwrite_func->getFunctionType()->getParamType(0)) + return false; + + std::vector args; + args.push_back(ci->getOperand(2)); + args.push_back(ConstantInt::get(SLC.getIntPtrType(),len)); + args.push_back(ConstantInt::get(SLC.getIntPtrType(),1)); + args.push_back(ci->getOperand(1)); + new CallInst(fwrite_func,args,ci->getName(),ci); + ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,len)); + ci->eraseFromParent(); + return true; + } + + // The remaining optimizations require the format string to be length 2 + // "%s" or "%c". + if (len != 2) + return false; + + // The first character has to be a % + if (ConstantInt* CI = dyn_cast(CA->getOperand(0))) + if (CI->getZExtValue() != '%') + return false; + + // Get the second character and switch on its value + ConstantInt* CI = dyn_cast(CA->getOperand(1)); + switch (CI->getZExtValue()) { + case 's': + { + uint64_t len = 0; + ConstantArray* CA = 0; + if (getConstantStringLength(ci->getOperand(3), len, &CA)) { + // fprintf(file,"%s",str) -> fwrite(str,strlen(str),1,file) + const Type* FILEptr_type = ci->getOperand(1)->getType(); + Function* fwrite_func = SLC.get_fwrite(FILEptr_type); + if (!fwrite_func) + return false; + std::vector args; + args.push_back(CastToCStr(ci->getOperand(3), *ci)); + args.push_back(ConstantInt::get(SLC.getIntPtrType(),len)); + args.push_back(ConstantInt::get(SLC.getIntPtrType(),1)); + args.push_back(ci->getOperand(1)); + new CallInst(fwrite_func,args,ci->getName(),ci); + ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,len)); + } else { + // fprintf(file,"%s",str) -> fputs(str,file) + const Type* FILEptr_type = ci->getOperand(1)->getType(); + Function* fputs_func = SLC.get_fputs(FILEptr_type); + if (!fputs_func) + return false; + std::vector args; + args.push_back(CastToCStr(ci->getOperand(3), *ci)); + args.push_back(ci->getOperand(1)); + new CallInst(fputs_func,args,ci->getName(),ci); + ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,len)); + } + break; + } + case 'c': + { + // fprintf(file,"%c",c) -> fputc(c,file) + const Type* FILEptr_type = ci->getOperand(1)->getType(); + Function* fputc_func = SLC.get_fputc(FILEptr_type); + if (!fputc_func) + return false; + CastInst* cast = CastInst::createSExtOrBitCast( + ci->getOperand(3), Type::IntTy, CI->getName()+".int", ci); + new CallInst(fputc_func,cast,ci->getOperand(1),"",ci); + ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,1)); + break; + } + default: + return false; + } + ci->eraseFromParent(); + return true; + } +} FPrintFOptimizer; + +/// This LibCallOptimization will simplify calls to the "sprintf" library +/// function. It looks for cases where the result of sprintf is not used and the +/// operation can be reduced to something simpler. +/// @brief Simplify the sprintf library function. +struct SPrintFOptimization : public LibCallOptimization { +public: + /// @brief Default Constructor + SPrintFOptimization() : LibCallOptimization("sprintf", + "Number of 'sprintf' calls simplified") {} + + /// @brief Make sure that the "fprintf" function has the right prototype + virtual bool ValidateCalledFunction(const Function *f, SimplifyLibCalls &SLC){ + // Just make sure this has at least 2 arguments + return (f->getReturnType() == Type::IntTy && f->arg_size() >= 2); + } + + /// @brief Perform the sprintf optimization. + virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) { + // If the call has more than 3 operands, we can't optimize it + if (ci->getNumOperands() > 4 || ci->getNumOperands() < 3) + return false; + + // All the optimizations depend on the length of the second argument and the + // fact that it is a constant string array. Check that now + uint64_t len = 0; + ConstantArray* CA = 0; + if (!getConstantStringLength(ci->getOperand(2), len, &CA)) + return false; + + if (ci->getNumOperands() == 3) { + if (len == 0) { + // If the length is 0, we just need to store a null byte + new StoreInst(ConstantInt::get(Type::SByteTy,0),ci->getOperand(1),ci); + ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,0)); + ci->eraseFromParent(); + return true; + } + + // Make sure there's no % in the constant array + for (unsigned i = 0; i < len; ++i) { + if (ConstantInt* CI = dyn_cast(CA->getOperand(i))) { + // Check for the null terminator + if (CI->getZExtValue() == '%') + return false; // we found a %, can't optimize + } else { + return false; // initializer is not constant int, can't optimize + } + } + + // Increment length because we want to copy the null byte too + len++; + + // sprintf(str,fmt) -> llvm.memcpy(str,fmt,strlen(fmt),1) + Function* memcpy_func = SLC.get_memcpy(); + if (!memcpy_func) + return false; + std::vector args; + args.push_back(ci->getOperand(1)); + args.push_back(ci->getOperand(2)); + args.push_back(ConstantInt::get(SLC.getIntPtrType(),len)); + args.push_back(ConstantInt::get(Type::UIntTy,1)); + new CallInst(memcpy_func,args,"",ci); + ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,len)); + ci->eraseFromParent(); + return true; + } + + // The remaining optimizations require the format string to be length 2 + // "%s" or "%c". + if (len != 2) + return false; + + // The first character has to be a % + if (ConstantInt* CI = dyn_cast(CA->getOperand(0))) + if (CI->getZExtValue() != '%') + return false; + + // Get the second character and switch on its value + ConstantInt* CI = dyn_cast(CA->getOperand(1)); + switch (CI->getZExtValue()) { + case 's': { + // sprintf(dest,"%s",str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) + Function* strlen_func = SLC.get_strlen(); + Function* memcpy_func = SLC.get_memcpy(); + if (!strlen_func || !memcpy_func) + return false; + + Value *Len = new CallInst(strlen_func, CastToCStr(ci->getOperand(3), *ci), + ci->getOperand(3)->getName()+".len", ci); + Value *Len1 = BinaryOperator::createAdd(Len, + ConstantInt::get(Len->getType(), 1), + Len->getName()+"1", ci); + if (Len1->getType() != SLC.getIntPtrType()) + Len1 = CastInst::createIntegerCast(Len1, SLC.getIntPtrType(), false, + Len1->getName(), ci); + std::vector args; + args.push_back(CastToCStr(ci->getOperand(1), *ci)); + args.push_back(CastToCStr(ci->getOperand(3), *ci)); + args.push_back(Len1); + args.push_back(ConstantInt::get(Type::UIntTy,1)); + new CallInst(memcpy_func, args, "", ci); + + // The strlen result is the unincremented number of bytes in the string. + if (!ci->use_empty()) { + if (Len->getType() != ci->getType()) + Len = CastInst::createIntegerCast(Len, ci->getType(), false, + Len->getName(), ci); + ci->replaceAllUsesWith(Len); + } + ci->eraseFromParent(); + return true; + } + case 'c': { + // sprintf(dest,"%c",chr) -> store chr, dest + CastInst* cast = CastInst::createTruncOrBitCast( + ci->getOperand(3), Type::SByteTy, "char", ci); + new StoreInst(cast, ci->getOperand(1), ci); + GetElementPtrInst* gep = new GetElementPtrInst(ci->getOperand(1), + ConstantInt::get(Type::UIntTy,1),ci->getOperand(1)->getName()+".end", + ci); + new StoreInst(ConstantInt::get(Type::SByteTy,0),gep,ci); + ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,1)); + ci->eraseFromParent(); + return true; + } + } + return false; + } +} SPrintFOptimizer; + +/// This LibCallOptimization will simplify calls to the "fputs" library +/// function. It looks for cases where the result of fputs is not used and the +/// operation can be reduced to something simpler. +/// @brief Simplify the puts library function. +struct PutsOptimization : public LibCallOptimization { +public: + /// @brief Default Constructor + PutsOptimization() : LibCallOptimization("fputs", + "Number of 'fputs' calls simplified") {} /// @brief Make sure that the "fputs" function has the right prototype - virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) - { + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ // Just make sure this has 2 arguments - return (f->arg_size() == 2); + return F->arg_size() == 2; } /// @brief Perform the fputs optimization. - virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) - { + virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { // If the result is used, none of these optimizations work - if (!ci->hasNUses(0)) + if (!ci->use_empty()) return false; // All the optimizations depend on the length of the first argument and the // fact that it is a constant string array. Check that now - uint64_t len = 0; + uint64_t len = 0; if (!getConstantStringLength(ci->getOperand(1), len)) return false; - switch (len) - { + switch (len) { case 0: // fputs("",F) -> noop break; @@ -908,13 +1681,13 @@ public: return false; LoadInst* loadi = new LoadInst(ci->getOperand(1), ci->getOperand(1)->getName()+".byte",ci); - CastInst* casti = new CastInst(loadi,Type::IntTy, - loadi->getName()+".int",ci); + CastInst* casti = new SExtInst(loadi, Type::IntTy, + loadi->getName()+".int", ci); new CallInst(fputc_func,casti,ci->getOperand(2),"",ci); break; } default: - { + { // fputs(s,F) -> fwrite(s,1,len,F) (if s is constant and strlen(s) > 1) const Type* FILEptr_type = ci->getOperand(2)->getType(); Function* fwrite_func = SLC.get_fwrite(FILEptr_type); @@ -922,8 +1695,8 @@ public: return false; std::vector parms; parms.push_back(ci->getOperand(1)); - parms.push_back(ConstantUInt::get(SLC.getIntPtrType(),len)); - parms.push_back(ConstantUInt::get(SLC.getIntPtrType(),1)); + parms.push_back(ConstantInt::get(SLC.getIntPtrType(),len)); + parms.push_back(ConstantInt::get(SLC.getIntPtrType(),1)); parms.push_back(ci->getOperand(2)); new CallInst(fwrite_func,parms,"",ci); break; @@ -934,32 +1707,97 @@ public: } } PutsOptimizer; -/// This LibCallOptimization will simplify calls to the "toascii" library +/// This LibCallOptimization will simplify calls to the "isdigit" library +/// function. It simply does range checks the parameter explicitly. +/// @brief Simplify the isdigit library function. +struct isdigitOptimization : public LibCallOptimization { +public: + isdigitOptimization() : LibCallOptimization("isdigit", + "Number of 'isdigit' calls simplified") {} + + /// @brief Make sure that the "isdigit" function has the right prototype + virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){ + // Just make sure this has 1 argument + return (f->arg_size() == 1); + } + + /// @brief Perform the toascii optimization. + virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) { + if (ConstantInt* CI = dyn_cast(ci->getOperand(1))) { + // isdigit(c) -> 0 or 1, if 'c' is constant + uint64_t val = CI->getZExtValue(); + if (val >= '0' && val <='9') + ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,1)); + else + ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,0)); + ci->eraseFromParent(); + return true; + } + + // isdigit(c) -> (unsigned)c - '0' <= 9 + CastInst* cast = CastInst::createIntegerCast(ci->getOperand(1), + Type::UIntTy, false/*ZExt*/, ci->getOperand(1)->getName()+".uint", ci); + BinaryOperator* sub_inst = BinaryOperator::createSub(cast, + ConstantInt::get(Type::UIntTy,0x30), + ci->getOperand(1)->getName()+".sub",ci); + ICmpInst* setcond_inst = new ICmpInst(ICmpInst::ICMP_ULE,sub_inst, + ConstantInt::get(Type::UIntTy,9), + ci->getOperand(1)->getName()+".cmp",ci); + CastInst* c2 = new ZExtInst(setcond_inst, Type::IntTy, + ci->getOperand(1)->getName()+".isdigit", ci); + ci->replaceAllUsesWith(c2); + ci->eraseFromParent(); + return true; + } +} isdigitOptimizer; + +struct isasciiOptimization : public LibCallOptimization { +public: + isasciiOptimization() + : LibCallOptimization("isascii", "Number of 'isascii' calls simplified") {} + + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + return F->arg_size() == 1 && F->arg_begin()->getType()->isInteger() && + F->getReturnType()->isInteger(); + } + + /// @brief Perform the isascii optimization. + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { + // isascii(c) -> (unsigned)c < 128 + Value *V = CI->getOperand(1); + Value *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, V, + ConstantInt::get(V->getType(), 128), + V->getName()+".isascii", CI); + if (Cmp->getType() != CI->getType()) + Cmp = new BitCastInst(Cmp, CI->getType(), Cmp->getName(), CI); + CI->replaceAllUsesWith(Cmp); + CI->eraseFromParent(); + return true; + } +} isasciiOptimizer; + + +/// This LibCallOptimization will simplify calls to the "toascii" library /// function. It simply does the corresponding and operation to restrict the /// range of values to the ASCII character set (0-127). /// @brief Simplify the toascii library function. -struct ToAsciiOptimization : public LibCallOptimization -{ +struct ToAsciiOptimization : public LibCallOptimization { public: /// @brief Default Constructor - ToAsciiOptimization() : LibCallOptimization("toascii") {} - - /// @brief Destructor - virtual ~ToAsciiOptimization() {} + ToAsciiOptimization() : LibCallOptimization("toascii", + "Number of 'toascii' calls simplified") {} /// @brief Make sure that the "fputs" function has the right prototype - virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC) - { + virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){ // Just make sure this has 2 arguments return (f->arg_size() == 1); } /// @brief Perform the toascii optimization. - virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) - { + virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) { // toascii(c) -> (c & 0x7f) Value* chr = ci->getOperand(1); - BinaryOperator* and_inst = BinaryOperator::create(Instruction::And,chr, + BinaryOperator* and_inst = BinaryOperator::createAnd(chr, ConstantInt::get(chr->getType(),0x7F),ci->getName()+".toascii",ci); ci->replaceAllUsesWith(and_inst); ci->eraseFromParent(); @@ -967,23 +1805,227 @@ public: } } ToAsciiOptimizer; +/// This LibCallOptimization will simplify calls to the "ffs" library +/// calls which find the first set bit in an int, long, or long long. The +/// optimization is to compute the result at compile time if the argument is +/// a constant. +/// @brief Simplify the ffs library function. +struct FFSOptimization : public LibCallOptimization { +protected: + /// @brief Subclass Constructor + FFSOptimization(const char* funcName, const char* description) + : LibCallOptimization(funcName, description) {} + +public: + /// @brief Default Constructor + FFSOptimization() : LibCallOptimization("ffs", + "Number of 'ffs' calls simplified") {} + + /// @brief Make sure that the "ffs" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + // Just make sure this has 2 arguments + return F->arg_size() == 1 && F->getReturnType() == Type::IntTy; + } + + /// @brief Perform the ffs optimization. + virtual bool OptimizeCall(CallInst *TheCall, SimplifyLibCalls &SLC) { + if (ConstantInt *CI = dyn_cast(TheCall->getOperand(1))) { + // ffs(cnst) -> bit# + // ffsl(cnst) -> bit# + // ffsll(cnst) -> bit# + uint64_t val = CI->getZExtValue(); + int result = 0; + if (val) { + ++result; + while ((val & 1) == 0) { + ++result; + val >>= 1; + } + } + TheCall->replaceAllUsesWith(ConstantInt::get(Type::IntTy, result)); + TheCall->eraseFromParent(); + return true; + } + + // ffs(x) -> x == 0 ? 0 : llvm.cttz(x)+1 + // ffsl(x) -> x == 0 ? 0 : llvm.cttz(x)+1 + // ffsll(x) -> x == 0 ? 0 : llvm.cttz(x)+1 + const Type *ArgType = TheCall->getOperand(1)->getType(); + ArgType = ArgType->getUnsignedVersion(); + const char *CTTZName; + switch (ArgType->getTypeID()) { + default: assert(0 && "Unknown unsigned type!"); + case Type::UByteTyID : CTTZName = "llvm.cttz.i8" ; break; + case Type::UShortTyID: CTTZName = "llvm.cttz.i16"; break; + case Type::UIntTyID : CTTZName = "llvm.cttz.i32"; break; + case Type::ULongTyID : CTTZName = "llvm.cttz.i64"; break; + } + + Function *F = SLC.getModule()->getOrInsertFunction(CTTZName, ArgType, + ArgType, NULL); + Value *V = CastInst::createIntegerCast(TheCall->getOperand(1), ArgType, + false/*ZExt*/, "tmp", TheCall); + Value *V2 = new CallInst(F, V, "tmp", TheCall); + V2 = CastInst::createIntegerCast(V2, Type::IntTy, false/*ZExt*/, + "tmp", TheCall); + V2 = BinaryOperator::createAdd(V2, ConstantInt::get(Type::IntTy, 1), + "tmp", TheCall); + Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, V, + Constant::getNullValue(V->getType()), "tmp", + TheCall); + V2 = new SelectInst(Cond, ConstantInt::get(Type::IntTy, 0), V2, + TheCall->getName(), TheCall); + TheCall->replaceAllUsesWith(V2); + TheCall->eraseFromParent(); + return true; + } +} FFSOptimizer; + +/// This LibCallOptimization will simplify calls to the "ffsl" library +/// calls. It simply uses FFSOptimization for which the transformation is +/// identical. +/// @brief Simplify the ffsl library function. +struct FFSLOptimization : public FFSOptimization { +public: + /// @brief Default Constructor + FFSLOptimization() : FFSOptimization("ffsl", + "Number of 'ffsl' calls simplified") {} + +} FFSLOptimizer; + +/// This LibCallOptimization will simplify calls to the "ffsll" library +/// calls. It simply uses FFSOptimization for which the transformation is +/// identical. +/// @brief Simplify the ffsl library function. +struct FFSLLOptimization : public FFSOptimization { +public: + /// @brief Default Constructor + FFSLLOptimization() : FFSOptimization("ffsll", + "Number of 'ffsll' calls simplified") {} + +} FFSLLOptimizer; + +/// This optimizes unary functions that take and return doubles. +struct UnaryDoubleFPOptimizer : public LibCallOptimization { + UnaryDoubleFPOptimizer(const char *Fn, const char *Desc) + : LibCallOptimization(Fn, Desc) {} + + // Make sure that this function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + return F->arg_size() == 1 && F->arg_begin()->getType() == Type::DoubleTy && + F->getReturnType() == Type::DoubleTy; + } + + /// ShrinkFunctionToFloatVersion - If the input to this function is really a + /// float, strength reduce this to a float version of the function, + /// e.g. floor((double)FLT) -> (double)floorf(FLT). This can only be called + /// when the target supports the destination function and where there can be + /// no precision loss. + static bool ShrinkFunctionToFloatVersion(CallInst *CI, SimplifyLibCalls &SLC, + Function *(SimplifyLibCalls::*FP)()){ + if (CastInst *Cast = dyn_cast(CI->getOperand(1))) + if (Cast->getOperand(0)->getType() == Type::FloatTy) { + Value *New = new CallInst((SLC.*FP)(), Cast->getOperand(0), + CI->getName(), CI); + New = new FPExtInst(New, Type::DoubleTy, CI->getName(), CI); + CI->replaceAllUsesWith(New); + CI->eraseFromParent(); + if (Cast->use_empty()) + Cast->eraseFromParent(); + return true; + } + return false; + } +}; + + +struct FloorOptimization : public UnaryDoubleFPOptimizer { + FloorOptimization() + : UnaryDoubleFPOptimizer("floor", "Number of 'floor' calls simplified") {} + + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { +#ifdef HAVE_FLOORF + // If this is a float argument passed in, convert to floorf. + if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_floorf)) + return true; +#endif + return false; // opt failed + } +} FloorOptimizer; + +struct CeilOptimization : public UnaryDoubleFPOptimizer { + CeilOptimization() + : UnaryDoubleFPOptimizer("ceil", "Number of 'ceil' calls simplified") {} + + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { +#ifdef HAVE_CEILF + // If this is a float argument passed in, convert to ceilf. + if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_ceilf)) + return true; +#endif + return false; // opt failed + } +} CeilOptimizer; + +struct RoundOptimization : public UnaryDoubleFPOptimizer { + RoundOptimization() + : UnaryDoubleFPOptimizer("round", "Number of 'round' calls simplified") {} + + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { +#ifdef HAVE_ROUNDF + // If this is a float argument passed in, convert to roundf. + if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_roundf)) + return true; +#endif + return false; // opt failed + } +} RoundOptimizer; + +struct RintOptimization : public UnaryDoubleFPOptimizer { + RintOptimization() + : UnaryDoubleFPOptimizer("rint", "Number of 'rint' calls simplified") {} + + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { +#ifdef HAVE_RINTF + // If this is a float argument passed in, convert to rintf. + if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_rintf)) + return true; +#endif + return false; // opt failed + } +} RintOptimizer; + +struct NearByIntOptimization : public UnaryDoubleFPOptimizer { + NearByIntOptimization() + : UnaryDoubleFPOptimizer("nearbyint", + "Number of 'nearbyint' calls simplified") {} + + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { +#ifdef HAVE_NEARBYINTF + // If this is a float argument passed in, convert to nearbyintf. + if (ShrinkFunctionToFloatVersion(CI, SLC,&SimplifyLibCalls::get_nearbyintf)) + return true; +#endif + return false; // opt failed + } +} NearByIntOptimizer; + /// A function to compute the length of a null-terminated constant array of -/// integers. This function can't rely on the size of the constant array -/// because there could be a null terminator in the middle of the array. -/// We also have to bail out if we find a non-integer constant initializer -/// of one of the elements or if there is no null-terminator. The logic +/// integers. This function can't rely on the size of the constant array +/// because there could be a null terminator in the middle of the array. +/// We also have to bail out if we find a non-integer constant initializer +/// of one of the elements or if there is no null-terminator. The logic /// below checks each of these conditions and will return true only if all /// conditions are met. In that case, the \p len parameter is set to the length /// of the null-terminated string. If false is returned, the conditions were /// not met and len is set to 0. /// @brief Get the length of a constant string (null-terminated array). -bool getConstantStringLength(Value* V, uint64_t& len, ConstantArray** CA ) -{ +bool getConstantStringLength(Value *V, uint64_t &len, ConstantArray **CA) { assert(V != 0 && "Invalid args to getConstantStringLength"); - len = 0; // make sure we initialize this + len = 0; // make sure we initialize this User* GEP = 0; - // If the value is not a GEP instruction nor a constant expression with a - // GEP instruction, then return false because ConstantArray can't occur + // If the value is not a GEP instruction nor a constant expression with a + // GEP instruction, then return false because ConstantArray can't occur // any other way if (GetElementPtrInst* GEPI = dyn_cast(V)) GEP = GEPI; @@ -1000,22 +2042,20 @@ bool getConstantStringLength(Value* V, uint64_t& len, ConstantArray** CA ) return false; // Check to make sure that the first operand of the GEP is an integer and - // has value 0 so that we are sure we're indexing into the initializer. - if (ConstantInt* op1 = dyn_cast(GEP->getOperand(1))) - { + // has value 0 so that we are sure we're indexing into the initializer. + if (ConstantInt* op1 = dyn_cast(GEP->getOperand(1))) { if (!op1->isNullValue()) return false; - } - else + } else return false; // Ensure that the second operand is a ConstantInt. If it isn't then this - // GEP is wonky and we're not really sure what were referencing into and + // GEP is wonky and we're not really sure what were referencing into and // better of not optimizing it. While we're at it, get the second index // value. We'll need this later for indexing the ConstantArray. uint64_t start_idx = 0; if (ConstantInt* CI = dyn_cast(GEP->getOperand(2))) - start_idx = CI->getRawValue(); + start_idx = CI->getZExtValue(); else return false; @@ -1030,8 +2070,7 @@ bool getConstantStringLength(Value* V, uint64_t& len, ConstantArray** CA ) Constant* INTLZR = GV->getInitializer(); // Handle the ConstantAggregateZero case - if (ConstantAggregateZero* CAZ = dyn_cast(INTLZR)) - { + if (isa(INTLZR)) { // This is a degenerate case. The initializer is constant zero so the // length of the string must be zero. len = 0; @@ -1047,18 +2086,16 @@ bool getConstantStringLength(Value* V, uint64_t& len, ConstantArray** CA ) uint64_t max_elems = A->getType()->getNumElements(); // Traverse the constant array from start_idx (derived above) which is - // the place the GEP refers to in the array. - for ( len = start_idx; len < max_elems; len++) - { - if (ConstantInt* CI = dyn_cast(A->getOperand(len))) - { + // the place the GEP refers to in the array. + for (len = start_idx; len < max_elems; len++) { + if (ConstantInt *CI = dyn_cast(A->getOperand(len))) { // Check for the null terminator if (CI->isNullValue()) break; // we found end of string - } - else + } else return false; // This array isn't suitable, non-int initializer } + if (len >= max_elems) return false; // This array isn't null terminated @@ -1069,7 +2106,19 @@ bool getConstantStringLength(Value* V, uint64_t& len, ConstantArray** CA ) return true; // success! } -// TODO: +/// CastToCStr - Return V if it is an sbyte*, otherwise cast it to sbyte*, +/// inserting the cast before IP, and return the cast. +/// @brief Cast a value to a "C" string. +Value *CastToCStr(Value *V, Instruction &IP) { + assert(isa(V->getType()) && + "Can't cast non-pointer type to C string type"); + const Type *SBPTy = PointerType::get(Type::SByteTy); + if (V->getType() != SBPTy) + return new BitCastInst(V, SBPTy, V->getName(), &IP); + return V; +} + +// TODO: // Additional cases that we need to add to this file: // // cbrt: @@ -1083,22 +2132,6 @@ bool getConstantStringLength(Value* V, uint64_t& len, ConstantArray** CA ) // exp, expf, expl: // * exp(log(x)) -> x // -// ffs, ffsl, ffsll: -// * ffs(cnst) -> cnst' -// -// fprintf: -// * fprintf(file,fmt) -> fputs(fmt,file) -// (if fmt is constant and constains no % characters) -// * fprintf(file,"%s",str) -> fputs(orig,str) -// (only if the fprintf result is not used) -// * fprintf(file,"%c",chr) -> fputc(chr,file) -// -// isascii: -// * isascii(c) -> ((c & ~0x7f) == 0) -// -// isdigit: -// * isdigit(c) -> (unsigned)(c) - '0' <= 9 -// // log, logf, logl: // * log(exp(x)) -> x // * log(x**y) -> y*log(x) @@ -1112,21 +2145,13 @@ bool getConstantStringLength(Value* V, uint64_t& len, ConstantArray** CA ) // * lround(cnst) -> cnst' // // memcmp: -// * memcmp(s1,s2,0) -> 0 -// * memcmp(x,x,l) -> 0 // * memcmp(x,y,l) -> cnst // (if all arguments are constant and strlen(x) <= l and strlen(y) <= l) -// * memcpy(x,y,1) -> *x - *y // // memmove: -// * memmove(d,s,l,a) -> memcpy(d,s,l,a) +// * memmove(d,s,l,a) -> memcpy(d,s,l,a) // (if s is a global constant array) // -// memset: -// * memset(s,c,0) -> noop -// * memset(s,c,n) -> store s, c -// (for n=1,2,4,8) -// // pow, powf, powl: // * pow(exp(x),y) -> exp(x*y) // * pow(sqrt(x),y) -> pow(x,y*0.5) @@ -1142,42 +2167,24 @@ bool getConstantStringLength(Value* V, uint64_t& len, ConstantArray** CA ) // * signbit(cnst) -> cnst' // * signbit(nncst) -> 0 (if pstv is a non-negative constant) // -// sprintf: -// * sprintf(dest,fmt) -> strcpy(dest,fmt) -// (if fmt is constant and constains no % characters) -// * sprintf(dest,"%s",orig) -> strcpy(dest,orig) -// (only if the sprintf result is not used) -// // sqrt, sqrtf, sqrtl: // * sqrt(expN(x)) -> expN(x*0.5) // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) // -// strchr, strrchr: -// * strchr(s,c) -> offset_of_in(c,s) -// (if c is a constant integer and s is a constant string) +// stpcpy: +// * stpcpy(str, "literal") -> +// llvm.memcpy(str,"literal",strlen("literal")+1,1) +// strrchr: // * strrchr(s,c) -> reverse_offset_of_in(c,s) // (if c is a constant integer and s is a constant string) // * strrchr(s1,0) -> strchr(s1,0) // -// strcmp: -// * strcmp(x,x) -> 0 -// * strcmp(x,"") -> *x -// * strcmp("",x) -> *x -// * strcmp(x,y) -> cnst (if both x and y are constant strings) -// // strncat: // * strncat(x,y,0) -> x // * strncat(x,y,0) -> x (if strlen(y) = 0) // * strncat(x,y,l) -> strcat(x,y) (if y and l are constants an l > strlen(y)) // -// strncmp: -// * strncmp(x,y,0) -> 0 -// * strncmp(x,x,l) -> 0 -// * strncmp(x,"",l) -> *x -// * strncmp("",x,l) -> *x -// * strncmp(x,y,1) -> *x - *y -// // strncpy: // * strncpy(d,s,0) -> d // * strncpy(d,s,l) -> memcpy(d,s,l,1) @@ -1199,14 +2206,14 @@ bool getConstantStringLength(Value* V, uint64_t& len, ConstantArray** CA ) // // strstr: // * strstr(x,x) -> x -// * strstr(s1,s2) -> offset_of_s2_in(s1) +// * strstr(s1,s2) -> offset_of_s2_in(s1) // (if s1 and s2 are constant strings) -// +// // tan, tanf, tanl: // * tan(atan(x)) -> x -// +// // trunc, truncf, truncl: // * trunc(cnst) -> cnst' // -// +// }